1
|
Ma T, Guan Y, Zhang Y, Feng J, Yang Y, Chen J, Guo W, Liao J. Repairing effect of magnesium oxychloride cement modified by γ-polyglutamic acid and chitosan in osteoporotic bone defect. Int J Biol Macromol 2024; 283:137426. [PMID: 39537065 DOI: 10.1016/j.ijbiomac.2024.137426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Magnesium oxychloride cement (MOC) has the advantage of high early strength. However, it has the defect of poor water resistance. Considering this performance, we use γ-polyglutamic acid (γ-PGA) and chitosan (CS) to modify MOC. The effects of γ-PGA and CS such as strength, in vitro degradation and in vitro bioactivity of MOC were studied. Based on the preparation of γ-PGA and CS modified MOC (γ-PGA/CS-MOC) composite bone cement, the strontium ranelate (SrR) was loaded on. The results showed that the softening coefficient of γ-PGA/3 wt.% CS-MOC after soaking in SBF for 28 d reached 0.48, while that of control group (without CS and γ-PGA) was only 0.35; Cell experiments indicated that SrR could promote differentiation into osteoblasts. After the γ-PGA/CS-MOC composite bone cement containing SrR was implanted into the osteoporotic bone defect for 12 w, it was found that the material was gradually absorbed and the new bone tissue grew. The results showed that SrR/γ-PGA/CS-MOC composite bone cement had a potential application prospect in the repair of osteoporotic bone defects.
Collapse
Affiliation(s)
- Tingting Ma
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Yijia Guan
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Yanru Zhang
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Jinlun Feng
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Yue Yang
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Junying Chen
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Wenjie Guo
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Jianguo Liao
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China.
| |
Collapse
|
2
|
Veiga A, Foster O, Kaplan DL, Oliveira AL. Expanding the boundaries of silk sericin biomaterials in biomedical applications. J Mater Chem B 2024; 12:7020-7040. [PMID: 38935038 DOI: 10.1039/d4tb00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Silk sericin (SS) has a long history as a by-product of the textile industry. SS has emerged as a sustainable material for biomedical engineering due to its material properties including water solubility, diverse impact on biological activities including antibacterial and antioxidant properties, and ability to promote cell adhesion and proliferation. This review addresses the origin, structure, properties, extraction, and underlying functions of this protein. An overview of the growing research studies and market evolution is presented, along with highlights of the most common fabrication matrices (hydrogels, bioinks, porous and fibrous scaffolds) and tissue engineering applications. Finally, the future trends with this protein as a multifaceted toolbox for bioengineering are explored, along with the challenges with SS. Overall, the present review can serve as a foundation for the creation of innovative biomaterials utilizing SS as a fundamental building block that hold market potential.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Olivia Foster
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Ana Leite Oliveira
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
3
|
Arabpour Z, Abedi F, Salehi M, Baharnoori SM, Soleimani M, Djalilian AR. Hydrogel-Based Skin Regeneration. Int J Mol Sci 2024; 25:1982. [PMID: 38396661 PMCID: PMC10888449 DOI: 10.3390/ijms25041982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The skin is subject to damage from the surrounding environment. The repair of skin wounds can be very challenging due to several factors such as severe injuries, concomitant infections, or comorbidities such as diabetes. Different drugs and wound dressings have been used to treat skin wounds. Tissue engineering, a novel therapeutic approach, revolutionized the treatment and regeneration of challenging tissue damage. This field includes the use of synthetic and natural biomaterials that support the growth of tissues or organs outside the body. Accordingly, the demand for polymer-based therapeutic strategies for skin tissue defects is significantly increasing. Among the various 3D scaffolds used in tissue engineering, hydrogel scaffolds have gained special significance due to their unique properties such as natural mimicry of the extracellular matrix (ECM), moisture retention, porosity, biocompatibility, biodegradability, and biocompatibility properties. First, this article delineates the process of wound healing and conventional methods of treating wounds. It then presents an examination of the structure and manufacturing methods of hydrogels, followed by an analysis of their crucial characteristics in healing skin wounds and the most recent advancements in using hydrogel dressings for this purpose. Finally, it discusses the potential future advancements in hydrogel materials within the realm of wound healing.
Collapse
Affiliation(s)
- Zohreh Arabpour
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Farshad Abedi
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773955, Iran;
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| |
Collapse
|
4
|
Halder T, Barot H, Kumar B, Kaushik V, Patel H, Bhut H, Saha B, Poddar S, Acharya N. An Insight into Biodegradable Polymers and their Biomedical Applications for Wound Healing. Curr Pharm Des 2024; 30:2425-2444. [PMID: 38982925 DOI: 10.2174/0113816128295935240425101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/31/2024] [Indexed: 07/11/2024]
Abstract
Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle- loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the in vitro experiments conducted using different cell lines, as well as the in vivo studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.
Collapse
Affiliation(s)
- Tripti Halder
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Harshit Barot
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Vishakha Kaushik
- Department of Physics, School of Physical Sciences, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Hiren Patel
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Hastik Bhut
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bijit Saha
- Jodas Expoim Pvt Ltd, Kukatpally, Telangana, Hyderabad 500072, India
| | - Sibani Poddar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Niyati Acharya
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
5
|
Cai M, Han Y, Zheng X, Xue B, Zhang X, Mahmut Z, Wang Y, Dong B, Zhang C, Gao D, Sun J. Synthesis of Poly-γ-Glutamic Acid and Its Application in Biomedical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:15. [PMID: 38203869 PMCID: PMC10779536 DOI: 10.3390/ma17010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer composed of glutamic acid monomer and it has garnered substantial attention in both the fields of material science and biomedicine. Its remarkable cell compatibility, degradability, and other advantageous characteristics have made it a vital component in the medical field. In this comprehensive review, we delve into the production methods, primary application forms, and medical applications of γ-PGA, drawing from numerous prior studies. Among the four production methods for PGA, microbial fermentation currently stands as the most widely employed. This method has seen various optimization strategies, which we summarize here. From drug delivery systems to tissue engineering and wound healing, γ-PGA's versatility and unique properties have facilitated its successful integration into diverse medical applications, underlining its potential to enhance healthcare outcomes. The objective of this review is to establish a foundational knowledge base for further research in this field.
Collapse
Affiliation(s)
- Minjian Cai
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yumin Han
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xianhong Zheng
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Baigong Xue
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xinyao Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Zulpya Mahmut
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yuda Wang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Chunmei Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Donghui Gao
- Department of Anesthesiology and Operating Room, School and Hospital of Stomatology, Jilin University, Changchun 130012, China
| | - Jiao Sun
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
do Nascimento MF, de Oliveira CR, Cardoso JC, Bordignon NCT, Gondak R, Severino P, Souto EB, de Albuquerque Júnior RLC. UV-polymerizable methacrylated gelatin (GelMA)-based hydrogel containing tannic acids for wound healing. Drug Deliv Transl Res 2023; 13:3223-3238. [PMID: 37474880 PMCID: PMC10624738 DOI: 10.1007/s13346-023-01383-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
Gelatin-based photopolymerizable methacrylate hydrogel (GelMA) is a promising biomaterial for in situ drug delivery, while aqueous extract of Punica granatum (AEPG) peel fruit rich in gallic acid and ellagic acid is used to improve wound healing. The aim of this study was to develop and analyze the healing properties of GelMA containing AEPG, gallic acid, or ellagic acid in a rodent model. GelMA hydrogels containing 5% AEPG (GelMA-PG), 1.6% gallic acid (GelMA-GA), or 2.1% ellagic acid (GelMA-EA) were produced and their mechanical properties, enzymatic degradation, and thermogravimetric profile determined. Wound closure rates, healing histological grading, and immunohistochemical counts of myofibroblasts were assessed over time. The swelling of hydrogels varied between 50 and 90%, and GelMA exhibited a higher swelling than the other groups. The GPG samples showed higher compression and Young's moduli than GelMA, GGA, and GAE. All samples degraded around 95% in 48 h. GPG and GGA significantly accelerated wound closure, improved collagenization, increased histological grading, and hastened myofibroblast differentiation in comparison to the control, GelMA, and GEA. GelMA containing AEPG (GPG) improved wound healing, and although gallic acid is the major responsible for such biological activity, a potential synergic effect played by other polyphenols present in the extract is evident.
Collapse
Affiliation(s)
| | - Clauberto R de Oliveira
- Biotechnological Postgraduate Program-RENORBIO, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Juliana C Cardoso
- Postgraduate Program in Health and Environment, Tiradentes University, Aracaju, Sergipe, 49032-490, Brazil
| | - Natalia C T Bordignon
- Department of Dentistry, Post-Graduating Program in Dentistry, Federal University of Santa Catarina, Florianópolis, 88040-370, Brazil
| | - Rogério Gondak
- Department of Dentistry, Post-Graduating Program in Dentistry, Federal University of Santa Catarina, Florianópolis, 88040-370, Brazil
- Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, R. Delfino Conti, S/N, Florianópolis, Santa Catarina, 88040-370, Brazil
| | - Patrícia Severino
- Post-Graduating Program in Industrial Biotechnology, University of Tiradentes, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil
| | - Eliana B Souto
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- Associate Laboratory i4HB, Department of Pharmaceutical Technology, Faculty of Pharmacy, Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Ricardo L C de Albuquerque Júnior
- Department of Dentistry, Post-Graduating Program in Dentistry, Federal University of Santa Catarina, Florianópolis, 88040-370, Brazil.
- Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, R. Delfino Conti, S/N, Florianópolis, Santa Catarina, 88040-370, Brazil.
| |
Collapse
|
7
|
Tuancharoensri N, Sonjan S, Promkrainit S, Daengmankhong J, Phimnuan P, Mahasaranon S, Jongjitwimol J, Charoensit P, Ross GM, Viennet C, Viyoch J, Ross S. Porous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties. Polymers (Basel) 2023; 15:4052. [PMID: 37896296 PMCID: PMC10610211 DOI: 10.3390/polym15204052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Tailored porous structures of poly(2-hydroxyethyl methacrylate) (PHEMA) and silk sericin (SS) were used to create porous hydrogel scaffolds using two distinct crosslinking systems. These structures were designed to closely mimic the porous nature of the native extracellular matrix. Conventional free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) was performed in the presence of different concentrations of SS (1.25, 2.50, 5.00% w/v) with two crosslinking systems. A chemical crosslinking system with N'N-methylene bisacrylamide (MBAAm) and a physical crosslinking system with dimethylurea (DMU) were used: C-PHEMA/SS (crosslinked using MBAAm) and C-PHEMA/pC-SS (crosslinked using MBAAm and DMU). The focus of this study was on investigating the impact of these crosslinking methods on various properties of the scaffolds, including pore size, pore characteristics, polymerization time, morphology, molecular interaction, in vitro degradation, thermal properties, and in vitro cytotoxicity. The various crosslinked networks were found to appreciably influence the properties of the scaffolds, especially the pore sizes, in which smaller sizes and higher numbers of pores with high regularity were seen in C-PHEMA/1.25 pC-SS (17 ± 2 μm) than in C-PHEMA/1.25 SS (34 ± 3 μm). Semi-interpenetrating networks were created by crosslinking PHEMA-MBAAm-PHEMA while incorporating free protein molecules of SS within the networks. The additional crosslinking step involving DMU occurred through hydrogen bonding of the -C=O and -N-H groups with the SS, resulting in the simultaneous incorporation of DMU and SS within the PHEMA networks. As a consequence of this process, the scaffold C-PHEMA/pC-SS exhibited smaller pore sizes compared to scaffolds without DMU crosslinking. Moreover, the incorporation of higher loadings of SS led to even smaller pore sizes. Additionally, the gelation time of C-PHEMA/pC-SS was delayed due to the presence of DMU in the crosslinking system. Both porous hydrogel scaffolds, C-PHEMA/pC-SS and PHEMA, were found to be non-cytotoxic to the normal human skin dermal fibroblast cell line (NHDF cells). This promising result indicates that these hydrogel scaffolds have potential for use in tissue engineering applications.
Collapse
Affiliation(s)
- Nantaprapa Tuancharoensri
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
| | - Sukhonthamat Sonjan
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
| | - Sudarat Promkrainit
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
| | - Jinjutha Daengmankhong
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
| | - Preeyawass Phimnuan
- Department of Pharmaceutical Technology, Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand (P.C.)
| | - Sararat Mahasaranon
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Jirapas Jongjitwimol
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
- Biomedical Sciences Program, Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Pensri Charoensit
- Department of Pharmaceutical Technology, Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand (P.C.)
| | - Gareth M. Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Céline Viennet
- UMR 1098 RIGHT INSERM EFS FC, DImaCell Imaging Resource Center, University of Franche-Comté, 25000 Besançon, France
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand (P.C.)
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand (S.M.); (G.M.R.)
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| |
Collapse
|
8
|
Saad M, El-Samad LM, Gomaa RA, Augustyniak M, Hassan MA. A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int J Biol Macromol 2023; 250:126067. [PMID: 37524279 DOI: 10.1016/j.ijbiomac.2023.126067] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Silks are natural polymers that have been widely used for centuries. Silk consists of a filament core protein, termed fibroin, and a glue-like coating substance formed of sericin (SER) proteins. This protein is extracted from the silkworm cocoons (particularly Bombyx mori) and is mainly composed of amino acids like glycine, serine, aspartic acid, and threonine. Silk SER can be obtained using numerous methods, including enzymatic extraction, high-temperature, autoclaving, ethanol precipitation, cross-linking, and utilizing acidic, alkali, or neutral aqueous solutions. Given the versatility and outstanding properties of SER, it is widely fabricated to produce sponges, films, and hydrogels for further use in diverse biomedical applications. Hence, many authors reported that SER benefits cell proliferation, tissue engineering, and skin tissue restoration thanks to its moisturizing features, antioxidant and anti-inflammatory properties, and mitogenic effect on mammalian cells. Remarkably, SER is used in drug delivery depending on its chemical reactivity and pH-responsiveness. These unique features of SER enhance the bioactivity of drugs, facilitating the fabrication of biomedical materials at nano- and microscales, hydrogels, and conjugated molecules. This review thoroughly outlines the extraction techniques, biological properties, and respective biomedical applications of SER.
Collapse
Affiliation(s)
- Marwa Saad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rehab A Gomaa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
9
|
Tang K, Luo ML, Zhou W, Niu LN, Chen JH, Wang F. The integration of peri-implant soft tissues around zirconia abutments: Challenges and strategies. Bioact Mater 2023; 27:348-361. [PMID: 37180640 PMCID: PMC10172871 DOI: 10.1016/j.bioactmat.2023.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Stable soft tissue integration around the implant abutment attenuates pathogen penetration, protects underlying bone tissue, prevents peri-implantitis and is essential in maintaining long-term implant stability. The desire for "metal free" and "aesthetic restoration" has favored zirconia over titanium abutments, especially for implant restorations in the anterior region and for patients with thin gingival biotype. Soft tissue attachment to the zirconia abutment surface remains a challenge. A comprehensive review of advances in zirconia surface treatment (micro-design) and structural design (macro-design) affecting soft tissue attachment is presented and strategies and research directions are discussed. Soft tissue models for abutment research are described. Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.
Collapse
Affiliation(s)
- Kai Tang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meng-Lin Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, The First Medical Center, Chinese PLA General Hospital & Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li-Na Niu
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji-Hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| | - Fu Wang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
10
|
Su X, Feng Y, Shi H, Wang F, Wang Z, Hou S, Song X, Yang J, Liu L. A hydrogel dressing with tunable critical temperature and photothermal modulating melittin release for multiply antibacterial treatment. Int J Biol Macromol 2023; 239:124272. [PMID: 37001785 DOI: 10.1016/j.ijbiomac.2023.124272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
It is imperative to develop an antibiotic-free and long-term effective strategy for treating chronic wound infections due to the long-term utilization of antibiotics easily causing drug resistance. Herein, we fabricated a novel poly-N-isopropylacrylamide (PNIPAM)/polyacrylamide (PAM) coupling thermosensitive hydrogel integrating 1D lysozyme nanofiber doped with CuS nanoparticles (CuS/PP) and loading antibacterial peptide melittin (M) (CuS/PP-M) for combating chronic wound infection via photothermal modulating the release of melittin. For the CuS/PP-M hydrogel, the copolymerization of PNIPAM and PAM allows the lower critical solution temperature (LCST) higher than the body temperature, effectively hindering the spontaneous release of melittin when contacts the infected wound, while the integration of LNF/CuS nanofibers provides a stable photothermal treatment for triggering the release of melittin. As a result, the CuS/PP-M hydrogel exhibits synergistically enhanced effect on killing both Gram-positive and Gram-negative bacteria, which maintains more than 99 % bactericidal efficiency, even displays a long-term and multiply antibacterial performance by photothermal modulating melittin release. Moreover, the CuS/PP-M hydrogel presents both high antibacterial activity and excellent wound healing performance in the mouse wound model, thereby benefiting the chronic wound healing.
Collapse
Affiliation(s)
- Xianhao Su
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China.
| | - Hui Shi
- School of Medicine, Jiangsu University, Zhenjiang 202013, China
| | - Fenghua Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Zengkai Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Shuai Hou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Xiaolu Song
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Juan Yang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 202013, China.
| |
Collapse
|
11
|
Rajendran AK, Hwang NS. Silk and silk fibroin in tissue engineering. NATURAL BIOPOLYMERS IN DRUG DELIVERY AND TISSUE ENGINEERING 2023:627-661. [DOI: 10.1016/b978-0-323-98827-8.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y, Wang Z, Wang L. Silk sericin-based materials for biomedical applications. Biomaterials 2022; 287:121638. [PMID: 35921729 DOI: 10.1016/j.biomaterials.2022.121638] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Silk sericin, a natural protein extracted from silkworm cocoons, has been extensively studied and utilized in the biomedical field because of its superior biological activities and controllable chemical-physical properties. Sericin is biocompatible and naturally cell adhesive, enabling cell attachment, proliferation, and differentiation in sericin-based materials. Moreover, its abundant functional groups from variable amino acids composition allow sericin to be chemically modified and cross-linked to form versatile constructs serving as alternative matrixes for biomedical applications. Recently, sericin has been constructed into various types of biomaterials for tissue engineering and regenerative medicine, including various bulk constructions (films, hydrogels, scaffolds, conduits, and devices) and micro-nano formulations. In this review, we systemically summarize the properties of silk sericin, introduce its different forms, and demonstrate their newly-developed as well as potential biomedical applications.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Qi L, Zhang C, Wang B, Yin J, Yan S. Progress in hydrogels for skin wound repair. Macromol Biosci 2022; 22:e2100475. [PMID: 35388605 DOI: 10.1002/mabi.202100475] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/21/2022] [Indexed: 11/08/2022]
Abstract
As the first defensive line between the human body and the outside world, the skin is vulnerable to damage from the external environment. Skin wounds can be divided into acute wounds (mechanical injuries, chemical injuries and surgical wounds, etc.) and chronic wounds (burns, infections, diabetes, etc.). In order to manage skin wound, a variety of wound dressings have been developed, including gauze, films, foams, nanofibers, hydrocolloids and hydrogels. Recently, hydrogels have received much attention because of their natural extracellular matrix (ECM)-mimik structure, tunable mechanical properties, and facile bioactive substance delivery capability. They show great potential application in skin wound repair. This paper first introduces the anatomy and function of the skin, the process of wound healing and conventional wound dressings, and then introduces the composition and construction methods of hydrogels. Next, this paper introduces the necessary properties of hydrogels in skin wound repair and the latest research progress of hydrogel dressings for skin wound repair. Finally, the future development goals of hydrogel materials in the field of wound healing are proposed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liangfa Qi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chenlu Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Bo Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
14
|
Ye Q, Chen SH, Zhang Y, Ruan B, Zhang YJ, Zhang XK, Jiang T, Wang X, Ma N, Tsai FC. Chitosan/Polyvinyl Alcohol/ Lauramidopropyl Betaine/2D-HOF Mixed Film with Abundant Hydrogen Bonds Acts as High Mechanical Strength Artificial Skin. Macromol Biosci 2021; 21:e2100317. [PMID: 34626523 DOI: 10.1002/mabi.202100317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Indexed: 12/17/2022]
Abstract
The mechanical properties of artificial skins are complicated to maintain under ensuring air permeability and antimicrobial. Thus, a series of hydrophilic antimicrobial polymer networks are prepared by crosslinking chitosan and polyvinyl alcohol with the lauramidopropyl betaine and hydrogen bond organic framework (CS/PVA/LPB/2D-HOF). The mechanical performance of the control groups and the complex are systematically evaluated to attain an artificial strength skin. The CS/PVA/LPB/2D-HOF complex exhibits strong mechanical abilities than other control groups. By analyzing the IR spectra and the morphology, the synergistic effect of hydrogen bonds between molecules and cracks significantly improves the mechanical properties of the complex. Its maximum tensile strength can reach 29 MPa, and its maximum load capacity can reach 3700 g. Notably, the composite membrane also performs an excellent antimicrobial activity. In vivo and in vitro experiments show that the hybrid membrane can promote tissue regeneration and wound healing (95%). These results may open up the opportunity for future composite material investigations in the artificial skin and tissue engineering field.
Collapse
Affiliation(s)
- Qin Ye
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Shu-Han Chen
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Ya Zhang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Bo Ruan
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Yi-Jie Zhang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xin-Ke Zhang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Tao Jiang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiaoge Wang
- Department Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ning Ma
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Fang-Chang Tsai
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.,Hubei Provincial Key Laboratory of Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
15
|
Zhang Y, Li T, Zhao C, Li J, Huang R, Zhang Q, Li Y, Li X. An Integrated Smart Sensor Dressing for Real-Time Wound Microenvironment Monitoring and Promoting Angiogenesis and Wound Healing. Front Cell Dev Biol 2021; 9:701525. [PMID: 34422823 PMCID: PMC8378138 DOI: 10.3389/fcell.2021.701525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Prolonged chronic wound healing not only places great stress on patients but also increase the health care burden. Fortunately, the emergence of tissue-engineered dressings has provided a potential solution for these patients. Recently, the relationship between the wound microenvironment and wound healing has been gradually clarified. Therefore, the state of wounds can be roughly ascertained by monitoring the microenvironment in real time. Here, we designed a three-layer integrated smart dressing, including a biomimetic nanofibre membrane, microenvironment sensor and β-cyclodextrin-containing gelatine methacryloyl (GelMA + β-cd) UV-crosslinked hydrogel. The hydrogel helped increase the expression of vascular endothelial growth factor (VEGF) through hypoxia-inducible factor-1α (HIF-1α) to promote neovascularization and wound healing. The microenvironment sensor, combined with the biological dressings, exhibited satisfactory measurement accuracy, stability, durability and biocompatibility. A BLE4.0 antenna was used to receive, display and upload wound microenvironment data in real time. Such integrated smart dressings can not only achieve biological functions but also monitor changes in the wound microenvironment in real time. These dressings can overcome the challenge of not knowing the state of the wound during the healing process and provide support for clinical work.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Burn and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Air Force Hospital of Western Theater Command, Chengdu, China
| | - Tian Li
- Air Force Hospital of Western Theater Command, Chengdu, China
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Congying Zhao
- Department of Burn and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinqing Li
- Department of Burn and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Rong Huang
- Department of Burn and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Qianru Zhang
- School of Software Center for High Performance Computing, Northwestern Polytechnical University, Xi’an, China
| | - Yongqian Li
- Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi’an, China
| | - Xueyong Li
- Department of Burn and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Baptista-Silva S, Borges S, Costa-Pinto AR, Costa R, Amorim M, Dias JR, Ramos Ó, Alves P, Granja PL, Soares R, Pintado M, Oliveira AL. In Situ Forming Silk Sericin-Based Hydrogel: A Novel Wound Healing Biomaterial. ACS Biomater Sci Eng 2021; 7:1573-1586. [PMID: 33729761 DOI: 10.1021/acsbiomaterials.0c01745] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In situ cross-linked hydrogels have the advantage of effectively fulfilling the wound in its shape and depth. Amongst the new generation of natural-based biopolymers being proposed for wound care and skin regeneration, silk sericin is particularly interesting due to its exceptional properties such as biocompatibility, biodegradability, and antioxidant behavior, among others. In this study, a new enzyme-mediated cross-linked hydrogel composed of silk sericin is proposed for the first time. The developed hydrogel cross-linking strategy was performed via horseradish peroxidase, under physiological conditions, and presented gelling kinetics under 3 min, as demonstrated by its rheological behavior. The hydrogels presented a high degree of transparency, mainly due to their amorphous conformation. Degradation studies revealed that the hydrogels were stable in phosphate buffer solution (PBS) (pH 7.4) for 17 days, while in the presence of protease XIV (3.5 U/mg) and under acute and chronic physiological pH values, the stability decreased to 7 and 4 days, respectively. During protease degradation, the present sericin hydrogels demonstrated antioxidant activity. In vitro studies using an L929 fibroblast cell line demonstrated that these hydrogels were noncytotoxic, promoting cell adhesion and massive cell colonization after 7 days of culture, demonstrating that cells maintained their viability and proliferation. In addition, the application of sericin-based hydrogel in an in vivo diabetic wound model validated the feasibility of the in situ methodology and demonstrated a local anti-inflammatory effect, promoting the healing process. This study presents a simple, fast, and practical in situ approach to produce a sericin-based hydrogel able to be applied in low exudative chronic wounds. Moreover, the study herein reported fosters the valorization of a textile industrial by-product by its integration in the biomedical field.
Collapse
Affiliation(s)
- Sara Baptista-Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sandra Borges
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Rita Costa-Pinto
- Universidade do Porto, i3S-Instituto de Investigação e Inovação em Saúde, Porto 4200-135, Portugal
| | - Raquel Costa
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4099-002, Portugal
| | - Manuela Amorim
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Juliana R Dias
- Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, Zona Industrial, Marinha Grande 2430-028, Portugal
| | - Óscar Ramos
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paulo Alves
- Centre for Interdisciplinary Research in Health (CIIS)-Wounds Research Lab, Universidade Católica Portuguesa, ICS-Instituto de Ciências da Saúde, Porto 4169-005, Portugal
| | - Pedro Lopes Granja
- Universidade do Porto, i3S-Instituto de Investigação e Inovação em Saúde, Porto 4200-135, Portugal
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4099-002, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
17
|
Park SB, Sung MH, Uyama H, Han DK. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101341] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Freitas ED, Freitas VM, Rosa PC, da Silva MG, Vieira MG. Development and evaluation of naproxen-loaded sericin/alginate beads for delayed and extended drug release using different covalent crosslinking agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111412. [DOI: 10.1016/j.msec.2020.111412] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023]
|
19
|
Liu B, Huang W, Yang G, An Y, Yin Y, Wang N, Jiang B. Preparation of gelatin/poly (γ-glutamic acid) hydrogels with stimulated response by hot-pressing preassembly and radiation crosslinking. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111259. [DOI: 10.1016/j.msec.2020.111259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023]
|
20
|
Yin Y, Li X, Hu Z, Wang R. An inorganic cross‐linked quadruple shape memory hydrogel with high mechanical performance. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yan‐Yu Yin
- School of Chemical Engineering Sichuan University Chengdu China
| | - Xin Li
- School of Chemical Engineering Sichuan University Chengdu China
| | - Zai‐Yin Hu
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| | - Ru Wang
- School of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
21
|
Fabrication of a porous chitosan/poly-(γ-glutamic acid) hydrogel with a high absorption capacity by electrostatic contacts. Int J Biol Macromol 2020; 159:986-994. [DOI: 10.1016/j.ijbiomac.2020.05.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
|
22
|
Lara-Rico R, Claudio-Rizo JA, Múzquiz-Ramos EM, Lopez-Badillo CM. Hidrogeles de colágeno acoplados con hidroxiapatita para aplicaciones en ingeniería tisular. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Los hidrogeles basados en colágeno son redes tridimensionales (3D) con la capacidad de absorber agua y una alta biocompatibilidad para utilizarlos en la reparación de tejidos dañados. Estos materiales presentan pobres propiedades mecánicas y velocidades de degradación rápidas, limitando su aplicación a estrategias de ingeniería tisular y biomedicina; por ésto, la incorporación de fases inorgánicas en la matriz 3D del colágeno como la hidroxiapatita ha contribuido en la mejora de sus propiedades, incrementado la eficiencia de los hidrogeles híbridos obtenidos. Este trabajo, presenta las contribuciones más relevantes relacionadas con los sistemas de hidrogeles basados en colágeno y partículas de hidroxiapatita dispersas dentro de la matriz colagénica, lo que evidencia que la combinación de los materiales no altera la biocompatibilidad y biodegradabilidad típicas del colágeno, permitiendo la adhesión, proliferación, crecimiento celular y control del metabolismo de las células implicadas en los procesos de una reparación ósea, presentando a los hidrogeles como una estrategia para su uso potencial en la ingeniería tisular.
Collapse
|
23
|
Fatahian R, Mirjalili M, Khajavi R, Rahimi MK, Nasirizadeh N. A novel hemostat and antibacterial nanofibrous scaffold based on poly(vinyl alcohol)/poly(lactic acid). J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520913900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, an advanced wound dressing with the ability of blood clotting and antibacterial activity is the main subject of many studies to consider their necessity in modern society. In this study, it was aimed to present a novel scaffold with both abilities simultaneously. Poly(vinyl alcohol)/poly(lactic acid) nanofibrous scaffolds containing ceftriaxone antimicrobial agent (PVA-CTX/PLA) and tranexamic acid coagulant (PVA-CTX-TXA/PLA) were fabricated by electrospinning method. Morphology, antimicrobial activity, blood coagulation and bioavailability indexes, and swelling ability (gel formation) of produced samples were determined. Morphological results showed that the hybrid nanofibers were form successfully. The antibacterial efficiency of them against Gram-negative ( Escherichia coli) and Gram-positive ( Staphylococcus aureus) bacteria was more than 90% for PVA-CTX/PLA and it reached 100% for PVA-CTX-TXA/PLA. Both PVA-CTX-TXA/PLA and PVA-TXA/PLA scaffolds showed acceptable blood coagulation ability with an average absorption of 0.043 and 0.036 nm, respectively. PVA-CTX-TXA/PLA scaffolds had a gel formation ability of about 45 min. All scaffolds were successful in cell proliferation (L929 fibroblast cell) after 48 h.
Collapse
Affiliation(s)
- Reyhaneh Fatahian
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Mohammad Mirjalili
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Ramin Khajavi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Rahimi
- Department of Medical Sciences, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Navid Nasirizadeh
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
24
|
Eskandarinia A, Kefayat A, Gharakhloo M, Agheb M, Khodabakhshi D, Khorshidi M, Sheikhmoradi V, Rafienia M, Salehi H. A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. Int J Biol Macromol 2020; 149:467-476. [DOI: 10.1016/j.ijbiomac.2020.01.255] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/02/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
|
25
|
Dong Y, Zhuang H, Hao Y, Zhang L, Yang Q, Liu Y, Qi C, Wang S. Poly(N-Isopropyl-Acrylamide)/Poly(γ-Glutamic Acid) Thermo-Sensitive Hydrogels Loaded with Superoxide Dismutase for Wound Dressing Application. Int J Nanomedicine 2020; 15:1939-1950. [PMID: 32256070 PMCID: PMC7094004 DOI: 10.2147/ijn.s235609] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Chronic trauma repair is an important issue affecting people's healthy lives. Thermo-sensitive hydrogel is injectable in situ and can be used to treat large-area wounds. In addition, antioxidants play important roles in promoting wound repair. METHODS The purpose of this research was to prepare a novel thermo-sensitive hydrogel-poly(N-isopropyl-acrylamide)/poly(γ-glutamic acid) (PP) loaded with superoxide dismutase (SOD) to improve the effect for trauma treatment. The micromorphology of the hydrogel was observed by scanning electron microscope and the physical properties were measured. The biocompatibility of hydrogel was evaluated by MTT experiment, and the effect of hydrogel on skin wound healing was evaluated by in vivo histological staining. RESULTS Gelling behavior and differential scanning calorimeter outcomes showed that the PP hydrogels possessed thermo-sensitivity at physiological temperature and the phase transformation temperature was 28.2°C. The high swelling rate and good water retention were conducive to wound healing. The activity of SOD in vitro was up to 85% at 10 h, which was advantageous to eliminate the superoxide anion. MTT assay revealed that this hydrogel possessed good biocompatibility. Dressings of PP loaded with SOD (SOD-PP) had a higher wound closure rate than other treatments in vivo in diabetic rat model. DISCUSSION The SOD-PP thermo-sensitive hydrogels can effectively promote wound healing and have good application prospects for wound repair.
Collapse
Affiliation(s)
- Yunsheng Dong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, Tianjin, People’s Republic of China
| | - Huahong Zhuang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, Tianjin, People’s Republic of China
| | - Yan Hao
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, Tianjin, People’s Republic of China
| | - Lin Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, Tianjin, People’s Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Yufei Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, Tianjin, People’s Republic of China
| | - Chunxiao Qi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, Tianjin, People’s Republic of China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, The College of Life Science, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
26
|
Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Omidi M, Chen X. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. Int J Biol Macromol 2020; 149:513-521. [PMID: 31954780 DOI: 10.1016/j.ijbiomac.2020.01.139] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/09/2023]
Abstract
Skin and soft tissue infections are major concerns with respect to wound repair. Recently, anti-bacterial wound dressings have been emerging as promising candidates to reduce infection, thus accelerating the wound healing process. This paper presents our work to develop and characterize poly(vinyl alcohol) (PVA)/chitosan (CS)/silk sericin (SS)/tetracycline (TCN) porous nanofibers, with diameters varying from 305 to 425 nm, both in vitro and in vivo for potential applications as wound dressings. The fabricated nanofibers possess a considerable capacity to take up water through swelling (~325-650%). Sericin addition leads to increased hydrophilicity and elongation at break while decreasing fiber diameter and mechanical strength. Moreover, fibroblasts (L929) cultured on the nanofibers with low sericin content (PVA/CS/1-2SS) displayed greater proliferation compared to those on nanofibers without sericin (PVA/CS). Nanofibers loaded with high sericin and tetracycline content significantly inhibited the growth of Escherichia coli and Staphylococcus aureus. In vivo examination revealed that PVA/CS/2SS-TCN nanofibers enhance wound healing, re-epithelialization, and collagen deposition compared to traditional gauze and nanofibers without sericin. The results of this study demonstrate that the PVA/CS/2SS-TCN nanofiber creates a promising alternative to traditional wound dressing materials.
Collapse
Affiliation(s)
- Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia
| | - Madzlan Aziz
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Zhina Hadisi
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Mahdi Omidi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
27
|
Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109930. [DOI: 10.1016/j.msec.2019.109930] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 01/16/2023]
|
28
|
Liu WC, Wang HY, Lee TH, Chung RJ. Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:630-639. [DOI: 10.1016/j.msec.2019.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
|
29
|
Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:502-510. [PMID: 31147021 DOI: 10.1016/j.msec.2019.04.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
As a first step towards the production of functional cell sheets applicable for the regeneration of gut muscle layer, microstructured bacterial cellulose (mBC) was assessed for its ability to support the growth of enteric nervous system (ENS) and gut smooth muscle cells (SMCs). To improve the cellular response, mBC was modified with silk sericin (SS) which has renowned abilities in supporting tissue regeneration. While SS did not impair the line structures imparted to BC by PDMS templates, similarly to the patterns, it affected its physical properties, ultimately leading to variations in the behavior of cells cultured onto these substrates. Enabled by the stripes on mBC, both SMCs and ENS cells were aligned in vitro, presenting the in vivo-like morphology essential for peristalsis and gut function. Interestingly, cell growth and differentiation remarkably enhanced upon SS addition to the samples, indicating the promise of the mBC-SS constructs as biomaterial not only for gut engineering, but also for tissues where cellular alignment is required for function, namely the heart, blood vessels, and similars.
Collapse
|
30
|
Cornstarch-based wound dressing incorporated with hyaluronic acid and propolis: In vitro and in vivo studies. Carbohydr Polym 2019; 216:25-35. [PMID: 31047065 DOI: 10.1016/j.carbpol.2019.03.091] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
The unique physicochemical and functional characteristics of starch-based biomaterials and wound dressings have been proposed for several biomedical applications. Film dressings of cornstarch/hyaluronic acid/ ethanolic extract of propolis (CS/HA/EEP) were prepared by solvent-casting and characterized by attenuated total reflectance/Fourier transform infrared spectroscopy, scanning electron microscopy, gas chromatography/mass spectrometry, light transmission, opacity measurements, EEP release, equilibrium swelling, and in vitro and in vivo evaluations. The CS/HA/0.5%EEP film dressing exhibited higher antibacterial activity against Staphylococcus aureus (2.08 ± 0.14 mm), Escherichia coli (2.64 ± 0.18 mm), and Staphylococcus epidermidis (1.02 ± 0.15 mm) in comparison with the CS, CS/HA, and CS/HA/0.25%EEP films. Also, it showed no cytotoxicity for the L929 fibroblast cells. This wound dressing could effectively accelerate the wound healing process at Wistar rats' skin excisions. These results indicate that enrichment of cornstarch wound dressings with HA and EEP can significantly enhance their potential efficacy as wound dressing material.
Collapse
|
31
|
Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I. The production and application of hydrogels for wound management: A review. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Yao CH, Yang SP, Chen YS, Chen KY. Electrospun Poly(γ⁻glutamic acid)/β⁻Tricalcium Phosphate Composite Fibrous Mats for Bone Regeneration. Polymers (Basel) 2019; 11:polym11020227. [PMID: 30960211 PMCID: PMC6419030 DOI: 10.3390/polym11020227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022] Open
Abstract
A poly(γ–glutamic acid)/β–tricalcium phosphate (γ–PGA/β–TCP) composite fibrous mat was fabricated using the electrospinning technique as a novel bone substitute. The mat was then cross-linked with cystamine in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide to improve its water-resistant ability. Scanning electron micrographs revealed that the γ–PGA/β–TCP fibers had a uniform morphology with diameters ranging from 0.64 ± 0.07 µm to 1.65 ± 0.16 µm. The average diameter of the fibers increased with increasing cross-linking time. Moreover, increasing the cross-linking time and decreasing the γ–PGA/β–TCP weight ratio decreased the swelling ratio and in vitro degradation rate of the composite fibrous mat. In vitro experiments with osteoblast-like MG-63 cells demonstrated that the mat with a γ–PGA/β–TCP weight ratio of 20 and cross-linked time of 24 h had a higher alkaline phosphatase activity and better cell adhesion. Furthermore, the rat cranial bone defect was created and treated with the γ–PGA/β–TCP composite fibrous mat to evaluate its potential in bone regeneration. After 8 weeks of implantation, micro computed tomography showed that the γ–PGA/β–TCP composite fibrous mat promoted new bone growth. These observations suggest that the γ–PGA/β–TCP composite fibrous mat has a potential application in bone tissue engineering.
Collapse
Affiliation(s)
- Chun-Hsu Yao
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40202, Taiwan.
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.
| | - Shau-Pei Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, Taiwan.
| | - Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.
| | - Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| |
Collapse
|
33
|
|
34
|
Bari E, Perteghella S, Faragò S, Torre ML. Association of silk sericin and platelet lysate: Premises for the formulation of wound healing active medications. Int J Biol Macromol 2018; 119:37-47. [DOI: 10.1016/j.ijbiomac.2018.07.142] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/11/2022]
|
35
|
Zhu X, Chen T, Feng B, Weng J, Duan K, Wang J, Lu X. Biomimetic Bacterial Cellulose-Enhanced Double-Network Hydrogel with Excellent Mechanical Properties Applied for the Osteochondral Defect Repair. ACS Biomater Sci Eng 2018; 4:3534-3544. [DOI: 10.1021/acsbiomaterials.8b00682] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiangbo Zhu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Taijun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Bo Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Ke Duan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Xiaobo Lu
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
36
|
Giusto G, Beretta G, Vercelli C, Valle E, Iussich S, Borghi R, Odetti P, Monacelli F, Tramuta C, Grego E, Nebbia P, Robino P, Odore R, Gandini M. Pectin-honey hydrogel: Characterization, antimicrobial activity and biocompatibility. Biomed Mater Eng 2018; 29:347-356. [PMID: 29578463 DOI: 10.3233/bme-181730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Novel pectin-honey hydrogels have been developed and characterized as medical device. Ideally, a wound dressing should maintain optimal fluid affinity, permit moisture evaporation, protect the wound from microbes, and have shape-conformability, biocompatibility, and antibacterial activity. OBJECTIVE A novel, simple and fast method to produce pectin-honey wound dressings is described. METHODS The properties of these pectin-honey hydrogels were investigated, including swelling ability, water vapour transmission rate, hydrogen peroxide production, methylglyoxal content and antibacterial activity. Biocompatibility was assessed by proliferation assays using cultured fibroblast cells and by in vivo study with subcutaneous and intraperitoneal implantation in rats. RESULTS Hydrogel showed a good water vapour transmission rate, fluid uptake and were not cytotoxic for fibroblasts. The hydrogel demonstrated good antibacterial activity toward clinically relevant pathogens, including S. aureus and E. coli. Biocompatibility was confirmed by the measurement of plasma levels of interleukin (IL)1 beta, IL-6, tumour necrosis factor (TNF) alpha, and prostaglandin (PG)E2. No histological changes were observed. CONCLUSIONS The presence of a natural active component, conformability, and complete resorbability are the main characteristics of this new biocompatible biomaterial that is well tolerated by the body, possibly improves healing, may be used for surgical complications prevention, with a simple and inexpensive production process.
Collapse
Affiliation(s)
- Gessica Giusto
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Giangiacomo Beretta
- Department of Pharmaceutical Sciences DISFARM, University of Milan, Via Mangiagalli 25, 20133 Milano (MI), Italy
| | - Cristina Vercelli
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Emanuela Valle
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Roberta Borghi
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genova (GE), Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genova (GE), Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genova (GE), Italy
| | - Clara Tramuta
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Rosangela Odore
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| | - Marco Gandini
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095 Grugliasco (TO), Italy
| |
Collapse
|
37
|
Wang Y, Dou C, He G, Ban L, Huang L, Li Z, Gong J, Zhang J, Yu P. Biomedical Potential of Ultrafine Ag Nanoparticles Coated on Poly (Gamma-Glutamic Acid) Hydrogel with Special Reference to Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E324. [PMID: 29757942 PMCID: PMC5977338 DOI: 10.3390/nano8050324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/28/2018] [Accepted: 05/07/2018] [Indexed: 01/25/2023]
Abstract
In wound care management, the prevention of wound infection and the retention of an appropriate level of moisture are two major challenges. Therefore, designing an excellent antibacterial hydrogel with a suitable water-adsorbing capacity is very important to improve the development of wound dressings. In this paper, a novel silver nanoparticles/poly (gamma-glutamic acid) (γ-PGA) composite dressing was prepared for biomedical applications. The promoted wound-healing ability of the hydrogels were systematically evaluated with the aim of attaining a novel and effective wound dressing. A diffusion study showed that hydrogels can continuously release antibacterial factors (Ag). Hydrogels contain a high percentage of water, providing an ideal moist environment for tissue regeneration, while also preventing contraction of the wound. Moreover, an in vivo, wound-healing model evaluation of artificial wounds in mice indicated that silver/γ-PGA hydrogels could significantly promote wound healing. Histological examination revealed that hydrogels can successfully help to reconstruct intact epidermis and collagen deposition during 14 days of impaired wound healing. Overall, this research could shed new light on the design of antibacterial silver/γ-PGA hydrogels with potential applications in wound dressing.
Collapse
Affiliation(s)
- Yu Wang
- Department of Environmental Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
- College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin 300384, China.
| | - Chunyan Dou
- Key Laboratory of Advanced Textile Composites, Ministry of Education; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Guidong He
- Key Laboratory of Advanced Textile Composites, Ministry of Education; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Litong Ban
- College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin 300384, China.
| | - Liang Huang
- College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin 300384, China.
| | - Zheng Li
- Key Laboratory of Advanced Textile Composites, Ministry of Education; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jixian Gong
- Key Laboratory of Advanced Textile Composites, Ministry of Education; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jianfei Zhang
- Key Laboratory of Advanced Textile Composites, Ministry of Education; School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Peng Yu
- Department of Environmental Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
38
|
Yang N, Wang Y, Zhang Q, Chen L, Zhao Y. γ-Polyglutamic acid mediated crosslinking PNIPAAm-based thermo/pH-responsive hydrogels for controlled drug release. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Thangavel P, Ramachandran B, Chakraborty S, Kannan R, Lonchin S, Muthuvijayan V. Accelerated Healing of Diabetic Wounds Treated with L-Glutamic acid Loaded Hydrogels Through Enhanced Collagen Deposition and Angiogenesis: An In Vivo Study. Sci Rep 2017; 7:10701. [PMID: 28878327 PMCID: PMC5587537 DOI: 10.1038/s41598-017-10882-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023] Open
Abstract
We have developed L-glutamic acid (LG) loaded chitosan (CS) hydrogels to treat diabetic wounds. Although literature reports wound healing effects of poly(glutamic acid)-based materials, there are no studies on the potential of L-glutamic acid in treating diabetic wounds. As LG is a direct precursor for proline synthesis, which is crucial for collagen synthesis, we have prepared CS + LG hydrogels to accelerate diabetic wound healing. Physiochemical properties of the CS + LG hydrogels showed good swelling, thermal stability, smooth surface morphology, and controlled biodegradation. The addition of LG to CS hydrogels did not alter their biocompatibility significantly. CS + LG hydrogel treatment showed rapid wound contraction compared to control and chitosan hydrogel. Period of epithelialization is significantly reduced in CS + LG hydrogel treated wounds (16 days) compared to CS hydrogel (20 days), and control (26 days). Collagen synthesis and crosslinking are also significantly improved in CS + LG hydrogel treated diabetic rats. Histopathology and immunohistochemistry results revealed that the CS + LG hydrogel dressing accelerated vascularization and macrophage recruitment to enhance diabetic wound healing. These results demonstrate that incorporation of LG can improve collagen deposition, and vascularization, and aid in faster tissue regeneration. Therefore, CS + LG hydrogels could be an effective wound dressing used to treat diabetic wounds.
Collapse
Affiliation(s)
- Ponrasu Thangavel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Balaji Ramachandran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sudip Chakraborty
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ramya Kannan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Suguna Lonchin
- Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
40
|
The potential use of gentamicin sulfate-loaded silk fibroin/gelatin blend scaffolds for wound dressing materials. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2170-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Taktak F, Öğen Y. Preparation and characterization of novel silk fibroin/2-(N,N-dimethylamino)ethyl methacrylate based composite hydrogels with enhanced mechanical properties for controlled release of cefixime. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1320750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fulya Taktak
- Department of Chemical Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
- Department of Polymer Science and Technology, Graduate School of Natural and Applied Sciences, Uşak University, Uşak, Turkey
| | - Yaşasın Öğen
- Department of Polymer Science and Technology, Graduate School of Natural and Applied Sciences, Uşak University, Uşak, Turkey
| |
Collapse
|
42
|
Yang J, Ding C, Huang L, Zhang M, Chen L. The preparation of poly(γ-glutamic acid)-NHS ester as a natural cross-linking agent of collagen. Int J Biol Macromol 2017; 97:1-7. [DOI: 10.1016/j.ijbiomac.2016.12.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 11/17/2022]
|
43
|
Guo Z, Zhang T, Fang K, Liu P, Li M, Gu N. The effect of porosity and stiffness of glutaraldehyde cross-linked egg white scaffold simulating aged extracellular matrix on distribution and aggregation of ovarian cancer cells. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
Verma J, Kanoujia J, Parashar P, Tripathi CB, Saraf SA. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Deliv Transl Res 2016; 7:77-88. [DOI: 10.1007/s13346-016-0322-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Xu T, Peng F, Zhang T, Chi B, Xu H, Mao C, Feng S. Poly(γ-glutamic acid), coagulation? Anticoagulation? JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1599-610. [DOI: 10.1080/09205063.2016.1221700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| | - Fang Peng
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Chun Mao
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| | - Shuaihui Feng
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| |
Collapse
|
46
|
Ersel M, Uyanikgil Y, Karbek Akarca F, Ozcete E, Altunci YA, Karabey F, Cavusoglu T, Meral A, Yigitturk G, Oyku Cetin E. Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model. Med Sci Monit 2016; 22:1064-78. [PMID: 27032876 PMCID: PMC4822939 DOI: 10.12659/msm.897981] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The wound healing process is complex and still poorly understood. Sericin is a silk protein synthesized by silk worms (Bombyx mori). The objective of this study was to evaluate in vivo wound healing effects of a sericin-containing gel formulation in an incision wound model in rats. Material/Methods Twenty-eight Wistar-Albino rats were divided into 4 groups (n=7). No intervention or treatment was applied to the Intact control group. For other groups, a dorsal skin flap (9×3 cm) was drawn and pulled up with sharp dissection. The Sham operated group received no treatment. The Placebo group received placebo gel without sericin applied to the incision area once a day from day 0 to day 9. The Sericin Group 3 received 1% sericin gel applied to the incision area once a day from day 0 to day 9. Hematoxylin and eosin stain was applied for histological analysis and Mallory-Azan staining was applied for histoimmunochemical analysis of antibodies and iNOS (inducible nitric oxide synthase), and desmin was applied to paraffin sections of skin wound specimens. Parameters of oxidative stress were measured in the wound area. Results Epidermal thickness and vascularization were increased, and hair root degeneration, edema, cellular infiltration, collagen discoloration, and necrosis were decreased in Sericin group in comparison to the Placebo group and the Sham operated group. Malonyldialdehyde (MDA) levels were decreased, but superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were increased in the sericin group. Conclusions We found that sericin had significant positive effects on wound healing and antioxidant activity. Sericin-based formulations can improve healing of incision wounds.
Collapse
Affiliation(s)
- Murat Ersel
- Department of Emergency Medicine, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| | - Funda Karbek Akarca
- Department of Emergency Medicine, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| | - Enver Ozcete
- Department of Emergency Medicine, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| | - Yusuf Ali Altunci
- Department of Emergency Medicine, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| | - Fatih Karabey
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir, Turkey
| | - Turker Cavusoglu
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| | - Ayfer Meral
- Department of Biochemistry, Evliya Celebi Training and Research Hospital, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| | - Gurkan Yigitturk
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Bornova, Izmir, Turkey
| | - Emel Oyku Cetin
- Department of Biopharmaceutics and Pharmacokinetics, Ege University, Faculty of Pharmacy, Bornova, Izmir, Turkey
| |
Collapse
|
47
|
In vitro studies of biocompatible thermo-responsive hydrogels with controlled-release basic fibroblast growth factor. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Chen H, Guo L, Wicks J, Ling C, Zhao X, Yan Y, Qi J, Cui W, Deng L. Quickly promoting angiogenesis by using a DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration. J Mater Chem B 2016; 4:3770-3781. [DOI: 10.1039/c6tb00065g] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A desferrioxamine (DFO)-loaded photo-crosslinked gelatin hydrogel was used to reconstruct vessel network and prompt skin regeneration in diabetic wounds.
Collapse
Affiliation(s)
- Hao Chen
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Lei Guo
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Joshua Wicks
- Department of Orthopedics
- The First Affiliated Hospital of Soochow University
- Orthopedic Institute
- Soochow University
- Suzhou
| | - Christopher Ling
- Department of Orthopedics
- The First Affiliated Hospital of Soochow University
- Orthopedic Institute
- Soochow University
- Suzhou
| | - Xin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an
- P. R. China
| | - Yufei Yan
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Jin Qi
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenguo Cui
- Department of Orthopedics
- The First Affiliated Hospital of Soochow University
- Orthopedic Institute
- Soochow University
- Suzhou
| | - Lianfu Deng
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| |
Collapse
|
49
|
|
50
|
Structure and properties of semi-interpenetrating network hydrogel based on starch. Carbohydr Polym 2015; 133:448-55. [PMID: 26344301 DOI: 10.1016/j.carbpol.2015.07.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 12/31/2022]
Abstract
Starch-g-P(acrylic acid-co-acrylamide)/PVA semi-interpenetrating network (semi-IPN) hydrogels were prepared by aqueous solution polymerization method. Starch grafting copolymerization reaction, semi-IPN structure and crystal morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The PVA in the form of partial crystallization distributing in the gel matrix uniformly were observed by Field emission scanning electron microscope (FESEM). The space network structure, finer microstructure and pore size in the interior of hydrogel were presented by biomicroscope. The results demonstrated that absorption ratio of water and salt generated different degree changes with the effect of PVA. In addition, the mechanical strength of hydrogel was improved.
Collapse
|