1
|
Zawada AM, Griesshaber B, Ottillinger B, Erlenkötter A, Crook N, Boyington S, Stauss-Grabo M, Kennedy JP, Lang T. Development and Investigation of a New Polysulfone Dialyzer with Increased Membrane Hydrophilicity. MEMBRANES 2025; 15:132. [PMID: 40422742 DOI: 10.3390/membranes15050132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025]
Abstract
Innovation in dialysis care is fundamental to improve well-being and outcomes of patients with end-stage kidney disease. The dialyzer is the core element of dialysis treatments, as it largely defines which substances are removed from the patient's body. Moreover, its large surface size is the major place of interaction of the patient's blood with artificial surfaces and thus may lead to undesired effects such as inflammation or coagulation. In the present article we summarize the development path for a new dialyzer, including in vitro and clinical evidence generation. We use the example of the novel FX CorAL dialyzer, which has recently entered European and US markets, to show which steps are needed to develop and characterize a new dialyzer. The FX CorAL dialyzer includes a new hydrophilic membrane, which features reduced protein adsorption, sustained performance, and an improved hemocompatibility profile, characterized in numerous in vitro and clinical studies. Safety evaluations revealed a favorable profile, with low incidences of adverse device effects. Insights gained from both in vitro and clinical studies contribute to the advancement of dialyzer development, ultimately leading to improved patient care.
Collapse
Affiliation(s)
- Adam M Zawada
- Product Development, Fresenius Medical Care Deutschland GmbH, 66606 Sankt Wendel, Germany
| | - Bettina Griesshaber
- Clinical Research, Global Medical Office, Fresenius Medical Care Deutschland GmbH, 61352 Bad Homburg, Germany
| | | | - Ansgar Erlenkötter
- Biosciences, Fresenius Medical Care Deutschland GmbH, 66606 Sankt Wendel, Germany
| | - Nathan Crook
- Applications Laboratory, Fresenius Medical Care, Ogden, UT 84404, USA
| | - Skyler Boyington
- Applications Laboratory, Fresenius Medical Care, Ogden, UT 84404, USA
| | - Manuela Stauss-Grabo
- Clinical Research, Global Medical Office, Fresenius Medical Care Deutschland GmbH, 61352 Bad Homburg, Germany
| | - James P Kennedy
- Product Development, Fresenius Medical Care, Ogden, UT 84404, USA
| | - Thomas Lang
- Clinical Research, Global Medical Office, Fresenius Medical Care Deutschland GmbH, 61352 Bad Homburg, Germany
| |
Collapse
|
2
|
Maduell F, Escudero-Saiz VJ, Cuadrado-Payán E, Rodriguez-Garcia M, Gómez M, Rodas LM, Fontseré N, Salgado MDC, Casals G, Rico N, Broseta JJ. A Study on the Safety and Efficacy of an Innovative Hydrophilic Dialysis Membrane. MEMBRANES 2025; 15:30. [PMID: 39852270 PMCID: PMC11767910 DOI: 10.3390/membranes15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The dialysis membrane based on a hydrophilic polymer (Hydrolink NV) was designed to enhance the movement of adsorbed water at the blood-membrane interface, aiming to achieve antithrombogenic and antifouling effects. This study aimed to assess the performance and albumin loss of the Hydrolink NV dialyzer in hemodialysis (HD) and post-dilution hemodiafiltration (HDF) with different infusion flows (Qis) and compare it with the hydrophilic FX CorAL dialyzer in post-dilution HDF. A prospective study was carried out in 20 patients. Patients underwent five dialysis sessions with the same routine dialysis parameters: four sessions with the Toraylight NV 2.1 (HD, post-dilution HDF with 50, 75 or auto-substitution Qi) and one with the FX CorAL 800 (post-dilution HDF with auto-substitution Qi). The reduction ratios' (RRs') wide range of molecular weight molecules were assessed and the dialysate albumin loss was quantified. The lowest β2-microglobulin, indoxyl-sulfate, and p-cresyl sulfate RR values were observed with the Toraylight NV 2.1 in HD, and they improved progressively with an increased Qi, without differences being observed between the two dialyzers in auto-substitution. A different removal profile was observed in terms of myoglobin, kFLC, prolactin, α1-microglobulin, α1-acid glycoprotein, and λFLC, whose RRs also improved progressively with an increased Qi but were significantly higher with the Toraylight NV than the CorAL in the same convective condition. There were significant differences in the albumin dialysate losses, with the highest value obtained with the Toraylight NV in auto-substitution HDF, with more than 50% of patients surpassing 5 g per session. The Toraylight NV dialyzer has great potential for efficacy but should be used at the optimal convective volume (Qi not exceeding 75 mL/min or FF not exceeding 25%) to avoid excessive albumin loss.
Collapse
Affiliation(s)
- Francisco Maduell
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (V.J.E.-S.); (E.C.-P.); (M.G.); (L.M.R.); (N.F.); (J.J.B.)
| | - Victor Joaquín Escudero-Saiz
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (V.J.E.-S.); (E.C.-P.); (M.G.); (L.M.R.); (N.F.); (J.J.B.)
| | - Elena Cuadrado-Payán
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (V.J.E.-S.); (E.C.-P.); (M.G.); (L.M.R.); (N.F.); (J.J.B.)
| | - Maria Rodriguez-Garcia
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (M.R.-G.); (M.d.C.S.); (G.C.); (N.R.)
| | - Miquel Gómez
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (V.J.E.-S.); (E.C.-P.); (M.G.); (L.M.R.); (N.F.); (J.J.B.)
| | - Lida María Rodas
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (V.J.E.-S.); (E.C.-P.); (M.G.); (L.M.R.); (N.F.); (J.J.B.)
| | - Néstor Fontseré
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (V.J.E.-S.); (E.C.-P.); (M.G.); (L.M.R.); (N.F.); (J.J.B.)
| | - Maria del Carmen Salgado
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (M.R.-G.); (M.d.C.S.); (G.C.); (N.R.)
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (M.R.-G.); (M.d.C.S.); (G.C.); (N.R.)
| | - Nayra Rico
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (M.R.-G.); (M.d.C.S.); (G.C.); (N.R.)
| | - José Jesús Broseta
- Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (V.J.E.-S.); (E.C.-P.); (M.G.); (L.M.R.); (N.F.); (J.J.B.)
| |
Collapse
|
3
|
Wang C, Jiang D, Ge H, Ning J, Li X, Liao M, Xiao X. Preparation of an anticoagulant polyethersulfone membrane by immobilizing FXa inhibitors with a polydopamine coating. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2469-2483. [PMID: 39082937 DOI: 10.1080/09205063.2024.2384275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/18/2024] [Indexed: 11/05/2024]
Abstract
Anticoagulation treatment for patients with high bleeding risk during hemodialysis is challenging. Contact between the dialysis membrane and the blood leads to protein adsorption and activation of the coagulation cascade reaction. Activated coagulation Factor X (FXa) plays a central role in thrombogenesis, but anticoagulant modification of the dialysis membrane is rarely targeted at FXa. In this study, we constructed an anticoagulant membrane using the polydopamine coating method to graft FXa inhibitors (apixaban and rivaroxaban) on the membrane surface. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the membranes. The apixaban- and rivaroxaban-modified membranes showed lower water contact angles, decreased albumin protein adsorption, and suppressed platelet adhesion and activation compared to the unmodified PES membranes. Moreover, the modified membranes prolonged the blood clotting times in both the intrinsic and extrinsic coagulation pathways and inhibited FXa generation and complement activation, which suggested that the modified membrane enhanced biocompatibility and antithrombotic properties through the inhibition of FXa. Targeting FXa to design antithrombotic HD membranes or other blood contact materials might have great application potential.
Collapse
Affiliation(s)
- Chengzhi Wang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dayang Jiang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huipeng Ge
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianping Ning
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xia Li
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingmei Liao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Maduell F, Broseta JJ, Rodríguez-Espinosa D, Rodas LM, Gómez M, Arias-Guillén M, Fontseré N, Vera M, Salgado MDC, Rico N, Ramos R. Comparison of efficacy and safety of the new generation helixone dialyzers. Nefrologia 2024; 44:354-361. [PMID: 38679516 DOI: 10.1016/j.nefroe.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION New generation helixone dialyzers has recently been developed as part of the ongoing effort to improve dialyzer hemocompatibility and avoid adverse reactions to synthetic dialyzers. This study aimed to assess the performance and albumin loss of this new dialyzer series in hemodiafiltration and compare it with the previous generation helixone series. MATERIAL AND METHODS A prospective study was conducted in 19 patients. Each patient underwent eight dialysis sessions with the same routine dialysis parameters; only the dialyzer varied: FX60 CorDiax, FX CorAL 60, FX600 CorDiax, FX CorAL 600, FX80 CorDiax, FX CorAL 80, FX800 CorDiax, and FX CorAL 800. The reduction ratios (RR) of urea, creatinine, ß2-microglobulin, myoglobin, kappa-free immunoglobulin light chains (κFLC), prolactin, α1-microglobulin, α1-acid glycoprotein, lambda immunoglobulin light chains (λFLC), and albumin were compared intra-individually. Dialysate albumin loss was also measured. RESULTS All treatments were well tolerated. The mean amount of replacement fluid ranged from 31 to 34 L. Comparison of dialysis treatments showed no differences between small molecules and even up to those the size of β2-microglobulins. Little differences were found between myoglobin, κFLC, prolactin, α1-microglobulin, and λFLC RRs, and only FX80 CorDiax was slightly superior to the others. Mean dialysate albumin losses were similar, with less than 2.5 g lost in each dialyzer. The FX80 CorDiax showed slightly higher global removal scores than the other dialyzers evaluated, except for FX CorAL 800. CONCLUSION The new generation helixone dialyzers series has been updated to minimise the risk of adverse reactions, while maintaining the effectiveness and albumin loss achieved by the previous most advanced helixone generation.
Collapse
Affiliation(s)
- Francisco Maduell
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain.
| | - José Jesús Broseta
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | | | - Lida María Rodas
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Miquel Gómez
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Marta Arias-Guillén
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Néstor Fontseré
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | - Manel Vera
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| | | | - Nayra Rico
- Servicio de Bioquímica, Hospital Clínic, Barcelona, Spain
| | - Rosa Ramos
- Servicio de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
5
|
Zawada AM, Emal K, Förster E, Saremi S, Delinski D, Theis L, Küng F, Xie W, Werner J, Stauss-Grabo M, Faust M, Boyington S, Kennedy JP. Hydrophilic Modification of Dialysis Membranes Sustains Middle Molecule Removal and Filtration Characteristics. MEMBRANES 2024; 14:83. [PMID: 38668111 PMCID: PMC11052066 DOI: 10.3390/membranes14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
While efficient removal of uremic toxins and accumulated water is pivotal for the well-being of dialysis patients, protein adsorption to the dialyzer membrane reduces the performance of a dialyzer. Hydrophilic membrane modification with polyvinylpyrrolidone (PVP) has been shown to reduce protein adsorption and to stabilize membrane permeability. In this study we compared middle molecule clearance and filtration performance of nine polysulfone-, polyethersulfone-, and cellulose-based dialyzers over time. Protein adsorption was simulated in recirculation experiments, while β2-microglobulin clearance as well as transmembrane pressure (TMP) and filtrate flow were determined over time. The results of this study showed that β2-microglobulin clearance (-7.2 mL/min/m2) and filtrate flow (-54.4 mL/min) decreased strongly during the first 30 min and slowly afterwards (-0.7 mL/min/m2 and -6.8 mL/min, respectively, for the next 30 min); the TMP increase (+37.2 mmHg and +8.6 mmHg, respectively) showed comparable kinetics. Across all tested dialyzers, the dialyzer with a hydrophilic modified membrane (FX CorAL) had the highest β2-microglobulin clearance after protein fouling and the most stable filtration characteristics. In conclusion, hydrophilic membrane modification with PVP stabilizes the removal capacity of middle molecules and filtration performance over time. Such dialyzers may have benefits during hemodiafiltration treatments which aim to achieve high exchange volumes.
Collapse
Affiliation(s)
- Adam M. Zawada
- Product Development, Fresenius Medical Care Deutschland GmbH, 66606 Sankt Wendel, Germany; (E.F.); (S.S.); (D.D.); (L.T.); (F.K.)
| | - Karlee Emal
- Applications Laboratory, Fresenius Medical Care, Ogden, UT 84404, USA; (K.E.); (S.B.)
| | - Eva Förster
- Product Development, Fresenius Medical Care Deutschland GmbH, 66606 Sankt Wendel, Germany; (E.F.); (S.S.); (D.D.); (L.T.); (F.K.)
| | - Saeedeh Saremi
- Product Development, Fresenius Medical Care Deutschland GmbH, 66606 Sankt Wendel, Germany; (E.F.); (S.S.); (D.D.); (L.T.); (F.K.)
- Institute for Physical Process Technology, Saarland University of Applied Sciences, 66117 Saarbrücken, Germany;
| | - Dirk Delinski
- Product Development, Fresenius Medical Care Deutschland GmbH, 66606 Sankt Wendel, Germany; (E.F.); (S.S.); (D.D.); (L.T.); (F.K.)
| | - Lukas Theis
- Product Development, Fresenius Medical Care Deutschland GmbH, 66606 Sankt Wendel, Germany; (E.F.); (S.S.); (D.D.); (L.T.); (F.K.)
| | - Florian Küng
- Product Development, Fresenius Medical Care Deutschland GmbH, 66606 Sankt Wendel, Germany; (E.F.); (S.S.); (D.D.); (L.T.); (F.K.)
| | - Wenhao Xie
- Product Development, Fresenius Medical Care, Shanghai 200233, China;
| | - Joanie Werner
- Clinical Marketing & Innovations, Fresenius Medical Care, Waltham, MA 02451, USA;
| | - Manuela Stauss-Grabo
- Global Biomedical Evidence Generation, Fresenius Medical Care Deutschland GmbH, 61352 Bad Homburg, Germany;
| | - Matthias Faust
- Institute for Physical Process Technology, Saarland University of Applied Sciences, 66117 Saarbrücken, Germany;
| | - Skyler Boyington
- Applications Laboratory, Fresenius Medical Care, Ogden, UT 84404, USA; (K.E.); (S.B.)
| | - James P. Kennedy
- Product Development, Fresenius Medical Care, Ogden, UT 84404, USA;
| |
Collapse
|
6
|
Álvarez-Merino MA, Carrasco-Marín F, Warren-Vega WM, Romero-Cano LA. Artificial intelligence application in adsorption of uremic toxins: Towards the eco-friendly design of highly efficient with potential applications as hemodialysis membranes. ENVIRONMENTAL RESEARCH 2024; 241:117671. [PMID: 37984789 DOI: 10.1016/j.envres.2023.117671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Six Functionalized Activated Carbon Cloths (FACCs) were designed to obtain fundamental information for training a Bayesian Regularized Artificial Neural Network (BRANN) capable of predicting adsorption capacity of the FACCs to synthesize tailor-made materials with potential application as dialysis membranes. Characterization studies showed that FACCs have a high surface area (1354-2073 m2 g-1) associated with increased microporosity (W0, average: 0.57 cm3 g-1). Materials are carbonaceous, with a carbon content between 69 and 92%. Chemical treatments modify the pHpzc of materials between 4.1 and 7.8 due to incorporating functional groups on the surface (C=O, -COOH, -OH, -NH, -NH2). Uremic toxins tests showed a high elimination rate of p-cresol (73 mg g-1) and creatinine (90 mg g-1) which is not affected by the matrix (aqueous solution and simulated serum). However, in the case of uric acid, adsorption capacity decreased from 143 mg g-1 to 71 mg g-1, respectively. When comparing the kinetic constants of the adsorption studies in simulated serum versus the studies in aqueous solution, it can be seen that this does not undergo significant changes (0.02 min-1), evidencing the versatility of the material to work in different matrices. The previous studies, in combination with characterization of the materials, allowed to establish the adsorption mechanism. Thus, it permitted to train the BRANN to obtain mathematical models capable to predict the kinetic adsorption of the toxins studied. It is concluded that the predominant adsorption mechanism is due to π-π interactions between the adsorbate unsaturations with the material's pseudo-graphitic planes. Results show that FACCs are promising materials for hemodialysis membranes. Finally, taking into consideration the adsorption capacities and rates, as well as the semiquantitative analysis of the environmental impact associated with the preparation of the adsorbents, the best adsorbent (CC, Eco-Scale = 91.5) was selected. The studies presented show that the material is eco-friendly and highly efficient in the elimination of uremic toxins.
Collapse
Affiliation(s)
- Miguel A Álvarez-Merino
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071, Jaén, Spain.
| | - Francisco Carrasco-Marín
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Departamento de Química Inorgánica, Facultad de Ciencias - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), 18071, Granada, Spain
| | - Walter M Warren-Vega
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, C.P. 45129, Zapopan, Jalisco, Mexico
| | - Luis A Romero-Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, C.P. 45129, Zapopan, Jalisco, Mexico.
| |
Collapse
|
7
|
Ji H, Li Y, Su B, Zhao W, Kizhakkedathu JN, Zhao C. Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes. ADVANCED FIBER MATERIALS 2023; 5:1-43. [PMID: 37361105 PMCID: PMC10068248 DOI: 10.1007/s42765-023-00277-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 06/28/2023]
Abstract
Hemodialysis, the most common modality of renal replacement therapy, is critically required to remove uremic toxins from the blood of patients with end-stage kidney disease. However, the chronic inflammation, oxidative stress as well as thrombosis induced by the long-term contact of hemoincompatible hollow-fiber membranes (HFMs) contribute to the increase in cardiovascular diseases and mortality in this patient population. This review first retrospectively analyzes the current clinical and laboratory research progress in improving the hemocompatibility of HFMs. Details on different HFMs currently in clinical use and their design are described. Subsequently, we elaborate on the adverse interactions between blood and HFMs, involving protein adsorption, platelet adhesion and activation, and the activation of immune and coagulation systems, and the focus is on how to improve the hemocompatibility of HFMs in these aspects. Finally, challenges and future perspectives for improving the hemocompatibility of HFMs are also discussed to promote the development and clinical application of new hemocompatible HFMs. Graphical Abstract
Collapse
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207 China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Lab Medicine & Center for Blood Research & Life Science Institute, 2350 Health Sciences Mall, Life Sciences Centre, The School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 People’s Republic of China
| |
Collapse
|
8
|
Zhang Z, Feng S, Wei Q, Wu L. Preparation and surface modification of ultrahigh throughput tannic acid coblended polyethersulfone ultrafiltration membranes for hemodialysis. J Appl Polym Sci 2023; 140. [DOI: 10.1002/app.53640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
AbstractLow dialysis and blood incompatibility efficiency are key issues to be addressed for polymeric hemodialysis membranes. To improve the comprehensive performance of hemodialysis membranes, polyethersulfone (PES)/tannic acid (TA) coblended ultrafiltration membranes were prepared and modified with a heparin‐like functionalized TA coating. The coblended TA improved the pore structure of the PES ultrafiltration membrane. And it could also undergo π‐π conjugation with the heparin‐like functionalized TA in the modified solution, resulting in a greater abundance of modified groups loaded on the membrane surface and pores close to the surface. The modified coating further improved the membrane performance. The physicochemical properties, solute filtration, and blood compatibility properties of the membrane were tested. The effect of TA on the pore structure of the membrane and the presence of modified layers were demonstrated by morphological and chemical structure analyses. The final modified membrane had an ultrahigh water flux (1053 L/m2·h), improved dialysis performance (BSA retention >99%, Lysozyme clearance >30% and Urea clearance >90%), and excellent hemocompatibility (The hemolysis rate was 1.31%, and APTT, PT, and TT values were increased by 40.8%, 74.2%, and 85.9%, respectively). This study shows that TA has great potential for improving the pore structure of polymeric membranes.
Collapse
Affiliation(s)
- Zezhen Zhang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Shuman Feng
- Department of Neurology, Henan Provincial People's Hospital Zhengzhou University People's Hospital Zhengzhou Henan China
| | - Qianyu Wei
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Lili Wu
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City Zhongshan Guangdong China
| |
Collapse
|
9
|
Hemodiafiltration: Technical and Medical Insights. Bioengineering (Basel) 2023; 10:bioengineering10020145. [PMID: 36829639 PMCID: PMC9952158 DOI: 10.3390/bioengineering10020145] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Despite the significant medical and technical improvements in the field of dialytic renal replacement modalities, morbidity and mortality are excessively high among patients with end-stage kidney disease, and most interventional studies yielded disappointing results. Hemodiafiltration, a dialysis method that was implemented in clinics many years ago and that combines the two main principles of hemodialysis and hemofiltration-diffusion and convection-has had a positive impact on mortality rates, especially when delivered in a high-volume mode as a surrogate for a high convective dose. The achievement of high substitution volumes during dialysis treatments does not only depend on patient characteristics but also on the dialyzer (membrane) and the adequately equipped hemodiafiltration machine. The present review article summarizes the technical aspects of online hemodiafiltration and discusses present and ongoing clinical studies with regards to hard clinical and patient-reported outcomes.
Collapse
|
10
|
Zaman SU, Rafiq S, Ali A, Mehdi MS, Arshad A, Rehman SU, Muhammad N, Irfan M, Khurram MS, Zaman MKU, Hanbazazah AS, Lim HR, Show PL. Recent advancement challenges with synthesis of biocompatible hemodialysis membranes. CHEMOSPHERE 2022; 307:135626. [PMID: 35863415 DOI: 10.1016/j.chemosphere.2022.135626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 05/27/2023]
Abstract
The focus of this study is to enhance the protein fouling resistance, hydrophilicity, biocompatibility, hemocompatibility and ability of the membranes and to reduce health complications like chronic pulmonary disease, peripheral vascular disease, cerebrovascular disease, and cardiovascular disease after dialysis, which are the great challenges in HD applications. In the current study, the PSF-based dialysis membranes are studied broadly. Significant consideration has also been provided to membrane characteristics (e.g., flowrate coefficient, solute clearance characteristic) and also on commercially available polysulfone HD membranes. PSF has gained a significant share in the development of HD membranes, and continuous improvements are being made in the process to make high flux PSF-based dialysis membranes with enhanced biocompatibility and improved protein resistance ability as the major issue in the development of membranes for HD application is biocompatibility. There has been a great increase in the demand for novel biocompatible membranes that offer the best performances during HD therapy, for example, low oxidative stress and low change ability of blood pressure.
Collapse
Affiliation(s)
- Shafiq Uz Zaman
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan.
| | - Sikander Rafiq
- Department of Chemical Polymer and Composite Materials Engineering, University of Engineering and Technology Lahore, New Campus, Pakistan.
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia.
| | - Muhammad Shozab Mehdi
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan.
| | - Amber Arshad
- Department of Community Medicine, King Edward Medical University, Lahore, Pakistan.
| | - Saif-Ur Rehman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Muhammad Irfan
- Centre of Environmental Sustainability and Water Security (IPASA), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | | | | | - Abdulkader S Hanbazazah
- Department of Industrial and Systems Engineering, University of Jeddah, Jeddah, Saudi Arabia.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
11
|
Nazari S, Abdelrasoul A. Impact of Membrane Modification and Surface Immobilization Techniques on the Hemocompatibility of Hemodialysis Membranes: A Critical Review. MEMBRANES 2022; 12:1063. [PMID: 36363617 PMCID: PMC9698264 DOI: 10.3390/membranes12111063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Despite significant research efforts, hemodialysis patients have poor survival rates and low quality of life. Ultrafiltration (UF) membranes are the core of hemodialysis treatment, acting as a barrier for metabolic waste removal and supplying vital nutrients. So, developing a durable and suitable membrane that may be employed for therapeutic purposes is crucial. Surface modificationis a useful solution to boostmembrane characteristics like roughness, charge neutrality, wettability, hemocompatibility, and functionality, which are important in dialysis efficiency. The modification techniques can be classified as follows: (i) physical modification techniques (thermal treatment, polishing and grinding, blending, and coating), (ii) chemical modification (chemical methods, ozone treatment, ultraviolet-induced grafting, plasma treatment, high energy radiation, and enzymatic treatment); and (iii) combination methods (physicochemical). Despite the fact that each strategy has its own set of benefits and drawbacks, all of these methods yielded noteworthy outcomes, even if quantifying the enhanced performance is difficult. A hemodialysis membrane with outstanding hydrophilicity and hemocompatibility can be achieved by employing the right surface modification and immobilization technique. Modified membranes pave the way for more advancement in hemodialysis membrane hemocompatibility. Therefore, this critical review focused on the impact of the modification method used on the hemocompatibility of dialysis membranes while covering some possible modifications and basic research beyond clinical applications.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
12
|
Zheng X, Ni C, Xiao W, Yu G, Li Y. In vitro hemocompatibility and hemodialysis performance of hydrophilic ionic liquid grafted polyethersulfone hollow fiber membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Zawada AM, Lang T, Ottillinger B, Kircelli F, Stauss-Grabo M, Kennedy JP. Impact of Hydrophilic Modification of Synthetic Dialysis Membranes on Hemocompatibility and Performance. MEMBRANES 2022; 12:932. [PMID: 36295691 PMCID: PMC9610916 DOI: 10.3390/membranes12100932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The dialyzer is the core element in the hemodialysis treatment of patients with end-stage kidney disease (ESKD). During hemodialysis treatment, the dialyzer replaces the function of the kidney by removing small and middle-molecular weight uremic toxins, while retaining essential proteins. Meanwhile, a dialyzer should have the best possible hemocompatibility profile as the perpetuated contact of blood with artificial surfaces triggers complement activation, coagulation and immune cell activation, and even low-level activation repeated chronically over years may lead to undesired effects. During hemodialysis, the adsorption of plasma proteins to the dialyzer membrane leads to a formation of a secondary membrane, which can compromise both the uremic toxin removal and hemocompatibility of the dialyzer. Hydrophilic modifications of novel dialysis membranes have been shown to reduce protein adsorption, leading to better hemocompatibility profile and performance stability during dialysis treatments. This review article focuses on the importance of performance and hemocompatibility of dialysis membranes for the treatment of dialysis patients and summarizes recent studies on the impact of protein adsorption and hydrophilic modifications of membranes on these two core elements of a dialyzer.
Collapse
Affiliation(s)
- Adam M. Zawada
- Product Development, Fresenius Medical Care Deutschland GmbH, 66606 Sankt Wendel, Germany
| | - Thomas Lang
- Global Biomedical Evidence Generation, Fresenius Medical Care Deutschland GmbH, 61352 Bad Homburg, Germany
| | | | - Fatih Kircelli
- Medical Information and Education (EMEA), Fresenius Medical Care Deutschland GmbH, 61352 Bad Homburg, Germany
| | - Manuela Stauss-Grabo
- Global Biomedical Evidence Generation, Fresenius Medical Care Deutschland GmbH, 61352 Bad Homburg, Germany
| | - James P. Kennedy
- Product Development, Fresenius Medical Care Deutschland GmbH, 66606 Sankt Wendel, Germany
| |
Collapse
|
14
|
Huang S, Chen Y, Wang X, Guo J, Li Y, Dai L, Li S, Zhang S. Preparation of antifouling ultrafiltration membranes from copolymers of polysulfone and zwitterionic poly(arylene ether sulfone)s. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Ren J, Yang X, Yan W, Feng X, Zhao Y, Chen L. mPEG-b-PES-b-mPEG-based candidate hemodialysis membrane with enhanced performance in sieving, flux, and hemocompatibility. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Immune System Dysfunction and Inflammation in Hemodialysis Patients: Two Sides of the Same Coin. J Clin Med 2022; 11:jcm11133759. [PMID: 35807042 PMCID: PMC9267256 DOI: 10.3390/jcm11133759] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Biocompatibility in hemodialysis (HD) has considerably improved in recent decades, but remains an open issue to be solved, appearing essential to reduce systemic inflammation and enhance patients’ clinical outcomes. Clotting prevention, reduction in complement and leukocyte activation, and improvement of antioxidant effect represent the main goals. This review aims to analyze the different pathways involved in HD patients, leading to immune system dysfunction and inflammation. In particular, we mostly review the evidence about thrombogenicity, which probably represents the most important characteristic of bio-incompatibility. Platelet activation is one of the first steps occurring in HD patients, determining several events causing chronic sub-clinical inflammation and immune dysfunction involvement. Moreover, oxidative stress processes, resulting from a loss of balance between pro-oxidant factors and antioxidant mechanisms, have been described, highlighting the link with inflammation. We updated both innate and acquired immune system dysfunctions and their close link with uremic toxins occurring in HD patients, with several consequences leading to increased mortality. The elucidation of the role of immune dysfunction and inflammation in HD patients would enhance not only the understanding of disease physiopathology, but also has the potential to provide new insights into the development of therapeutic strategies.
Collapse
|
17
|
Lu Z. Fabrication, characterization, and performance of poly (aryl ether nitrile) flat sheet ultrafiltration membranes with polyvinyl pyrrolidone as additives. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Poly(aryl ether nitrile) (PEN) was used to fabricate ultrafiltration membrane via immersion precipitation phase inversion method. The effects of polyvinyl pyrrolidone (PVP) of different molecular weights and concentrations on the structure and performance of PEN membranes were investigated. The membranes were observed by scanning electron microscope, atomic force microscope, equilibrium water content (EWC), porosity (ε), and so on. The membranes were subjected to ultrafiltration characterizations such as pure water flux (PWF), compaction factor (CF), hydraulic permeability (P
m), and bovine serum albumin (BSA) rejection rate. The hydrophilicity was characterized by infrared spectroscopy and contact angle tests. Results showed that molecular weight of PVP had significant effect on PEN membrane formation, which the membrane prepared by PVP-k30 exhibited excellent comprehensive performance. Meanwhile, the concentration of PVP-k30 could effectively control the select-permeability of PEN membrane. With PVP-k30 concentration increased from 7 to 13 wt%, the prepared PEN membranes got higher EWC, ε, CF, and P
m. The PWF increased from 146.5 to 249.1 L m−2 h−1 bar−1, while the overall rejection of BSA remained above 90%. Further increasing the addition amount to 16 wt%, the membrane performance began to decline. Finally, the addition of PVP-k30 could effectively improve the hydrophilicity of prepared PEN membrane surface.
Collapse
Affiliation(s)
- Zhaohui Lu
- China Nuclear Power Technology Research Institute Co. Ltd. , Shenzhen , China
| |
Collapse
|
18
|
Li W, Li Y, Wen X, Teng Y, Wang J, Yang T, Li X, Li L, Wang C. Flexible Zr-MOF anchored polymer nanofiber membrane for efficient removal of creatinine in uremic toxins. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Zawada AM, Melchior P, Schall C, Erlenkötter A, Lang T, Keller T, Stauss-Grabo M, Kennedy JP. Time-resolving characterization of molecular weight retention changes among three synthetic high-flux dialyzers. Artif Organs 2022; 46:1318-1327. [PMID: 35192209 DOI: 10.1111/aor.14216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Toxin removal capacity (i.e. performance) of a dialyzer is not constant but diminishes during treatment, as the adsorption of proteins to the membrane provides an additional barrier to uremic solutes. We investigated time-resolving molecular weight retention changes among synthetic high-flux dialyzers and compare the results with recent data from a randomized controlled trial. METHODS In plasma recirculation experiments over 240min, sieving coefficients (SC) for β2-microglobulin, myoglobin and albumin were determined for the FX CorAL (Fresenius Medical Care), ELISIO (Nipro) and xevonta (B. Braun). Molecular weight retention (MWR) curves were generated and the shifts over 120min were characterized. Effective pore radius was determined, and the predicted albumin loss was compared with clinical data. RESULTS SC decreased over time for all dialyzers (mean relative decrease across all dialyzers: β2-microglobulin: 8.0% (120min); myoglobin: 56.6% (240min); albumin: 94.1% (240min)). FX CorAL (7.3%, 52.6% and 91.1%) and ELISIO (7.7%, 51.0% and 93.8%) showed a lower decrease than xevonta (9.0%, 66.2% and 97.4%). For all dialyzers, MWR curves shifted towards lower molecular weight, with the lowest shift for FX CorAL (by 0.23nm at SC50%, 120 min) and highest for xevonta (0.50nm). FX CorAL had the highest slope over time and the smallest decrease in the effective pore radius (2min: 2.31nm, 120min: 2.08nm). Predicted albumin loss over 4h was highest for xevonta (609.3mg) and comparable between ELISIO (283.6mg) and FX CorAL (313.3mg). CONCLUSIONS Substantial differences in the temporal performance profile of dialyzers exist. The present approach allows characterization of dialyzer permeability changes over time using standard, clinically relevant protein markers.
Collapse
Affiliation(s)
- Adam M Zawada
- Fresenius Medical Care Deutschland GmbH, Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Sankt Wendel, Germany
| | - Pascal Melchior
- Fresenius Medical Care Deutschland GmbH, Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Sankt Wendel, Germany
| | - Christian Schall
- Fresenius Medical Care Deutschland GmbH, Process Technology, Filter Production, Sankt Wendel, Germany
| | - Ansgar Erlenkötter
- Fresenius Medical Care Deutschland GmbH, Global Research and Development, Product Engineering Center Dialyzers & Membranes, Biosciences - Biotechnology, Sankt Wendel, Germany
| | - Thomas Lang
- Fresenius Medical Care Deutschland GmbH, Global Medical Office, Clinical Research EMEA, AP, Germany
| | - Torsten Keller
- Fresenius Medical Care Deutschland GmbH, Global Research and Development, Product Engineering Center Dialyzers & Membranes, Membrane Development, Sankt Wendel, Germany
| | - Manuela Stauss-Grabo
- Fresenius Medical Care Deutschland GmbH, Global Medical Office, Clinical Research EMEA, AP, Germany
| | - James P Kennedy
- Fresenius Medical Care Deutschland GmbH, Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Sankt Wendel, Germany
| |
Collapse
|
20
|
Zhang Z, Zhao Y, Luo X, Feng S, Wu L. Preparation of a heparin-like functionalized tannic acid-coated polyethersulfone ultrafiltration membrane for hemodialysis by a simple surface modification method. APPLIED SURFACE SCIENCE 2022; 572:151440. [DOI: 10.1016/j.apsusc.2021.151440] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
|
21
|
Abdelrasoul A, Shoker A. Induced hemocompatibility of polyethersulfone (PES) hemodialysis membrane using polyvinylpyrrolidone: Investigation on human serum fibrinogen adsorption and inflammatory biomarkers released. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
He Z, Yang X, Wang N, Mu L, Pan J, Lan X, Li H, Deng F. Anti-Biofouling Polymers with Special Surface Wettability for Biomedical Applications. Front Bioeng Biotechnol 2021; 9:807357. [PMID: 34950651 PMCID: PMC8688920 DOI: 10.3389/fbioe.2021.807357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The use of anti-biofouling polymers has widespread potential for counteracting marine, medical, and industrial biofouling. The anti-biofouling action is usually related to the degree of surface wettability. This review is focusing on anti-biofouling polymers with special surface wettability, and it will provide a new perspective to promote the development of anti-biofouling polymers for biomedical applications. Firstly, current anti-biofouling strategies are discussed followed by a comprehensive review of anti-biofouling polymers with specific types of surface wettability, including superhydrophilicity, hydrophilicity, and hydrophobicity. We then summarize the applications of anti-biofouling polymers with specific surface wettability in typical biomedical fields both in vivo and in vitro, such as cardiology, ophthalmology, and nephrology. Finally, the challenges and directions of the development of anti-biofouling polymers with special surface wettability are discussed. It is helpful for future researchers to choose suitable anti-biofouling polymers with special surface wettability for specific biomedical applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Jinyuan Pan
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hongmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Fei Deng
- Department of Nephrology, Jinniu Hospital of Sichuan Provincial People’s Hospital and Chengdu Jinniu District People’s Hospital, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
23
|
Wu C, Zheng J, Hu J. Novel antifouling polysulfone matrix membrane modified with zwitterionic polymer. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Zawada AM, Melchior P, Erlenkötter A, Delinski D, Stauss-Grabo M, Kennedy JP. Polyvinylpyrrolidone in hemodialysis membranes: Impact on platelet loss during hemodialysis. Hemodial Int 2021; 25:498-506. [PMID: 34085391 DOI: 10.1111/hdi.12939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Hydrophilic modification with polyvinylpyrrolidone (PVP) increases the biocompatibility profile of synthetic dialysis membranes. However, PVP may be eluted into the patient's blood, which has been discussed as a possible cause for adverse reactions rarely occurring with synthetic membranes. We investigated the content of PVP and its elution from the blood-side surface from commercially available dialyzers, including the novel FX CorAL, with PVP-enriched and α-tocopherol-stabilized membrane, and link the results to the level of platelet loss during dialysis as a maker of biocompatibility. METHODS Six synthetic, PVP containing, dialyzers (FX CorAL, FX CorDiax [Fresenius Medical Care]; Polyflux, THERANOVA [Baxter]; ELISIO [Nipro]; xevonta [B. Braun]) were investigated in the present study. The content of PVP on blood-side surface was determined with X-ray photoelectron spectroscopy (XPS). The amount of elutable PVP was measured photometrically after 5 h recirculation. The level of platelet loss was evaluated in an ex vivo recirculation model with human blood. FINDINGS Highest PVP content on the blood-side surface was found for the polysulfone-based FX CorAL (26.3%), while the polyethersulfone-based THERANOVA (15.6%) had the lowest PVP content. Elution of PVP was highest for the autoclave steam-sterilized THERANOVA (9.1 mg/1.6 m2 dialyzer) and Polyflux (9.0 mg/1.6 m2 dialyzer), while the lowest PVP elution was found for the INLINE steam sterilized FX CorAL and FX CorDiax (<0.5 mg/1.6 m2 dialyzer, for both). Highest platelet loss was found for xevonta (+164.4% compared to the reference) and the lowest for the FX CorAL (-225.2%) among the polysulfone-based dialyzers; among the polyethersulfone-based dialyzers, THERANOVA (+95.5%) had the highest and ELISIO (-52.1%) the lowest platelet loss. DISCUSSION Polyvinylpyrrolidone content and elution differ between commercially available dialyzers and were found to be linked to the membrane material and sterilization method. The amount of non-eluted PVP on the blood-side surface may be an important determinant for the biocompatibility of dialyzers.
Collapse
Affiliation(s)
- Adam M Zawada
- Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| | - Pascal Melchior
- Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| | - Ansgar Erlenkötter
- Global Research and Development, Product Engineering Center Dialyzers & Membranes, Biosciences-Biotechnology, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| | - Dirk Delinski
- Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| | - Manuela Stauss-Grabo
- Global Medical Office, Clinical and Epidemiological Research, Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - James P Kennedy
- Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| |
Collapse
|
25
|
Melchior P, Erlenkötter A, Zawada AM, Delinski D, Schall C, Stauss-Grabo M, Kennedy JP. Complement activation by dialysis membranes and its association with secondary membrane formation and surface charge. Artif Organs 2021; 45:770-778. [PMID: 33326619 DOI: 10.1111/aor.13887] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Activation of the complement system may occur during blood-membrane interactions in hemodialysis and contribute to chronic inflammation of patients with end-stage renal disease. Hydrophilic modification with polyvinylpyrrolidone (PVP) has been suggested to increase the biocompatibility profile of dialysis membranes. In the present study we compared the complement activation of synthetic and cellulose-based membranes, including the polysulfone membrane with α-tocopherol-stabilized PVP-enriched inner surface of the novel FX CorAL dialyzer, and linked the results to their physical characteristics. Eight synthetic and cellulose-based dialyzers (FX CorAL, FX CorDiax [Fresenius Medical Care]; Polyflux, THERANOVA [Baxter]; ELISIO, SUREFLUX [Nipro]; xevonta [B. Braun]; FDX [Nikkisio Medical]) were investigated in the present study. Complement activation (C3a, C5a, and sC5b-9) was evaluated in a 3 hours ex vivo recirculation model with human blood. Albumin sieving coefficients were determined over a 4 hours ex vivo recirculation model with human plasma as a surrogate of secondary membrane formation. Zeta potential was measured as an indicator for the surface charge of the membranes. The FX CorAL dialyzer induced the lowest activation of the three complement factors (C3a: -39.4%; C5a: -57.5%; and sC5b-9: -58.9% compared to the reference). Highest complement activation was found for the cellulose-based SUREFLUX (C3a: +154.0%) and the FDX (C5a: +335.0% and sC5b-9: +287.9%) dialyzers. Moreover, the FX CorAL dialyzer had the nearest-to-neutral zeta potential (-2.38 mV) and the lowest albumin sieving coefficient decrease over time. Albumin sieving coefficient decrease was associated with complement activation by the investigated dialyzers. Our present results indicate that the surface modification implemented in the FX CorAL dialyzer reduces the secondary membrane formation and improves the biocompatibility profile. Further clinical studies are needed to investigate whether these observations will result in a lower inflammatory burden of hemodialysis patients.
Collapse
Affiliation(s)
- Pascal Melchior
- Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| | - Ansgar Erlenkötter
- Global Research and Development, Product Engineering Center Dialyzers & Membranes, Biosciences - Biotechnology, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| | - Adam M Zawada
- Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| | - Dirk Delinski
- Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| | - Christian Schall
- Process Technology, Filter Production, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| | - Manuela Stauss-Grabo
- Global Medical Office, Clinical and Epidemiological Research, Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - James P Kennedy
- Global Research and Development, Product Engineering Center Dialyzers & Membranes, Product Development, Fresenius Medical Care Deutschland GmbH, Sankt Wendel, Germany
| |
Collapse
|
26
|
Qi X, Yang N, Luo Y, Jia X, Zhao J, Feng X, Chen L, Zhao Y. Resveratrol as a plant type antioxidant modifier for polysulfone membranes to improve hemodialysis-induced oxidative stress. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111953. [PMID: 33812581 DOI: 10.1016/j.msec.2021.111953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Resveratrol (RES) is a plant extract with excellent antioxidant, biocompatibility, anti-inflammatory and inhibition of platelet aggregation. RES-modified polysulfone (PSF) hemodialysis membranes have been fabricated using an immersion phase transformation method. The antioxidant properties of the blend membranes were evaluated in terms of their 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS+), reactive oxygen species (ROS) free radicals scavenging, total antioxidant capacity (T-AOC) of serum and lipid peroxidation inhibition. The observed results of decreasing DPPH and ABTS+ levels, scavenging ROS, significant inhibition of lipid peroxidation and improving the T-AOC of serum all contribute to the recovery of oxidative balance and the use of RES as an antioxidant modifier. The antioxidant stability of PSF/RES blend membranes was also studied. Moreover, the results of blood compatibility experiments showed that the addition of RES improved the blood compatibility of PSF membrane, inhibited the adhesion of red blood cells and platelets; inhibited complement activation; and reduced the blood cells deformation rate. The dialysis simulation experiment indicated that PSF/RES membrane (M-3) can clear 90.33% urea, 89.50% creatinine, 74.60% lysozyme and retention 90.47% BSA. All these results showed the new PSF/RES blend membranes have potential to be used in the field of hemodialysis to improve oxidative stress status in patients.
Collapse
Affiliation(s)
- Xuchao Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China.
| | - Ying Luo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, People's Republic of China
| | - Xuemeng Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Junqiang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xia Feng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China.
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
27
|
Hoseinpour V, Noori L, Mahmoodpour S, Shariatinia Z. A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:906-965. [PMID: 33380262 DOI: 10.1080/09205063.2020.1870379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable methods have so far been used for the surface modification of biomedical membranes. Several reviews and articles have been published on the improvements achieved in the field of poly(arylsulfone) membranes subjected to various surface modification methods and used in biomedical applications. This review concentrates on the surface modification, biological applications and future perspective of the poly(arylsulfone) biomedical membranes. Different surface modification procedures employed for the poly(arylsulfone) membranes have been classified, studied and compared. Diverse surface modification techniques include surface coating, chemical modification and immobilization/cross-linking, grafting, surface zwitterionicalization, mussel-inspired coating and layer-by-layer assembly. Furthermore, we review the recent research studies performed on the surface modification of the poly(arylsulfone) biomedical membranes. Meanwhile, the properties of biomedical membranes are also discussed in each section. At last, the future perspective and challenges of the strategies utilized for the surface modification of poly(arylsulfone) biomedical membranes are presented.
Collapse
Affiliation(s)
- Vahid Hoseinpour
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Laya Noori
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Saba Mahmoodpour
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
28
|
Jiang P, He Y, Zhao Y, Chen L. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36837-36850. [PMID: 32705861 DOI: 10.1021/acsami.0c07090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Patients with end-stage renal disease are prone to developing a complication of hyperhomocysteinemia, manifesting as an elevation of the homocysteine (Hcy) concentration in human plasma. However, Hcy as a protein-bound toxin is barely removed by conventional hemodialysis membranes. Here, we report a novel hemodialysis membrane by preparing a bioactive coating of pyridoxal 5'-phosphate (PLP) and adding biocompatible hyperbranched polyglycerol (HPG) brushes to achieve Hcy removal. The dip-applied PLP coating, a coenzyme with a role in Hcy metabolism, dramatically promoted a decrease in the Hcy concentration in human plasma. Moreover, the aldehyde group of PLP had an intrinsic chemical reactivity toward the terminal amino group to immobilize the HPG brushes on the hemodialysis membrane surface. The hierarchical PLP-HPG layer-functionalized membranes had a high efficacy for eliminating Hcy, with a concentration from the initial stage of 150 μmol/L reduced to a nearly normal level of 20 μmol/L in simulated dialysis. By analyzing the impact of HPG brushes with various chain lengths, we found that HPG brushes with a medium length enabled the PLP coating with the bioactive function of Hcy conversion to additionally protect Hcy-attacked target cells by providing excellent hydrophilicity and a dense enough chain volume overlap of the hyperbranched architecture. Simultaneously, the densely packed HPG brushes generated a maximal steric and hydration barrier that significantly improved biofouling resistance against blood proteins. The optimally functionalized membranes showed a clearance of 83.1% urea and 49.6% lysozyme and a rejection of 96.0% bovine serum albumin. The diversely functionalized PLP-HPG layers demonstrate a potential route for a more integrated hemodialysis membrane that can cope with the urgent issue of hyperhomocysteinemia in clinical hemodialysis therapy.
Collapse
Affiliation(s)
- Peng Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
29
|
Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Wang SY, Fang LF, Matsuyama H. Construction of a stable zwitterionic layer on negatively-charged membrane via surface adsorption and cross-linking. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Integrated treatment for oil free petroleum produced water using novel resin composite followed by microfiltration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Zhang L, Tang Y, Jiang X, Yu L, Wang C. Highly Dual Antifouling and Antibacterial Ultrafiltration Membranes Modified with Silane Coupling Agent and Capsaicin-Mimic Moieties. Polymers (Basel) 2020; 12:E412. [PMID: 32054058 PMCID: PMC7077692 DOI: 10.3390/polym12020412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023] Open
Abstract
Dual antifouling and antibacterial polysulfone(PSf)/polyethersulfone(PES) hybrid membranes were developed by the synergy of capsaicin-mimic N-(5-methyl acrylamide-2,3,4 hydroxy benzyl) acrylamide (AMTHBA) and vinyl triethylene (b-methoxy ethoxy) silane (VTMES). First, AMTHBA as a natural antimicrobial agent was incorporated into a casting solution via "microwave-assistance (MWA) in situ polymerization-blending" process to construct a hydroxyl-rich environment. Then, VTMES crosslinked to a hydroxyl-rich polymer matrix via hydrolytic condensation, and the influence of VTMES content on the hybrid membrane properties was systematically investigated. When the VTMES added amount was 1.0 wt %, the hybrid membrane achieved an optimal separation performance including a steady-state humic acid (HA) (5 mg/L) permeation flux of 326 L·m-2·h-1 and a rejection percentage of 97%. The antibacterial tests revealed that the hybrid membranes exhibited sustained bactericidal activity and effective inhibition of bacterial adhesion. Besides, the dual-functional membranes were clean as new after two-cycles filtration (with a cleaning efficiency of ~90%), indicating that the network silicone film on the surface benefits the foulant repellence. Hopefully, the dual-functional membranes constructed in this study can be applicable to the pretreatment stage of water treatment.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; (L.Z.); (Y.T.); (X.J.)
| | - Yuanyuan Tang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; (L.Z.); (Y.T.); (X.J.)
| | - Xiaohui Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; (L.Z.); (Y.T.); (X.J.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; (L.Z.); (Y.T.); (X.J.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Changyun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China;
| |
Collapse
|
33
|
Shan L, Sun Y, Shan F, Li L, Xu ZP. Recent advances in heparinization of polymeric membranes for enhanced continuous blood purification. J Mater Chem B 2020; 8:878-894. [PMID: 31956883 DOI: 10.1039/c9tb02515d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Continuous blood purification technology such as hemodiafiltration has been used worldwide for saving patients suffering from severe diseases or organ function failure, especially in the intensive care unit and emergency setting. The filters as core devices are commonly made of polymer materials as hollow fiber membranes. However, the membrane is often inductively blocked by blood clot formation due to its interactions with blood components. Heparin is the anticoagulant often used in clinical practice for anti-coagulation. Recently, heparin is also employed to modify the hollow fiber membranes either chemically or physically to improve the filtration performance. This review summarizes recent advances in methodology for surface heparinization of such hollow fiber membranes, and their filtration performance improvement. The review also provides expert opinions for further research in this rapidly expanding field.
Collapse
Affiliation(s)
- Liang Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Yunbo Sun
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Feng Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
34
|
Filimon A, Dobos AM, Musteata V. New perspectives on development of polysulfones/cellulose derivatives based ionic-exchange membranes: Dielectric response and hemocompatibility study. Carbohydr Polym 2019; 226:115300. [PMID: 31582061 DOI: 10.1016/j.carbpol.2019.115300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/25/2022]
Abstract
Due to the increasing need from the membrane technologies for diverse applications, development of new generation of materials with electroactive properties and significant impact on the future technological systems was imposed. An innovative way of designing the membrane materials with long-term stable hydrophilicity, enhanced workability, porosity, and good biocompatibility, has been adopted by blending of quaternized polysulfone (PSFQ) with a cellulose derivative (cellulose acetate phthalate, CAP). Moreover, the quaternization effect has significantly improved the electrical performances, in terms of the ionic conductivity, electron interactions, and dielectric properties, required by target applications, i.e., ionic-exchange membranes, IEMs. Results derived from dielectric spectroscopy confirm the enhanced dielectric quality, reflected by a low dielectric constant and dielectric loss at high frequency. Additionally, the relationship between the resulted dielectric properties and response at the blood-biomaterial interface, have confirmed their excellent performance, constituting the preliminary basis for future tests concerning their functionality as IEMs in hemodialysis.
Collapse
Affiliation(s)
- Anca Filimon
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania.
| | - Adina Maria Dobos
- Department of Physical Chemistry of Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Valentina Musteata
- Laboratory of Polymer Materials Physics, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
35
|
Pei H, Yan F, Wang Z, Liu C, Hou S, Ma X, Li J, Cui Z, He B, Wickramsinghe SR. Polysulfone-graft-4′- aminobenzo-15-crown-5-ether based tandem membrane chromatography for efficient adsorptive separation of lithium isotopes. J Chromatogr A 2019; 1602:206-216. [DOI: 10.1016/j.chroma.2019.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 01/31/2023]
|
36
|
Bou Haidar N, Marais S, Dé E, Schaumann A, Barreau M, Feuilloley MGJ, Duncan AC. Chronic wound healing: A specific antibiofilm protein-asymmetric release system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110130. [PMID: 31753364 DOI: 10.1016/j.msec.2019.110130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/02/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
Chronic infection is a major cause of delayed wound-healing. It is recognized to be associated with infectious bacterial communities called biofilms. Currently used conventional antibiotics alone often reveal themselves ineffective, since they do not specifically target the wound biofilm. Here, we report a new conceptual tool aimed at overcoming this drawback: an antibiofilm drug delivery system targeting the bacterial biofilm as a whole, by inhibiting its formation and/or disrupting it once it is formed. The system consists of a micro/nanostructured poly(butylene-succinate-co-adipate) (PBSA)-based asymmetric membrane (AM) with controlled porosity. By the incorporation of hydrophilic porogen agents, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), we were able to obtain AMs with high levels of porosity, exhibiting interconnections between pores. The PBSA-PEG membrane presented a dense upper layer with pores small enough to block bacteria penetration. Upon using such porogen agents, under dry and wet conditions, membrane's integrity and mechanical properties were maintained. Using bovine serum albumin (BSA) as a model protein, we demonstrated that protein loading and release from PBSA membranes were affected by the membrane structure (porosity) and the presence of residual porogen. Furthermore, the release curve profile consisted of a fast initial slope followed by a second slow phase approaching a plateau within 24 h. This can be highly beneficial for the promotion of wound healing. Cross-sectional confocal laser scanning microscopy (CLSM) images revealed a heterogeneous distribution of fluorescein isothiocyanate (FITC) labeled BSA throughout the entire membrane. PBSA membranes were loaded with dispersin B (DB), a specific antibiofilm matrix enzyme. Studies using a Staphylococcus epidermidis model, indicate significant efficiency in both inhibiting or dispersing preformed biofilm (up to 80 % eradication). The asymmetric PBSA membrane prepared with the PVP porogen (PBSA-PVP) displayed highest antibiofilm activity. Moreover, in vitro cytotoxicity assays using HaCaT and reconstructed human epidermis (RHE) models revealed that unloaded and DB-loaded PBSA-PVP membranes had excellent biocompatibility suitable for wound dressing applications.
Collapse
Affiliation(s)
- Naila Bou Haidar
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Stéphane Marais
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Emmanuelle Dé
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Annick Schaumann
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Magalie Barreau
- Normandie Univ, UNIRouen Normandie, LMSM EA4312, 27000 Evreux, France
| | | | - Anthony C Duncan
- Normandie Univ, UNIRouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| |
Collapse
|
37
|
Aktas Eken G, Acar MH. Polysulfone‐based amphiphilic copolymers: Effect of hydrophilic content on morphology and performance of ultrafiltration membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gozde Aktas Eken
- Department of ChemistryIstanbul Technical University 34469 Maslak Istanbul Turkey
| | - Metin H. Acar
- Department of ChemistryIstanbul Technical University 34469 Maslak Istanbul Turkey
| |
Collapse
|
38
|
Ju J, Liang F, Zhang X, Sun R, Pan X, Guan X, Cui G, He X, Li M. Advancement in separation materials for blood purification therapy. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Hsu CH, Venault A, Huang YT, Wu BW, Chou CJ, Ishihara K, Chang Y. Toward Antibiofouling PVDF Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6782-6792. [PMID: 31042867 DOI: 10.1021/acs.langmuir.9b00703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Membranes for biologically and biomedically related applications must be bioinert, that is, resist biofouling by proteins, human cells, bacteria, algae, etc. Hydrophobic materials such as polysulfone, polypropylene, or poly(vinylidene fluoride) (PVDF) are often chosen as matrix materials but their hydrophobicity make them prone to biofouling, which in turn limits their application in biological/biomedical fields. Here, we designed PVDF-based membranes by precipitation from the vapor phase and zwitterionized them in situ to reduce their propensity to biofouling. To achieve this goal, we used a copolymer containing phosphorylcholine groups. An in-depth physicochemical characterization revealed not only the controlled presence of the copolymer in the membrane but also that bicontinuous membranes could be formed. Membrane hydrophilicity was greatly improved, resulting in the mitigation of a variety of biofoulants: the attachment of Stenotrophomonas maltophilia, Streptococcus mutans, and platelets was reduced by 99.9, 99.9, and 98.9%, respectively. Besides, despite incubation in a plasma platelet-poor medium, rich in plasma proteins, a flux recovery ratio of 75% could be measured while it was only 40% with a hydrophilic commercial membrane of similar structure and physical properties. Similarly, the zwitterionic membrane severely mitigated biofouling by microalgae during their harvesting. All in all, the material/process combination presented in this work leads to antibiofouling porous membranes with a large span of potential biomedically and biologically related applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Kazuhiko Ishihara
- Department of Bioengineering , The University of Tokyo , Tokyo , Japan
| | | |
Collapse
|
40
|
Favaretto L, Manoli F, Zambianchi M, Bocchi L, Ventura B, Manet I, Melucci M. Immobilization of Perylene-3,4,9,10-Tetracarboxylic Dianhydride on Hollow Polysulfone Fibers: Primary Amine Coupling and Fluorescence Reporting. Chempluschem 2019; 84:1299-1304. [PMID: 31944052 DOI: 10.1002/cplu.201800681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/13/2023]
Abstract
The fluorescent dye perylene-3,4,9,10-tetracarboxylic dianhydride (PBA) was immobilized onto polysulfone hollow fibers by means of a wet coating procedure. After immobilization, PBA was able to react with primary amines through a double anhydride ring opening reaction. The in situ amine coupling was further revealed by fluorescence analysis. Both emission (534 nm →538 nm) and fluorescence lifetime changes (2.7 ns →3.3 ns) of the dye are a useful tool to detect and visualize the occurrence of the reaction. The successful implementation of amine coupling with a reporting function on polysulfone fibers holds great interest for biomedical applications.
Collapse
Affiliation(s)
- Laura Favaretto
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR), Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Francesco Manoli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR), Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Massimo Zambianchi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR), Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Letizia Bocchi
- Medica SPA, via degli Artigiani 7, 41036, Medolla (Mo), Italy
| | - Barbara Ventura
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR), Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR), Via Piero Gobetti 101, 40129, Bologna, Italy
| | - Manuela Melucci
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR), Via Piero Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
41
|
Liu C, Wang W, Li Y, Cui F, Xie C, Zhu L, Shan B. PMWCNT/PVDF ultrafiltration membranes with enhanced antifouling properties intensified by electric field for efficient blood purification. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Yang N, Jia X, Wang D, Wei C, He Y, Chen L, Zhao Y. Silibinin as a natural antioxidant for modifying polysulfone membranes to suppress hemodialysis-induced oxidative stress. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
43
|
Voinova M, Repin N, Sokol E, Tkachuk B, Gorelik L. Physical Processes in Polymeric Filters Used for Dialysis. Polymers (Basel) 2019; 11:E389. [PMID: 30960373 PMCID: PMC6473866 DOI: 10.3390/polym11030389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 01/03/2023] Open
Abstract
The key physical processes in polymeric filters used for the blood purification include transport across the capillary wall and the interaction of blood cells with the polymer membrane surface. Theoretical modeling of membrane transport is an important tool which provides researchers with a quantification of the complex phenomena involved in dialysis. In the paper, we present a dense review of the most successful theoretical approaches to the description of transport across the polymeric membrane wall as well as the cell⁻polymer surface interaction, and refer to the corresponding experimental methods while studying these phenomena in dialyzing filters.
Collapse
Affiliation(s)
- Marina Voinova
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
- Department of Industrial and Biomedical Electronics, Kharkiv Polytechnical Institute, National Technical University, 61002 Kharkov, Ukraine.
| | - Nikolay Repin
- Department of Cryomorphology, Institute for Problems of Cryobiology and Cryomedicine, 61015 Kharkov, Ukraine.
| | - Evgen Sokol
- Department of Industrial and Biomedical Electronics, Kharkiv Polytechnical Institute, National Technical University, 61002 Kharkov, Ukraine.
| | - Bogdan Tkachuk
- Department of Hemodialysis, Municipal Noncommercial Enterprise of Kharkiv Regional Council "Regional Medical Clinical Center of Urology and Nephrology n.a. V.I. Shapoval", 61037 Kharkov, Ukraine.
| | - Leonid Gorelik
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| |
Collapse
|
44
|
Koromilas ND, Anastasopoulos C, Oikonomou EK, Kallitsis JK. Preparation of Porous Polymeric Membranes Based on a Pyridine Containing Aromatic Polyether Sulfone. Polymers (Basel) 2019; 11:E59. [PMID: 30960043 PMCID: PMC6402226 DOI: 10.3390/polym11010059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/15/2018] [Accepted: 12/24/2018] [Indexed: 11/26/2022] Open
Abstract
Polymeric membranes, based on a polysulfone-type aromatic polyether matrix, were successfully developed via the non-solvent induced phase separation (NIPS) method. The polyethersulfone type polymer poly[2-(4-(diphenylsulfonyl)-phenoxy)-6-(4-phenoxy) pyridine] (PDSPP) was used as the membrane matrix, and mixed with its sulfonated derivative (SPDSPP) and a polymeric porogen. The SPDPPP was added to impart hydrophilicity, while at the same time maintaining the interactions with the non-sulfonated aromatic polyether forming the membrane matrix. Different techniques were used for the membranes' properties characterization. The results revealed that the use of the non-sulfonated and sulfonated polymers of the same polymeric backbone, at certain compositions, can lead to membranes with controllable porosity and hydrophilicity.
Collapse
Affiliation(s)
- Nikos D Koromilas
- Department of Chemistry, University of Patras, GR⁻26504 Patras, Greece.
- FORTH/ICE-HT, Stadiou str., P.O. Box 1414, GR⁻26504 Rio-Patras, Greece.
| | | | - Evdokia K Oikonomou
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France.
| | - Joannis K Kallitsis
- Department of Chemistry, University of Patras, GR⁻26504 Patras, Greece.
- FORTH/ICE-HT, Stadiou str., P.O. Box 1414, GR⁻26504 Rio-Patras, Greece.
| |
Collapse
|
45
|
Tu MM, Xu JJ, Qiu YR. Surface hemocompatible modification of polysulfone membrane via covalently grafting acrylic acid and sulfonated hydroxypropyl chitosan. RSC Adv 2019; 9:6254-6266. [PMID: 35517280 PMCID: PMC9062722 DOI: 10.1039/c8ra10573a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/05/2019] [Indexed: 12/29/2022] Open
Abstract
In this study, acrylic acid (AA) and sulfonated hydroxypropyl chitosan (SHPCS) were covalently grafted on the PSf membrane surface to improve its hemocompatibility.
Collapse
Affiliation(s)
- Ming-Ming Tu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Jing-Jie Xu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| | - Yun-Ren Qiu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- PR China
| |
Collapse
|
46
|
Pei H, Yan F, Ma X, Li X, Liu C, Li J, Cui Z, He B. In situ one-pot formation of crown ether functionalized polysulfone membranes for highly efficient lithium isotope adsorptive separation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Aktas Eken G, Acar MH. Polysulfone-Based Shape Memory Thermoplastics with Body Temperature Triggering. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Gozde Aktas Eken
- G. A. Eken, Prof. M. H. Acar; Macromolecular Engineering Research Laboratory; Chemistry Department; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Metin H. Acar
- G. A. Eken, Prof. M. H. Acar; Macromolecular Engineering Research Laboratory; Chemistry Department; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| |
Collapse
|
48
|
Honore PM, Spapen HD. What a Clinician Should Know About a Renal Replacement Membrane? J Transl Int Med 2018; 6:62-65. [PMID: 29984198 PMCID: PMC6032186 DOI: 10.2478/jtim-2018-0016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Patrick M. Honore
- ICU Department, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | | |
Collapse
|
49
|
Surface wormlike morphology control of polysulfone/poly(N-isopropylacrylamide) membranes by tuning the two-stage phase separation and their thermo-responsive permselectivity. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydr Polym 2018. [DOI: 10.1016/j.carbpol.2018.01.106] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|