1
|
Yang S, Soheilmoghaddam F, Pivonka P, Li J, Rudd S, Yeo T, Tu J, Zhu Y, Cooper-White JJ. Engineering Intervertebral Disc Regeneration: Biomaterials, Cell Sources and Animal Models. Cell Prolif 2025:e70046. [PMID: 40389238 DOI: 10.1111/cpr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 05/21/2025] Open
Abstract
Intervertebral disc (IVD) degeneration is an age-related problem triggering chronic spinal issues, such as low back pain and IVD herniation. Standard surgical treatment for such spinal issues is the removal of the degenerated or herniated IVD and fusion of adjacent vertebrae to stabilise the joint and locally decompress the spinal cord and/or nerve roots to relieve pain. However, a key challenge of current surgical strategies is the increasing risk of adjacent segment degeneration due to the disruption of native biomechanics of the functional spinal unit, dominated by the loss of the IVD. In the past two decades, research has focused on developing a number of bioengineering approaches to repair and regenerate the IVD; in particular, tissue engineering of the IVD, using bioscaffolds and stem cells represents a promising area. This review highlights the current tissue engineering approaches utilising biomaterials, animal models and cell sources for IVD regeneration and discusses future opportunities.
Collapse
Affiliation(s)
- Sidong Yang
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, China
- Hebei International Joint Research Centre for Spine Diseases, Shijiazhuang, China
| | - Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Peter Pivonka
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, Brisbane City, Queensland, Australia
| | - Joan Li
- Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Samuel Rudd
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Trifanny Yeo
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Yibo Zhu
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Arvejeh PM, Chermahini FA, Marincola F, Taheri F, Mirzaei SA, Alizadeh A, Deris F, Jafari R, Amiri N, Soltani A, Bijad E, Dehkordi ES, Khosravian P. A novel approach for the co-delivery of 5-fluorouracil and everolimus for breast cancer combination therapy: stimuli-responsive chitosan hydrogel embedded with mesoporous silica nanoparticles. J Transl Med 2025; 23:382. [PMID: 40165241 PMCID: PMC11956229 DOI: 10.1186/s12967-025-06396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Breast cancer remains one of the leading causes of death among women globally, with traditional therapies often limited by challenges such as drug resistance and significant side effects. Combination therapies, coupled with nanotechnology-based co-delivery systems, offer enhanced efficacy by targeting multiple pathways in cancer progression. In this study, we developed an injectable, stimuli-responsive nanosystem using a chitosan hydrogel embedded with mesoporous silica nanoparticles for the co-administration of 5-fluorouracil and everolimus. This approach aims to optimize controlled drug release, enhance the synergistic anticancer effect, and overcome challenges associated with co-loading different therapeutic agents. METHODS Various techniques were employed to characterize the nanoparticles and the hydrogel. Cell uptake, apoptosis, and proliferation of 4T1 breast cancer cells were evaluated by flow cytometry and Resazurin assay, respectively. The Balb/C mice model of breast cancer, which received the therapeutical nanoplatforms subcutaneously near the tumoral region was used to examine tumor size and lung metastases. RESULTS The results revealed that the nanoparticles had a suitable loading capacity and high cellular uptake. The drug release was pH-sensitive and synergistic. By incorporating nanoparticles into the hydrogel, the cell death rate and apoptosis of 4T1 breast cancer cells increased significantly, due to the synergistic effects of co-delivered drugs. Additionally, the combination treatment groups showed a significant reduction in tumor size and lung metastasis compared to the monotherapy and control groups. CONCLUSIONS These findings underscore the potential of the nanocomposite used to develop a novel co-delivery system to enhance therapeutic outcomes, reduce side effects, and provide a promising new strategy for future cancer treatments.
Collapse
Affiliation(s)
- Pooria Mohammadi Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Amini Chermahini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Fatemeh Taheri
- Department of Pathology, Hematology & Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Deris
- Department of Epidemiology and Biostatistics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Raziyeh Jafari
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Niloufar Amiri
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ebrahim Soleiman Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
3
|
Hashemi SS, Alizadeh R, Rafati A, Mohammadi A, Mortazavi M, Hashempur MH. Investigation of silicon oxide nanoparticle-enhanced self-healing hydrogel for cartilage repair and regeneration in rabbit earlobe models. J Drug Target 2025:1-13. [PMID: 40019486 DOI: 10.1080/1061186x.2025.2473675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
This study developed an alginate, gelatine and chondroitin sulphate hydrogel incorporating silicon oxide nanoparticles to assess hydrogel morphology, cell proliferation and viability. The effectiveness of these hydrogels for cartilage repair was evaluated in vivo using male albino rabbits, divided into three groups: a control group without hydrogels, an observer group with hydrogels lacking nanoparticles and a treatment group with nanoparticle-enhanced hydrogels for post-injury repair. At 15, 30 and 60 days post-surgery, the rabbits were humanely euthanized and excised tissue samples were fixed in 10% formalin for histopathological analysis, then processed and embedded in paraffin for microscopic evaluation. Statistical analysis was performed using SPSS software with ANOVA and Tukey's post hoc test. Results indicated that the hydrogels supported cell viability and encouraged differentiation into chondrocyte-like phenotypes. Scanning electron microscopy confirmed the hydrogels' porosity and showed significant differences in cell survival rates compared to the control group, underscoring the potential of hydrogels in cartilage tissue engineering and regenerative repair strategies.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Alizadeh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Aliakbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Mamidi N, De Silva FF, Vacas AB, Gutiérrez Gómez JA, Montes Goo NY, Mendoza DR, Reis RL, Kundu SC. Multifaceted Hydrogel Scaffolds: Bridging the Gap between Biomedical Needs and Environmental Sustainability. Adv Healthc Mater 2024; 13:e2401195. [PMID: 38824416 DOI: 10.1002/adhm.202401195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Hydrogels are dynamically evolving 3D networks composed of hydrophilic polymer scaffolds with significant applications in the healthcare and environmental sectors. Notably, protein-based hydrogels mimic the extracellular matrix, promoting cell adhesion. Further enhancing cell proliferation within these scaffolds are matrix-metalloproteinase-triggered amino acid motifs. Integration of cell-friendly modules like peptides and proteins expands hydrogel functionality. These exceptional properties position hydrogels for diverse applications, including biomedicine, biosensors, environmental remediation, and the food industry. Despite significant progress, there is ongoing research to optimize hydrogels for biomedical and environmental applications further. Engineering novel hydrogels with favorable characteristics is crucial for regulating tissue architecture and facilitating ecological remediation. This review explores the synthesis, physicochemical properties, and biological implications of various hydrogel types and their extensive applications in biomedicine and environmental sectors. It elaborates on their potential applications, bridging the gap between advancements in the healthcare sector and solutions for environmental issues.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Fátima Franco De Silva
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Alejandro Bedón Vacas
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Javier Adonay Gutiérrez Gómez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Naomi Yael Montes Goo
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Daniela Ruiz Mendoza
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
5
|
Jafarisavari Z, Ai J, Abbas Mirzaei S, Soleimannejad M, Asadpour S. Development of new nanofibrous nerve conduits by PCL-Chitosan-Hyaluronic acid containing Piracetam-Vitamin B12 for sciatic nerve: A rat model. Int J Pharm 2024; 655:123978. [PMID: 38458406 DOI: 10.1016/j.ijpharm.2024.123978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Peripheral nerve injury is a critical condition that can disrupt nerve functions. Despite the progress in engineering artificial nerve guidance conduits (NGCs), nerve regeneration remains challenging. Here, we developed new nanofibrous NGCs using polycaprolactone (PCL) and chitosan (CH) containing piracetam (PIR)/vitamin B12(VITB12) with an electrospinning method. The lumen of NGCs was coated by hyaluronic acid (HA) to promote regeneration in sciatic nerve injury. The NGCs were characterized via Scanning Electron Microscopy (SEM), Fourier transform infrared (FTIR), tensile, swelling, contact angle, degradation, and drug release tests. Neuronal precursor cell line (PCL12 cell) and rat mesenchymal stem cells derived from bone marrow (MSCs) were seeded on the nanofibrous conduits. After that, the biocompatibility of the NGCs was evaluated by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, and SEM images. The SEM demonstrated that PCL/CH/PIR/VITB12 NGCs had nonaligned, interconnected, smooth fibers. The mechanical properties of these NGCs were similar to rat sciatic nerve. These conduits had an appropriate swelling and degradation rate. The In Vitro studies exhibited favorable biocompatibility of the PCL/CH/PIR/VITB12 NGCs towards PC12 cells and MSCs. The in vitro studies exhibited favorable biocompatibility of the PCL/CH/PIR/VIT B12 NGCs towards MSCs and PC12 cells. To analyze functional efficacy, NGCs were implanted into a 10 mm Wistar rat sciatic nerve gap and bridged the proximal and distal stump of the defect. After three months, the results of sciatic functional index (55.3 ± 1.8), hot plate latency test (5.6 ± 0.5 s), gastrocnemius muscle wet weight-loss (38.57 ± 1.6 %) and histopathological examination using hematoxylin-eosin (H&E) /toluidine blue/ Anti-Neurofilament (NF200) staining demonstrated that the produced conduit recovered motor and sensory functions and had comparable nerve regeneration compared to the autograft that can be as the gold standard to bridge the nerve gaps.
Collapse
Affiliation(s)
- Zahra Jafarisavari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mostafa Soleimannejad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Almajidi YQ, Ponnusankar S, Chaitanya MVNL, Marisetti AL, Hsu CY, Dhiaa AM, Saadh MJ, Pal Y, Thabit R, Adhab AH, Alsaikhan F, Narmani A, Farhood B. Chitosan-based nanofibrous scaffolds for biomedical and pharmaceutical applications: A comprehensive review. Int J Biol Macromol 2024; 264:130683. [PMID: 38458289 DOI: 10.1016/j.ijbiomac.2024.130683] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nowadays, there is a wide range of deficiencies in treatment of diseases. These limitations are correlated with the inefficient ability of current modalities in the prognosis, diagnosis, and treatment of diseases. Therefore, there is a fundamental need for the development of novel approaches to overcome the mentioned restrictions. Chitosan (CS) nanoparticles, with remarkable physicochemical and mechanical properties, are FDA-approved biomaterials with potential biomedical aspects, like serum stability, biocompatibility, biodegradability, mucoadhesivity, non-immunogenicity, anti-inflammatory, desirable pharmacokinetics and pharmacodynamics, etc. CS-based materials are mentioned as ideal bioactive materials for fabricating nanofibrous scaffolds. Sustained and controlled drug release and in situ gelation are other potential advantages of these scaffolds. This review highlights the latest advances in the fabrication of innovative CS-based nanofibrous scaffolds as potential bioactive materials in regenerative medicine and drug delivery systems, with an outlook on their future applications.
Collapse
Affiliation(s)
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty 643001, The Nilgiris, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan.
| | | | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Yogendra Pal
- Department of Pharmaceutical Chemistry, CT College of Pharmacy, Shahpur, Jalandhar, Punjab 144020, India
| | - Russul Thabit
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
8
|
Liu J, Du C, Huang W, Lei Y. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomater Sci 2023; 12:8-56. [PMID: 37969066 DOI: 10.1039/d3bm01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogels have established their significance as prominent biomaterials within the realm of biomedical research. However, injectable hydrogels have garnered greater attention compared with their conventional counterparts due to their excellent minimally invasive nature and adaptive behavior post-injection. With the rapid advancement of emerging chemistry and deepened understanding of biological processes, contemporary injectable hydrogels have been endowed with an "intelligent" capacity to respond to various endogenous/exogenous stimuli (such as temperature, pH, light and magnetic field). This innovation has spearheaded revolutionary transformations across fields such as tissue engineering repair, controlled drug delivery, disease-responsive therapies, and beyond. In this review, we comprehensively expound upon the raw materials (including natural and synthetic materials) and injectable principles of these advanced hydrogels, concurrently providing a detailed discussion of the prevalent strategies for conferring stimulus responsiveness. Finally, we elucidate the latest applications of these injectable "smart" stimuli-responsive hydrogels in the biomedical domain, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Wöltje M, Künzelmann L, Belgücan B, Croft AS, Voumard B, Bracher S, Zysset P, Gantenbein B, Cherif C, Aibibu D. Textile Design of an Intervertebral Disc Replacement Device from Silk Yarn. Biomimetics (Basel) 2023; 8:biomimetics8020152. [PMID: 37092404 PMCID: PMC10123607 DOI: 10.3390/biomimetics8020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2023] Open
Abstract
Low back pain is often due to degeneration of the intervertebral discs (IVD). It is one of the most common age- and work-related problems in today's society. Current treatments are not able to efficiently restore the full function of the IVD. Therefore, the aim of the present work was to reconstruct the two parts of the intervertebral disc-the annulus fibrosus (AF) and the nucleus pulposus (NP)-in such a way that the natural structural features were mimicked by a textile design. Silk was selected as the biomaterial for realization of a textile IVD because of its cytocompatibility, biodegradability, high strength, stiffness, and toughness, both in tension and compression. Therefore, an embroidered structure made of silk yarn was developed that reproduces the alternating fiber structure of +30° and -30° fiber orientation found in the AF and mimics its lamellar structure. The developed embroidered ribbons showed a tensile strength that corresponded to that of the natural AF. Fiber additive manufacturing with 1 mm silk staple fibers was used to replicate the fiber network of the NP and generate an open porous textile 3D structure that may serve as a reinforcement structure for the gel-like NP.
Collapse
Affiliation(s)
- Michael Wöltje
- Institute of Textile Machinery and High-Performance Material Technology, Technische Universität Dresden, 01602 Dresden, Germany
| | - Liesa Künzelmann
- Institute of Textile Machinery and High-Performance Material Technology, Technische Universität Dresden, 01602 Dresden, Germany
| | - Basak Belgücan
- Institute of Textile Machinery and High-Performance Material Technology, Technische Universität Dresden, 01602 Dresden, Germany
| | - Andreas S Croft
- Tissue Engineering for Orthopaedic and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, 3008 Bern, Switzerland
| | - Benjamin Voumard
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland
| | - Stefan Bracher
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedic and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, 3008 Bern, Switzerland
- Department of Orthopedic Surgery and Traumatology, Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Chokri Cherif
- Institute of Textile Machinery and High-Performance Material Technology, Technische Universität Dresden, 01602 Dresden, Germany
| | - Dilbar Aibibu
- Institute of Textile Machinery and High-Performance Material Technology, Technische Universität Dresden, 01602 Dresden, Germany
| |
Collapse
|
10
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
11
|
Nanofiber reinforced alginate hydrogel for leak-proof delivery and higher stress loading in nucleus pulposus. Carbohydr Polym 2023; 299:120193. [PMID: 36876807 DOI: 10.1016/j.carbpol.2022.120193] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/08/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Injectable hydrogels effectively remodel degenerative nucleus pulposus (NP) with a resemblance to the in vivo microenvironment. However, the pressure within the intervertebral disc requires load-bearing implants. The hydrogel must undergo a rapid phase transition upon injection to avoid leakage. In this study, an injectable sodium alginate hydrogel was reinforced with silk fibroin nanofibers with core-shell structures. The nanofiber-embedded hydrogel provided support to adjacent tissues and facilitated cell proliferation. Platelet-rich plasma (PRP) was incorporated into the core-shell nanofibers for sustained release and enhanced NP regeneration. The composite hydrogel exhibited excellent compressive strength and enabled leak-proof delivery of PRP. In rat intervertebral disc degeneration models, radiography and MRI signal intensities were significantly reduced after 8 weeks of injections with the nanofiber-reinforced hydrogel. The biomimetic fiber gel-like structure was constructed in situ, providing mechanical support for NP repair, promoting the reconstruction of the tissue microenvironment, and finally realizing the regeneration of NP.
Collapse
|
12
|
Croft AS, Spessot E, Bhattacharjee P, Yang Y, Motta A, Wöltje M, Gantenbein B. Biomedical applications of silk and its role for intervertebral disc repair. JOR Spine 2022; 5:e1225. [PMID: 36601376 PMCID: PMC9799090 DOI: 10.1002/jsp2.1225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 12/30/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the main contributor to chronic low back pain. To date, the present therapies mainly focus on treating the symptoms caused by IDD rather than addressing the problem itself. For this reason, researchers have searched for a suitable biomaterial to repair and/or regenerate the IVD. A promising candidate to fill this gap is silk, which has already been used as a biomaterial for many years. Therefore, this review aims first to elaborate on the different origins from which silk is harvested, the individual composition, and the characteristics of each silk type. Another goal is to enlighten why silk is so suitable as a biomaterial, discuss its functionalization, and how it could be used for tissue engineering purposes. The second part of this review aims to provide an overview of preclinical studies using silk-based biomaterials to repair the inner region of the IVD, the nucleus pulposus (NP), and the IVD's outer area, the annulus fibrosus (AF). Since the NP and the AF differ fundamentally in their structure, different therapeutic approaches are required. Consequently, silk-containing hydrogels have been used mainly to repair the NP, and silk-based scaffolds have been used for the AF. Although most preclinical studies have shown promising results in IVD-related repair and regeneration, their clinical transition is yet to come.
Collapse
Affiliation(s)
- Andreas S. Croft
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
| | - Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
| | - Promita Bhattacharjee
- Department of Chemical SciencesSSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of LimerickLimerickIreland
| | - Yuejiao Yang
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research CenterUniversity of TrentoTrentoItaly
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine UnitTrentoItaly
- INSTM, Trento Research Unit, Interuniversity Consortium for Science and Technology of MaterialsTrentoItaly
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material TechnologyDresdenGermany
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedic & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
13
|
Zhao X, Ma H, Han H, Zhang L, Tian J, Lei B, Zhang Y. Precision medicine strategies for spinal degenerative diseases: Injectable biomaterials with in situ repair and regeneration. Mater Today Bio 2022; 16:100336. [PMID: 35799898 PMCID: PMC9254127 DOI: 10.1016/j.mtbio.2022.100336] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
As the population ages, spinal degeneration seriously affects quality of life in middle-aged and elderly patients, and prevention and treatment remain challenging for clinical surgeons. In recent years, biomaterials-based injectable therapeutics have attracted much attention for spinal degeneration treatment due to their minimally invasive features and ability to perform precise repair of irregular defects. However, the precise design and functional control of bioactive injectable biomaterials for efficient spinal degeneration treatment remains a challenge. Although many injectable biomaterials have been reported for the treatment of spinal degeneration, there are few reviews on the advances and effects of injectable biomaterials for spinal degeneration treatment. This work reviews the current status of the design and fabrication of injectable biomaterials, including hydrogels, bone cements and scaffolds, microspheres and nanomaterials, and the current progress in applications for treating spinal degeneration. Additionally, registered clinical trials were also summarized and key challenges and clinical translational prospects for injectable materials for the treatment of spinal degenerative diseases are discussed.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hongyun Ma
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hao Han
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liuyang Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jing Tian
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Bo Lei
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
14
|
Demott CJ, Grunlan MA. Emerging polymeric material strategies for cartilage repair. J Mater Chem B 2022; 10:9578-9589. [PMID: 36373438 DOI: 10.1039/d2tb02005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cartilage is found throughout the body, serving an array of essential functions. Owing to the limited healing capacity of cartilage, damage or degeneration is often permanent and so requires clinical intervention. Established surgical techniques generally rely on biological grafting. However, recent advances in polymeric materials provide an encouraging alternative to overcome limits of auto- and allografts. For regenerative engineering of cartilage, a polymeric scaffold ideally supports and instructs tissue regeneration while also providing mechanical integrity. Scaffolds direct regeneration via chemical and mechanical cues, as well as delivery and support of exogenous cells and bioactive factors. Advanced polymeric scaffolds aim to direct regeneration locally, replicating the heterogeneities of native tissues. Alternatively, new cartilage-mimetic hydrogels have potential to serve as synthetic cartilage replacements. Prepared as multi-network or composite hydrogels, the most promising candidates have simultaneously realized the hydration, mechanical, and tribological properties of native cartilage. Collectively, the recent rise in polymers for cartilage regeneration and replacement proposes a changing paradigm, with a new generation of materials paving the way for improved clinical outcomes.
Collapse
Affiliation(s)
- Connor J Demott
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843-3003, USA.,Department of Chemistry, Texas A&M University, College Station, TX 77843-3003, USA.
| |
Collapse
|
15
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
16
|
Abpeikar Z, Javdani M, Alizadeh A, Khosravian P, Tayebi L, Asadpour S. Development of meniscus cartilage using polycaprolactone and decellularized meniscus surface modified by gelatin, hyaluronic acid biomacromolecules: A rabbit model. Int J Biol Macromol 2022; 213:498-515. [PMID: 35623463 PMCID: PMC9297736 DOI: 10.1016/j.ijbiomac.2022.05.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022]
Abstract
The lack of vascularization in the white-red and white zone of the meniscus causes these zones of tissue to have low self-healing capacity in case of injury and accelerate osteoarthritis (OA). In this study, we have developed hybrid constructs using polycaprolactone (PCL) and decellularized meniscus extracellular matrix (DMECM) surface modified by gelatin (G), hyaluronic acid (HU) and selenium (Se) nanoparticles (PCL/DMECM/G/HU/Se), following by the cross-linking of the bio-polymeric surface. Material characterization has been performed on the fabricated scaffold using scanning electron microscopy (SEM), Fourier transforms infrared (FTIR) spectroscopy, swelling and degradation analyses, and mechanical tests. In Vitro, investigations have been conducted by C28/I2 human chondrocyte culture into the scaffold and evaluated the cytotoxicity and cell/scaffold interaction. For the in vivo study, the scaffolds were transplanted into the defect sites of female New Zealand white rabbits. Good regeneration was observed after two months. We have concluded that the designed PCL/DMECM/G/HU construct can be a promising candidate as a meniscus tissue engineering scaffold to facilitate healing.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Moosa Javdani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Lobat Tayebi
- Marquett University School of Dentistry, Milwaukee, WI 53233, USA
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
17
|
Gao XD, Zhang XB, Zhang RH, Yu DC, Chen XY, Hu YC, Chen L, Zhou HY. Aggressive strategies for regenerating intervertebral discs: stimulus-responsive composite hydrogels from single to multiscale delivery systems. J Mater Chem B 2022; 10:5696-5722. [PMID: 35852563 DOI: 10.1039/d2tb01066f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As our research on the physiopathology of intervertebral disc degeneration (IVD degeneration, IVDD) has advanced and tissue engineering has rapidly evolved, cell-, biomolecule- and nucleic acid-based hydrogel grafting strategies have been widely investigated for their ability to overcome the harsh microenvironment of IVDD. However, such single delivery systems suffer from excessive external dimensions, difficult performance control, the need for surgical implantation, and difficulty in eliminating degradation products. Stimulus-responsive composite hydrogels have good biocompatibility and controllable mechanical properties and can undergo solution-gel phase transition under certain conditions. Their combination with ready-to-use particles to form a multiscale delivery system may be a breakthrough for regenerative IVD strategies. In this paper, we focus on summarizing the progress of research on the stimulus response mechanisms of regenerative IVD-related biomaterials and their design as macro-, micro- and nanoparticles. Finally, we discuss multi-scale delivery systems as bioinks for bio-3D printing technology for customizing personalized artificial IVDs, which promises to take IVD regenerative strategies to new heights.
Collapse
Affiliation(s)
- Xi-Dan Gao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao tong University, Shaanxi 710000, P. R. China.
| | - Rui-Hao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - De-Chen Yu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Xiang-Yi Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Yi-Cun Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| | - Lang Chen
- Department of Gastrointestinal Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China
| | - Hai-Yu Zhou
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P. R. China.
| |
Collapse
|
18
|
Abpeikar Z, Javdani M, Alizadeh A, Khosravian P, Tayebi L, Asadpour S. Development of meniscus cartilage using polycaprolactone and decellularized meniscus surface modified by gelatin, hyaluronic acid biomacromolecules: A rabbit model. Int J Biol Macromol 2022; 213:498-515. [DOI: https:/doi.org/10.1016/j.ijbiomac.2022.05.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
|
19
|
Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Top Curr Chem (Cham) 2022; 380:13. [PMID: 35149879 DOI: 10.1007/s41061-022-00364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidain
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
20
|
Chen H, Xue L, Gong G, Pan J, Wang X, Zhang Y, Guo J, Qin L. Collagen-based materials in reproductive medicine and engineered reproductive tissues. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-021-00075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCollagen, the main component of mammal skin, has been traditionally used in leather manufacturing for thousands of years due to its diverse physicochemical properties. Collagen is the most abundant protein in mammals and the main component of the extracellular matrix (ECM). The properties of collagen also make it an ideal building block for the engineering of materials for a range of biomedical applications. Reproductive medicine, especially human fertility preservation strategies and reproductive organ regeneration, has attracted significant attention in recent years as it is key in resolving the growing social concern over aging populations worldwide. Collagen-based biomaterials such as collagen hydrogels, decellularized ECM (dECM), and bioengineering techniques including collagen-based 3D bioprinting have facilitated the engineering of reproductive tissues. This review summarizes the recent progress in applying collagen-based biomaterials in reproductive. Furthermore, we discuss the prospects of collagen-based materials for engineering artificial reproductive tissues, hormone replacement therapy, and reproductive organ reconstruction, aiming to inspire new thoughts and advancements in engineered reproductive tissues research.
Graphical abstract
Collapse
|
21
|
Culbert MP, Warren JP, Dixon AR, Fermor HL, Beales PA, Wilcox RK. Evaluation of injectable nucleus augmentation materials for the treatment of intervertebral disc degeneration. Biomater Sci 2021; 10:874-891. [PMID: 34951410 DOI: 10.1039/d1bm01589c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Back pain affects a person's health and mobility as well as being associated with large health and social costs. Lower back pain is frequently caused by degeneration of the intervertebral disc. Current operative and non-operative treatments are often ineffective and expensive. Nucleus augmentation is designed to be a minimally invasive method of restoring the disc to its native healthy state by restoring the disc height, and mechanical and/or biological properties. The majority of the candidate materials for nucleus augmentation are injectable hydrogels. In this review, we examine the materials that are currently under investigation for nucleus augmentation, and compare their ability to meet the design requirements for this application. Specifically, the delivery of the material into the disc, the mechanical properties of the material and the biological compatibility are examined. Recommendations for future testing are also made.
Collapse
Affiliation(s)
- Matthew P Culbert
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, UK, LS2 9JT.
| | - James P Warren
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, UK, LS2 9JT.
| | - Andrew R Dixon
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, UK, LS2 9JT.
| | - Hazel L Fermor
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, UK, LS2 9JT.
| | - Paul A Beales
- School of Chemistry, Astbury Centre for Structural Molecular Biology and Bragg Centre for Materials Research, University of Leeds, UK, LS2 9JT
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, UK, LS2 9JT.
| |
Collapse
|
22
|
Abpeikar Z, Moradi L, Javdani M, Kargozar S, Soleimannejad M, Hasanzadeh E, Mirzaei SA, Asadpour S. Characterization of Macroporous Polycaprolactone/Silk Fibroin/Gelatin/Ascorbic Acid Composite Scaffolds and In Vivo Results in a Rabbit Model for Meniscus Cartilage Repair. Cartilage 2021; 13:1583S-1601S. [PMID: 34340598 PMCID: PMC8804732 DOI: 10.1177/19476035211035418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Meniscus injuries in the inner avascular zone have weak intrinsic self-healing capacity and often progress to osteoarthritis. This study focused on evaluating the effects of polycaprolactone/silk fibroin/gelatin/ascorbic acid (PCL/SF/Gel/AA) composite scaffolds seeded with adipose-derived mesenchymal stem cells (ASCs), in the meniscus repair. DESIGN To this end, composite scaffolds were cross-linked using N-hydroxysuccinimide and 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride. Scaffolds were then characterized by scanning electron microscope, mechanical tests, total antioxidant capacity, swelling, and toxicity tests. RESULTS The PCL/SF/Gel/AA scaffolds exhibited suitable mechanical properties. Furthermore, vitamin C rendered them the highest antioxidant capacity. The PCL/SF/Gel/AA scaffolds also showed good biocompatibility and proliferation for chondrocytes. Moreover, the PCL/SF/Gel/AA scaffold seeded with allogeneic ASCs was engrafted in New Zealand rabbits who underwent unilateral punch defect in the medial meniscus of the right knee. After 2 months postimplantation, macroscopic and histologic studies for new meniscus cartilage were performed. CONCLUSIONS Our results indicated that the PCL/SF/Gel/AA composite scaffolds seeded with allogeneic ASCs could successfully improve meniscus healing in damaged rabbits.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering and
Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of
Medical Sciences, Shahrekord, Iran
| | - Lida Moradi
- Department of Orthopedic Surgery,
Department of Cell Biology, Medical School, New York University, New York, NY,
USA
| | - Moosa Javdani
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group
(TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad
University of Medical Sciences, Mashhad, Iran
| | - Mostafa Soleimannejad
- Department of Tissue Engineering and
Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of
Medical Sciences, Shahrekord, Iran
| | | | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology,
School of Advanced Technologies, Shahrekord University of Medical Sciences,
Shahrekord, Iran,Cellular and Molecular Research Center,
Basic Health Sciences Institute, Shahrekord University of Medical Sciences,
Shahrekord, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and
Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of
Medical Sciences, Shahrekord, Iran,Cellular and Molecular Research Center,
Basic Health Sciences Institute, Shahrekord University of Medical Sciences,
Shahrekord, Iran,Shiva Asadpour, Cellular and Molecular
Research Center, Basic Health Sciences Institute, Shahrekord University of
Medical Sciences, Shahrekord, 8815713471, Iran. Emails:
;
| |
Collapse
|
23
|
Abpeikar Z, Moradi L, Javdani M, Kargozar S, Soleimannejad M, Hasanzadeh E, Mirzaei SA, Asadpour S. Characterization of Macroporous Polycaprolactone/Silk Fibroin/Gelatin/Ascorbic Acid Composite Scaffolds and In Vivo Results in a Rabbit Model for Meniscus Cartilage Repair. Cartilage 2021; 13:1583S-1601S. [DOI: https:/doi.org/10.1177/19476035211035418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Objective Meniscus injuries in the inner avascular zone have weak intrinsic self-healing capacity and often progress to osteoarthritis. This study focused on evaluating the effects of polycaprolactone/silk fibroin/gelatin/ascorbic acid (PCL/SF/Gel/AA) composite scaffolds seeded with adipose-derived mesenchymal stem cells (ASCs), in the meniscus repair. Design To this end, composite scaffolds were cross-linked using N-hydroxysuccinimide and 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride. Scaffolds were then characterized by scanning electron microscope, mechanical tests, total antioxidant capacity, swelling, and toxicity tests. Results The PCL/SF/Gel/AA scaffolds exhibited suitable mechanical properties. Furthermore, vitamin C rendered them the highest antioxidant capacity. The PCL/SF/Gel/AA scaffolds also showed good biocompatibility and proliferation for chondrocytes. Moreover, the PCL/SF/Gel/AA scaffold seeded with allogeneic ASCs was engrafted in New Zealand rabbits who underwent unilateral punch defect in the medial meniscus of the right knee. After 2 months postimplantation, macroscopic and histologic studies for new meniscus cartilage were performed. Conclusions Our results indicated that the PCL/SF/Gel/AA composite scaffolds seeded with allogeneic ASCs could successfully improve meniscus healing in damaged rabbits.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Lida Moradi
- Department of Orthopedic Surgery, Department of Cell Biology, Medical School, New York University, New York, NY, USA
| | - Moosa Javdani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Soleimannejad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
24
|
Mahmoodi N, Ai J, Hassannejad Z, Ebrahimi-Barough S, Hasanzadeh E, Nekounam H, Vaccaro AR, Rahimi-Movaghar V. Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen hydrogel. Sci Rep 2021; 11:21722. [PMID: 34741076 PMCID: PMC8571364 DOI: 10.1038/s41598-021-01071-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord regeneration is limited due to various obstacles and complex pathophysiological events after injury. Combination therapy is one approach that recently garnered attention for spinal cord injury (SCI) recovery. A composite of three-dimensional (3D) collagen hydrogel containing epothilone B (EpoB)-loaded polycaprolactone (PCL) microspheres (2.5 ng/mg, 10 ng/mg, and 40 ng/mg EpoB/PCL) were fabricated and optimized to improve motor neuron (MN) differentiation efficacy of human endometrial stem cells (hEnSCs). The microspheres were characterized using liquid chromatography-mass/mass spectrometry (LC-mas/mas) to assess the drug release and scanning electron microscope (SEM) for morphological assessment. hEnSCs were isolated, then characterized by flow cytometry, and seeded on the optimized 3D composite. Based on cell morphology and proliferation, cross-linked collagen hydrogels with and without 2.5 ng/mg EpoB loaded PCL microspheres were selected as the optimized formulations to compare the effect of EpoB release on MN differentiation. After differentiation, the expression of MN markers was estimated by real-time PCR and immunofluorescence (IF). The collagen hydrogel containing the EpoB group had the highest HB9 and ISL-1 expression and the longest neurite elongation. Providing a 3D permissive environment with EpoB, significantly improves MN-like cell differentiation and maturation of hEnSCs and is a promising approach to replace lost neurons after SCI.
Collapse
Affiliation(s)
- Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Tissue, Cell and Gene Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Biomaterial-Assisted Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22168657. [PMID: 34445363 PMCID: PMC8395440 DOI: 10.3390/ijms22168657] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
This review aims to show case recent regenerative medicine based on biomaterial technologies. Regenerative medicine has arousing substantial interest throughout the world, with “The enhancement of cell activity” one of the essential concepts for the development of regenerative medicine. For example, drug research on drug screening is an important field of regenerative medicine, with the purpose of efficient evaluation of drug effects. It is crucial to enhance cell activity in the body for drug research because the difference in cell condition between in vitro and in vivo leads to a gap in drug evaluation. Biomaterial technology is essential for the further development of regenerative medicine because biomaterials effectively support cell culture or cell transplantation with high cell viability or activity. For example, biomaterial-based cell culture and drug screening could obtain information similar to preclinical or clinical studies. In the case of in vivo studies, biomaterials can assist cell activity, such as natural healing potential, leading to efficient tissue repair of damaged tissue. Therefore, regenerative medicine combined with biomaterials has been noted. For the research of biomaterial-based regenerative medicine, the research objective of regenerative medicine should link to the properties of the biomaterial used in the study. This review introduces regenerative medicine with biomaterial.
Collapse
|
26
|
The application of decellularized nucleus pulposus matrix/chitosan with transforming growth factor β3 for nucleus pulposus tissue engineering. Cytotechnology 2021; 73:447-456. [PMID: 34149176 DOI: 10.1007/s10616-021-00469-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
Low back pain caused by intervertebral disc degeneration has become a global problem that seriously affects public health. The application of nucleus pulposus tissue engineering to disc degeneration has attracted increasing attention. A scaffold is important for nucleus pulposus tissue engineering, which provides a three-dimensional growth space with an appropriate biomechanical and biochemical microenvironment for seed cell differentiation and proliferation. In this study, a decellularized nucleus pulposus matrix/chitosan (DNPM/chitosan) hydrogel scaffold was prepared with crosslinker genipin. Nucleus pulposus stem cells (NPSCs) were cultured in hybrid hydrogels with or without transforming growth factor-β3 (TGF-β3) and then cell morphology, proliferation, and nucleus pulposus-related gene expression were analyzed. TGF-β3 was successfully incorporated into the DNPM/chitosan hydrogel and NPSCs grew well on both kinds of hydrogel. Moreover, gene expression of collagen-I, collagen-II, and aggrecan was enhanced in the DNPM/chitosan hydrogel with TGF-β3. These results indicate that the DNPM/chitosan hybrid hydrogel is a promising candidate scaffold for nucleus pulposus tissue engineering.
Collapse
|
27
|
Amini S, Salehi H, Setayeshmehr M, Ghorbani M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shahram Amini
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
- Student Research Committee Baqiyatallah University of Medical Sciences Tehran Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences hezarjerib Isfahan Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Masoud Ghorbani
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
28
|
Zheng K, Du D. Recent advances of hydrogel-based biomaterials for intervertebral disc tissue treatment: A literature review. J Tissue Eng Regen Med 2021; 15:299-321. [PMID: 33660950 DOI: 10.1002/term.3172] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Low back pain is an increasingly prevalent symptom mainly associated with intervertebral disc (IVD) degeneration. It is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and annulus fibrosus fissure formatting, which finally results in the IVD herniation and related clinical symptoms. Hydrogels have been drawing increasing attention as the ideal candidates for IVD degeneration because of their unique properties such as biocompatibility, highly tunable mechanical properties, and especially the water absorption and retention ability resembling the normal NP tissue. Numerous innovative hydrogel polymers have been generated in the most recent years. This review article will first briefly describe the anatomy and pathophysiology of IVDs and current therapies with their limitations. Following that, the article introduces the hydrogel materials in the classification of their origins. Next, it reviews the recent hydrogel polymers explored for IVD regeneration and analyses what efforts have been made to overcome the existing limitations. Finally, the challenges and prospects of hydrogel-based treatments for IVD tissue are also discussed. We believe that these novel hydrogel-based strategies may shed light on new possibilities in IVD degeneration disease.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
29
|
Zhang L, Zhang W, Hu Y, Fei Y, Liu H, Huang Z, Wang C, Ruan D, Heng BC, Chen W, Shen W. Systematic Review of Silk Scaffolds in Musculoskeletal Tissue Engineering Applications in the Recent Decade. ACS Biomater Sci Eng 2021; 7:817-840. [PMID: 33595274 DOI: 10.1021/acsbiomaterials.0c01716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past decade, various novel tissue engineering (TE) strategies have been developed to maintain, repair, and restore the biomechanical functions of the musculoskeletal system. Silk fibroins are natural polymers with numerous advantageous properties such as good biocompatibility, high mechanical strength, and low degradation rate and are increasingly being recognized as a scaffolding material of choice in musculoskeletal TE applications. This current systematic review examines and summarizes the latest research on silk scaffolds in musculoskeletal TE applications within the past decade. Scientific databases searched include PubMed, Web of Science, Medline, Cochrane library, and Embase. The following keywords and search terms were used: musculoskeletal, tendon, ligament, intervertebral disc, muscle, cartilage, bone, silk, and tissue engineering. Our Review was limited to articles on musculoskeletal TE, which were published in English from 2010 to September 2019. The eligibility of the articles was assessed by two reviewers according to prespecified inclusion and exclusion criteria, after which an independent reviewer performed data extraction and a second independent reviewer validated the data obtained. A total of 1120 articles were reviewed from the databases. According to inclusion and exclusion criteria, 480 articles were considered as relevant for the purpose of this systematic review. Tissue engineering is an effective modality for repairing or replacing injured or damaged tissues and organs with artificial materials. This Review is intended to reveal the research status of silk-based scaffolds in the musculoskeletal system within the recent decade. In addition, a comprehensive translational research route for silk biomaterial from bench to bedside is described in this Review.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Orthopaedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yejun Hu
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Yang Fei
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Haoyang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zizhan Huang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Canlong Wang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | | | - Weishan Chen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Weiliang Shen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Sports System Disease Research and Accurate Diagnosis and Treatment of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China.,China Orthopaedic Regenerative Medicine (CORMed), Chinese Medical Association, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Stem Cells and Hydrogels for Liver Tissue Engineering: Synergistic Cure for Liver Regeneration. Stem Cell Rev Rep 2020; 16:1092-1104. [DOI: 10.1007/s12015-020-10060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
|
31
|
Hasanzadeh E, Mahmoodi N, Basiri A, Esmaeili Ranjbar F, Hassannejad Z, Ebrahimi-Barough S, Azami M, Ai J, Rahimi-Movaghar V. Proanthocyanidin as a crosslinking agent for fibrin, collagen hydrogels and their composites with decellularized Wharton’s-jelly-extract for tissue engineering applications. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520956252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In tissue engineering, natural hydrogel scaffolds gained considerable attention due to their biocompatibility and similarity to macromolecular-based components in the body. However, their low mechanical strength and high degradation degree limit their biomedical application. By varying the composition of hydrogels, their biochemical and mechanical properties can be improved. In this study, the stability of fibrin and collagen hydrogels and their composites with decellularized Wharton’s jelly extract (DEWJ) was improved using proanthocyanidin (PA) as a cross-linker, extracted from grape seeds. The cytocompatibility, physicochemical and mechanical properties of the hydrogels were evaluated. Human endometrial stem cells (hEnSCs) were seeded on the hydrogels and their attachment, morphology, and proliferation were investigated using a scanning electron and optical microscopy. Our results showed that hydrogels containing DEWJ along with PA enhance cell proliferation and showed higher mechanical properties compared with the fibrin and collagen hydrogel. The results present the potential utility of these hydrogels in tissue engineering and for application in three-dimensional culture.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Esmaeili Ranjbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Gandhi SD, Maerz T, Mitchell S, Bachison C, Park DK, Fischgrund JS, Baker KC. Intradiscal Delivery of Anabolic Growth Factors and a Metalloproteinase Inhibitor in a Rabbit Acute Lumbar Disc Injury Model. Int J Spine Surg 2020; 14:585-593. [PMID: 32986582 DOI: 10.14444/7078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The purpose of our study was to examine the effect of controlled delivery of TGF-β3, BMP-4, and TIMP-2 with a biocompatible biopolymer, chitosan, on an acutely injured intervertebral disc (IVD) in a rabbit model. METHODS After conducting an in vitro analysis of the chondrogenic capacity of the biomolecule cocktail use (ie, TGF-β3, BMP-4, and TIMP-2) and confirming stem cell viability in chitosan hydrogel, 15 New Zealand white rabbits underwent a lateral approach of the L1 to L4 IVDs. In each rabbit, the L2 to L3 IVD was left pristine, whereas the L1 to L2 and the L3 to L4 IVDs in each rabbit underwent nucleotomy via a 25-G needle, and the animal was subsequently randomized to no further treatment (defect only), chitosan alone, Chitosan + TGF-β3 + BMP-4, or chitosan + TGF-β3 + BMP-4 + TIMP-2. At 6 weeks after injury and intervention, the rabbits were killed and spines harvested to undergo quantitative T2 magnetic resonance imaging (MRI) and subsequent histologic analysis. RESULTS In the in vitro analysis, cells treated with experimental media containing TGF-β3, BMP-4, and TIMP-2 exhibited staining indicative of GAG production and began to exhibit a chondrocytic morphology. Quantitative T2 MRI mapping demonstrates that discs treated with chitosan, chitosan containing TGF-β3 and BMP-4, or chitosan containing TGF-β3, BMP-4, and TIMP-2 had consistently higher T2 relaxation times compared with defect-only discs. When the T2 relaxation times of each treatment group and defect-only discs were normalized to the healthy control disc, it was found that the T2 relaxation time of discs treated with chitosan containing TGF-β3 and BMP-4 and discs treated with chitosan containing TGF-β3, BMP-4, and TIMP-2 were significantly greater compared with defect-only discs (P = .048 and P = .013, respectively). Histologically, animals that received chitosan only, or chitosan with TGF-β3 and BMP-4, showed a significantly higher intensity of Safranin-O staining (P = .016 and P = .02, respectively) compared with control discs, whereas the difference in staining intensity in animals that received chitosan loaded with TGF-β3, BMP-4, and TIMP-2 failed to achieve significance (P = .161). CONCLUSIONS A combination of chitosan, TGF-β3, and BMP-4 was effective at promoting regeneration in an acute disc injury rabbit model, whereas TIMP-2 did not have a significant effect.
Collapse
Affiliation(s)
- Sapan D Gandhi
- Department of Orthopaedic Surgery, Beaumont Health System, Royal Oak, Michigan
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Sean Mitchell
- Department of Orthopaedic Surgery, Beaumont Health System, Royal Oak, Michigan
| | - Casey Bachison
- Department of Orthopaedic Surgery, Beaumont Health System, Royal Oak, Michigan
| | - Daniel K Park
- Department of Orthopaedic Surgery, Beaumont Health System, Royal Oak, Michigan
| | | | - Kevin C Baker
- Department of Orthopaedic Surgery, Beaumont Health System, Royal Oak, Michigan
| |
Collapse
|
33
|
Huang J, Liang Y, Huang Z, Xiong J, Wang D. Preparation, Characterization, and Biological Testing of Novel Magnetic Nanocomposite Hydrogels. ACS OMEGA 2020; 5:9733-9743. [PMID: 32391460 PMCID: PMC7203695 DOI: 10.1021/acsomega.9b04080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
To provide a novel approach for the clinical treatment of cartilage tissue defects, we prepared a new type of magnetic nanocomposite hydrogel with an optimal raw material ratio using Fe3O4, polyvinyl alcohol (PVA), and type-II collagen (COLII). Briefly, five groups of PVA and collagen hydrogel matrices with different mass ratios were prepared by a combination of repeated thawing cycles and foam-frozen ice crystal separation methods. Microscopic characterization was conducted using electron microscopy, and the biomechanical properties of each group of hydrogels were then tested. The highest performing component hydrogel matrix was selected after which Fe3O4 with different mass ratios was introduced to construct a new Fe3O4/PVA/COLII hydrogel. The prepared composite hydrogels were also microscopically characterized using electron microscopy along with scanning, measurements for porosity and moisture content, and biomechanical, infrared spectrum and degradation performance testing. CCK-8 detection and staining to determine the amount of living and dead cells were also performed. Collectively, these results showed that PVA/COLII,95:5 was the optimal hydrogel matrix. Using this hydrogel matrix, five groups of composite hydrogels with different Fe3O4 mass ratios were then prepared. There was no significant difference in the microscopic characteristics between these different hydrogels. Fe3O4/PVA/COLII,5:95:5 had better physical properties as well as swelling performance and cell compatibility. The PVA/COLII,95:5 hydrogel matrix was determined to be the best, while the new magnetic nanocomposite hydrogel Fe3O4/PVA/COLII,5:95:5 had good, comprehensive properties.
Collapse
Affiliation(s)
- Jianghong Huang
- Shenzhen
National Key Department of Orthopedics, Shenzhen Second People’s Hospital (The First Hospital Affiliated
to Shenzhen University), Shenzhen 518035, P. R China
- Shenzhen
Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital
Orthopedic Engineering, Shenzhen Second
People’s Hospital (The First Hospital Affiliated to Shenzhen
University), Shenzhen 518035, P. R China
| | - Yujie Liang
- Shenzhen
Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong Province 518020, P. R China
| | - Zhiwang Huang
- Shenzhen
National Key Department of Orthopedics, Shenzhen Second People’s Hospital (The First Hospital Affiliated
to Shenzhen University), Shenzhen 518035, P. R China
- Shenzhen
Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital
Orthopedic Engineering, Shenzhen Second
People’s Hospital (The First Hospital Affiliated to Shenzhen
University), Shenzhen 518035, P. R China
| | - Jianyi Xiong
- Shenzhen
National Key Department of Orthopedics, Shenzhen Second People’s Hospital (The First Hospital Affiliated
to Shenzhen University), Shenzhen 518035, P. R China
- Shenzhen
Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital
Orthopedic Engineering, Shenzhen Second
People’s Hospital (The First Hospital Affiliated to Shenzhen
University), Shenzhen 518035, P. R China
| | - Daping Wang
- Shenzhen
National Key Department of Orthopedics, Shenzhen Second People’s Hospital (The First Hospital Affiliated
to Shenzhen University), Shenzhen 518035, P. R China
- Shenzhen
Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital
Orthopedic Engineering, Shenzhen Second
People’s Hospital (The First Hospital Affiliated to Shenzhen
University), Shenzhen 518035, P. R China
| |
Collapse
|
34
|
Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater 2020; 5:164-183. [PMID: 32083230 PMCID: PMC7016353 DOI: 10.1016/j.bioactmat.2020.01.012] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there have been increasingly rapid advances of using bioactive materials in tissue engineering applications. Bioactive materials constitute many different structures based upon ceramic, metallic or polymeric materials, and can elicit specific tissue responses. However, most of them are relatively brittle, stiff, and difficult to form into complex shapes. Hence, there has been a growing demand for preparing materials with tailored physical, biological, and mechanical properties, as well as predictable degradation behavior. Chitosan-based materials have been shown to be ideal bioactive materials due to their outstanding properties such as formability into different structures, and fabricability with a wide range of bioactive materials, in addition to their biocompatibility and biodegradability. This review highlights scientific findings concerning the use of innovative chitosan-based bioactive materials in the fields of tissue engineering, with an outlook into their future applications. It also covers latest developments in terms of constituents, fabrication technologies, structural, and bioactive properties of these materials that may represent an effective solution for tissue engineering materials, making them a realistic clinical alternative in the near future.
Collapse
Affiliation(s)
- Md. Minhajul Islam
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Shahruzzaman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shanta Biswas
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Nurus Sakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Taslim Ur Rashid
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
- Fiber and Polymer Science, North Carolina State University, Campus Box 7616, Raleigh, NC, 27695, United States
| |
Collapse
|
35
|
Peng Y, Huang D, Li J, Liu S, Qing X, Shao Z. Genipin-crosslinked decellularized annulus fibrosus hydrogels induces tissue-specific differentiation of bone mesenchymal stem cells and intervertebral disc regeneration. J Tissue Eng Regen Med 2020; 14:497-509. [PMID: 32012486 PMCID: PMC7155128 DOI: 10.1002/term.3014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Biomaterial-based therapy that can restore annulus fibrosus (AF) function in early stage and promote endogenous repair of AF tissues is a promising approach for AF tissue repair. In this study, we established a genipin-crosslinked decellularized AF hydrogels (g-DAF-G) that are injectable and could manifest better in situ formability than noncrosslinked decellularized AF hydrogel, while preserving the capacity of directing differentiation of human bone mesenchymal stem cells (hBMSCs) towards AF cells. Hematoxylin and eosin staining, 4',6-diamidino-2-phenylindole staining, and so forth showed that the majority of cellular components were removed, whereas extracellular matrix and microstructure were largely preserved. The storage modulus increased from 465.5 ± 9.4 Pa to 3.29 ± 0.24 MPa after 0.02% genipin crosslinking of decellularized AF hydrogels (DAF-G) to form g-DAF-G. AF-specific genes (COL1A1, COL5A1, TNMD, IBSP, FBLN1) were significantly higher in DAF-G and g-DAF-G groups than that in control group after 21 days of culturing. g-DAF-G significantly restored nucleus pulposus water content and preserved intervertebral structure in vivo. Summarily, we produced a novel AF regeneration biomaterial, g-DAF-G, which exhibited well biocompatibility, great bioactivity, and much higher mechanical strength than DAF-G. This study will provide an easy and fast therapeutic alternative to repair AF injuries or tears.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Tissue Engineering Strategies for Intervertebral Disc Treatment Using Functional Polymers. Polymers (Basel) 2019; 11:polym11050872. [PMID: 31086085 PMCID: PMC6572548 DOI: 10.3390/polym11050872] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) is the fibrocartilage between the vertebrae, allowing the spine to move steadily by bearing multidirectional complex loads. Aging or injury usually causes degeneration of IVD, which is one of the main reasons for low back pain prevalent worldwide and reduced quality of life. While various treatment strategies for degenerative IVD have been studied using in vitro studies, animal experiments, and clinical trials, there are unsolved limitations for endogenous regeneration of degenerative IVD. In this respect, several tissue engineering strategies that are based on the cell and scaffolds have been extensively researched with positive outcomes for regeneration of IVD tissues. Scaffolds made of functional polymers and their diverse forms mimicking the macro- and micro-structure of native IVD enhance the biological and mechanical properties of the scaffolds for IVD regeneration. In this review, we discuss diverse morphological and functional polymers and tissue engineering strategies for endogenous regeneration of degenerative IVD. Tissue engineering strategies using functional polymers are promising therapeutics for fundamental and endogenous regeneration of degenerative IVD.
Collapse
|
37
|
Shokraei N, Asadpour S, Shokraei S, Nasrollahzadeh Sabet M, Faridi‐Majidi R, Ghanbari H. Development of electrically conductive hybrid nanofibers based on CNT‐polyurethane nanocomposite for cardiac tissue engineering. Microsc Res Tech 2019; 82:1316-1325. [DOI: 10.1002/jemt.23282] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Nasim Shokraei
- Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced TechnologiesShahrekord University of Medical Sciences Shahrekord Iran
| | - Shabnam Shokraei
- Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
| | | | - Reza Faridi‐Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
- Medical Biomaterials Research Center (MBRC)Tehran University of Medical Sciences Tehran Iran
- Department of Advanced Technologies in Cardiovascular Medicine, Tehran Heart CenterTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
38
|
Transplantation of miR‐219 overexpressed human endometrial stem cells encapsulated in fibrin hydrogel in spinal cord injury. J Cell Physiol 2019; 234:18887-18896. [DOI: 10.1002/jcp.28527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
|
39
|
Alinejad Y, Adoungotchodo A, Grant MP, Epure LM, Antoniou J, Mwale F, Lerouge S. Injectable Chitosan Hydrogels with Enhanced Mechanical Properties for Nucleus Pulposus Regeneration. Tissue Eng Part A 2019; 25:303-313. [DOI: 10.1089/ten.tea.2018.0170] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Yasaman Alinejad
- Laboratory of Endovascular Biomaterials (LBeV), Centre de Recherche du CHUM (CRCHUM), Montreal, Canada
- Department of Mechanical Engineering, École de Technologie Supérieure (ETS), Montreal, Canada
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Atma Adoungotchodo
- Laboratory of Endovascular Biomaterials (LBeV), Centre de Recherche du CHUM (CRCHUM), Montreal, Canada
- Department of Mechanical Engineering, École de Technologie Supérieure (ETS), Montreal, Canada
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Michael P. Grant
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Laura M. Epure
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - John Antoniou
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
- Division of Orthopaedic Surgery, McGill University, Montreal, Canada
| | - Fackson Mwale
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
- Division of Orthopaedic Surgery, McGill University, Montreal, Canada
| | - Sophie Lerouge
- Laboratory of Endovascular Biomaterials (LBeV), Centre de Recherche du CHUM (CRCHUM), Montreal, Canada
- Department of Mechanical Engineering, École de Technologie Supérieure (ETS), Montreal, Canada
| |
Collapse
|
40
|
A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydr Polym 2019; 206:664-673. [DOI: 10.1016/j.carbpol.2018.11.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/28/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
|
41
|
Frost BA, Camarero-Espinosa S, Foster EJ. Materials for the Spine: Anatomy, Problems, and Solutions. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E253. [PMID: 30646556 PMCID: PMC6356370 DOI: 10.3390/ma12020253] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022]
Abstract
Disc degeneration affects 12% to 35% of a given population, based on genetics, age, gender, and other environmental factors, and usually occurs in the lumbar spine due to heavier loads and more strenuous motions. Degeneration of the extracellular matrix (ECM) within reduces mechanical integrity, shock absorption, and swelling capabilities of the intervertebral disc. When severe enough, the disc can bulge and eventually herniate, leading to pressure build up on the spinal cord. This can cause immense lower back pain in individuals, leading to total medical costs exceeding $100 billion. Current treatment options include both invasive and noninvasive methods, with spinal fusion surgery and total disc replacement (TDR) being the most common invasive procedures. Although these treatments cause pain relief for the majority of patients, multiple challenges arise for each. Therefore, newer tissue engineering methods are being researched to solve the ever-growing problem. This review spans the anatomy of the spine, with an emphasis on the functions and biological aspects of the intervertebral discs, as well as the problems, associated solutions, and future research in the field.
Collapse
Affiliation(s)
- Brody A Frost
- Department of Materials Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Sandra Camarero-Espinosa
- Complex Tissue Regeneration Department, MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| | - E Johan Foster
- Department of Materials Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
42
|
Raval N, Kalyane D, Maheshwari R, Tekade RK. Surface Modifications of Biomaterials and Their Implication on Biocompatibility. BIOMATERIALS AND BIONANOTECHNOLOGY 2019:639-674. [DOI: 10.1016/b978-0-12-814427-5.00017-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Asadpour S, Yeganeh H, Ai J, Kargozar S, Rashtbar M, Seifalian A, Ghanbari H. Polyurethane-Polycaprolactone Blend Patches: Scaffold Characterization and Cardiomyoblast Adhesion, Proliferation, and Function. ACS Biomater Sci Eng 2018; 4:4299-4310. [DOI: 10.1021/acsbiomaterials.8b00848] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shiva Asadpour
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Azadi Square P.O.
Box 917794-8564 Mashhad, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Italia Street, 14177-55469 Tehran, Iran
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Pajuhesh Boulevard, P.O. Box 112/14975, 14977-13115 Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Italia Street, 14177-55469 Tehran, Iran
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Azadi Square P.O.
Box 917794-8564 Mashhad, Iran
| | - Morteza Rashtbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Italia Street, 14177-55469 Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, 2 Royal College Street, London, NW1 0NH, United Kingdom
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, Regenerative Nanomedicine Research Group, SATiM, TUMS, Italia Street, 14177-55469 Tehran, Iran
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, North Kargar Ave, Tehran University of Medical Sciences, 14177-55469 Tehran, Iran
| |
Collapse
|
44
|
Altomare L, Bonetti L, Campiglio CE, De Nardo L, Draghi L, Tana F, Farè S. Biopolymer-based strategies in the design of smart medical devices and artificial organs. Int J Artif Organs 2018; 41:337-359. [PMID: 29614899 PMCID: PMC6159845 DOI: 10.1177/0391398818765323] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
Advances in regenerative medicine and in modern biomedical therapies are fast evolving and set goals causing an upheaval in the field of materials science. This review discusses recent developments involving the use of biopolymers as smart materials, in terms of material properties and stimulus-responsive behavior, in the presence of environmental physico-chemical changes. An overview on the transformations that can be triggered in natural-based polymeric systems (sol-gel transition, polymer relaxation, cross-linking, and swelling) is presented, with specific focus on the benefits these materials can provide in biomedical applications.
Collapse
Affiliation(s)
- Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Chiara E Campiglio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Francesca Tana
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy
| |
Collapse
|
45
|
Rheological and Mechanical Properties of Thermoresponsive Methylcellulose/Calcium Phosphate-Based Injectable Bone Substitutes. MATERIALS 2018; 11:ma11040604. [PMID: 29662018 PMCID: PMC5951488 DOI: 10.3390/ma11040604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
In this study, a novel injectable bone substitute (IBS) was prepared by incorporating a bioceramic powder in a polymeric solution comprising of methylcellulose (MC), gelatin and citric acid. Methylcellulose was utilized as the polymeric matrix due to its thermoresponsive properties and biocompatibility. 2.5 wt % gelatin and 3 wt % citric acid were added to the MC to adjust the rheological properties of the prepared IBS. Then, 0, 20, 30 and 50 wt % of the bioceramic component comprising tetracalcium phosphate/hydroxyapatite (TTCP/HA), dicalcium phosphate dehydrate (DCPD) and calcium sulfate dehydrate (CSD) were added into the prepared polymeric component. The prepared IBS samples had a chewing gum-like consistency. IBS samples were investigated in terms of their chemical structure, rheological characteristics, and mechanical properties. After that, in vitro degradation studies were carried out by measurement of pH and % remaining weight. Viscoelastic characteristics of the samples indicated that all of the prepared IBS were injectable and they hardened at approximately 37 °C. Moreover, with increasing wt % of the bioceramic component, the degradation rate of the samples significantly reduced and the mechanical properties were improved. Therefore, the experimental results indicated that the P50 mix may be a promising candidates to fill bone defects and assist bone recovery for non-load bearing applications.
Collapse
|
46
|
Wang X, Zhang J, Cui W, Fang Y, Li L, Ji S, Mao D, Ke T, Yao X, Ding D, Feng G, Kong D. Composite Hydrogel Modified by IGF-1C Domain Improves Stem Cell Therapy for Limb Ischemia. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4481-4493. [PMID: 29327586 DOI: 10.1021/acsami.7b17533] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stem cell treatment for critical limb ischemia yields a limited therapeutic effect due to cell loss and dysfunction caused by local ischemic environment. Biomimetic scaffolds emerge as ideal cell delivery vehicles for regulating cell fate via mimicking the components of stem cell niche. Herein, we prepared a bioactive hydrogel by mixing chitosan and hyaluronic acid that is immobilized with C domain peptide of insulin-like growth factor 1 (IGF-1C) and examined whether this hydrogel could augment stem cell survival and therapeutic potential. Our results showed that IGF-1C-modified hydrogel increased in vitro viability and proangiogenic activity of adipose-derived stromal cells (ADSCs). Moreover, cotransplantation of hydrogel and ADSCs into ischemic hind limbs of mice effectively ameliorated blood perfusion and muscle regeneration, leading to superior limb salvage. These therapeutic effects can be ascribed to improved ADSC retention, angiopoientin-1 secretion, and neovascularization, as well as reduced inflammatory cell infiltration. Additionally, hydrogel enhanced antifibrotic activity of ADSCs, as evidenced by decreased collagen accumulation at late stage. Together, our findings indicate that composite hydrogel modified by IGF-1C could promote survival and proangiogenic capacity of ADSCs and thereby represents a feasible option for cell-based treatment for critical limb ischemia.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Jimin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Weilong Cui
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Yuan Fang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Li Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
- Department of Endocrinology, The Second Affiliated Hospital, Kunming Medical University , Kunming 650101, Yunnan, China
| | - Shenglu Ji
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Duo Mao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital, Kunming Medical University , Kunming 650101, Yunnan, China
| | - Xin Yao
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer , Tianjin 300060, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Guowei Feng
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer , Tianjin 300060, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| |
Collapse
|