1
|
Fu P, Yang XF, Deng WW, Yu JN, Xu XM. Advances in cerebral edema research and targeted drug delivery systems. Eur J Pharmacol 2025; 1000:177744. [PMID: 40389128 DOI: 10.1016/j.ejphar.2025.177744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Cerebral edema, marked by excessive brain fluid accumulation, hinders stroke recovery and impacts survival, highlighting the need for effective therapies. This review examines the glymphatic system's role in post-stroke edema pathogenesis, explores edema formation mechanisms, and identifies therapeutic targets. While small molecule drugs show promise, their limited solubility and brain targeting necessitate advanced delivery approaches. Nanodrug delivery systems, capable of crossing the blood-brain barrier (BBB) and targeting cells via ligands, offer a compelling solution. We discuss the application of novel nanodrugs to enhance post-stroke edema treatment, aiming to improve survival and neurological recovery. This review seeks to guide future research in post-stroke edema management.
Collapse
Affiliation(s)
- Peng Fu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Xiu-Fen Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Wen-Wen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| | - Jiang-Nan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| | - Xi-Ming Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| |
Collapse
|
2
|
Gu Y, Luo H, Zhu J, Ma H, Zhang Y, Xing J, Liu Y, Cai Y, Sun W, Luo P. In vitro and in vivo assessment of diosmetin-loaded lactoferrin-modified liposomes for brain delivery in intracerebral hemorrhage therapy. Drug Deliv Transl Res 2025:10.1007/s13346-025-01826-8. [PMID: 40089650 DOI: 10.1007/s13346-025-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Intracerebral hemorrhage (ICH) is a serious cerebrovascular disease with high morbidity, mortality, and disability rates, largely due to neuroinflammation. Diosmetin, a natural flavonoid, has known neuroprotective effects in cerebral ischemia/reperfusion models but has been less studied in ICH. Our previous study developed diosmetin-loaded lactoferrin-modified long-circulating liposomes (Lf-Dios-Lcl), which penetrate the BBB and improve diosmetin bioavailability and brain distribution. In this study, we found that diosmetin reduced the levels of proinflammatory cytokines (IL-1β and TNF-α) and increased the level of the anti-inflammatory cytokine IL-10 in LPS-induced BV2 cells, promoting microglial polarization toward the anti-inflammatory M2 phenotype. In ICH model rats, Lf-Dios-Lcl (1 mg/kg) effectively reduced neuroinflammation, decreased IL-1β and TNF-α levels, increased IL-10 levels, and increased the proportion of CD206-positive microglia in brain tissues. Moreover, Lf-Dios-Lcl significantly downregulated p-p38 expression, suggesting that p38 signaling activation was inhibited. Overall, Lf-Dios-Lcl demonstrated brain-targeting properties and antineuroinflammatory effects by modulating microglial polarization via the p38 pathway.
Collapse
Affiliation(s)
- Yingjiang Gu
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Hanyue Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China
| | - Jun Zhu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620020, China
| | - Hao Ma
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China
| | - Yang Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yuzhou Liu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yu Cai
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Wenxia Sun
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan Province, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
3
|
Sadat Razavi Z, Sina Alizadeh S, Sadat Razavi F, Souri M, Soltani M. Advancing neurological disorders therapies: Organic nanoparticles as a key to blood-brain barrier penetration. Int J Pharm 2025; 670:125186. [PMID: 39788400 DOI: 10.1016/j.ijpharm.2025.125186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) plays a vital role in protecting the central nervous system (CNS) by preventing the entry of harmful pathogens from the bloodstream. However, this barrier also presents a significant obstacle when it comes to delivering drugs for the treatment of neurodegenerative diseases and brain cancer. Recent breakthroughs in nanotechnology have paved the way for the creation of a wide range of nanoparticles (NPs) that can serve as carriers for diagnosis and therapy. Regarding their promising properties, organic NPs have the potential to be used as effective carriers for drug delivery across the BBB based on recent advancements. These remarkable NPs have the ability to penetrate the BBB using various mechanisms. This review offers a comprehensive examination of the intricate structure and distinct properties of the BBB, emphasizing its crucial function in preserving brain balance and regulating the transport of ions and molecules. The disruption of the BBB in conditions such as stroke, Alzheimer's disease, and Parkinson's disease highlights the importance of developing creative approaches for delivering drugs. Through the encapsulation of therapeutic molecules and the precise targeting of transport processes in the brain vasculature, organic NP formulations present a hopeful strategy to improve drug transport across the BBB. We explore the changes in properties of the BBB in various pathological conditions and investigate the factors that affect the successful delivery of organic NPs into the brain. In addition, we explore the most promising delivery systems associated with NPs that have shown positive results in treating neurodegenerative and ischemic disorders. This review opens up new possibilities for nanotechnology-based therapies in cerebral diseases.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
4
|
Youssef JR, Boraie NA, Ismail FA, Bakr BA, Allam EA, El-Moslemany RM. Brain targeted lactoferrin coated lipid nanocapsules for the combined effects of apocynin and lavender essential oil in PTZ induced seizures. Drug Deliv Transl Res 2025; 15:534-555. [PMID: 38819768 PMCID: PMC11683025 DOI: 10.1007/s13346-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
Apocynin (APO) is a plant derived antioxidant exerting specific NADPH oxidase inhibitory action substantiating its neuroprotective effects in various CNS disorders, including epilepsy. Due to rapid elimination and poor bioavailability, treatment with APO is challenging. Correspondingly, novel APO-loaded lipid nanocapsules (APO-LNC) were formulated and coated with lactoferrin (LF-APO-LNC) to improve br ain targetability and prolong residence time. Lavender oil (LAV) was incorporated into LNC as a bioactive ingredient to act synergistically with APO in alleviating pentylenetetrazol (PTZ)-induced seizures. The optimized LF-APO-LAV/LNC showed a particle size 59.7 ± 4.5 nm with narrow distribution and 6.07 ± 1.6mV zeta potential) with high entrapment efficiency 92 ± 2.4% and sustained release (35% in 72 h). Following subcutaneous administration, LF-APO-LAV/LNC brought about ⁓twofold increase in plasma AUC and MRT compared to APO. A Log BB value of 0.2 ± 0.14 at 90 min reflects increased brain accumulation. In a PTZ-induced seizures rat model, LF-APO-LAV/LNC showed a Modified Racine score of 0.67 ± 0.47 with a significant increase in seizures latency and decrease in duration. Moreover, oxidant/antioxidant capacity and inflammatory markers levels in brain tissue were significantly improved. Histopathological and immunohistochemical assessment of brain tissue sections further supported these findings. The results suggest APO/LAV combination in LF-coated LNC as a promising approach to counteract seizures.
Collapse
Affiliation(s)
- Julie R Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt.
| | - Nabila A Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Fatma A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21523, Egypt
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
5
|
Vargas R, Lizano-Barrantes C, Romero M, Valencia-Clua K, Narváez-Narváez DA, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E, Martinez-Martinez N, Hernández-Munain C, Suñé C, Suñé-Pou M. The piper at the gates of brain: A systematic review of surface modification strategies on lipid nanoparticles to overcome the Blood-Brain-Barrier. Int J Pharm 2024; 665:124686. [PMID: 39265851 DOI: 10.1016/j.ijpharm.2024.124686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
The Blood-Brain Barrier (BBB) significantly impedes drug delivery to the central nervous system. Nanotechnology, especially surface-functionalized lipid nanoparticles, offers innovative approaches to overcome this barrier. However, choosing an effective functionalization strategy is challenging due to the lack of detailed comparative analysis in current literature. Our systematic review examined various functionalization strategies and their impact on BBB permeability from 2041 identified articles, of which 80 were included for data extraction. Peptides were the most common modification (18) followed by mixed strategies (12) proteins (9), antibodies (7), and other strategies (8). Interestingly, 26 studies showed BBB penetration with unmodified or modified nanoparticles using commonly applied strategies such as PEGylation or surfactant addition. Statistical analysis across 42 studies showed correlation between higher in vivo permeation improvements and nanoparticle type, size, and functionalization category. The highest ratios were found for nanostructured lipid carriers or biomimetic systems, in studies with particle sizes under 150 nm, and in those applying mixed functionalization strategies. The interstudy heterogeneity we observed highlights the importance of adopting standardized evaluation protocols to enhance comparability. Our systematic review aims to provide a comparative insight and identify future research directions in the development of more effective lipid nanoparticle systems for drug delivery to the brain to help improve the treatment of neurological and psychiatric disorders and brain tumours.
Collapse
Affiliation(s)
- Ronny Vargas
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica.
| | - Catalina Lizano-Barrantes
- Department of Pharmaceutical Care and Clinical Pharmacy, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica
| | - Miquel Romero
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Kevin Valencia-Clua
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - David A Narváez-Narváez
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Josep Ma Suñé-Negre
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Encarna García-Montoya
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Noelia Martinez-Martinez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain.
| | - Marc Suñé-Pou
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
6
|
Jiang M, Wang Y, Zhang J, Fan X, Jieensi M, Ding F, Wang Y, Sun X. Temperature and Ultrasound-Responsive Nanoassemblies for Enhanced Organ Targeting and Reduced Cardiac Toxicity. Int J Nanomedicine 2024; 19:11397-11413. [PMID: 39524922 PMCID: PMC11550713 DOI: 10.2147/ijn.s470465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background Biocompatible nanocarriers are widely employed as drug-delivery vehicles for treatment. Nevertheless, indiscriminate drug release, insufficient organ-specific targeting, and systemic toxicity hamper nanocarrier effectiveness. Stimuli-responsive nano-sized drug delivery systems (DDS) are an important strategy for enhancing drug delivery efficiency and reducing unexpected drug release. Methods This study introduces a temperature- and ultrasound-responsive nano-DDS in which the copolymer p-(MEO2MA-co-THPMA) is grafted onto mesoporous iron oxide nanoparticles (MIONs) to construct an MPL-p nano-DDS. The copolymer acts as a nanopore gatekeeper, assuming an open conformation at sub-physiological temperatures that allows drug encapsulation and a closed conformation at physiological temperatures that prevents unexpected drug release during circulation. Lactoferrin was conjugated to the nanoparticle surface via polyethylene glycol to gain organ-targeting ability. External ultrasonic irradiation of the nanoparticles in the targeted organs caused a conformational change of the copolymer and reopened the pores, facilitating controlled drug release. Results MPL-p exhibited excellent biocompatibility and rare drug release in circulation. When targeting delivery to the brain, ultrasound promoted the release of the loaded drugs in the brain without accumulation in other organs, avoiding the related adverse reactions, specifically those affecting the heart. Conclusion This study established a novel temperature- and ultrasound-responsive DDS that reduced systemic adverse reactions compared with traditional DDS, especially in the heart, and demonstrated excellent organ delivery efficiency.
Collapse
Affiliation(s)
- Mingzhou Jiang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yiming Wang
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jinjin Zhang
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xi Fan
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Milayi Jieensi
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Fang Ding
- Department of Cardiology, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yiqing Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Ji P, Xu Q, Li J, Wang Z, Mao W, Yan P. Advances in nanoparticle-based therapeutics for ischemic stroke: Enhancing drug delivery and efficacy. Biomed Pharmacother 2024; 180:117564. [PMID: 39405899 DOI: 10.1016/j.biopha.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Ischemic stroke, characterized by vascular occlusion, has recently emerged as one of the primary causes of mortality and disability worldwide. Conventional treatment modalities, such as thrombolytic and neuroprotective therapies, face numerous challenges, including limited bioavailability, significant neurotoxicity, suboptimal targeting, short half-life, and poor blood-brain barrier (BBB) penetration. Nanoparticle-based drug delivery systems present distinct advantages, such as small size, enhanced lipophilicity, and modifiability, which can potentially address these limitations. Utilizing nanoparticles for drug delivery in ischemic stroke therapy offers improved drug bioavailability, reduced neurotoxicity, enhanced targeted delivery, prolonged drug half-life, and better dissolution kinetics. This review aims to provide a comprehensive overview of current strategies in preclinical studies for managing or preventing ischemic stroke from a nanomaterial perspective, highlighting the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Qingqing Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Jiahui Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Wanyi Mao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Peng Yan
- Taizhou Second People's Hospital Affiliated to Yangzhou University, Taizhou 225300, China.
| |
Collapse
|
8
|
Abdelalim LR, Elnaggar YSR, Abdallah OY. Lactoferrin, chitosan double-coated oleosomes loaded with clobetasol propionate for remyelination in multiple sclerosis: Physicochemical characterization and in-vivo assessment in a cuprizone-induced demyelination model. Int J Biol Macromol 2024; 277:134144. [PMID: 39053824 DOI: 10.1016/j.ijbiomac.2024.134144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disorder of the CNS characterized by continuous myelin damage accompanied by deterioration in functions. Clobetasol propionate (CP) is the most potent topical corticosteroid with serious side effects related to systemic absorption. Previous studies introduced CP for remyelination without considering systemic toxicity. This work aimed at fabrication and optimization of double coated nano-oleosomes loaded with CP to achieve brain targeting through intranasal administration. The optimized formulation was coated with lactoferrin and chitosan for the first time. The obtained double-coated oleosomes had particle size (220.07 ± 0.77 nm), zeta potential (+30.23 ± 0.41 mV) along with antioxidant capacity 9.8 μM ascorbic acid equivalents. Double coating was well visualized by TEM and significantly decreased drug release. Three different doses of CP were assessed in-vivo using cuprizone-induced demyelination in C57Bl/6 mice. Neurobehavioral tests revealed improvement in motor and cognitive functions of mice in a dose-dependent manner. Histopathological examination of the brain showed about 2.3 folds increase in corpus callosum thickness in 0.3 mg/kg CP dose. Moreover, the measured biomarkers highlighted the significant antioxidant and anti-inflammatory capacity of the formulation. In conclusion, the elaborated biopolymer-integrating nanocarrier succeeded in remyelination with 6.6 folds reduction in CP dose compared to previous studies.
Collapse
Affiliation(s)
- Lamiaa R Abdelalim
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Shi W, Yuan S, Cheng G, Zhang H, Liu KJ, Ji X, Du L, Qi Z. Blood brain barrier-targeted lipid nanoparticles improved the neuroprotection of Ferrostatin-1 against cerebral ischemic damage in an experimental stroke model. Exp Neurol 2024; 379:114849. [PMID: 38857748 DOI: 10.1016/j.expneurol.2024.114849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Cerebral ischemic stroke is a serious disease with high mortality and disability rates. However, few neuroprotective drugs have been used for ischemic stroke in the clinic. Two main reasons may be responsible for this failure: difficulty in penetrating the blood-brain barrier (BBB) and easily inactivated in the blood circulation. Ferroptosis, a lipid oxidation-related cell death, plays significant roles in cerebral ischemia-reperfusion injury. We utilized RVG29, a peptide derived from Rabies virus glycoprotein, to obtain BBB-targeted lipid nanoparticles (T-LNPs) in order to investigate whether T-LNPs improved the neuroprotective effects of Ferrostatin-1 (Fer1, an inhibitor of ferroptosis) against cerebral ischemic damage. T-LNPs significantly increased BBB penetration following oxygen/glucose deprivation exposure in an in vitro BBB model and enhanced the fluorescence distribution in brain tissues at 6 h post-administration in a cerebral ischemic murine model. Moreover, T-LNPs encapsulated Fer1 (T-LNPs-Fer1) significantly enhanced the inhibitory effects of Fer1 on ferroptosis by maintaining the homeostasis of NADPH oxidase 4 (NOX4) and glutathione peroxidase 4 (GPX4) signals in neuronal cells after cerebral ischemia. T-LNPs-Fer1 significantly suppressed oxidative stress [heme oxygenase-1 expression and malondialdehyde (the product of lipid ROS reaction)] in neurons and alleviated ischemia-induced neuronal cell death, compared to Fer1 alone without encapsulation. Furthermore, T-LNPs-Fer1 significantly reduced cerebral infarction and improved behavior functions compared to Fer1-treated cerebral ischemic mice after 45-min ischemia/24-h reperfusion. These findings showed that the T-LNPs helped Fer1 penetrate the BBB and improved the neuroprotection of Fer1 against cerebral ischemic damage in experimental stroke, providing a feasible translational strategy for the development of clinical drugs for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wenjuan Shi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Shuhua Yuan
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Guohua Cheng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huiling Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Jian Liu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| |
Collapse
|
10
|
Zhao C, Zhu X, Yang H, Tan J, Gong R, Mei C, Cai X, Su Z, Kong F. Lactoferrin/CD133 antibody conjugated nanostructured lipid carriers for dual targeting of blood-brain-barrier and glioblastoma stem cells. Biomed Mater 2024; 19:055041. [PMID: 39134023 DOI: 10.1088/1748-605x/ad6e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The main reasons for the difficulty in curing and high recurrence rate of glioblastoma multiforme (GBM) include: 1. The difficulty of chemotherapy drugs in penetrating the blood-brain barrier (BBB) to target tumor cells; 2. The presence of glioma stem cells (GSCs) leading to chemotherapy resistance. Therefore, breaking through the limitations of the BBB and overcoming the drug resistance caused by GSCs are the main strategies to address this problem. This study presents our results on the development of lactoferrin (Lf)/CD133 antibody conjugated nanostructured lipid carriers (Lf/CD133-NLCS) for simultaneously targeting BBB and GSCs. Temozolomide (TMZ) loaded Lf/CD133-NLCS (Lf/CD133-NLCS-TMZ) exhibited high-efficiencyin vitroanti-tumor effects toward malignant glioma cells (U87-MG) and GSCs, while demonstrating no significant toxicity to normal cells at concentrations lower than 200 μg ml-1. The results of thein vitrotargeting GBM study revealed a notably higher cellular uptake of Lf/CD133-NLCS-TMZ in U87-MG cells and GSCs in comparison to Lf/CD133 unconjugated counterpart (NLCS-TMZ). In addition, increased BBB permeability were confirmed for Lf/CD133-NLCS-TMZ compared to NLCS-TMZ bothin vitroandin vivo. Taking together, Lf/CD133-NLCS-TMZ show great potential for dual targeting of BBB and GSCs, as well as GBM therapy based on this strategy.
Collapse
Affiliation(s)
- Changhong Zhao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, People's Republic of China
- Lantian Pharmaceuticals Co., Ltd, Huangshi, Hubei 435000, People's Republic of China
| | - Xinshu Zhu
- School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an 223005, People's Republic of China
| | - Huili Yang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, People's Republic of China
| | - Jianmei Tan
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, People's Republic of China
| | - Ruohan Gong
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, People's Republic of China
| | - Chao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, People's Republic of China
| | - Xiang Cai
- Lantian Pharmaceuticals Co., Ltd, Huangshi, Hubei 435000, People's Republic of China
| | - Zhenhong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003, People's Republic of China
| | - Fei Kong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
11
|
Susa F, Arpicco S, Pirri CF, Limongi T. An Overview on the Physiopathology of the Blood-Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics 2024; 16:849. [PMID: 39065547 PMCID: PMC11279990 DOI: 10.3390/pharmaceutics16070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The state of well-being and health of our body is regulated by the fine osmotic and biochemical balance established between the cells of the different tissues, organs, and systems. Specific districts of the human body are defined, kept in the correct state of functioning, and, therefore, protected from exogenous or endogenous insults of both mechanical, physical, and biological nature by the presence of different barrier systems. In addition to the placental barrier, which even acts as a linker between two different organisms, the mother and the fetus, all human body barriers, including the blood-brain barrier (BBB), blood-retinal barrier, blood-nerve barrier, blood-lymph barrier, and blood-cerebrospinal fluid barrier, operate to maintain the physiological homeostasis within tissues and organs. From a pharmaceutical point of view, the most challenging is undoubtedly the BBB, since its presence notably complicates the treatment of brain disorders. BBB action can impair the delivery of chemical drugs and biopharmaceuticals into the brain, reducing their therapeutic efficacy and/or increasing their unwanted bioaccumulation in the surrounding healthy tissues. Recent nanotechnological innovation provides advanced biomaterials and ad hoc customized engineering and functionalization methods able to assist in brain-targeted drug delivery. In this context, lipid nanocarriers, including both synthetic (liposomes, solid lipid nanoparticles, nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes) and cell-derived ones (extracellular vesicles and cell membrane-derived nanocarriers), are considered one of the most successful brain delivery systems due to their reasonable biocompatibility and ability to cross the BBB. This review aims to provide a complete and up-to-date point of view on the efficacy of the most varied lipid carriers, whether FDA-approved, involved in clinical trials, or used in in vitro or in vivo studies, for the treatment of inflammatory, cancerous, or infectious brain diseases.
Collapse
Affiliation(s)
- Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Tania Limongi
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| |
Collapse
|
12
|
Chirizzi C, Pellegatta S, Gori A, Falco J, Rubiu E, Acerbi F, Bombelli FB. Next-generation agents for fluorescence-guided glioblastoma surgery. Bioeng Transl Med 2024; 9:e10608. [PMID: 38818124 PMCID: PMC11135154 DOI: 10.1002/btm2.10608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 06/01/2024] Open
Abstract
Glioblastoma is a fast-growing and aggressive form of brain cancer. Even with maximal treatment, patients show a low median survival and are often subjected to a high recurrence incidence. The currently available treatments require multimodal management, including maximal safe surgical resection, followed by radiation and chemotherapy. Because of the infiltrative glioblastoma nature, intraoperative differentiation of cancer tissue from normal brain parenchyma is very challenging, and this accounts for the low rate of complete tumor resection. For these reasons, clinicians have increasingly used various intraoperative adjuncts to improve surgical results, such as fluorescent agents. However, most of the existing fluorophores show several limitations such as poor selectivity, photostability, photosensitization and high costs. This could limit their application to successfully improve glioblastoma resection. In the present perspective, we highlight the possibility to develop next-generation fluorescent tools able to more selectively label cancer cells during surgical resection.
Collapse
Affiliation(s)
- Cristina Chirizzi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanoItaly
| | - Serena Pellegatta
- Unit of Immunotherapy of Brain TumorsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Unit of NeuroncologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Alessandro Gori
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC‐CNR)MilanItaly
| | - Jacopo Falco
- Neurosurgical Unit 2, Department of NeurosurgeryFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Emanuele Rubiu
- Neurosurgical Unit 2, Department of NeurosurgeryFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Francesco Acerbi
- Neurosurgical Unit 2, Department of NeurosurgeryFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Experimental Microsurgical Laboratory, Department of NeurosurgeryFondazione IRCCS Istituto Neurologico Carlo BestaMilanoItaly
| | | |
Collapse
|
13
|
Arya S, Bahuguna D, Bajad G, Loharkar S, Devangan P, Khatri DK, Singh SB, Madan J. Colloidal therapeutics in the management of traumatic brain injury: Portray of biomarkers and drug-targets, preclinical and clinical pieces of evidence and future prospects. Colloids Surf B Biointerfaces 2023; 230:113509. [PMID: 37595379 DOI: 10.1016/j.colsurfb.2023.113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
Complexity associated with the aberrant physiology of traumatic brain injury (TBI) makes its therapeutic targeting vulnerable. The underlying mechanisms of pathophysiology of TBI are yet to be completely illustrated. Primary injury in TBI is associated with contusions and axonal shearing whereas excitotoxicity, mitochondrial dysfunction, free radicals generation, and neuroinflammation are considered under secondary injury. MicroRNAs, proinflammatory cytokines, and Glial fibrillary acidic protein (GFAP) recently emerged as biomarkers in TBI. In addition, several approved therapeutic entities have been explored to target existing and newly identified drug-targets in TBI. However, drug delivery in TBI is hampered due to disruption of blood-brain barrier (BBB) in secondary TBI, as well as inadequate drug-targeting and retention effect. Colloidal therapeutics appeared helpful in providing enhanced drug availability to the brain owing to definite targeting strategies. Moreover, immense efforts have been put together to achieve increased bioavailability of therapeutics to TBI by devising effective targeting strategies. The potential of colloidal therapeutics to efficiently deliver drugs at the site of injury and down-regulate the mediators of TBI are serving as novel policies in the management of TBI. Therefore, in present manuscript, we have illuminated a myriad of molecular-targets currently identified and recognized in TBI. Moreover, particular emphasis is given to frame armamentarium of repurpose drugs which could be utilized to block molecular targets in TBI in addition to drug delivery barriers. The critical role of colloidal therapeutics such as liposomes, nanoparticles, dendrimers, and exosomes in drug delivery to TBI through invasive and non-invasive routes has also been highlighted.
Collapse
Affiliation(s)
- Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Deepankar Bahuguna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Gopal Bajad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Soham Loharkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pawan Devangan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
14
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
15
|
Pan R, Chen D, Hou L, Hu R, Jiao Z. Small extracellular vesicles: a novel drug delivery system for neurodegenerative disorders. Front Aging Neurosci 2023; 15:1184435. [PMID: 37404690 PMCID: PMC10315580 DOI: 10.3389/fnagi.2023.1184435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) have a slow onset and are usually detected late during disease. NDs are often difficult to cure due to the presence of the blood-brain barrier (BBB), which makes it difficult to find effective treatments and drugs, causing great stress and financial burden to families and society. Currently, small extracellular vesicles (sEVs) are the most promising drug delivery systems (DDSs) for targeted delivery of molecules to specific sites in the brain as a therapeutic vehicle due to their low toxicity, low immunogenicity, high stability, high delivery efficiency, high biocompatibility and trans-BBB functionality. Here, we review the therapeutic application of sEVs in several NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, discuss the current barriers associated with sEVs and brain-targeted DDS, and suggest future research directions.
Collapse
Affiliation(s)
- Renjie Pan
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongdong Chen
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lanlan Hou
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Rong Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhigang Jiao
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
16
|
Alehossein P, Taheri M, Tayefeh Ghahremani P, Dakhlallah D, Brown CM, Ishrat T, Nasoohi S. Transplantation of Exercise-Induced Extracellular Vesicles as a Promising Therapeutic Approach in Ischemic Stroke. Transl Stroke Res 2023; 14:211-237. [PMID: 35596116 DOI: 10.1007/s12975-022-01025-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Clinical evidence affirms physical exercise is effective in preventive and rehabilitation approaches for ischemic stroke. This sustainable efficacy is independent of cardiovascular risk factors and associates substantial reprogramming in circulating extracellular vesicles (EVs). The intricate journey of pluripotent exercise-induced EVs from parental cells to the whole-body and infiltration to cerebrovascular entity offers several mechanisms to reduce stroke incidence and injury or accelerate the subsequent recovery. This review delineates the potential roles of EVs as prospective effectors of exercise. The candidate miRNA and peptide cargo of exercise-induced EVs with both atheroprotective and neuroprotective characteristics are discussed, along with their presumed targets and pathway interactions. The existing literature provides solid ground to hypothesize that the rich vesicles link exercise to stroke prevention and rehabilitation. However, there are several open questions about the exercise stressors which may optimally regulate EVs kinetic and boost brain mitochondrial adaptations. This review represents a novel perspective on achieving brain fitness against stroke through transplantation of multi-potential EVs generated by multi-parental cells, which is exceptionally reachable in an exercising body.
Collapse
Affiliation(s)
- Parsa Alehossein
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Taheri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
- Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Pargol Tayefeh Ghahremani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
| | - Duaa Dakhlallah
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, Cairo, Egypt
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran.
| |
Collapse
|
17
|
Li L, Tan L, Zhang Q, Cheng Y, Liu Y, Li R, Hou S. Nose-to-brain delivery of self-assembled curcumin-lactoferrin nanoparticles: Characterization, neuroprotective effect and in vivo pharmacokinetic study. Front Bioeng Biotechnol 2023; 11:1168408. [PMID: 37051277 PMCID: PMC10084992 DOI: 10.3389/fbioe.2023.1168408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Curcumin (CUR) is a natural polyphenol extract with significant antioxidant and anti-inflammatory effects, which indicates its great potential for neuroprotection. Lactoferrin (LF), a commonly used oral carrier and targeting ligand, has not been reported as a multifunctional nanocarrier for nose-to-brain delivery. This study aims to develop a nose-to-brain delivery system of curcumin-lactoferrin nanoparticles (CUR-LF NPs) and to further evaluate the neuroprotective effects in vitro and brain accumulation in vivo. Herein, CUR-LF NPs were prepared by the desolvation method with a particle size of 84.8 ± 6.5 nm and a zeta potential of +22.8 ± 4.3 mV. The permeability coefficient of CUR-LF NPs (4.36 ± 0.79 × 10−6 cm/s) was 50 times higher than that of CUR suspension (0.09 ± 0.04 × 10−6 cm/s) on MDCK monolayer, indicating that the nanoparticles could improve the absorption efficiency of CUR in the nasal cavity. Moreover, CUR-LF NPs showed excellent protection against Aβ25-35-induced nerve damage in PC12 cells. In vivo pharmacokinetic studies showed that the brain-targeting efficiency of CUR-LF NPs via IN administration was 248.1%, and the nose-to-brain direct transport percentage was 59.7%. Collectively, nose-to-brain delivery of CUR-LF NPs is capable of achieving superior brain enrichment and potential neuroprotective effects.
Collapse
Affiliation(s)
- Linghui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liwei Tan
- Sichuan Purity Pharmaceutical Co. Ltd., Chengdu, Sichuan, China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yushan Cheng
- Sichuan Purity Pharmaceutical Co. Ltd., Chengdu, Sichuan, China
| | - Yayuan Liu
- Sichuan Purity Pharmaceutical Co. Ltd., Chengdu, Sichuan, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Shuguang Hou, ; Rui Li,
| | - Shuguang Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Shuguang Hou, ; Rui Li,
| |
Collapse
|
18
|
Gugleva V, Andonova V. Drug delivery to the brain – lipid nanoparticles-based approach. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e98838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complex structure of the human brain defines it as one of the most inaccessible organs in terms of drug delivery. The blood-brain barrier (BBB) represents a microvascular network involved in transporting substances between the blood and the central nervous system (CNS) – enabling the entry of nutrients and simultaneously restricting the influx of pathogens and toxins. However, its role as a protective shield for CNS also restricts drug access to the brain. Since many drugs cannot cross the BBB due to unsuitable physicochemical characteristics (i.e., high molecular weight, aqueous solubility, etc.), different technological strategies have been developed to ensure sufficient drug bioavailability. Among these, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are promising approaches thanks to their lipid nature, facilitating their brain uptake, small sizes, and the possibilities for subsequent functionalization to achieve targeted delivery. The review focuses on applying SLNs and NLCs as nanocarriers for brain delivery, outlining the physiological factors of BBB and the physicochemical characteristics of nanocarriers influencing this process. Recent advances in this area have also been summarized.
Collapse
|
19
|
Parenteral Lipid-Based Nanoparticles for CNS Disorders: Integrating Various Facets of Preclinical Evaluation towards More Effective Clinical Translation. Pharmaceutics 2023; 15:pharmaceutics15020443. [PMID: 36839768 PMCID: PMC9966342 DOI: 10.3390/pharmaceutics15020443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Contemporary trends in combinatorial chemistry and the design of pharmaceuticals targeting brain disorders have favored the development of drug candidates with increased lipophilicity and poorer water solubility, with the expected improvement in delivery across the blood-brain barrier (BBB). The growing availability of innovative excipients/ligands allowing improved brain targeting and controlled drug release makes the lipid nanocarriers a reasonable choice to overcome the factors impeding drug delivery through the BBB. However, a wide variety of methods, study designs and experimental conditions utilized in the literature hinder their systematic comparison, and thus slows the advances in brain-targeting by lipid-based nanoparticles. This review provides an overview of the methods most commonly utilized during the preclinical testing of liposomes, nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers intended for the treatment of various CNS disorders via the parenteral route. In order to fully elucidate the structure, stability, safety profiles, biodistribution, metabolism, pharmacokinetics and immunological effects of such lipid-based nanoparticles, a transdisciplinary approach to preclinical characterization is mandatory, covering a comprehensive set of physical, chemical, in vitro and in vivo biological testing.
Collapse
|
20
|
Wang L, Zhou BQ, Li YH, Jiang QQ, Cong WH, Chen KJ, Wen XM, Wu ZZ. Lactoferrin modification of berberine nanoliposomes enhances the neuroprotective effects in a mouse model of Alzheimer′s disease. Neural Regen Res 2023; 18:226-232. [PMID: 35799547 PMCID: PMC9241388 DOI: 10.4103/1673-5374.344841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that berberine has neuroprotective effects against Alzheimer’s disease, including antagonizing tau phosphorylation, and inhibiting acetylcholinesterase activity and neural cell apoptosis. However, its low bioavailability and adverse reactions with conventional administration limit its clinical application. In this study, we prepared berberine nanoliposomes using liposomes characterized by low toxicity, high entrapment efficiency, and biodegradability, and modified them with lactoferrin. Lactoferrin-modified berberine nanoliposomes had uniform particle size and high entrapment efficiency. We used the lactoferrin-modified berberine nanoliposomes to treat a mouse model of Alzheimer’s disease established by injection of amyloid-beta 1–42 into the lateral ventricle. Lactoferrin-modified berberine nanoliposomes inhibited acetylcholinesterase activity and apoptosis in the hippocampus, reduced tau over-phosphorylation in the cerebral cortex, and improved mouse behavior. These findings suggest that modification with lactoferrin can enhance the neuroprotective effects of berberine nanoliposomes in Alzheimer’s disease.
Collapse
|
21
|
Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): a current overview of active targeting in brain diseases. Colloids Surf B Biointerfaces 2022; 221:112999. [DOI: 10.1016/j.colsurfb.2022.112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
22
|
Xu Y, Wang Y, He J, Zhu W. Antibacterial properties of lactoferrin: A bibliometric analysis from 2000 to early 2022. Front Microbiol 2022; 13:947102. [PMID: 36060777 PMCID: PMC9428516 DOI: 10.3389/fmicb.2022.947102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHere, a bibliometric and knowledge map analysis are used to analyze the research hot spots and development trends regarding the antibacterial effect of lactoferrin (LF). By looking for research hot spots and new topics, we provide new clues and research directions for future research.MethodsArticles and reviews regarding the antibacterial effect of LF were retrieved and from the Web of Science Core Collection (WoSCC) on 25 June 2022. CiteSpace and VOSviewer were used to conduct the bibliometric and knowledge map analysis.ResultsIn total, 8,292 authors at 2,151 institutions from 86 countries published 1,923 articles in 770 academic journals. The United States was the leader regarding research on the antibacterial effects of LF, while the Netherlands was a pioneer in conducting research in this field. The University of California system contributed the most publications. Bolscher JGM published most articles, while Wayne Bellamy had most cocitations. However, there was insufficient cooperation among the various institutions and authors. BioMetals published most LF-antibacterial activity-related articles, whereas Infection and Immunity was most commonly cocited journal. The most influential research hot spots about the antibacterial effect of LF focused on antimicrobial peptides, casein, human milk, expression, and Escherichia coli-related research. The latest hot spots and research frontier included COVID-19, antibiofilm activity, and immune defense.ConclusionsLF is a multifunctional protein with a broad spectrum of antimicrobial activities. The related field of antibacterial properties of LF will remain a research hot spot in future.
Collapse
Affiliation(s)
- Yunling Xu
- Department of Basic Medical, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yuji Wang
- Department of Basic Medical, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jiaolong He
- Department of Intensive Care, First Affiliated Hospital of Jishou University, Jishou, China
- *Correspondence: Jiaolong He
| | - Wanping Zhu
- Department of Basic Medical, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
- Wanping Zhu
| |
Collapse
|
23
|
Zhao C, Chen Q, Li W, Zhang J, Yang C, Chen D. Multi-functional platelet membrane-camouflaged nanoparticles reduce neuronal apoptosis and regulate microglial phenotype during ischemic injury. APPLIED MATERIALS TODAY 2022; 27:101412. [DOI: 10.1016/j.apmt.2022.101412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Chaoyue Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
- Changchun Children's Hospital, 1321Beian Road, Changchun, Jilin 130051, China
| | | | | | | | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| |
Collapse
|
24
|
Qi N, Zhang S, Zhou X, Duan W, Gao D, Feng J, Li A. Combined integrin α vβ 3 and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect. J Nanobiotechnology 2021; 19:446. [PMID: 34949198 PMCID: PMC8705194 DOI: 10.1186/s12951-021-01180-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 02/02/2023] Open
Abstract
The integrin αvβ3 receptor and Lactoferrin receptor (LfR) are over-expressed in both cerebral microvascular endothelial cells and glioma cells. RGD tripeptide and Lf can specifically bind with integrin αvβ3 receptor and LfR, respectively. In our study, RGD and Lf dual-modified liposomes loaded with docetaxel (DTX) were designed to enhance the brain targeting effect and treatment of glioma. Our in vitro studies have shown that RGD-Lf-LP can significantly enhance the cellular uptake of U87 MG cells and human cerebral microvascular endothelial cells (hCMEC/D3) when compared to RGD modified liposomes (RGD-LP) and Lf modified liposomes (Lf-LP). Free RGD and Lf competitively reduced the cellular uptake of RGD-Lf-LP, in particular, free RGD played a main inhibitory effect on cellular uptake of RGD-Lf-LP in U87 MG cells, yet free Lf played a main inhibitory effect on cellular uptake of RGD-Lf-LP in hCMEC/D3 cells. RGD-Lf-LP can also significantly increase penetration of U87 MG tumor spheroids, and RGD modification plays a dominating role on promoting the penetration of U87 MG tumor spheroids. The results of in vitro BBB model were shown that RGD-Lf-LP-C6 obviously increased the transport of hCMEC/D3 cell monolayers, and Lf modification plays a dominating role on increasing the transport of hCMEC/D3 cell monolayers. In vivo imaging proved that RGD-Lf-LP shows stronger targeting effects for brain orthotopic gliomas than that of RGD-LP and Lf-LP. The result of tissue distribution confirmed that RGD-LF-LP-DTX could significantly increase brain targeting after intravenous injection. Furthermore, RGD-LF-LP-DTX (a dose of 5 mg kg−1 DTX) could significantly prolong the survival time of orthotopic glioma-bearing mice. In summary, RGD and LF dual modification are good combination for brain targeting delivery, RGD-Lf-LP-DTX could enhance brain targeting effects, and is thus a promising chemotherapeutic drug delivery system for treatment of glioma. ![]()
Collapse
Affiliation(s)
- Na Qi
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.,Department of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Shangqian Zhang
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Xiantai Zhou
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Wenjuan Duan
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Duan Gao
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Jianfang Feng
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530299, China
| | - Aimin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
25
|
Amiri M, Jafari S, Kurd M, Mohamadpour H, Khayati M, Ghobadinezhad F, Tavallaei O, Derakhshankhah H, Sadegh Malvajerd S, Izadi Z. Engineered Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as New Generations of Blood-Brain Barrier Transmitters. ACS Chem Neurosci 2021; 12:4475-4490. [PMID: 34841846 DOI: 10.1021/acschemneuro.1c00540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is considered as the most challenging barrier in brain drug delivery. Indeed, there is a definite link between the BBB integrity defects and central nervous systems (CNS) disorders, such as neurodegenerative diseases and brain cancers, increasing concerns in the contemporary era because of the inability of most therapeutic approaches. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have already been identified as having several advantages in facilitating the transportation of hydrophilic and hydrophobic agents across the BBB. This review first explains BBB functions and its challenges in brain drug delivery, followed by a brief description of nanoparticle-based drug delivery for brain diseases. A detailed presentation of recent progressions in optimizing SLNs and NLCs for controlled release drug delivery, gene therapy, targeted drug delivery, and diagnosis of neurodegenerative diseases and brain cancers is approached. Finally, the problems, challenges, and future perspectives in optimizing these carriers for potential clinical application were described briefly.
Collapse
Affiliation(s)
- Mahtab Amiri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Masoumeh Kurd
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, Tehran 15469-13111, Iran
| | - Hamed Mohamadpour
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Maryam Khayati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Farbod Ghobadinezhad
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Student’s Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Soroor Sadegh Malvajerd
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
26
|
Influence of nimodipine combined with ulinastatin on neurological function and inflammatory reaction in patients with cerebral vasospasm after subarachnoid hemorrhage. Clin Neurol Neurosurg 2021; 210:106981. [PMID: 34700272 DOI: 10.1016/j.clineuro.2021.106981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE This study aimed to discuss the influence of nimodipine+ulinastatin on the neurological function and inflammatory reaction in patients with cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH). METHODS Overall, 90 patients with CVS after SAH who were admitted to our hospital were enrolled in this study and randomly divided into research and control groups (n = 45 for both groups). On the basis of conventional therapy, patients in the control group were injected with ulinastatin and those in the research group were injected with ulinastatin+nimodipine through an intravenous drip for 7 days with the others the same as those of the control group. RESULTS Blood flow velocity in all cerebral arteries was lower in the research group than in the control group after treatment (P < 0.05). Calcitonin gene-related peptide and nitric oxide levels were higher in the research group than in the control group after treatment (P < 0.05). Endothelin levels were lower in the research group than in the control group (P < 0.05). The total effective rate was higher in the research group than in the control group (P < 0.05). Glasgow Coma Scale scores were higher in the research group than in the control group (P < 0.05). CONCLUSION The drug combination of nimodipine and ulinastatin improved blood flow and neurological function in patients with CVS after SAH and enhanced the therapeutic efficacy; the underlying mechanism may be associated with the regulation of vascular endothelial dilatation function and the inhibition of relevant inflammatory factors' expression.
Collapse
|
27
|
Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J 2021; 29:999-1012. [PMID: 34588846 PMCID: PMC8463508 DOI: 10.1016/j.jsps.2021.07.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
NLCs have provoked the incessant impulsion for the development of safe and valuable drug delivery systems owing to their exceptional physicochemical and then biocompatible characteristics. Throughout the earlier period, a lot of studies recounting NLCs based formulations have been noticeably increased. They are binary system which contains both solid and liquid lipids aiming to produce less ordered lipidic core. Their constituents particularly influence the physicochemical properties and effectiveness of the final product. NLCs can be fabricated by different techniques which are classified according to consumed energy. More utilization NLCs is essential due to overcome barriers surrounded by the technological procedure of lipid-based nanocarriers' formulation and increased information of the core mechanisms of their transport via various routes of administration. They can be used in different applications and by different routes such as oral, cutaneous, ocular and pulmonary. This review article seeks to present an overview on the existing situation of the art of NLCs for future clinics through exposition of their applications which shall foster their lucid use. The reported records evidently demonstrate the promise of NLCs for innovate therapeutic applications in the future.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia
| |
Collapse
|
28
|
Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y, Zheng Y. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics 2021; 11:8926-8944. [PMID: 34522219 PMCID: PMC8419041 DOI: 10.7150/thno.62330] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
As extracellular vesicles secreted by cells, exosomes are intercellular signalosomes for cell communication and pharmacological effectors. Because of their special properties, including low toxicity and immunogenicity, biodegradability, ability to encapsulate endogenous biologically active molecules and cross the blood-brain barrier (BBB), exosomes have great therapeutic potential in cerebrovascular and neurodegenerative diseases. However, the poor targeting ability of natural exosomes greatly reduces the therapeutic effect. Using engineering technology, exosomes can obtain active targeting ability to accumulate in specific cell types and tissues by attaching targeting units to the membrane surface or loading them into cavities. In this review, we outline the improved targeting functions of bioengineered exosomes, tracing and imaging techniques, administration methods, internalization in the BBB, and therapeutic effects of exosomes in cerebrovascular and neurodegenerative diseases and further evaluate the clinical opportunities and challenges in this research field.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Tao Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Bowen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Fen Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
29
|
Tabari MA, Poźniak B, Abrishami A, Moradpour AA, Shahavi MH, Kazemi S, Youssefi MR. Antitrichomonal activity of metronidazole-loaded lactoferrin nanoparticles in pigeon trichomoniasis. Parasitol Res 2021; 120:3263-3272. [PMID: 34342682 DOI: 10.1007/s00436-021-07263-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023]
Abstract
In recent years, increasing attention has been paid to the novel drug delivery systems to reduce the dose of the drug and avoid side effects. Metronidazole has been used for many years in the treatment of anaerobic bacterial and protozoal infections. Nanolactoferrin, a newly developed antibacterial agent originated from lactoferrin, is applied both as an active therapeutic and a drug nanocarrier. The present study describes the development and characterization of metronidazole-loaded lactoferrin nanoparticles (nano-MTZ) as well as reports their antitrichomonal activity on Trichomonas gallinae, the protozoal causative agent of pigeon trichomoniasis. The activity of the nano-MTZ is compared with the regular metronidazole formulation (MTZ) under in vitro and in vivo conditions. Additionally, cytotoxicity of the nano-MTZ to fibroblast cell line and possible hepatotoxicity in treated pigeons were evaluated. Nano-MTZ was prepared based on the thermal treatment method and the average size and surface charge of the dispersion were 30.6 nm and - 44.6 mv, respectively. No significant cytotoxicity was noted for the nano-MTZ in comparison to the MTZ. Loading efficiency in nano-MTZ was calculated as 55%. In vitro susceptibility results demonstrated 24 h 90% lethal concentration values of 4.23 and 6.64 µg/mL for MTZ and nano-MTZ, respectively. Oral treatment of the pigeons experimentally infected with T. gallinae resulted in the earlier eradication of the infection in the nano-MTZ-treated pigeons. No adverse effects on the liver function have been observed for the nano-MTZ. These findings suggest that nanolactoferrin is a promising platform for the development of novel MTZ formulations with improved antitrichomonal activity.
Collapse
Affiliation(s)
| | - Błażej Poźniak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Azadeh Abrishami
- Young Researchers and Elite Club, Islamic Azad University, Babol BranchBabol, Iran
| | - Amir Ali Moradpour
- Young Researchers and Elite Club, Islamic Azad University, Babol BranchBabol, Iran
| | - Mohammad Hassan Shahavi
- Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies (AUSMT), Amol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Reza Youssefi
- Department of Veterinary Parasitology, Islamic Azad University, Babol BranchBabol, Iran. .,Department of Comprehensive Health Research Center, Islamic Azad University, Babol BranchBabol, Iran.
| |
Collapse
|
30
|
Shah B. Microemulsion as a promising carrier for nose to brain delivery: journey since last decade. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00528-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Zhou Z, Sun T, Jiang C. Recent advances on drug delivery nanocarriers for cerebral disorders. Biomed Mater 2021; 16:024104. [PMID: 33455956 DOI: 10.1088/1748-605x/abdc97] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pharmacotherapies for brain disorders are generally faced with obstacles from the blood-brain barrier (BBB). There are a variety of drug delivery systems that have been put forward to cross or bypass the BBB with the access to the central nervous system. Brain drug delivery systems have benefited greatly from the development of nanocarriers, including lipids, polymers and inorganic materials. Consequently, various kinds of brain drug delivery nano-systems have been established, such as liposomes, polymeric nanoparticles (PNPs), nanomicelles, nanohydrogels, dendrimers, mesoporous silica nanoparticles and magnetic iron oxide nanoparticles. The characteristics of their carriers and preparations usually differ from each other, as well as their transportation mechanisms into intracerebral lesions. In this review, different types of brain drug delivery nanocarriers are classified and summarized, especially their significant achievements, to present several recommendations and directions for future strategies of cerebral delivery.
Collapse
Affiliation(s)
- Zheng Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | | | | |
Collapse
|
32
|
Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Hu Y, Smith D, Frazier E, Zhao Z, Zhang C. Toll-like Receptor 9 Agonists as Adjuvants for Nanoparticle-Based Nicotine Vaccine. Mol Pharm 2021; 18:1293-1304. [PMID: 33497574 DOI: 10.1021/acs.molpharmaceut.0c01153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nicotine vaccine was considered a promising therapy against smoking addiction. The level of immune response that a nicotine vaccine can induce is pivotal to its efficacy. In this study, Toll-like receptor 9 agonists, namely, CpG ODN 1555 and CpG ODN 1826, were incorporated into a nanoparticle-based nicotine vaccine (NanoNicVac) to enhance its immunogenicity. The results showed that NanoNicVac containing either CpG ODN 1555 or CpG ODN 1826 could be rapidly internalized by dendritic cells. In mice trials, it was found that NanoNicVac with CpG ODN 1555 and CpG ODN 1826 induced 3.3- and 3.2-fold higher anti-nicotine antibody titer than that by the native NanoNicVac after two injections, respectively. Instead of enhancing the immunogenicity of the vaccine, however, mixtures of the two CpG ODNs were observed to exert an immune-suppressing effect on NanoNicVac. Finally, the histopathological examination on major organs of the mice immunized with the NanoNicVacs proved that NanoNicVac with either CpG ODN 1555 or CpG ODN 1826 as adjuvants did not cause detectable toxicity to the mice.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Daniel Smith
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Evan Frazier
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
34
|
Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021; 18:849-876. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Parisa Fatehbasharzad
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Valerio Benedetti
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Marco Fontanella
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elisa De Luca
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Institute for Microelectronics and Microsystems (IMM), CNR, Lecce, Italy
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Istituto Italiano Di Tecnologia, Nanobiointeractions & Nanodiagnostics, Genova, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| |
Collapse
|
35
|
Xiao R, Ding J, Chen J, Zhao Z, He L, Wang H, Huang S, Luo B. Citric acid coated ultrasmall superparamagnetic iron oxide nanoparticles conjugated with lactoferrin for targeted negative MR imaging of glioma. J Biomater Appl 2020; 36:15-25. [PMID: 33287646 DOI: 10.1177/0885328220975570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The proposed study was to develop the preparation of ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) modified with citric acid, with surface conjugated with lactoferrin (Lf), which used as a potential targeted contrast agent for magnetic resonance imaging (MRI) of brain glioma. USPIONs were prepared by the thermal decomposition method. The hydrophobic USPIONs were coated with citric acid by the ligand exchange method. Then, Lf was conjugated into the surface of USPIONs. The obtained Lf-USPIONs were analyzed by fourier transform infrared (FTIR) spectroscopy and polyacrylamide gel electrophoresis. The size, size distribution, shape and superparamagnetic property of Lf-USPIONs were investigated with TEM and vibrating sample magnetometer (VSM). Both FTIR and electrophoresis analysis demonstrated the successful conjugation of Lf to the surface of USPIONs. The average size of Lf-USPIONs was about 8.4 ± 0.5 nm, which was determined using the statistics of measured over 100 nanoparticles in the TEM image, with a negative charge of -7.3 ± 0.2 mV. TEM imaging revealed that Lf-USPIONs were good in dispersion and polygonal in morphology. VSM results indicated that Lf-USPIONs were superparamagnetic and the saturated magnetic intensity was about 69.8 emu/g. The Lf-USPIONs also showed good biocompatibility in hemolysis, cytotoxicity, cell migration and blood biochemistry studies. MR imaging results in vitro and in vivo indicated that Lf-USPIONs exhibited good negative contrast enhancement. Taken together, Lf-USPIONs hold great potential for brain gliomas MR imaging as a nanosized targeted contrast agent.
Collapse
Affiliation(s)
- Ruolei Xiao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Jieqiong Ding
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Jiajuan Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhiwei Zhao
- Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Liu He
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Huili Wang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Shengtang Huang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Binhua Luo
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
36
|
Asha Spandana K, Bhaskaran M, Karri V, Natarajan J. A comprehensive review of nano drug delivery system in the treatment of CNS disorders. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res Bull 2020; 160:121-140. [PMID: 32315731 DOI: 10.1016/j.brainresbull.2020.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Barriers are the hallmark of a healthy physiology, blood-brain barrier (BBB) being a tough nut to crack for most of the antigens and chemical substances. The presence of tight junctions plays a remarkable role in defending the brain from antigenic and pathogenic attacks. BBB constitutes a diverse assemblage of multiple physical and chemical barriers that judiciously restrict the flux of blood solutes into and out of the brain. Restrictions through the paracellular pathway and the tight junctions between intercellular clefts, together create well regulated metabolic and transport barricades, critical to brain pathophysiology. The brain being impermeable to many essential metabolites and nutrients regulates transportation via specialized transport systems across the endothelial abluminal and luminal membranes. The epithelial cells enveloping capillaries of the choroid plexus regulates the transport of complement, growth factors, hormones, microelements, peptides and trace elements into ventricles. Nerve terminals, microglia, and pericytes associated with the endothelium support barrier induction and function, ensuring an optimally stable ionic microenvironment that facilitates neurotransmission, orchestrated by multiple ion channels (Na+, K+ Mg2+, Ca2+) and transporters. Brain pathology which can develop due to genetic mutations or secondary to other cerebrovascular, neurodegenerative diseases can cause aberration in the microvasculature of CNS which is the uniqueness of BBB. This can also alter BBB permeation and result in BBB breakdown and other neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The concluding section outlines contemporary trends in drug discovery, focusing on molecular determinants of BBB permeation and novel drug-delivery systems, such as dendrimers, liposomes, nanoparticles, nanogels, etc.
Collapse
|
38
|
Liao L, Jiang C, Chen J, Shi J, Li X, Wang Y, Wen J, Zhou S, Liang J, Lao Y, Zhang J. Synthesis and biological evaluation of 1,2,4-triazole derivatives as potential neuroprotectant against ischemic brain injury. Eur J Med Chem 2020; 190:112114. [PMID: 32061962 DOI: 10.1016/j.ejmech.2020.112114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023]
Abstract
A series of 1,2,4-triazole derivatives 1-14 was synthesized to investigate their neuroprotective effects and mechanisms of action. Compounds 5-11 noticeably protected PC12 cells from the cytotoxicity of H2O2 or sodium nitroprusside (SNP). Compound 11 was the most effective derivative. Compound 11 chelated Fe (II) iron, scavenged reactive oxygen species (ROS), and restored the mitochondrial membrane potential (MMP). Moreover, it enhanced the activity of the antioxidant defense system by increasing the serum level of superoxide dismutase (SOD) and promoting the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Compound 11 caused certain improvements in behavior, the cerebral infarction area, and serum levels of biochemical indicators (TNF-α, IL-1β, SOD and MDA) in a rat MCAO model. The lethal dose (LD50) of compound 11 in mice receiving intraperitoneal injections was greater than 400 mg/kg. Meanwhile, pharmacokinetic experiments revealed high bioavailability of this compound after both oral and intravenous administration (F = 60.76%, CL = 0.014 mg/kg/h) and a longer half-life (4.26 and 5.11 h after oral and intravenous administration, respectively). Based on these findings, compound 11 may be a promising neuroprotectant for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Liping Liao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xinhua Li
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jin Wen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Shujia Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jie Liang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
39
|
Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, Ajazuddin, Ravichandiran V, Murty US, Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020; 321:372-415. [PMID: 32061621 DOI: 10.1016/j.jconrel.2020.02.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
In last two decades, the lipid nanocarriers have been extensively investigated for their drug targeting efficiency towards the critical areas of the human body like CNS, cardiac region, tumor cells, etc. Owing to the flexibility and biocompatibility, the lipid-based nanocarriers, including nanoemulsion, liposomes, SLN, NLC etc. have gained much attention among various other nanocarrier systems for brain targeting of bioactives. Across different lipid nanocarriers, NLC remains to be the safest, stable, biocompatible and cost-effective drug carrier system with high encapsulation efficiency. Drug delivery to the brain always remains a challenging issue for scientists due to the complex structure and various barrier mechanisms surrounding the brain. The application of a suitable nanocarrier system and the use of any alternative route of drug administration like nose-to-brain drug delivery could overcome the hurdle and improves the therapeutic efficiency of CNS acting drugs thereof. NLC, a second-generation lipid nanocarrier, upsurges the drug permeation across the BBB due to its unique structural properties. The biocompatible lipid matrix and nano-size make it an ideal drug carrier for brain targeting. It offers many advantages over other drug carrier systems, including ease of manufacturing and scale-up to industrial level, higher drug targeting, high drug loading, control drug release, compatibility with a wide range of drug substances, non-toxic and non-irritant behavior. This review highlights recent progresses towards the development of NLC for brain targeting of bioactives with particular reference to its surface modifications, formulations aspects, pharmacokinetic behavior and efficacy towards the treatment of various neurological disorders like AD, PD, schizophrenia, epilepsy, brain cancer, CNS infection (viral and fungal), multiple sclerosis, cerebral ischemia, and cerebral malaria. This work describes in detail the role and application of NLC, along with its different fabrication techniques and associated limitations. Specific emphasis is given to compile a summary and graphical data on the area explored by scientists and researchers worldwide towards the treatment of neurological disorders with or without NLC. The article also highlights a brief insight into two prime approaches for brain targeting, including drug delivery across BBB and direct nose-to-brain drug delivery along with the current global status of specific neurological disorders.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, NCI-Frederick, NIH, Frederick, USA
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Sciences and Technology (CHARUSAT), Gujarat 388421, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Ministry of Chemicals & Fertilizers, Govt. of India, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Upadhyayula Suryanarayana Murty
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India.
| |
Collapse
|
40
|
Mittal S, Ashhar MU, Qizilbash FF, Qamar Z, Narang JK, Kumar S, Ali J, Baboota S. Ligand Conjugated Targeted Nanotherapeutics for Treatment of Neurological Disorders. Curr Pharm Des 2020; 26:2291-2305. [PMID: 32303160 DOI: 10.2174/1381612826666200417141600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human brain is amongst the most complex organs in human body, and delivery of therapeutic agents across the brain is a tedious task. Existence of blood brain barrier (BBB) protects the brain from invasion of undesirable substances; therefore it hinders the transport of various drugs used for the treatment of different neurological diseases including glioma, Parkinson's disease, Alzheimer's disease, etc. To surmount this barrier, various approaches have been used such as the use of carrier mediated drug delivery; use of intranasal route, to avoid first pass metabolism; and use of ligands (lactoferrin, apolipoprotein) to transport the drug across the BBB. Ligands bind with proteins present on the cell and facilitate the transport of drug across the cell membrane via. receptor mediated, transporter mediated or adsorptive mediated transcytosis. OBJECTIVE The main focus of this review article is to illustrate various studies performed using ligands for delivering drug across BBB; it also describes the procedure used by various researchers for conjugating the ligands to the formulation to achieve targeted action. METHODS Research articles that focused on the used of ligand conjugation for brain delivery and compared the outcome with unconjugated formulation were collected from various search engines like PubMed, Science Direct and Google Scholar, using keywords like ligands, neurological disorders, conjugation, etc. Results and Conclusion: Ligands have shown great potential in delivering drug across BBB for treatment of various diseases, yet extensive research is required so that the ligands can be used clinically for treating neurological diseases.
Collapse
Affiliation(s)
- Saurabh Mittal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Muhammad U Ashhar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Farheen F Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Jasjeet K Narang
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Uttar Pradesh, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
41
|
Du C, Liu X, Hu H, Li H, Yu L, Geng D, Chen Y, Zhang J. Dual-targeting and excretable ultrasmall SPIONs for T1-weighted positive MR imaging of intracranial glioblastoma cells by targeting the lipoprotein receptor-related protein. J Mater Chem B 2020; 8:2296-2306. [PMID: 32100784 DOI: 10.1039/c9tb02391g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A multifunctional targeted nanoprobe composed of ultrasmall superparamagnetic iron oxide nanoparticles with surface-conjugated Angiopep-2 was successfully constructed for targeted MR imaging of intracranial glioblastoma.
Collapse
Affiliation(s)
- Chengjuan Du
- Department of Radiology
- Huashan Hospital
- Shanghai
- P. R. China
| | - Xianping Liu
- Department of Radiology
- Huashan Hospital
- Shanghai
- P. R. China
| | - Hui Hu
- Department of Radiology
- The Affiliated Renmin Hospital of Jiangsu University
- Zhenjiang
- China
| | - Huiming Li
- Department of Radiology
- Huashan Hospital
- Shanghai
- P. R. China
| | - Luodan Yu
- State Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Daoying Geng
- Department of Radiology
- Huashan Hospital
- Shanghai
- P. R. China
| | - Yu Chen
- State Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| | - Jun Zhang
- Department of Radiology
- Huashan Hospital
- Shanghai
- P. R. China
| |
Collapse
|
42
|
Wang H, Mu X, Yang J, Liang Y, Zhang XD, Ming D. Brain imaging with near-infrared fluorophores. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Huang Z, Huang Y, Ma C, Ma X, Zhang X, Lin L, Zhao Z, Pan X, Wu C. Endotracheal Aerosolization Device for Laboratory Investigation of Pulmonary Delivery of Nanoparticle Suspensions: In Vitro and in Vivo Validation. Mol Pharm 2018; 15:5521-5533. [PMID: 30252486 DOI: 10.1021/acs.molpharmaceut.8b00668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective of this study was to perform the in vitro and in vivo validation of an endotracheal aerosolization (ETA) device (HRH MAG-4, HM). Solid lipid nanoparticle suspension (SLNS) formulations with particle sizes of approximately 120, 240, 360, and 480 nm were selected as model nanoparticle suspensions for the validation. The emission rate (ER) of the in vitro aerosolization and the influence of aerosolization on the physicochemical properties were investigated. A high ER of up to 90% was obtained, and no significant alterations in physicochemical properties were observed after the aerosolization. The pulmonary deposition of model drug budesonide in Sprague-Dawley rats was determined to be approximately 80%, which was satisfactory for pulmonary delivery. Additionally, a fluorescent probe with aggregation-caused quenching property was encapsulated in SLNS formulations for in vivo bioimaging, after excluding the effect of aerosolization on its fluorescence spectrum. It was verified that SLNS formulations were deposited in the lung region. The results demonstrated the feasibility and reliability of the HM device for ETA in laboratory investigation.
Collapse
Affiliation(s)
- Zhengwei Huang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Ying Huang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Cheng Ma
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Xiangyu Ma
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
- Institute for Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P.R. China
| | - Ling Lin
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Ziyu Zhao
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| |
Collapse
|
44
|
Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. J Control Release 2018; 291:37-64. [PMID: 30308256 DOI: 10.1016/j.jconrel.2018.10.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
|