1
|
Rahim SA, Bakhsheshi-Rad HR, Licavoli J, Jonard BW, Drelich JW. Overview of biodegradable materials for bone repair and osteosarcoma treatment: From bulk to scaffolds. BIOMATERIALS ADVANCES 2025; 174:214317. [PMID: 40239432 DOI: 10.1016/j.bioadv.2025.214317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Osteosarcoma, the most common type of malignant bone tumor that affects growing bones in teenagers and children, has become a significant challenge for medical science. The combination of chemotherapy and surgery has been the standard treatment strategy for decades. However, concerns about tumor recurrence and the toxic effects of the drugs continue to drive materials scientists to develop multifunctional scaffolds that can simultaneously support bone regeneration and prevent tumor recurrence. Emergent multifunctional scaffolds have the potential to foster essential and dynamic cellular communication, which can directly target, signal, stimulate, and enhance the body's natural bone repair response. This review emphasizes the mechanisms involved and highlights various technologies and manufacturing processes that align with the capability of these scaffolds to effectively promote bone repair, especially in the presence of osteosarcoma. Additionally, the review summarizes the current state of knowledge regarding scaffolds based on magnesium (Mg), zinc (Zn), and iron (Fe), as well as the antitumor properties of their corrosion products. The review also discusses the therapeutic potential of Mg-, Zn-, and Fe-based materials in inhibiting osteosarcoma cell proliferation. The article elaborates on the main research challenges and prospects of biodegradable materials for bone repair and osteosarcoma treatment.
Collapse
Affiliation(s)
- Shebeer A Rahim
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Hamid R Bakhsheshi-Rad
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA; Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Joseph Licavoli
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Brandon W Jonard
- Department of Orthopedic Surgery, University Hospitals/Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jaroslaw W Drelich
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| |
Collapse
|
2
|
Wang Y, Jan H, Zhong Z, Zhou L, Teng K, Chen Y, Xu J, Xie D, Chen D, Xu J, Qin L, Tuan RS, Li ZA. Multiscale metal-based nanocomposites for bone and joint disease therapies. Mater Today Bio 2025; 32:101773. [PMID: 40290898 PMCID: PMC12033929 DOI: 10.1016/j.mtbio.2025.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Bone and joint diseases are debilitating conditions that can result in significant functional impairment or even permanent disability. Multiscale metal-based nanocomposites, which integrate hierarchical structures ranging from the nanoscale to the macroscale, have emerged as a promising solution to this challenge. These materials combine the unique properties of metal-based nanoparticles (MNPs), such as enzyme-like activities, stimuli responsiveness, and photothermal conversion, with advanced manufacturing techniques, such as 3D printing and biohybrid systems. The integration of MNPs within polymer or ceramic matrices offers a degree of control over the mechanical strength, antimicrobial efficacy, and the manner of drug delivery, whilst concomitantly promoting the processes of osteogenesis and chondrogenesis. This review highlights breakthroughs in stimulus-responsive MNPs (e.g., photo-, magnetically-, or pH-activated systems) for on-demand therapy and their integration with biocomposite hybrids containing cells or extracellular vesicles to mimic the native tissue microenvironment. The applications of these composites are extensive, ranging from bone defects, infections, tumors, to degenerative joint diseases. The review emphasizes the enhanced load-bearing capacity, bioactivity, and tissue integration that can be achieved through hierarchical designs. Notwithstanding the potential of these applications, significant barriers to progress persist, including challenges related to long-term biocompatibility, regulatory hurdles, and scalable manufacturing. Finally, we propose future directions, including machine learning-guided design and patient-specific biomanufacturing to accelerate clinical translation. Multiscale metal-based nanocomposites, which bridge nanoscale innovations with macroscale functionality, are a revolutionary force in the field of biomedical engineering, providing personalized regenerative solutions for bone and joint diseases.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Hasnain Jan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China
| | - Zheng Zhong
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, and Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Liangbin Zhou
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
| | - Kexin Teng
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
| | - Ye Chen
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, and Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, and Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Dexin Chen
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Jiake Xu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, and Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Institute for Tissue Engineering and Regenerative Medicine, and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Zhong Alan Li
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong Special Administrative Region of China
- Institute for Tissue Engineering and Regenerative Medicine, and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, NT, Hong Kong Special Administrative Region of China
| |
Collapse
|
3
|
Kaczmarek-Szczepańska B, D’Amora U, Zasada L, Michalska-Sionkowska M, Miłek O, Łukowicz K, Osyczka AM. Enhancing Thin Film Properties of Chitosan-Collagen Biocomposites Through Potassium Silicate and Tannic Acid Integration. Polymers (Basel) 2025; 17:608. [PMID: 40076101 PMCID: PMC11902633 DOI: 10.3390/polym17050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Chitosan and collagen are natural polymers widely used in biomaterials science; however, their inherent low stability and solubility present several challenges to obtain formulations suitable for potential clinical applications. In this study, tannic acid (TA) was employed as a cross-linker to improve the properties of thin films made from chitosan and collagen. In addition, potassium silicate (PS) was added as an inorganic filler, to produce innovative biocomposite films. The impact of TA and PS on physicochemical (i.e., material homogeneity, surface free energy, degradation, and stability roughness of surface), antioxidant, hemocompatibility, as well as cellular responses was evaluated. The results demonstrated that the incorporation of TA significantly enhanced the physicochemical properties of the chitosan/collagen-based films. The addition of 5% PS resulted in an increase in surface free energy and a decrease in roughness parameters. Furthermore, both surface free energy and cellular responses improved with the increased TA concentration in the biocomposite firms. Meanwhile, the hemolysis rate remained below 5%, indicating the potential suitability of these materials for medical applications, such as coatings or scaffolds for bone or skin wound healing.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Toruń, Poland;
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, v.le J.F. Kennedy 54, Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Toruń, Poland;
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Oliwia Miłek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Kraków, Poland; (O.M.); (K.Ł.); (A.M.O.)
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Krzysztof Łukowicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Kraków, Poland; (O.M.); (K.Ł.); (A.M.O.)
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Anna Maria Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Kraków, Poland; (O.M.); (K.Ł.); (A.M.O.)
| |
Collapse
|
4
|
Zuo L, Bao Y, Wu K, Li S, Qu Z, Lyu Y, Li X, Meng H, He Y. Hollow-structured Zn-doped CeO 2 mesoporous spheres boost enhanced antioxidant activity and synergistic bactericidal effect. Colloids Surf B Biointerfaces 2025; 246:114381. [PMID: 39561519 DOI: 10.1016/j.colsurfb.2024.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
The increasing prevalence of antibiotic-resistant bacteria is regarded as one of the worst threats to the environment and global health, and antimicrobial nanomaterials have been increasingly explored to provide solutions for antimicrobial resistance problems. In this paper, mesostructured Zn-doped CeO2 hollow spheres (ZDCHS) with various Zn/Ce ratios were successfully prepared by a conventional one-pot hydrothermal synthesis method. The ingenious incorporation of Zn playing a vital role in the fabrication of hollow structure of ZDCHS with high specific surface area, and detailed transmission electron microscopy (TEM) characterization confirmed the homogeneous distribution of Zn element across the ZDCHS. The X-ray photoelectron spectroscopy (XPS) and Raman results indicated that a higher concentration of oxygen vacancies was obtained on the ZDCHS compared to the undoped CeO2 counterparts. In addition, the in vitro antioxidant properties evaluated toward scavenging DPPH radicals, hydroxyl radicals and superoxide radicals further revealed the enhanced antioxidant activity of ZDCHS derived from the doping with Zn ions. Furthermore, the bacteriostatic assay against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria showed that the ZDCHS possessed synergistically improved bacteriostatic performance and were more susceptible to S. aureus with a maximal antimicrobial ratio of 99.5 %, which is higher than that of the undoped CeO2 samples (80.7 %). These results represent a new paradigm to the design of novel hollow-structured materials, highlighting the doping of Zn ions in the lattice structure of CeO2 provides a feasible means for the preparation of effective antioxidants and antimicrobial agents.
Collapse
Affiliation(s)
- Lichao Zuo
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yuanyuan Bao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Ke Wu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Shujing Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Zhaohui Qu
- Beijing Weiye Innovation Technology Co., Ltd., Beijing 102208, PR China
| | - Yongbo Lyu
- Beijing Weiye Innovation Technology Co., Ltd., Beijing 102208, PR China
| | - Xiaozhen Li
- Beijing Weiye Innovation Technology Co., Ltd., Beijing 102208, PR China
| | - Hong Meng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yifan He
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
5
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
6
|
Xu K, Zhang Y, Cheng H, Chen W, Chen C, Zhang M, Song H, Wang F. Triple-negative breast cancer treatment with core-shell Magnetic@Platinium-Metal organic framework/epirubicin nano-platforms for chemo-photodynamic based combinational therapy: A review. Medicine (Baltimore) 2024; 103:e39845. [PMID: 39331917 PMCID: PMC11441927 DOI: 10.1097/md.0000000000039845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
The combination of chemotherapy and photodynamic therapy (PDT), enabled by core-shell nano-platforms, is a promising method to improve cancer therapy by overcoming hypoxia and boosting drug penetration in breast tumor. Core-shell magnetic (iron oxide: Fe3O4)@platinum-metal organic framework/epirubicin (abbreviated as M@Pt-MOF/EPI) nano-platform is considered an effective cancer therapeutic agent. Relatively small particle size, round shape, and specific response to pH, are the key features of these nanomaterials to be used as promising therapeutic agents. Chemotherapy and photodynamic therapy, when applied in addition to the anticancer effects of nanomaterials, further enhance the therapeutic efficacy. The extensive use, utilization, and efficacy of Core-Shell Magnetic@Platinium-Metal Organic Framework/epirubicin Nano-Platforms for chemo-photodynamic combination therapy in the treatment of several cancers, including triple-negative breast cancer, are examined in this in-depth investigation.
Collapse
Affiliation(s)
- Kangjie Xu
- Department of Central Laboratory, Binhai County People’s Hospital, Yancheng, China
| | - Yanhua Zhang
- Department of Obstetrics and Gynecology, Binhai County People’s Hospital, Yancheng, China
| | - Hui Cheng
- Department of General Surgery, Binhai County People’s Hospital, Yancheng, China
| | - Weipeng Chen
- Department of General Surgery, Binhai County People’s Hospital, Yancheng, China
| | - Cheng Chen
- Department of General Surgery, Binhai County People’s Hospital, Yancheng, China
| | - Minglei Zhang
- Department of Oncology, Binhai County People’s Hospital, Yancheng, China
| | - He Song
- Department of Rehabilitation Medicine, Kanda College of Nanjing Medical University, Lianyungang, China
| | - Feng Wang
- Department of General Surgery, Binhai County People’s Hospital, Yancheng, China
| |
Collapse
|
7
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
8
|
Singh I, Shakya K, Gupta P, Rani P, Kong I, Verma V, Balani K. Multifunctional 58S Bioactive Glass/Silver/Cerium Oxide-Based Biocomposites with Effective Antibacterial, Cytocompatibility, and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18327-18343. [PMID: 38588343 DOI: 10.1021/acsami.3c17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
58S bioactive glass (BG) has effective biocompatibility and bioresorbable properties for bone tissue engineering; however, it has limitations regarding antibacterial, antioxidant, and mechanical properties. Therefore, we have developed BGAC biocomposites by reinforcing 58S BG with silver and ceria nanoparticles, which showed effective bactericidal properties by forming inhibited zones of 2.13 mm (against Escherichia coli) and 1.96 mm (against Staphylococcus aureus; evidenced by disc diffusion assay) and an increment in the antioxidant properties by 39.9%. Moreover, the elastic modulus, hardness, and fracture toughness were observed to be increased by ∼84.7% (∼51.9 GPa), ∼54.5% (∼3.4 GPa), and ∼160% (∼1.3 MPam1/2), whereas the specific wear rate was decreased by ∼55.2% (∼1.9 × 10-11 m3/Nm). X-ray diffraction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy confirmed the fabrication of biocomposites and the uniform distribution of the nanomaterials in the BG matrix. The addition of silver nanoparticles in the 58S BG matrix (in BGA) increased mechanical properties by composite strengthening and bactericidal properties by damaging the cytoplasmic membrane of bacterial cells. The addition of nanoceria in 58S BG (BGC) increased the antioxidant properties by 44.5% (as evidenced by the 2,2-diphenyl-1-picrylhydrazyl assay). The resazurin reduction assay and MTT assay confirmed the effective cytocompatibility for BGAC biocomposites against mouse embryonic fibroblast cells (NIH3T3) and mouse bone marrow stromal cells. Overall, BGAC resulted in mechanical properties comparable to those of cancellous bone, and its effective antibacterial and cytocompatibility properties make it a good candidate for bone healing.
Collapse
Affiliation(s)
- Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Victoria 3552, Australia
| | - Kaushal Shakya
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Pankaj Gupta
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Pooja Rani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ing Kong
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Victoria 3552, Australia
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
9
|
Homa K, Zakrzewski W, Dobrzyński W, Piszko PJ, Piszko A, Matys J, Wiglusz RJ, Dobrzyński M. Surface Functionalization of Titanium-Based Implants with a Nanohydroxyapatite Layer and Its Impact on Osteoblasts: A Systematic Review. J Funct Biomater 2024; 15:45. [PMID: 38391898 PMCID: PMC10889183 DOI: 10.3390/jfb15020045] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
This study aims to evaluate the influence of a nanohydroxyapatite layer applied to the surface of titanium or titanium alloy implants on the intricate process of osseointegration and its effect on osteoblast cell lines, compared to uncoated implants. Additionally, the investigation scrutinizes various modifications of the coating and their consequential effects on bone and cell line biocompatibility. On the specific date of November 2023, an exhaustive electronic search was conducted in esteemed databases such as PubMed, Web of Science, and Scopus, utilizing the meticulously chosen keywords ((titanium) AND ((osteoblasts) and hydroxyapatite)). Methodologically, the systematic review meticulously adhered to the PRISMA protocol. Initially, a total of 1739 studies underwent scrutiny, with the elimination of 741 duplicate records. A further 972 articles were excluded on account of their incongruence with the predefined subjects. The ultimate compilation embraced 26 studies, with a predominant focus on the effects of nanohydroxyapatite coating in isolation. However, a subset of nine papers delved into the nuanced realm of its modifiers, encompassing materials such as chitosan, collagen, silver particles, or gelatine. Across many of the selected studies, the application of nanohydroxyapatite coating exhibited a proclivity to enhance the osseointegration process. The modifications thereof showcased a positive influence on cell lines, manifesting in increased cellular spread or the attenuation of bacterial activity. In clinical applications, this augmentation potentially translates into heightened implant stability, thereby amplifying the overall procedural success rate. This, in turn, renders nanohydroxyapatite-coated implants a viable and potentially advantageous option in clinical scenarios where non-modified implants may not suffice.
Collapse
Affiliation(s)
- Karolina Homa
- Niepubliczny Zakład Opieki Zdrowotnej Medident, Żeromskiego 2A, 43-230 Goczalkowice-Zdroj, Poland
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Wojciech Zakrzewski
- Pre-clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-368 Wroclaw, Poland
| | - Wojciech Dobrzyński
- Department of Dentofacial Orthopedics and Orthodontics, Division of Facial Abnormalities, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Paweł J Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Science and Technology (WUST), Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Jacek Matys
- Oral Surgery Department, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Rafal J Wiglusz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw, Poland
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| |
Collapse
|
10
|
Das M, Dixit A, Jana A, Karthik R, Sreeram PR, Bora H, Dhara S, Panda SK, Tiwary CS. Enhanced toughness and strength of 3D printed carbide-oxide composite for biomedical applications. J Mech Behav Biomed Mater 2024; 150:106290. [PMID: 38088010 DOI: 10.1016/j.jmbbm.2023.106290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
Natural materials derived/extracted Ceramics is an excellent material for developing ceramic-based orthopedic implants. Recently, we have demonstrated an easily scalable, energy-efficient green method to extract ceramic particles from bio-waste i.e. chicken bone. Though the chicken bone extract (CBE) has good biocompatibility, it lacks good mechanical properties in the 3D printed condition as that of human bones. Here, we have reinforced CBE with different weight proportions of silicon carbide to improve the mechanical characteristics of the composite. The hybrid of CBE (oxide) and carbide (SiC) is sintered at different temperatures to understand the effect of the interface of the two ceramics. It is observed that temperature has minimal effect and composition has a noticeable effect on mechanical strength as well as bio-toxicity. The toughness (∼3.58 MJ/m3) and compressive strength (∼64.64 MPa) of the 90:10 composition sintered at 1250 °C show the maximum optimum values. A mathematical model has also been developed to predict and correlate the toughness with porosity, volumetric loading, and elastic modulus of the 3D-printed ceramic composite.
Collapse
Affiliation(s)
- Manojit Das
- Department of Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, 721302, West Bengal, India.
| | - Astha Dixit
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Arijit Jana
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - R Karthik
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - P R Sreeram
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Hema Bora
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Sushanta Kumar Panda
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
11
|
Sun X, Xu X, Yue X, Wang T, Wang Z, Zhang C, Wang J. Nanozymes With Osteochondral Regenerative Effects: An Overview of Mechanisms and Recent Applications. Adv Healthc Mater 2024; 13:e2301924. [PMID: 37633309 DOI: 10.1002/adhm.202301924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/14/2023] [Indexed: 08/28/2023]
Abstract
With the discovery of the intrinsic enzyme-like activity of metal oxides, nanozymes garner significant attention due to their superior characteristics, such as low cost, high stability, multi-enzyme activity, and facile preparation. Notably, in the field of biomedicine, nanozymes primarily focus on disease detection, antibacterial properties, antitumor effects, and treatment of inflammatory conditions. However, the potential for application in regenerative medicine, which primarily addresses wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment, is garnering interest as well. This review introduces nanozymes as an innovative strategy within the realm of bone regenerative medicine. The primary focus of this approach lies in the facilitation of osteochondral regeneration through the modulation of the pathological microenvironment. The catalytic mechanisms of four types of representative nanozymes are first discussed. The pathological microenvironment inhibiting osteochondral regeneration, followed by summarizing the therapy mechanism of nanozymes to osteochondral regeneration barriers is introduced. Further, the therapeutic potential of nanozymes for bone diseases is included. To improve the therapeutic efficiency of nanozymes and facilitate their clinical translation, future potential applications in osteochondral diseases are also discussed and some significant challenges addressed.
Collapse
Affiliation(s)
- Xueheng Sun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Xiang Xu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Zhaofei Wang
- Department of Orthopaedic Surgery, Shanghai ZhongYe Hospital, Genertec Universal Medical Group, Shanghai, 200941, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
- Institute of Translational Medicine, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinwu Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Rd, Shanghai, 200011, China
| |
Collapse
|
12
|
Singh I, Dixit K, Gupta P, George SM, Sinha N, Balani K. 3D-Printed Multifunctional Ag/CeO 2/ZnO Reinforced Hydroxyapatite-Based Scaffolds with Effective Antibacterial and Mechanical Properties. ACS APPLIED BIO MATERIALS 2023; 6:5210-5223. [PMID: 37955988 DOI: 10.1021/acsabm.3c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Conventional three-dimensional (3D)-printed hydroxyapatite (HA)-based constructs have limited utility in bone tissue engineering due to their poor mechanical properties, elevated risk of microbial infection, and limited pore interconnectivity. 3D printing of complex multiple components to fabricate fully interconnected scaffolds is a challenging task; here, in this work, we have developed a procedure for fabrication of printable ink for complex systems containing multinanomaterials, i.e., HAACZ (containing 1 wt % Ag, 4 wt % CeO2, and 6 wt % ZnO) with better shear thinning and shape retention properties. Moreover, 3D-printed HAACZ scaffolds showed a modulus of 143.8 GPa, a hardness of 10.8 GPa, a porosity of 59.6%, effective antibacterial properties, and a fully interconnected pore network to be an ideal construct for bone healing. Macropores with an average size of ∼469 and ∼433 μm within the scaffolds of HA and HAACZ and micropores with an average size of ∼0.6 and ∼0.5 μm within the strut of HA and HAACZ were developed. The distribution of fully interconnected micropores was confirmed using computerized tomography, whereas the distribution of micropores within the strut was visualized using Voronoi tessellation. The water contact angle studies revealed the most suitable hydrophilic range of water contact angles of ∼71.7 and ∼76.6° for HA and HAACZ, respectively. HAACZ scaffolds showed comparable apatite formation and cytocompatibility as that of HA. Antibacterial studies revealed effective antibacterial properties for the HAACZ scaffold as compared to HA. There was a decrease in bacterial cell density for HAACZ from 1 × 105 to 1.2 × 103 cells/mm2 against Gram-negative (Escherichia coli) and from 1.9 × 105 to 5.6 × 103 bacterial cells/mm2 against Gram-positive (Staphylococcus aureus). Overall, the 3D-printed HAACZ scaffold resulted in mechanical properties, comparable to those of the cancellous bone, interconnected macro- and microporosities, and excellent antibacterial properties, which could be utilized for bone healing.
Collapse
Affiliation(s)
- Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Kartikeya Dixit
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Pankaj Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Suchi Mercy George
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Niraj Sinha
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
13
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
14
|
Afrasiabi S, Partoazar A, Chiniforush N. In vitro study of nanoliposomes containing curcumin and doxycycline for enhanced antimicrobial photodynamic therapy against Aggregatibacter actinomycetemcomitans. Sci Rep 2023; 13:11552. [PMID: 37464015 DOI: 10.1038/s41598-023-38812-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023] Open
Abstract
The excessive inappropriate use of systemic antibiotics has contributed to the emergence of antibiotic-resistant pathogens, which pose a significant risk to the success of treatment. This study has approached this problem by developing doxycycline-loaded liposome doped with curcumin (NL-Cur+Dox) for combination antibacterial therapy against Aggregatibacter actinomycetemcomitans. The characterization of formulation revealed encapsulation of both drugs in NL-Cur+Dox with an average size of 239 nm and sustained release behavior. Transmission electron microscopy analysis confirmed the vesicular-shaped nanocarriers without any aggregation or crystallization. The cytotoxic and hemolytic activities of NL-Cur+Dox were evaluated. The anti-biofilm and anti-metabolic effects of NL-Cur+Dox -mediated antimicrobial photodynamic therapy (aPDT) were examined. The data indicated that NL-Cur+Dox -mediated aPDT led to a significant reduction of biofilm (82.7%, p = 0.003) and metabolic activity (75%, p < 0.001) of A. actinomycetemcomitans compared to the control. NL-Cur+Dox had no significant cytotoxicity to human gingival fibroblast cells under selected conditions (p = 0.074). In addition, the hemolytic activity of NL-Cur+Dox were negligible (< 5%). These findings demonstrate the potential application of such potent formulations in reducing one of the main bacteria causing periodontitis where the NL-Cur+Dox could be exploited to achieve an improved phototherapeutic efficiency.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Shao M, Bigham A, Yousefiasl S, Yiu CKY, Girish YR, Ghomi M, Sharifi E, Sezen S, Nazarzadeh Zare E, Zarrabi A, Rabiee N, Paiva-Santos AC, Del Turco S, Guo B, Wang X, Mattoli V, Wu A. Recapitulating Antioxidant and Antibacterial Compounds into a Package for Tissue Regeneration: Dual Function Materials with Synergistic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207057. [PMID: 36775954 DOI: 10.1002/smll.202207057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/18/2023] [Indexed: 05/11/2023]
Abstract
Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.
Collapse
Affiliation(s)
- Minmin Shao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou, 325000, P. R. China
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), 80125, Naples, Italy
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, 999077, P. R. China
| | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B.G. Nagara, Mandya District, Mandya, Karnataka, 571448, India
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Serena Del Turco
- National Research Council, Institute of Clinical Physiology, 56124, Pisa, Italy
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, 56025, Pontedera, Pisa, Italy
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, P. R. China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, 56025, Pontedera, Pisa, Italy
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| |
Collapse
|
16
|
Lazarevic M, Petrovic S, Pierfelice TV, Ignjatovic N, Piattelli A, Vlajic Tovilovic T, Radunovic M. Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan-Nano-Hydroxyapatite. Biomolecules 2023; 13:biom13040579. [PMID: 37189328 DOI: 10.3390/biom13040579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/17/2023] Open
Abstract
Collagen membranes are routinely used in oral surgery for bone regeneration. Despite their numerous advantages, such as stimulating bone growth, bacterial contamination still remains one of the disadvantages of membrane use. Thus, we assessed the biocompatibility and osteogenic and antibacterial properties of a collagen membrane (OsteoBiol) modified with chitosan (CHI) and hydroxyapatite nanoparticles (HApNPs). Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR FT-IR), X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) were performed for membrane characterization. Biocompatibility was assessed on dental pulp stem cells (DPSCs) by an MTT assay, while the osteogenic effect was assessed by an ALP activity assay and qPCR analysis of osteogenic markers (BMP4, ALP, RUNX2, and OCN). Antimicrobial properties were investigated by counting colony-forming units (CFUs) of Streptococcus mitis, Porphyromonas gingivalis, and Fusobaterium nucleatum on membranes and in the surrounding medium. Membranes showed no cytotoxicity. ALP activity was higher and ALP, BMP4, and OCN genes were up-regulated in DPSCs on modified membranes compared to unmodified membranes. The CFUs were reduced on modified membranes and in the medium. Modified membranes showed great biocompatibility and a high osteoinductive effect. Additionally, they showed antimicrobial and antibiofilm effects against periopathogens. It can be concluded that the incorporation of CHI and hydroxyapatite nanoparticles in collagen membranes may be advantageous to promote osteogenesis and reduce bacterial adhesion.
Collapse
Affiliation(s)
- Milos Lazarevic
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
| | - Sanja Petrovic
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
| | - Tania Vanessa Pierfelice
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Nenad Ignjatovic
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, 11 070 Belgrade, Serbia
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107 Guadalupe, Spain
| | | | - Milena Radunovic
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
| |
Collapse
|
17
|
Afrasiabi S, Chiniforush N. An in vitro study on the efficacy of hydrogen peroxide mediated high-power photodynamic therapy affecting Enterococcus faecalis biofilm formation and dispersal. Photodiagnosis Photodyn Ther 2023; 41:103310. [PMID: 36720360 DOI: 10.1016/j.pdpdt.2023.103310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Biofilms are involved in failure of root canal treatment due to their high resistance to antimicrobial agents, which make their removal as a big challenge. The present study aims at utilizing hydrogen peroxide (HP) plus high frequency laser reinforced antimicrobial photodynamic therapy (a-PDT) as a complementary therapy against Enterococcus faecalis (E. faecalis) at planktonic and biofilm stages. MATERIALS AND METHODS E. faecalis at planktonic and biofilm stages was treated with the photosensitizer HP, followed by no irradiation or irradiation with a power of 2.5 W (ʎ = 980 nm). The cell viability, anti-biofilm, anti-metabolic potential, and temperature changes were evaluated. RESULTS The combination of HP and 980 nm diode laser intensely boosted antibacterial and anti-biofilm efficacy compared with either component alone, affirming HP reinforcement as a bacteriostatic agent. The maximum effect on biofilm occurs in 5.25% sodium hypochlorite (NaOCl) group. During laser irradiations, the mean of temperature changes remains below 5.6 °C. CONCLUSIONS It could be concluded that the HP could improve anti-biofilm efficacy as a photosensitizer in a-PDT.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Zhu B, Li L, Wang B, Miao L, Zhang J, Wu J. Introducing Nanozymes: New Horizons in Periodontal and Dental Implant Care. Chembiochem 2022; 24:e202200636. [PMID: 36510344 DOI: 10.1002/cbic.202200636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of periodontal and peri-implant diseases has been increasing worldwide and has gained a lot of attention. As multifunctional nanomaterials with enzyme-like activity, nanozymes have earned a place in the biomedical field. In periodontics and implantology, nanozymes have contributed greatly to research on maintaining periodontal health and improving implant success rates. To highlight this progress, we review nanozymes for antimicrobial therapy, anti-inflammatory therapy, tissue regeneration promotion, and synergistic effects in periodontal and peri-implant diseases. The future prospects of nanozymes in periodontology and implantology are also discussed along with challenges.
Collapse
Affiliation(s)
- Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Linfeng Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Bao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiangjiexing Wu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
19
|
Abere DV, Ojo SA, Oyatogun GM, Paredes-Epinosa MB, Niluxsshun MCD, Hakami A. Mechanical and morphological characterization of nano-hydroxyapatite (nHA) for bone regeneration: A mini review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Effect of silicon or cerium doping on the anti-inflammatory activity of biphasic calcium phosphate scaffolds for bone regeneration. Prog Biomater 2022; 11:421-430. [PMID: 36224310 DOI: 10.1007/s40204-022-00206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/04/2022] [Indexed: 10/17/2022] Open
Abstract
Biphasic calcium phosphate (BCP) bioceramics composed of hydroxyapatite and β-tricalcium phosphate have attracted considerable attention as ideal bone substitutes for reconstructive surgery, orthopedics, and dentistry, owing to their similar chemical composition to bone mineral and biocompatibility. The addition of trace elements to BCP bioceramics, such as magnesium (Mg), cerium (Ce), and silicon (Si), can alter the physicochemical and biological properties of the resulting materials. To improve the anti-inflammatory activity of a pure BCP scaffold, this study developed a simple wet chemical precipitation and gel-casting method to fabricate microporous BCP scaffolds containing Si or Ce. The BCP scaffolds exhibited interconnected microporous structures with uniform micropores and unequiaxed grains. No changes in the phase composition and microstructure of the scaffolds with the Si or Ce doping were observed. Conversely, Si or Ce doping into the BCP crystal lattice influenced the in vitro biological activity of the scaffolds and the bone-forming ability of the cells cultured on the BCP scaffolds. The results of biological activity assays demonstrated that Ce-BCP promoted cell proliferation and osteogenic differentiation more effectively than the other scaffolds. In particular, Ce-BCP significantly suppressed the expression of bone-active cytokines via the anti-inflammatory and anti-oxidative effects. Therefore, Si- or Ce-doped BCP scaffolds can contribute to providing a new generation of bone graft substitutes.
Collapse
|
21
|
George SM, Nayak C, Singh I, Balani K. Multifunctional Hydroxyapatite Composites for Orthopedic Applications: A Review. ACS Biomater Sci Eng 2022; 8:3162-3186. [PMID: 35838237 DOI: 10.1021/acsbiomaterials.2c00140] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Being a bioactive material, hydroxyapatite (HAp) is regarded as one of the most attractive ceramic biomaterials for bone and hard-tissue replacement and regeneration. Despite its substantial biocompatibility, osteoconductivity, and compositional similarity to that of bone, the employment of HAp is still limited in orthopedic applications due to its poor mechanical (low fracture toughness and bending strength) and antibacterial properties. These significant challenges lead to the notion of developing novel HAp-based composites via different fabrication routes. HAp, when efficaciously combined with functionally graded materials and antibacterial agents, like Ag, ZnO, Co, etc., form composites that render remarkable crack resistance and toughening, as well as enhance its bactericidal efficacy. The addition of different materials and a fabrication method, like 3D printing, greatly influence the porosity of the structure and, in turn, control cell adhesion, thereby enabling biological fixation of the material. This article encompasses an elaborate discussion on different multifunctional HAp composites developed for orthopedic applications with particular emphasis on the incorporation of functionally graded materials and antibacterial agents. The influence of 3D printing on the fabrication of HAp-based scaffolds, and the different in vitro and in vivo studies conducted on these, have all been included here. Furthermore, the present review not only provides insights and broad understanding by elucidating recent advancements toward 4D printing but also directs the reader to future research directions in design and application of HAp-based composite coatings and scaffolds.
Collapse
Affiliation(s)
- Suchi Mercy George
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chinmayee Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Advanced Centre for Materials Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
22
|
From Reparative Surgery to Regenerative Surgery: State of the Art of Porous Hydroxyapatite in Cranioplasty. Int J Mol Sci 2022; 23:ijms23105434. [PMID: 35628245 PMCID: PMC9140937 DOI: 10.3390/ijms23105434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
Decompressive craniectomy is one of the most common neurosurgical procedures, usually performed after neuropathological disorders, such as traumatic brain injury (TBI), but also vascular accidents (strokes), erosive tumours, infections and other congenital abnormalities. This procedure is usually followed by the reconstruction of the cranial vault, which is also known as cranioplasty (CP). The gold-standard material for the reconstruction process is the autologous bone of the patient. However, this is not always a feasible option for all patients. Several heterologous materials have been created in the last decades to overcome such limitation. One of the most prominent materials that started to be used in CP is porous hydroxyapatite. PHA is a bioceramic material from the calcium phosphate family. It is already widely used in other medical specialties and only recently in neurosurgery. In this narrative review of the literature, we summarize the evidence on the use of PHA for cranial reconstruction, highlighting the clinical properties and limitations. We also explain how this material contributed to changing the concept of cranial reconstruction from reparative to regenerative surgery.
Collapse
|
23
|
Strontium- and peptide-modified silicate nanostructures for dual osteogenic and antimicrobial activity. BIOMATERIALS ADVANCES 2022; 135:212735. [PMID: 35929201 DOI: 10.1016/j.bioadv.2022.212735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/29/2022]
Abstract
Developing multifunctional nanostructures that promote bone repair while fighting infection is highly desirable in bone regenerative therapies. Previous efforts have focused on achieving one property or another by altering the chemical makeup of nanostructures or using growth factors or antibiotics. We present nanostructures with several simultaneous functional attributes including positive effects of strontium on bone formation and prevention of osteoclast differentiation along with incorporation of antimicrobial peptides (AMP) to prevent infection. To form these multifunctional nanostructures, mesoporous calcium silicate (CaMSN) was modified with high levels of strontium. For this, CaMSNs were either partially substituted (20 wt% Ca) or completely replaced with strontium (Sr) to form Sr-CaMSN or SrMSN. The mesoporous nature of these bioactive silicate nanostructures rendered a configuration for substantial AMP loading as well as their effective delivery. The physico-chemical and structural characterization of synthesized MSNs confirmed the mesoporous nature of the synthesized MSNs and their total surface area, pore size, pore volume and SBF-mediated bioactivity remained unaltered with the incorporation of Sr. However, biological evaluation confirmed that synthesized SrMSN upregulated osteogenic differentiation of mesenchymal stromal cells and significantly downregulated osteoclast differentiation. Also, the AMP-loaded MSNs prevented formation and growth of methicillin resistant Staphylococcus aureus (MRSA) biofilms. Thus, high Sr-containing AMP-loaded SrMSNs may combat MRSA-associated infection while promoting bone regeneration. The controlled availability of therapeutic Sr and AMP release as SrMSN degrade enables its potential application in bone tissue regeneration.
Collapse
|
24
|
Design, Synthesis, Bioanalytical, Photophysical and Chemo-phototherapeutic Studies of Heteroleptic Cu(II) Complexes. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Becerra J, Rodriguez M, Leal D, Noris-Suarez K, Gonzalez G. Chitosan-collagen-hydroxyapatite membranes for tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:18. [PMID: 35072812 PMCID: PMC8786760 DOI: 10.1007/s10856-022-06643-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/05/2022] [Indexed: 05/17/2023]
Abstract
Tissue engineering is growing in developing new technologies focused on providing effective solutions to degenerative pathologies that affect different types of connective tissues. The search for biocompatible, bioactive, biodegradable, and multifunctional materials has grown significantly in recent years. Chitosan, calcium phosphates collagen, and their combination as composite materials fulfill the required properties and could result in biostimulation for tissue regeneration. In the present work, the chitosan/collagen/hydroxyapatite membranes were prepared with different concentrations of collagen and hydroxyapatite. Cell adhesion was evaluated by MTS assay for two in vitro models. Additionally, cytotoxicity of the different membranes employing hemolysis of erythrocytes isolated from human blood was carried out. The structure of the membranes was analyzed by X-rays diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermal stability properties by thermogravimetric methods (TGA). The highest cell adhesion after 48 h was obtained for chitosan membranes with the highest hydroxyapatite and collagen content. All composite membranes showed good cell adhesion and low cytotoxicity, suggesting that these materials have a significant potential to be used as biomaterials for tissue engineering. Graphical abstract.
Collapse
Affiliation(s)
- José Becerra
- Instituto de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, Ecuador
- Lab. de Materiales, Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela
| | | | - Dayana Leal
- Instituto de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | | | - Gema Gonzalez
- Lab. de Materiales, Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.
- Yachay Tech University, School of Physical Sciences and Nanotechnology, Urcuqui, 100119, Ecuador.
| |
Collapse
|
26
|
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med 2022; 7:e10262. [PMID: 35111954 PMCID: PMC8780931 DOI: 10.1002/btm2.10262] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties. Researchers have developed various RE smart nano-biomaterials for bone tissue engineering and implantology applications in the past two decades. Furthermore, researchers have explored the molecular mechanisms of RE material-mediated tissue regeneration. Recent advances in biomedical applications of micro or nano-scale RE materials have provided a foundation for developing novel, cost-effective bone tissue engineering strategies. This review attempted to provide an overview of RE nanomaterials' technological innovations in bone tissue engineering and implantology and summarized the osteogenic, angiogenic, immunomodulatory, antioxidant, in vivo bone tissue imaging, and antimicrobial properties of various RE nanomaterials, as well as the molecular mechanisms involved in these biological events. Further, we extend to discuss the challenges and prospects of RE smart nano-biomaterials in the field of bone tissue engineering and implantology.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
27
|
Teng NC, Pandey A, Hsu WH, Huang CS, Lee WF, Lee TH, Yang TCK, Yang TS, Yang JC. Rehardening and the Protective Effect of Gamma-Polyglutamic Acid/Nano-Hydroxyapatite Paste on Surface-Etched Enamel. Polymers (Basel) 2021; 13:4268. [PMID: 34883772 PMCID: PMC8659594 DOI: 10.3390/polym13234268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
Many revolutionary approaches are on the way pertaining to the high occurrence of tooth decay, which is an enduring challenge in the field of preventive dentistry. However, an ideal dental care material has yet to be fully developed. With this aim, this research reports a dramatic enhancement in the rehardening potential of surface-etched enamels through a plausible synergistic effect of the novel combination of γ-polyglutamic acid (γ-PGA) and nano-hydroxyapatite (nano-HAp) paste, within the limitations of the study. The percentage of recovery of the surface microhardness (SMHR%) and the surface parameters for 9 wt% γ-PGA/nano-HAp paste on acid-etched enamel were investigated with a Vickers microhardness tester and an atomic force microscope, respectively. This in vitro study demonstrates that γ-PGA/nano-HAp treatment could increase the SMHR% of etched enamel to 39.59 ± 6.69% in 30 min. To test the hypothesis of the rehardening mechanism and the preventive effect of the γ-PGA/nano-HAp paste, the surface parameters of mean peak spacing (Rsm) and mean arithmetic surface roughness (Ra) were both measured and compared to the specimens subjected to demineralization and/or remineralization. After the treatment of γ-PGA/nano-HAp on the etched surface, the reduction in Rsm from 999 ± 120 nm to 700 ± 80 nm suggests the possible mechanism of void-filling within a short treatment time of 10 min. Furthermore, ΔRa-I, the roughness change due to etching before remineralization, was 23.15 ± 3.23 nm, while ΔRa-II, the roughness change after remineralization, was 11.99 ± 3.90 nm. This statistically significant reduction in roughness change (p < 0.05) implies a protective effect against the demineralization process. The as-developed novel γ-PGA/nano-HAp paste possesses a high efficacy towards tooth microhardness rehardening, and a protective effect against acid etching.
Collapse
Affiliation(s)
- Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Aditi Pandey
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
| | - Wei-Hsin Hsu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; (W.-H.H.); (T.C.-K.Y.)
| | - Ching-Shuan Huang
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Tzu-Hsin Lee
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
| | - Thomas Chung-Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; (W.-H.H.); (T.C.-K.Y.)
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan; (A.P.); (T.-H.L.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11052, Taiwan
- Research Center of Digital Oral Science and Technology, Taipei Medical University, Taipei 11052, Taiwan
| |
Collapse
|
28
|
Zhao X, Zhu L, Fan C. Sequential alendronate delivery by hydroxyapatite-coated maghemite for enhanced bone fracture healing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Yousefpour F, Jamaati R, Aval HJ. Synergistic effects of hybrid (HA+Ag) particles and friction stir processing in the design of a high-strength magnesium matrix bio-nano composite with an appropriate texture for biomedical applications. J Mech Behav Biomed Mater 2021; 125:104983. [PMID: 34823088 DOI: 10.1016/j.jmbbm.2021.104983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023]
Abstract
In this work, the effects of hybrid (HA + Ag) particles and triple-pass friction stir processing on the microstructure, texture, hardness, and tensile behavior of magnesium matrix bio-nano composite were investigated. The results showed that the mean grain size of samples was in the range of 1-5 μm owing to the occurrence of dynamic recrystallization and suppression of grain growth by second phase particles. All samples exhibited uniform dispersion of particles in the magnesium matrix caused by triple-pass FSP. However, some agglomerations were visible in the microstructure of AZ91/nHA nanocomposite. The average grain size of the AZ91/nHA/smAg sample (1.4 μm) was smaller than that of the AZ91/nHA/mAg sample (2.1 μm), which was attributed to the formation of higher content of MgxAgy precipitates in the AZ91/nHA/smAg composite. By performing the FSP, the content of Mg17Al12 was significantly decreased due to the dissolution of beta into the alpha caused by the breakup effect of mechanical stirring and temperature increase of samples. The AZ91/nHA/smAg sample had the highest texture parameter for the {101‾1} orientation as the high corrosion resistance texture. This was due to the promoting the non-basal slip caused by the dissolution of smAg particles in the magnesium matrix. After the FSP, the microhardness distribution of AZ91, AZ91/nHA, AZ91/nHA/mAg, and AZ91/nHA/smAg samples tended to be uniform and the average hardness was improved owing to the fragmentation of beta particles, grain refinement, and homogeneous dispersion of second phase particles. Compared with the AZ91/nHA/mAg sample, an increase in ultimate tensile strength (291.7 MPa), and a decrease in total elongation (5.6%) and energy absorption (12.3 J/cm3) were observed in the AZ91/nHA/smAg sample due to the formation of a higher content of the silver-rich precipitates in the AZ91/nHA/smAg sample during cooling caused by the higher solubility of silver submicron particles. The fracture surfaces of all processed samples consisted of a large number of fine equiaxed dimples (ductile fracture) owing to the grain refinement and the presence of fine second phase particles.
Collapse
Affiliation(s)
- Foroozan Yousefpour
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, 47148-71167, Iran
| | - Roohollah Jamaati
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, 47148-71167, Iran.
| | - Hamed Jamshidi Aval
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, 47148-71167, Iran
| |
Collapse
|
30
|
Pandey A, Yang TS, Yang TI, Belem WF, Teng NC, Chen IW, Huang CS, Kareiva A, Yang JC. An Insight into Nano Silver Fluoride-Coated Silk Fibroin Bioinspired Membrane Properties for Guided Tissue Regeneration. Polymers (Basel) 2021; 13:polym13162659. [PMID: 34451200 PMCID: PMC8401509 DOI: 10.3390/polym13162659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023] Open
Abstract
The current work focuses on the development of a novel electrospun silk fibroin (SF) nonwoven mat as a GTR membrane with antibacterial, biomineralization and biocompatible properties. The γ-poly glutamic acid (γ-PGA)-capped nano silver fluoride (NSF) and silver diamine fluoride (SDF) were first synthesized, which were dip-coated onto electrospun silk fibroin mats (NSF-SF and SDF-SF). UV-Vis spectroscopy and TEM depicted the formation of silver nanoparticles. NSF-SF and SDF-SF demonstrated antibacterial properties (against Porphyromonas gingivalis) with 3.1 and 6.7 folds higher relative to SF, respectively. Post-mineralization in simulated body fluid, the NSF-SF effectively promoted apatite precipitation (Ca/P ~1.67), while the SDF-SF depicted deposition of silver nanoparticles, assessed by SEM-EDS. According to the FTIR-ATR deconvolution analysis, NSF-SF portrayed ~75% estimated hydroxyapatite crystallinity index (CI), whereas pure SF and SDF-SF demonstrated ~60%. The biocompatibility of NSF-SF was ~82% when compared to the control, while SDF-coated samples revealed in vitro cytotoxicity, further needing in vivo studies for a definite conclusion. Furthermore, the NSF-SF revealed the highest tensile strength of 0.32 N/mm and 1.76% elongation at break. Therefore, it is substantiated that the novel bioactive and antibacterial NSF-SF membranes can serve as a potential candidate, shedding light on further in-depth analysis for GTR applications.
Collapse
Affiliation(s)
- Aditi Pandey
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan;
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ta-I Yang
- Department of Chemical Engineering, Chung-Yuan Christian University, Taoyuan 32023, Taiwan;
| | - Wendimi Fatimata Belem
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11052, Taiwan; (N.-C.T.); (I.-W.C.); (C.-S.H.)
| | - I-Wen Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11052, Taiwan; (N.-C.T.); (I.-W.C.); (C.-S.H.)
| | - Ching-Shuan Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11052, Taiwan; (N.-C.T.); (I.-W.C.); (C.-S.H.)
| | - Aivaras Kareiva
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania;
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11052, Taiwan;
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11052, Taiwan; (N.-C.T.); (I.-W.C.); (C.-S.H.)
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11052, Taiwan
- Research Center of Digital Oral Science and Technology, Taipei Medical University, Taipei 11052, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 5124); Fax: +886-2-27362295
| |
Collapse
|
31
|
Effect of Cerium-Containing Hydroxyapatite in Bone Repair in Female Rats with Osteoporosis Induced by Ovariectomy. MINERALS 2021. [DOI: 10.3390/min11040377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a public health problem, with bone loss being the main consequence. Hydroxyapatite (HA) has been largely used as a bioceramic to stimulate bone growth. In our work, a cerium-containing HA (Ce-HA) has been proposed and its effects on the antimicrobial and bone-inducing properties were investigated. The synthesis of the materials occurred by the suspension–precipitation method (SPM). The XRD (X-ray Diffraction) confirmed the crystalline phase, and the Rietveld refinement confirmed the crystallization of HA and Ce-HA in a hexagonal crystal structure in agreement with ICSD n° 26205. Characterizations by FT-IR (Fourier Transform Infrared Spectroscopy), XPS (X-ray Photoemission Spectroscopy), and FESEM-EDS (Field Emission Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy) confirmed the presence of cerium (Ce3+ and Ce4+). The antibacterial activity of Has was evaluated against Staphylococcus aureus 25,923 and Escherichia coli 25,922 strains, which revealed that the material has antimicrobial properties and the cytotoxicity assay indicated that Ce-containing HA was classified as non-toxic. The effects of Ce-HA on bone repair, after application in bone defects in the tibia of female rats with osteoporosis induced by ovariectomy (OVX), were evaluated. After 15 and 30 days of implantation, the samples were analyzed by Raman, histology and X-ray microtomography. The results showed that the animals that had the induced bone defects filled with the Ce-HA materials had more expressive bone neoformation than the control group.
Collapse
|
32
|
Chen ZY, Gao S, Zhang YW, Zhou RB, Zhou F. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B 2021; 9:2594-2612. [PMID: 33666632 DOI: 10.1039/d0tb02983a] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone infection is a devastating disease characterized by recurrence, drug-resistance, and high morbidity, that has prompted clinicians and scientists to develop novel approaches to combat it. Currently, although numerous biomaterials that possess excellent biocompatibility, biodegradability, porosity, and mechanical strength have been developed, their lack of effective antibacterial ability substantially limits bone-defect treatment efficacy. There is, accordingly, a pressing need to design antibacterial biomaterials for effective bone-infection prevention and treatment. This review focuses on antibacterial biomaterials and strategies; it presents recently reported biomaterials, including antibacterial implants, antibacterial scaffolds, antibacterial hydrogels, and antibacterial bone cement types, and aims to provide an overview of these antibacterial materials for application in biomedicine. The antibacterial mechanisms of these materials are discussed as well.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
33
|
Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 2021; 9:12. [PMID: 33574225 PMCID: PMC7878740 DOI: 10.1038/s41413-020-00131-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
The demand for biomaterials that promote the repair, replacement, or restoration of hard and soft tissues continues to grow as the population ages. Traditionally, smart biomaterials have been thought as those that respond to stimuli. However, the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials. This review presents a redefinition of the term "Smart Biomaterial" and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration. To clarify the use of the term "smart biomaterials", we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit, defining these materials as inert, active, responsive, and autonomous. Then, we present an up-to-date survey of applications of smart biomaterials for hard tissues, based on the materials' responses (external and internal stimuli) and their use as immune-modulatory biomaterials. Finally, we discuss the limitations and obstacles to the translation from basic research (bench) to clinical utilization that is required for the development of clinically relevant applications of these technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Yu Du
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anthony L Gianforcaro
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Peter I Lelkes
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA.
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
34
|
Hou J, Liu Y, Han Z, Song D, Zhu B. Silver-hydroxyapatite nanocomposites prepared by three sequential reaction steps in one pot and their bioactivities in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111655. [PMID: 33545823 DOI: 10.1016/j.msec.2020.111655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite (HA) combined with antimicrobial agents for biomedical application can effectively avoid the bacteria infection, while HA have the good performance. In this study, we prepared silver-hydroxyapatite (Ag-HA) nanocomposites using a one-pot method consisting of three sequential steps of wet chemical precipitation, ion exchange, and a silver mirror reaction. The HA nanoparticles used as the precursor for Ag ion doping were first synthesised by wet chemical precipitation. Next, Ag+ absorbed on HA surface through ion exchange reaction. Glucose was then added to initiate the silver mirror reaction, which made the Ag+ ions reduce to Ag0 and Ag nanoparticles in situ formed on HA nanoparticles. Subsequently, Ag-HA nanocomposites with different Ag content were prepared. X-ray diffraction, SEM, EDX mapping and TEM imaging confirmed that spherical Ag nanoparticles ~20-40 nm in diameter were adhered to the surface of HA nano-rods (0.4-0.8 μm in length and 15-40 nm in diameter). The Ag content (1.9-15.2 wt%) in the Ag-HA nanocomposites was adjusted by varying the feeding Ag/Ca molar ratio (2.0-20%). The cell viability evaluation in vitro proved that Ag-HA nanocomposites had low cytotoxicity to L929 normal cells. Meanwhile, the antibacterial examinations in vitro demonstrated that Ag-HA nanocomposites had obvious antibacterial effects on Gram-positive bacteria, Gram-negative bacteria, and fungus. The antibacterial results were dose-dependent on the accumulation of silver content. The Ag-HA nanocomposites loaded PMMA resins also demonstrated a potential antibacterial activity against S. mutans. This paper presents a convenient and bio-friendly approach for preparing Ag-HA nanocomposites with adjustable Ag content, which are a promising material for biomedical applications.
Collapse
Affiliation(s)
- Jingwen Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongjia Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihui Han
- Department of Stomatology, Xuhui Central Hospital, 996 Huaihaizhong Road, Shanghai 200031, China.
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, China
| | - Bangshang Zhu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
35
|
Lima F, Melo WG, Braga MDF, Vieira E, Câmara JV, Pierote JJ, Argôlo Neto N, Silva Filho E, Fialho AC. Chitosan-based hydrogel for treatment of temporomandibular joint arthritis. POLIMEROS 2021. [DOI: 10.1590/0104-1428.20210026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
张 一, 张 宪, 胡 中, 任 兴, 王 茜, 王 志. [Research progress on antibacterial properties of porous medical implant materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1478-1485. [PMID: 33191710 PMCID: PMC8171714 DOI: 10.7507/1002-1892.202001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/05/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The antibacterial properties of porous medical implant materials were reviewed to provide guidance for further improvement of new medical implant materials. METHODS The literature related to the antibacterial properties of porous medical implant materials in recent years was consulted, and the classification, characteristics and applications, and antibacterial methods of porous medical implant materials were reviewed. RESULTS Porous medical implant materials can be classified according to surface pore size, preparation process, degree of degradation in vivo, and material source. It is widely used in the medical field due to its good biocompatibility and biomechanical properties. Nevertheless, the antibacterial properties of porous medical implant materials themselves are not obvious, and their antibacterial properties need to be improved through structural modification, overall modification, and coating modification. CONCLUSION At present, coating modification as the mainstream modification method for improving the antibacterial properties of porous medical materials is still a research hotspot. The introduction of new antibacterial substances provides a new perspective for the development of new coated porous medical implant materials, so that the porous medical implant materials have a more reliable antibacterial effect while taking into account biocompatibility.
Collapse
Affiliation(s)
- 一 张
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 宪高 张
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 中岭 胡
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 兴宇 任
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 茜 王
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
| | - 志强 王
- 华北理工大学附属医院骨科(河北唐山 063000)Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China
- 华北理工大学临床医学院(河北唐山 063000)School of Clinical Medicine, North China University of Science and Technology, Tangshan Hebei, 063000, P.R.China
| |
Collapse
|
37
|
Behera R, Das A, Hasan A, Pamu D, Pandey L, Sankar M. Deposition of biphasic calcium phosphate film on laser surface textured Ti–6Al–4V and its effect on different biological properties for orthopedic applications. JOURNAL OF ALLOYS AND COMPOUNDS 2020; 842:155683. [DOI: 10.1016/j.jallcom.2020.155683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
38
|
Li H, Xia P, Pan S, Qi Z, Fu C, Yu Z, Kong W, Chang Y, Wang K, Wu D, Yang X. The Advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics. Int J Nanomedicine 2020; 15:7199-7214. [PMID: 33061376 PMCID: PMC7535115 DOI: 10.2147/ijn.s270229] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The ongoing biomedical nanotechnology has intrigued increasingly intense interests in cerium oxide nanoparticles, ceria nanoparticles or nano-ceria (CeO2-NPs). Their remarkable vacancy-oxygen defect (VO) facilitates the redox process and catalytic activity. The verification has illustrated that CeO2-NPs, a nanozyme based on inorganic nanoparticles, can achieve the anti-inflammatory effect, cancer resistance, and angiogenesis. Also, they can well complement other materials in tissue engineering (TE). Pertinent to the properties of CeO2-NPs and the pragmatic biosynthesis methods, this review will emphasize the recent application of CeO2-NPs to orthopedic biomedicine, in particular, the bone tissue engineering (BTE). The presentation, assessment, and outlook of the orthopedic potential and shortcomings of CeO2-NPs in this review expect to provide reference values for the future research and development of therapeutic agents based on CeO2-NPs.
Collapse
Affiliation(s)
- Hongru Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Ziyuan Yu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yuxin Chang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Kai Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Dankai Wu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
39
|
Verma AS, Sharma A, Kumar A, Mukhopadhyay A, Kumar D, Dubey AK. Multifunctional Response of Piezoelectric Sodium Potassium Niobate (NKN)-Toughened Hydroxyapatite-Based Biocomposites. ACS APPLIED BIO MATERIALS 2020; 3:5287-5299. [DOI: 10.1021/acsabm.0c00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alok Singh Verma
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ankur Sharma
- High Temperature and Energy Materials Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India
| | - Ajay Kumar
- High Temperature and Energy Materials Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India
| | - Amartya Mukhopadhyay
- High Temperature and Energy Materials Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India
| | - Devendra Kumar
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
40
|
Development and characterization of antibacterial hydroxyapatite coated with mangosteen extract for bone tissue engineering. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03284-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Toxicological Profile of Nanostructured Bone Substitute Based on Hydroxyapatite and Poly(lactide-co-glycolide) after Subchronic Oral Exposure of Rats. NANOMATERIALS 2020; 10:nano10050918. [PMID: 32397466 PMCID: PMC7279500 DOI: 10.3390/nano10050918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 01/18/2023]
Abstract
Novel three-dimensional (3D) nanohydroxyapatite-PLGA scaffolds with high porosity was developed to better mimic mineral component and microstructure of natural bone. To perform a final assessment of this nanomaterial as a potential bone substitute, its toxicological profile was particularly investigated. Therefore, we performed a comet assay on human monocytes for in vitro genotoxicity investigation, and the systemic subchronic toxicity investigation on rats being per oral feed with exactly administrated extract quantities of the nano calcium hydroxyapatite covered with tiny layers of PLGA (ALBO-OS) for 120 days. Histological and stereological parameters of the liver, kidney, and spleen tissue were analyzed. Comet assay revealed low genotoxic potential, while histological analysis and stereological investigation revealed no significant changes in exposed animals when compared to controls, although the volume density of blood sinusoids and connective tissue, as well as numerical density and number of mitosis were slightly increased. Additionally, despite the significantly increased average number of the Ki67 and slightly increased number of CD68 positive cells in the presence of ALBO-OS, immunoreactive cells proliferation was almost neglected. Blood analyses showed that all of the blood parameters in rats fed with extract nanomaterial are comparable with corresponding parameters of no feed rats, taken as blind probe. This study contributes to the toxicological profiling of ALBO-OS scaffold for potential future application in bone tissue engineering.
Collapse
|
42
|
Behera RR, Das A, Hasan A, Pamu D, Pandey LM, Sankar MR. Effect of TiO 2 addition on adhesion and biological behavior of BCP-TiO 2 composite films deposited by magnetron sputtering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111033. [PMID: 32994014 DOI: 10.1016/j.msec.2020.111033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
The present investigation focuses on the deposition of biphasic calcium phosphate (BCP) and titania (TiO2) composite films on Ti-6Al-4V substrates using radio frequency (RF) magnetron sputtering. Three different compositions such as 100% BCP, 25% TiO2-75% BCP and 50% TiO2-50% BCP films were fabricated, and the physical, mechanical and biological behaviors of the films were analyzed. Post deposition, the films were annealed at 700 °C for 2 h to induce the crystallinity and to study its effect on different properties. The wettability was found to be 95°(±3°) for 100% BCP, 73°(±2°) for 25% TiO2-75% BCP and 35°(±1°) for 50% TiO2-50% BCP films, indicating improvement in wettability with an increase of TiO2 weight percent in the composite films. The value of critical load (Lc2) for 100 BCP film improved from 8.7 N to 14.8 N (25 TiO2-BCP) and >19 N (50 TiO2-BCP film), indicating improvement in bonding strength with TiO2 addition. The fetal bovine serum (FBS) adsorption decreased from 7.11 ± 0.25 to 4.42 ± 0.17 μg/cm2 with TiO2 weight percent from 0 to 50%. Cell adhesion and proliferation significantly improved in 100% BCP, 25% TiO2-75% BCP and 50% TiO2-50% BCP films as compared to uncoated Ti-6Al-4V. The maximum cell proliferation was found on the surface of 50% TiO2-50% BCP film (210.1 ± 6.5%) after 6 days of incubation. However, after annealing all the films exhibited less cell adhesion and cytocompatibility presumably due to change in composition. Globular apatite structure was observed on all modified surfaces after 7 days immersion in simulated body fluid (SBF); however, the growth rate was higher for 50 TiO2-BCP films. All these results revealed that the addition of TiO2 in BCP film (without annealing) is advantageous for improving the bonding strength as well as the bioactivity of implants, which can be used for long-term dental and orthopedic applications.
Collapse
Affiliation(s)
- R R Behera
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; School of Mechanical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India.
| | - A Das
- Department of Physics, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - A Hasan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - D Pamu
- Department of Physics, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - L M Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - M R Sankar
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh 517506, India.
| |
Collapse
|
43
|
Valente KP, Brolo A, Suleman A. From Dermal Patch to Implants-Applications of Biocomposites in Living Tissues. Molecules 2020; 25:E507. [PMID: 31991641 PMCID: PMC7037691 DOI: 10.3390/molecules25030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
Composites are composed of two or more materials, displaying enhanced performance and superior mechanical properties when compared to their individual components. The use of biocompatible materials has created a new category of biocomposites. Biocomposites can be applied to living tissues due to low toxicity, biodegradability and high biocompatibility. This review summarizes recent applications of biocomposite materials in the field of biomedical engineering, focusing on four areas-bone regeneration, orthopedic/dental implants, wound healing and tissue engineering.
Collapse
Affiliation(s)
| | - Alexandre Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Afzal Suleman
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
44
|
Kalantari E, Naghib SM, Iravani NJ, Esmaeili R, Naimi-Jamal MR, Mozafari M. Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO 4) for biomedical application: Synthesis, characterization, and biological studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:109912. [PMID: 31546348 DOI: 10.1016/j.msec.2019.109912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 02/04/2023]
Abstract
In this study, a simple and facile strategy was developed for the synthesis of novel hydroxyapatite (HA)/nanostructured monticellite ceramic composites by mechanical method. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) were used to peruse the phase structure, and morphology of soaked ceramic composites in simulated body fluid (SBF). The in vitro bioactivity of HA-based ceramic composites with nanostructured monticellite ranging from 0 to 50 wt% was evaluated via investigating the formation ability of bone-like calcium phosphates in SBF and the effect of obtained extracts from composites dissolution on osteoblast-like G-292 cell line. Moreover, In vitro cytocompatibility of the HA/monticellite ceramic composites was investigated by MTT, cell growth & adhesion and alkaline phosphatase (ALP) activity assays, and quantitative real-time PCR analysis. The results showed that HA/nanostructured monticellite ceramic composites could induce apatite formation in SBF. The cell proliferation and growth exposed to ceramic composites extracts were significantly stimulated and promoted at a certain concentration range compared to control for various time periods of cell culture. The optimized composite extract enhanced considerably gene expression of G-292 type X collagen (COLX) at different days. Also, G-292 cells were spread and adhered well on the ceramic composite disc. Furthermore, ALP activity of G-292 cells exposed to ceramic composites extracts was dramatically enhanced in comparison with pure HA extract (as control) at different concentrations for various time periods of cell culture. The results suggest that the optimized HA/nanostructured monticellite composite is promising biomaterial for clinical applications such as orthopedic and dentistry.
Collapse
Affiliation(s)
- Erfan Kalantari
- Nanobiotechnology Engineering Division, Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran; Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanobiotechnology Engineering Division, Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Narges Jafarbeik Iravani
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - M Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
45
|
Affiliation(s)
- Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of EducationSchool of Mechanical EngineeringTianjin UniversityTianjin300354People's Republic of China
| |
Collapse
|
46
|
Wieszczycka K, Staszak K, Woźniak-Budych MJ, Jurga S. Lanthanides and tissue engineering strategies for bone regeneration. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Homoleptic and heteroleptic silver(I) complexes bearing diphosphane and thioamide ligands: Synthesis, structures, DNA interactions and antibacterial activity studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:450-459. [DOI: 10.1016/j.msec.2019.01.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/28/2018] [Accepted: 01/23/2019] [Indexed: 01/16/2023]
|
48
|
Esmaeilkhanian A, Sharifianjazi F, Abouchenari A, Rouhani A, Parvin N, Irani M. Synthesis and Characterization of Natural Nano-hydroxyapatite Derived from Turkey Femur-Bone Waste. Appl Biochem Biotechnol 2019; 189:919-932. [PMID: 31144255 DOI: 10.1007/s12010-019-03046-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 12/27/2022]
Abstract
Hydroxyapatite (HAp) is a bioactive and vital material which has found many applications in the biomedical and clinical fields. This bio-ceramic powder can be synthesized via different bio-waste materials. In this study, the production of natural nanohydroxyapatite was produced through calcination of untreated turkey femur-bone waste powder at 850 °C followed by ball milling the powder. The obtained powder was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. The morphology, size, and elemental composition of obtained turkey hydroxyapatite (THA) particles were investigated by scanning electron microcopy (SEM), transmission electron microcopy (TEM), and energy dispersive spectroscopy (EDS) analysis, in which the average particle size of ball milled THA was found to be about 85 nm with a Ca/P ratio of 1.63. The powder was then cold pressed and later sintered at 850, 950, 1050, and 1150 °C to evaluate its mechanical properties in terms of compressive strength and hardness. The results revealed that the strength and hardness of the samples increased by increasing the sintering temperature up to 1150 °C. Finally, the maximum values of hardness and compressive strength of the sintered THA were obtained at 1150 °C (37.44 MPa and 3.2 GPa, respectively).
Collapse
Affiliation(s)
| | - Fariborz Sharifianjazi
- Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Aliasghar Abouchenari
- Department of Material Science and Engineering, Shahid Bahonar University of Kerman, Kerman, 7618868366, Iran
| | - Amirreza Rouhani
- Department of Mechanical, Industrial & Aerospace Engineering, Concordia University, Montreal, Canada
| | - Nader Parvin
- Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Irani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
49
|
Fabrication and Performance of ZnO Doped Tantalum Oxide Multilayer Composite Coatings on Ti6Al4V for Orthopedic Application. NANOMATERIALS 2019; 9:nano9050685. [PMID: 31052573 PMCID: PMC6566857 DOI: 10.3390/nano9050685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 01/11/2023]
Abstract
Ti6Al4V titanium alloy has been widely used as medical implant material in orthopedic surgery, and one of the obstacles preventing it from wide use is toxic metal ions release and bacterial implant infection. In this paper, in order to improve corrosion resistance and antibacterial performance of Ti6Al4V titanium alloy, ZnO doped tantalum oxide (TaxOy) multilayer composite coating ZnO-TaxOy/TaxOy/TaxOy-TiO2/TiO2/Ti (ZnO-TaxOy) was deposited by magnetron sputtering at room temperature. As a comparison, monolayer TaxOy coating was prepared on the surface of Ti6Al4V alloy. The morphology and phase composition of the coatings were investigated by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), the elemental chemical states of coating surfaces were investigated by X-ray photoelectron spectroscope (XPS). The adhesion strength and corrosion resistance of the coatings were examined by micro-scratch tester and electrochemical workstations, respectively. The results show that the adhesion strength of multilayer ZnO-TaxOy coating is 16.37 times higher than that of single-layer TaxOy coating. The ZnO-TaxOy composite coating has higher corrosion potential and lower corrosion current density than that of TaxOy coating, showing better corrosion inhibition. Furthermore, antibacterial test revealed that multilayer ZnO-TaxOy coating has a much better antibacterial performance by contrast.
Collapse
|
50
|
Yang Z, Gao X, Zhou M, Kuang Y, Xiang M, Li J, Song J. Effect of metformin on human periodontal ligament stem cells cultured with polydopamine‐templated hydroxyapatite. Eur J Oral Sci 2019; 127:210-221. [DOI: 10.1111/eos.12616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Zun Yang
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Xiang Gao
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Mengjiao Zhou
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Yunchun Kuang
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Mingli Xiang
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Jie Li
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Jinlin Song
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| |
Collapse
|