1
|
Yan X, Lin Z, Shen H, Chen Y, Chen L. Photo-responsive antibacterial metal organic frameworks. J Mater Chem B 2025. [PMID: 40370037 DOI: 10.1039/d5tb00105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The misuse and overuse of antibiotics have caused the emergence of antibiotic-resistant bacteria, making bacterial infections more challenging. The increasing prevalence of multidrug-resistant pathogens has driven researchers to explore novel therapeutic strategies. Phototherapy strategies that utilize photo-responsive biomaterials for their antibacterial properties have gained widespread attention due to their capability of precisely controlling bacterial inactivation with minimal side effects. Despite their potential, photodynamic therapies suffer from phototoxicity and low efficiency of photosensitizers, while photothermal therapy risks overheating, which may harm healthy tissues, thus restricting its broader application. Metal organic frameworks (MOFs) have unique physicochemical properties, which provide a promising way to deal with these challenges. MOFs can function as reservoirs, loading and releasing antibacterial agents, such as antibiotics or metal ions, upon light illumination by virtue of their metastable coordination bonds. Their porous structures enable controlled drug release and encapsulation of photosensitizers. Furthermore, MOFs' tunable composition and pore structure allow for the light-triggered generation of heat and reactive oxygen species, enhancing their antibacterial effectiveness. By doping MOFs with functional materials, it is possible to achieve multi-mode antibacterial effects. In this review, we will outline recent advancements of photo-responsive antibacterial MOFs, categorize their underlying mechanisms of action and highlight their prospects in addressing bacterial resistance.
Collapse
Affiliation(s)
- Xiaojie Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Zhengzheng Lin
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - He Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Liang Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
2
|
Dey SS, Hossain MS, Sarkar R, Tazim TQ, Paul T, Siddique S, Humaira N, Hasanuzzaman M, Chowdhury A. Green synthesis of silver-modified bacterial cellulose with enhanced antimicrobial activity for advanced biomedical application. Int J Biol Macromol 2025; 307:141849. [PMID: 40064266 DOI: 10.1016/j.ijbiomac.2025.141849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
In this study, pure BC was biosynthesized and modified with silver (Ag) impregnation under an eco-friendly photocatalytic reduction reaction. For BC production, Acetobacter sp. was isolated from raw mango vinegar produced by the fermentation process under optimized conditions. The Ag-doped BC (BCAg) was characterized and confirmed using XRD, STA, FTIR, SEM, and EDS. The SEM and EDS data showed the aggregation of silver ions on the surface of a web-like cellulose fiber network and silver deposition is proportional to the increasing dose of AgNO3 treatment. The functionalized BCAg showed high hemocompatibility and tremendous activity against pathogenic bacteria and fungi. A clear zone of inhibition was observed against Listeria monocytogenes, Staphylococcus aureus, Salmonella abony, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans under the lowest BCAg concentration (0.0001 M treated). Whereas, in the long-term inhibition assay all concentrations of BCAg exhibited complete growth inhibition of the pathogens for 20 h and BCAg 0.01 M inhibited the growth of L. monocytogenes, S. abony, and C. albicans for over 100 h within the moist condition. Therefore, considering the extensive, long-term, and persistent bacteriostatic activity of synthesized silver doped-BC, it has a notable future in wound healing or other biomedical applications.
Collapse
Affiliation(s)
- Subarna Sandhani Dey
- Food Microbiology Research Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Rajib Sarkar
- Food Microbiology Research Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Tasnimul Quader Tazim
- Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Naokhali, Bangladesh
| | - Trisha Paul
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shahariar Siddique
- Food Microbiology Research Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Nujhat Humaira
- Food Microbiology Research Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Hasanuzzaman
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Abhijit Chowdhury
- Food Microbiology Research Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh; Central Analytical and Research Facilities (CARF), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
| |
Collapse
|
3
|
Khan SK, Dutta J, Rather MA, Ahmad I, Nazir J, Khan IA, Wani GB. Silver nanoparticle toxicity in rainbow trout: insights into physiological and molecular responses. Toxicol Mech Methods 2025; 35:382-397. [PMID: 39697068 DOI: 10.1080/15376516.2024.2441952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Metallic nanoparticles, with their large surface area to volume ratio, are increasingly important in various life fields, but they can cause varying toxic effects on fish. This study investigates the toxicological effects of silver nanoparticles (AgNPs) on rainbow trout (Oncorhynchus mykiss), focusing on hematological, biochemical, antioxidant, and histopathological changes. Fish were exposed to varying concentrations of AgNPs (0.2, 0.8, and 1.4 mg/L) for 21 days. Hematological analysis revealed significant reductions in red blood cell (RBC) counts, hemoglobin (Hb), and hematocrit (HCT) at higher AgNPs concentrations, while white blood cell (WBC) counts increased, indicating immune system activation. Biochemical assays demonstrated dose-dependent decreases in total protein and albumin, alongside increased cholesterol and triglyceride levels, suggesting impaired liver function and disrupted lipid metabolism. Antioxidant enzyme activity (SOD, CAT, GST) initially increased at lower AgNPs concentrations but declined at higher exposures, indicating oxidative stress. Molecular analysis further supported these findings, with upregulation of oxidative stress-related genes (SOD1, CAT) and inflammatory markers (HSP70, IL-1β). Histopathological examinations revealed necrosis, hyperplasia, and lamellar fusion in the gills, along with significant liver damage, including vacuolation and Kupffer cell proliferation, particularly at the highest exposure. Behavioral assays showed erratic swimming and reduced feeding in fish exposed to higher AgNPs concentrations. This study highlights the dose-dependent toxic effects of AgNPs on rainbow trout and underscores the potential for long-term, possibly irreversible damage at higher exposure levels. These findings emphasize the need for stricter environmental regulations on nanoparticle use to mitigate their ecological impact.
Collapse
Affiliation(s)
- Saba Khursheed Khan
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, SKUAST-Kashmir, Srinagar, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, SKUAST-Kashmir, Srinagar, India
| | - Junaid Nazir
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, India
| | - Irfan Ahmad Khan
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, SKUAST-Kashmir, Srinagar, India
| | - Gohar Bilal Wani
- Division of Fishery Engineering, Faculty of Fisheries Ganderbal, SKUAST-Kashmir, Srinagar, India
| |
Collapse
|
4
|
Hodkovicova N, Machacek M, Cahova J, Consolacion J, Siwicki A, Pejsak Z, Svoboda M. The use of silver nanoparticles in pigs - An invited review. VET MED-CZECH 2025; 70:77-92. [PMID: 40248331 PMCID: PMC12001875 DOI: 10.17221/101/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
Silver nanoparticles (AgNPs) have attracted significant interest in veterinary medicine due to their unique properties, including enhanced stability, greater antimicrobial efficacy, and reduced toxicity compared to traditional silver salts. Their applications span various areas of veterinary practice, such as dermatology, wound management, infection prevention, drug delivery, and disinfection. This review explores their use in pigs, highlighting their role as feed additives to prevent diarrhoea, as antibacterial agents in semen extenders, and veterinary dermatology. AgNPs possess broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria, positioning them as a promising alternative to antibiotics in addressing antibiotic resistance. Additionally, AgNPs have shown antiviral potential, though the exact mechanism of action remains unclear. The review examines the antibacterial and antiviral properties of AgNPs, their utility in facility sanitation, and their potential toxicity to pigs. While AgNPs offer significant benefits in veterinary applications, concerns about their toxicity persist. Efforts to reduce this toxicity, such as surface modifications or combining AgNPs with other substances, are under investigation. Further research is essential to fully understand the potential applications and safety of AgNPs in pig medicine.
Collapse
Affiliation(s)
- Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Miroslav Machacek
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jana Cahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jerico Consolacion
- Department of Agricultural Sciences, College of Agriculture, Forestry, and Environmental Sciences, Mindanao State University at Naawan, Naawan, Philippines
- Department of Animal Science and Food Processing, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Zygmunt Pejsak
- Faculty of Veterinary Medicine, Agriculture University, Krakow, Poland
| | - Martin Svoboda
- Ruminant and Swine Clinic, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
5
|
Prajapati D, Jabborova D, Saharan BS, Singh N, Patani A, Singh S, Joshi C. Bionanotechnology: A Paradigm for Advancing Environmental Sustainability. Indian J Microbiol 2025; 65:306-332. [PMID: 40371027 PMCID: PMC12069183 DOI: 10.1007/s12088-024-01389-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/28/2024] [Indexed: 05/16/2025] Open
Abstract
The urgent need for innovative solutions to global environmental challenges has driven the convergence of biology and nanotechnology, resulting in the emergence of bionanotechnology as a transformative force. This comprehensive review paper explores the fundamental principles, applications, benefits, and potential risks associated with harnessing bionanotechnology to advance environmental sustainability. Beginning with an elucidation of the fundamental concepts underlying bionanotechnology, this paper establishes the synergy between biological systems and nanomaterials. The unique properties of nanomaterials, coupled with the adaptability of biological processes, form the foundation for a diverse array of real-world applications. Focusing on applications, the paper highlights how bionanotechnology addresses critical environmental issues. It showcases case studies that exemplify its impact on water purification, air quality improvement, waste management, renewable energy production, and more. These case studies underscore the tangible benefits and efficacy of bionanotechnology in tackling complex challenges. However, as the potential of bionanotechnology is harnessed, it is crucial to navigate potential ecological risks. The paper emphasizes the importance of ecotoxicological considerations, discussing how nanomaterials interact with ecosystems and organisms. Ethical and responsible development of bionanotechnology, informed by these considerations, ensures that its benefits are maximized while minimizing potential harm. In conclusion, this review paper underscores bionanotechnology's potential to revolutionize environmental sustainability. By fusing the power of nanomaterials and biology, bionanotechnology offers a holistic approach to address pressing global challenges. While celebrating its transformative promise, the paper emphasizes the need for a balanced approach that safeguards environmental health. As society looks towards a more sustainable future, bionanotechnology stands as a pivotal paradigm for shaping an environmentally conscious world.
Collapse
Affiliation(s)
- Dharmendra Prajapati
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, 111208 Kibray, Uzbekistan
| | | | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Anil Patani
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| | - Chinmayi Joshi
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| |
Collapse
|
6
|
Zheltonozhskaya T, Akopova O, Dąbrowska I, Permyakova N, Klepko V, Klymchuk D. Hybrid nanocarriers with different densities of silver nanoparticles formation features and antimicrobial properties. Sci Rep 2025; 15:6757. [PMID: 40000675 PMCID: PMC11862223 DOI: 10.1038/s41598-025-89021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
This work presents the synthesis and characterization of silica/polyacrylamide hybrid carriers Hyb1 and Hyb2 containing different amounts and lengths of grafted PAAm chains, as well as the formation mechanism, structure, and antibacterial efficacy of their nanocomposites with silver nanoparticles (AgNPs). The main difference between Hyb1 and Hyb2 carriers, such as the thickness and permeability of the PAAm "corona", is highlighted. Using the methods of potentiometry, UV-Vis spectroscopy, TEM and viscometry, the influence of the hybrid structure and concentration of reagents on the two-stage process of reduction of Ag+ ions with sodium borohydride in Hyb1-2 aqueous solutions was established. A strong binding of Ag+ ions to both hybrid matrices at the first stage of reduction and a significant influence of the concentration of Ag-salt (and reducing agent) on the rate of accumulation and yield of AgNPs at the second stage were shown. The presence of two types of AgNPs (internal and external) in the resulting nanocomposites was revealed, resulting from the reduction process both in the internal space of the hybrid "corona" and on its surface. The average size of external AgNPs was larger than internal ones and increased with increasing concentration of Ag-salt (and reducing agent). The role of purification in creating more uniform AgNP/Hyb nanocomposites is demonstrated. High antibacterial effectiveness against S. aureus, E. coli, and P. aeruginosa was established using well diffusion and broth microdilution methods. The obtained MIC values ~ (1.25-2.5)·10-3 kg/m3) are compared to those of potent antibiotics such as ciprofloxacin, ceftriaxone and tetracycline.
Collapse
Affiliation(s)
- Tatyana Zheltonozhskaya
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine.
| | - Olga Akopova
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., Kiev, 01601, Ukraine
| | - Irena Dąbrowska
- Institute of Biology and Medicine of the Taras Shevchenko National University of Kyiv, 2 Hlushkova Avenue, Kyiv, 03127, Ukraine
| | - Nataliya Permyakova
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine
| | - Valeriy Klepko
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Shosse, Kyiv, 02160, Ukraine
| | - Dmitro Klymchuk
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereschenkovska Str., Kyiv, 01601, Ukraine
| |
Collapse
|
7
|
Yin T, Li Q, Sun H, Zheng J, Wang Y, Luo Y, Wang L. In vitro evaluation of hypochlorous acid-silver nanoparticle waterline disinfectant for dental unit waterline disinfection. BMC Chem 2025; 19:25. [PMID: 39871300 PMCID: PMC11773736 DOI: 10.1186/s13065-025-01382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND This work intended to assess the disinfection efficacy of hypochlorous acid (HA) and silver nanoparticles (AgNP) disinfectants in disinfecting the dental unit waterlines (DUWL) during comprehensive oral treatment and explore their potential applications in the oral medical environment. METHODS Firstly, AgNP solution was prepared and evaluated through X-ray diffraction (XRD), field emission transmission electron microscope (FE-TEM), and stability tests. Subsequently, 15 dental units were selected and randomly assigned to three groups, each receiving a different disinfection method. Specifically, one group (5 units) received HA disinfectant (HA group), one group (5 units) received AgNP disinfectant (AgNP group), and another group (5 units) received a combination of HA and AgNP disinfectant (HA + AgNP group). Bacterial counts before and after disinfection were compared and analyzed at four sites on the dental units: high-speed handpiece tubing, mouthwash, ultrasonic scaler, and three-way syringe. RESULTS The growth of biofilm on the waterlines was observed using scanning electron microscopy (SEM) and laser confocal microscopy (LCM). The results indicated that AgNP solution was successfully prepared and demonstrated excellent stability. There was no significant difference in the average weekly number of patients treated across the three groups (P > 0.05). After disinfection, bacterial counts were significantly reduced in all groups. Compared to the HA and AgNP groups, the HA + AgNP group exhibited a markedly lower bacterial count, with statistical significance (P < 0.05). The compliance rates observed during the first disinfection and two weeks post-disinfection were slightly lower in the HA and AgNP groups compared to the HA + AgNP group, although no significant statistical difference was found (P > 0.05). SEM images revealed uneven biofilm plaques on the inner surface of the pipes prior to disinfection, embedded within a dense matrix, while the biofilm was visibly disrupted post-disinfection. LCM software analysis showed that, compared to the HA and AgNP groups, the HA + AgNP group had a significantly lower percentage of live bacteria on the biofilm post-disinfection (P < 0.05). CONCLUSION Compared to any single disinfectant regimen, the combined use of HA and AgNPs effectively inhibited bacterial growth and exerted a significant destructive effect on biofilms. Therefore, this combination is expected to be a viable option for disinfection of DUWL in the oral healthcare setting. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Tingting Yin
- Department of Oral & Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, 430079, China
| | - Qiaowen Li
- Department of Dentistry and Endodontics , State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, 430079, China
| | - Huan Sun
- Department of Comprehensive Emergency, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, 430079, China
| | - Jin Zheng
- Department of Wusheng Road Outpatient, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, 430079, China
| | - Yuanyuan Wang
- Center for Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, 430079, China
| | - Yi Luo
- Department of Orthognathic & Cleft Lip and Palate Plastic Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, 430079, China
| | - Li Wang
- Nursing Department, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, 430079, China.
| |
Collapse
|
8
|
Maguire M, Serna C, Montero Serra N, Kovarova A, O’Connor L, Cahill N, Hooban B, DeLappe N, Brennan W, Devane G, Cormican M, Morris D, Coughlan SC, Miliotis G, Gonzalez-Zorn B, Burke LP. Spatiotemporal and genomic analysis of carbapenem resistance elements in Enterobacterales from hospital inpatients and natural water ecosystems of an Irish city. Microbiol Spectr 2025; 13:e0090424. [PMID: 39601575 PMCID: PMC11705828 DOI: 10.1128/spectrum.00904-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) is a diverse group of often multidrug-resistant organisms. Surveillance and control of infections are complicated due to the inter-species spread of carbapenemase-encoding genes (CEGs) on mobile genetic elements (MGEs), including plasmids and transposons. Due to wastewater discharges, urban water ecosystems represent a known reservoir of CPE. However, the dynamics of carbapenemase-bearing MGE dissemination between Enterobacterales in humans and environmental waters are poorly understood. We carried out whole-genome sequencing, combining short- and long-sequencing reads to enable complete characterization of CPE isolated from patients, wastewaters, and natural waters between 2018 and 2020 in Galway, Ireland. Isolates were selected based on their carriage of Class A blaKPC-2 (n = 6), Class B blaNDM-5 (n = 12), and Class D blaOXA-48 (n = 21) CEGs. CEGs were plasmid-borne in all but two isolates. OXA-48 dissemination was associated with a 64 kb IncL plasmid (62%), in a broad range of Enterobacterales isolates from both niches. Conversely, blaKPC-2 and blaNDM-5 genes were usually carried on larger and more variable multireplicon IncF plasmids in Klebsiella pneumoniae and Escherichia coli, respectively. In every isolate, each CEG was surrounded by a gene-specific common genetic environment which constituted part, or all, of a transposable element that was present in both plasmids and the bacterial chromosome. Transposons Tn1999 and Tn4401 were associated with blaOXA-48 and blaKPC-2, respectively, while blaNDM-5 was associated with variable IS26 bound composite transposons, usually containing a class 1 integron.IMPORTANCESince 2018, the Irish National Carbapenemase-Producing Enterobacterales (CPE) Reference Laboratory Service at University Hospital Galway has performed whole-genome sequencing on suspected and confirmed CPE from clinical specimens as well as patient and environmental screening isolates. Understanding the dynamics of CPE and carbapenemase-encoding gene encoding mobile genetic element (MGE) flux between human and environmental reservoirs is important for One Health surveillance of these priority organisms. We employed hybrid assembly approaches for improved resolution of CPE genomic surveillance, typing, and plasmid characterization. We analyzed a diverse collection of human (n = 17) and environmental isolates (n = 22) and found common MGE across multiple species and in different ecological niches. The conjugation ability and frequency of a subset of these plasmids were demonstrated to be affected by the presence or absence of necessary conjugation genes and by plasmid size. We characterize several MGE at play in the local dissemination of carbapenemase genes. This may facilitate their future detection in the clinical laboratory.
Collapse
Affiliation(s)
- Mark Maguire
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
- SFI Center for Research Training in Genomics Data Science, Dublin, Ireland
| | - Carlos Serna
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Natalia Montero Serra
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Aneta Kovarova
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise O’Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Niall DeLappe
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Wendy Brennan
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Genevieve Devane
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Martin Cormican
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Simone C. Coughlan
- SFI Center for Research Training in Genomics Data Science, Dublin, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Liam P. Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
9
|
Kaur M, Virender, Khatkar S, Singh B, Kumar A, Dubey SK. Recent Advancements in Sensing of Silver ions by Different Host Molecules: An Overview (2018-2023). J Fluoresc 2025; 35:267-289. [PMID: 38038876 DOI: 10.1007/s10895-023-03494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
The chemosensors act as powerful tool in the detection of metal ions due to their simplicity, high sensitivity, low cost, low detection limit, rapid photophysical response, and application to the environmental and medical fields. This review article presents an overview for the chemosensing of Ag+ ions based on Calix, MOF, Nanoparticle, COF, Calix, Electrochemical chemosensor published from 2018 to 2023. Here, we have reviewed the sensing of Ag+ ions and summarised the binding response, mechanism, LOD, colorimetric response, adsorption capacity, technique used. The purpose of this review article to provide a detailed summary of the performance of different host chemosensors that are helpful for providing future direction to researchers on Ag+ ion detection and provides path to design effective chemsosensor (simple to synthesize, cost effective, high sensitivity, with more practical application). While studying the related article literature, we came across some challenges and that has been discussed lastly and provided solutions for them.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Virender
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Sunita Khatkar
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway & Centre of Applied Science for Health, Technological University Dublin (TU Dublin), Dublin, D24 FKT9, Ireland
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Santosh Kumar Dubey
- Department of Chemistry, Institute of Integrated & Honors Studies, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| |
Collapse
|
10
|
Pan R, Zhang Z, Li Y, Zhu S, Anwar S, Huang J, Zhang C, Yin L. Stage-Specific Effects of Silver Nanoparticles on Physiology During the Early Growth Stages of Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3454. [PMID: 39683247 DOI: 10.3390/plants13233454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Silver nanoparticles (AgNPs), widely utilized nanomaterials, can negatively affect crop growth and development. However, it remains unclear whether crops exhibit similar responses to AgNPs stress at seed germination and seedling stages. In this study, rice seeds and seedlings were exposed to AgNPs, and their growth, photosynthetic efficiency, and antioxidant systems were recorded. demonstrated significant AgNPs accumulation in rice tissues, with notable higher accumulation in seedlings exposed to AgNPs after germination compared to AgNPs exposure during germination. The roots exhibited greater AgNPs accumulation than shoots across both stages. Exposure to AgNPs during the seed germination stage, even at concentrations up to 2 mg/L, did not significantly affect growth, physiological indices, or oxidative stress. In contrast, seedlings exposed to 1 and 2 mg/L AgNPs showed significant reductions in shoot length, biomass, nutrient content, and photosynthetic efficiency. At low AgNPs concentrations, the maximum relative electron transport rate (rETRmax) was significantly reduced, while the higher concentrations caused pronounced declines in the chlorophyll a fluorescence transient curves (OJIP) compared to the control group. Antioxidant enzyme activities increased in both leaves and roots in a dose-dependent manner, with roots exhibiting significantly higher activity, suggesting that roots are the primary site of AgNPs stress responses. In conclusion, rice responds differently to AgNPs exposure at distinct developmental stages, with the seedling stage being more susceptible to AgNPs-induced stress than the seed germination stage. These findings underscore the importance of considering growth stages when assessing the food safety and environmental risks associated with AgNPs exposure.
Collapse
Affiliation(s)
- Ruxue Pan
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Zailin Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ya Li
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Sihong Zhu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad 38000, Pakistan
| | - Jiaquan Huang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572022, China
| | - Chuanling Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Liyan Yin
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Thomas S, Gonsalves RA, Jose J, Zyoud SH, Prasad AR, Garvasis J. Plant-based synthesis, characterization approaches, applications and toxicity of silver nanoparticles: A comprehensive review. J Biotechnol 2024; 394:135-149. [PMID: 39159752 DOI: 10.1016/j.jbiotec.2024.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
The development of an environmentally benign method for the synthesis of nanoparticles has been facilitated by green chemistry. "Green synthesis" uses a range of biological elements like microbes, plants, and other biodegradable materials to produce NPs. Active biomolecules that are secreted by natural strains and present in the plant extracts serve as both reducing and capping/stabilizing agents. Microorganisms' intracellular enzymes can reduce metal ions, which explains how NPs might potentially nucleate. Plant-based synthesis of nanomaterials is particularly promising owing to abundant resources, simplicity of synthesis, and low cost. Silver nanoparticles (AgNPs) are attracting great attention in the research community due to their wide variety of applications in chemistry, food technology, microbiology, and biomedicine. Recent years have seen a large amount of research on the bio-genic synthesis of AgNPs employing biomaterials like plant extract and bacteria as reducing agents. Herein we discuss a thorough overview of the plant-based synthesis of silver nanoparticles (AgNPs), characterization approaches, applications, and toxicity. The review covers the green chemistry and nanotechnology elements of producing AgNPs, including a thorough discussion of the plant extract mediated synthesis, detailed formation mechanism, and a well-balanced emphasis on hazards and advantages. Based on current developments, the optimisation strategies, applications, and interdisciplinary characteristics are also covered in detail.
Collapse
Affiliation(s)
- Shijith Thomas
- Department of Applied Science and Humanities, Vimal Jyothi Engineering College, Kannur 670632, India.
| | - Richard A Gonsalves
- Department of Chemistry, St. Aloysius College (Autonomous), Mangalore 575003, India.
| | - Jomy Jose
- Department of Applied Science and Humanities, Vimal Jyothi Engineering College, Kannur 670632, India.
| | - Samer H Zyoud
- Department of Mathematics and Sciences, Center of Medical and Bio-Allied Health Science Research, Ajman University, P.O.Box: 346, United Arab Emirates.
| | - Anupama R Prasad
- Department of Chemistry, Christ College (Autonomous), Thrissur 680125, India.
| | - Julia Garvasis
- Department of Chemistry, University of Calicut, Malappuram 680566, India.
| |
Collapse
|
12
|
Katre S, Baghmare P, Giri AS. Photocatalytic nanomaterials and their implications towards biomass conversion for renewable chemical and fuel production. NANOSCALE ADVANCES 2024; 6:d4na00447g. [PMID: 39359352 PMCID: PMC11441473 DOI: 10.1039/d4na00447g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024]
Abstract
Photocatalytic processes have recently gained popularity as a sustainable and energy-efficient method for converting biomass. This article gives a comprehensive overview of recent improvements in the photocatalytic conversion of biomass into useful chemicals and fuels utilizing various photocatalytic materials. The work delves into the assessment of diverse biomass sources and their preparation techniques, in addition to the synthesis of plasmonic nanoparticles as photocatalysts from biomass, offering a thorough examination. This review article provides detailed techniques for fabricating and synthesizing plasmonic nanoparticles. Furthermore, the study discusses advancements in coupling photo-oxidation alongside the hydrogen evolution mechanism for water splitting. Furthermore, prospective research topics are suggested, such as conducting a systematic analysis of photocatalysis's redox potential, developing more effective catalysts, broadening the variety of reaction types, and establishing industrial-scale photocatalytic production. Plasmonic photocatalysts have been utilized to convert biomass into H2 for energy, and to explore hypothesized molecular routes for the photocatalytic oxidation of 5-hydroxymethylfurfural (HMF), which may then be converted into 2,5-furandicarboxylic acid (FDCA). This review also discusses the surface functionalization of nanophotocatalysts with -COOH, NH2, and OH groups to increase their reactivity. Reactive oxygen species (ROS) formed on the surface of nanophotocatalysts under UV or solar light play a crucial role in photocatalytic reactions. Our review has shown many challenges and difficulties related to CO2 hydrogenation reactions in the presence of sustainable H2, powered by renewable energy sources. This is very critical for achieving a transition to net-zero emissions. These technologies will drive forward the development of biomass conversion processes into CO2-based fuels. This paper explores recent advancements in the conversion of biomass-derived CO2 into valuable chemicals using plasmonic nanophotocatalysts. In addition to this, density functional theory (DFT) calculations also reveal how functional groups help stabilize these nanoparticles and enhance electron density through photo-adsorption. This study provides a remarkable and significant review that examines current trends, future directions, and ongoing debates in this field, focusing on reaction conditions, catalyst design, and proposed mechanisms for producing valuable chemicals. These chemicals include single-carbon compounds like formaldehyde, formic acid, and methanol, as well as C2 + compounds such as acetic acid, ethanol, methyl formate, and oxyethylene ethers. Additionally, it addresses the current state of liquid-phase CO2 hydrogenation in the presence of photocatalysts, highlighting existing challenges and potential research paths. The paper also provides an overview of the advances and challenges in the electro- and photocatalytic oxidation of HMF (hydroxymethylfurfural), detailing strategies for creating high-value chemicals through these oxidation processes. These methods, which may involve reactions like the hydrogen evolution reaction, organic substrate reduction, CO2 reduction reaction, or N2 reduction reaction, are summarized and analyzed. Furthermore, the catalytic efficiency and mechanisms of various catalyst types in these conversion systems are introduced and discussed. Electron paramagnetic resonance and scavenger studies reveal the major active species (˙OH and ˙O2 -) in the photocatalytic conversion of biomass to different value-added products.
Collapse
Affiliation(s)
- Shikha Katre
- Indian Institute of Science Education and Research Bhopal Bhauri Bhopal Madhya Pradesh-462066 India +91-361-258-2292 +91-755-2692609
| | - Pawan Baghmare
- Indian Institute of Science Education and Research Bhopal Bhauri Bhopal Madhya Pradesh-462066 India +91-361-258-2292 +91-755-2692609
| | - Ardhendu S Giri
- Indian Institute of Science Education and Research Bhopal Bhauri Bhopal Madhya Pradesh-462066 India +91-361-258-2292 +91-755-2692609
| |
Collapse
|
13
|
Xia D, Shi X, Chen K, Hao A, Iseri Y. Understanding the mechanisms behind the antibacterial activity of magnesium hydroxide nanoparticles against sulfate-reducing bacteria in sediments. Sci Rep 2024; 14:21831. [PMID: 39294256 PMCID: PMC11411076 DOI: 10.1038/s41598-024-72516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Nanomaterials, with their small size, surface characteristics, and antibacterial properties, are extensively employed across environmental, energy, biomedical, agricultural, and other industries. This study examined the antibacterial efficacy of magnesium hydroxide (Mg(OH)2) nanoparticles (NPs) against sulfate-reducing bacteria (SRB) within sediments. The inhibitory effects of two types of Mg(OH)2 NPs with distinct particle sizes (20.3 and 29.6 nm) and concentrations (0-10.0 mg/mL) were examined under optimal treatment conditions. The antibacterial mechanisms of Mg(OH)2 NPs through direct contact and dissolution effects were determined. The results revealed a correlation between the concentration, particle size, and inhibitory activity, with the smallest NPs (20.3 nm) at the highest concentration (10.0 mg/mL) substantially reducing SRB counts from 8.77 ± 0.18 to 6.48 ± 0.13 log10 colony forming units/mL after 6 h treatment. Treatment with high concentrations of Mg(OH)2 NPs induced cellular damage, reduced intracellular lactate dehydrogenase activity, and elevated intracellular catalase activity and H2O2 content, suggesting that the contact effect of NPs stimulated SRB. This leads to oxidative stress response and structural damage to the cell membrane, which has emerged as the primary driver of the antibacterial action of Mg(OH)2 NPs. This study presents a novel nanomaterial that can inhibit and control SRB in natural sedimentary environments.
Collapse
Affiliation(s)
- Dong Xia
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Xiaoyu Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Kai Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Aimin Hao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Yasushi Iseri
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| |
Collapse
|
14
|
Irshad MA, Hussain A, Nasim I, Nawaz R, Al-Mutairi AA, Azeem S, Rizwan M, Al-Hussain SA, Irfan A, Zaki MEA. Exploring the antifungal activities of green nanoparticles for sustainable agriculture: a research update. CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE 2024; 11:133. [DOI: 10.1186/s40538-024-00662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/31/2024] [Indexed: 01/06/2025]
|
15
|
Moustafa SMN, Yousef TA, Taha RH. Preparing and Assessment of Biocidal La Nano-complex Treated Filter Capacity against Isolated Microbes from Air Conditioning Systems in COVID-19 Rehabilitation Rooms. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2024; 18:1969-1983. [DOI: 10.22207/jpam.18.3.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Mucormycosis is a severe fungal infection which mainly caused by filamentous fungi of the Absidia sp., Rhizopus sp., Cunninghamella sp, Mucor sp., and Rhizomucor sp. Moreover, the pandemic of the SARS-CoV-2 virus expands the need to interfere with spread of the airborne respiratory infections. Accordingly, developing cutting-edge solutions to restrict and/or prevent air contamination by infectious microbes are very warranted. The current work aims to prepare biocidal La-nano complex treated filters and assess their anti-fungal capacity against 20 Rhizopus oryzae, 10 Candida albicans, and 11 Aspergillus fumigatus. These fungi were isolated from the inside parts of the air conditioning systems in the rehabilitation rooms for COVID-19 patients. The obtained results demonstrated that the prepared were able to significantly decrease the invading microbes and eradicate Rhizopus, Aspergillus, Mucor, Candida albicans isolates at 0.64 mg/ml concentration. DFT study compares the electronic properties and reactivity of a ligand in its uncoordinated form with its lanthanum complex. The ligand exhibits lower binding energy, ionization potential, electron affinity, absolute electronegativity, and chemical potential when coordinated with lanthanum. In contrast, the lanthanum complex has a smaller energy gap, absolute hardness, and global softness.
Collapse
|
16
|
Oczkowski M, Dziendzikowska K, Gromadzka-Ostrowska J, Kruszewski M, Grzelak A. Intragastric exposure of rats to silver nanoparticles modulates the redox balance and expression of steroid receptors in testes. Food Chem Toxicol 2024; 191:114841. [PMID: 38944145 DOI: 10.1016/j.fct.2024.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Nanosilver (AgNPs) is popular nanomaterials used in food industry that makes gastrointestinal tract an essential route of its uptake. The aim of the presented study was to assess the effects of intragastric exposure to AgNPs on redox balance and steroid receptors in the testes of adult Fisher 344 rats. The animals were exposed to 20 nm AgNPs (30 mg/kg bw/day, by gavage) for 7 and 28 days compared to saline (control groups). It was demonstrated that 7-day AgNPs administration resulted in increased level of total antioxidant status (TAS), glutathione reductase (GR) activity, lower superoxide dismutase activity (SOD), decreased glutathione (GSH) level and GSH/GSSG ratio, as well as higher estrogen receptor (ESR2) and aromatase (Aro) protein expression in Leydig cells compared to the 28-day AgNPs esposure. The longer-time effects of AgNPs exposition were associated with increased lipid hydroperoxidation (LOOHs) and decreased SOD activity and androgen receptor protein level. In conclusion, the present study demonstrated the adverse gastrointestinally-mediated AgNPs effects in male gonads. In particular, the short-term AgNPs exposure impaired antioxidant defence with concurrent effects on the stimulation of estrogen signaling, while the sub-chronic AgNPs exposition revealed the increased testicle oxidative stress that attenuated androgens signaling.
Collapse
Affiliation(s)
- Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| | - Agnieszka Grzelak
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
17
|
Thambirajoo M, Md Fadilah NI, Maarof M, Lokanathan Y, Mohamed MA, Zakaria S, Bt Hj Idrus R, Fauzi MB. Functionalised Sodium-Carboxymethylcellulose-Collagen Bioactive Bilayer as an Acellular Skin Substitute for Future Use in Diabetic Wound Management: The Evaluation of Physicochemical, Cell Viability, and Antibacterial Effects. Polymers (Basel) 2024; 16:2252. [PMID: 39204471 PMCID: PMC11359669 DOI: 10.3390/polym16162252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
The wound healing mechanism is dynamic and well-orchestrated; yet, it is a complicated process. The hallmark of wound healing is to promote wound regeneration in less time without invading skin pathogens at the injury site. This study developed a sodium-carboxymethylcellulose (Na-CMC) bilayer scaffold that was later integrated with silver nanoparticles/graphene quantum dot nanoparticles (AgNPs/GQDs) as an acellular skin substitute for future use in diabetic wounds. The bilayer scaffold was prepared by layering the Na-CMC gauze onto the ovine tendon collagen type 1 (OTC-1). The bilayer scaffold was post-crosslinked with 0.1% (w/v) genipin (GNP) as a natural crosslinking agent. The physical and chemical characteristics of the bilayer scaffold were evaluated. The results demonstrate that crosslinked (CL) groups exhibited a high-water absorption capacity (>1000%) and an ideal water vapour evaporation rate (2000 g/m2 h) with a lower biodegradation rate and good hydrophilicity, compression, resilience, and porosity than the non-crosslinked (NC) groups. The minimum inhibitory concentration (MIC) of AgNPs/GQDs presented some bactericidal effects against Gram-positive and Gram-negative bacteria. The cytotoxicity tests on bilayer scaffolds demonstrated good cell viability for human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Therefore, the Na-CMC bilayer scaffold could be a potential candidate for future diabetic wound care.
Collapse
Affiliation(s)
- Maheswary Thambirajoo
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bandar Baru Bangi 43600, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bandar Baru Bangi 43600, Malaysia;
| | - Sarani Zakaria
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bandar Baru Bangi 43600, Malaysia;
| | - Ruszymah Bt Hj Idrus
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (M.T.); (N.I.M.F.); (M.M.); (Y.L.); (R.B.H.I.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bandar Baru Bangi 43600, Malaysia
| |
Collapse
|
18
|
Kemala P, Khairan K, Ramli M, Helwani Z, Rusyana A, Lubis VF, Ahmad K, Idroes GM, Noviandy TR, Idroes R. Optimizing antimicrobial synergy: Green synthesis of silver nanoparticles from Calotropis gigantea leaves enhanced by patchouli oil. NARRA J 2024; 4:e800. [PMID: 39280303 PMCID: PMC11392007 DOI: 10.52225/narra.v4i2.800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 09/18/2024]
Abstract
Silver nanoparticles (AgNPs) synthesized from plant extracts have gained attention for their potential applications in biomedicine. Calotropis gigantea has been utilized to synthesize AgNPs, called AgNPs-LCg, and exhibit antibacterial activities against both Gram-positive and Gram-negative bacteria as well as antifungal. However, further enhancement of their antimicrobial properties is needed. The aim of this study was to synthesize AgNPs-LCg and to enhance their antimicrobial and antifungal activities through a hybrid green synthesis reaction using patchouli oil (PO), as well as to characterize the synthesized AgNPs-LCg. Optimization was conducted using the response surface method (RSM) with a central composite design (CCD). AgNPs-LCg were synthesized under optimal conditions and hybridized with different forms of PO-crude, distillation wastewater (hydrolate), and heavy and light fractions-resulting in PO-AgNPs-LCg, PH-AgNPs-LCg, LP-AgNPs-LCg, and HP-AgNPs-LCg, respectively. The samples were then tested for their antibacterial (both Gram-positive and Gram-negative bacteria) and antifungal activities. Our data indicated that all samples, including those with distillation wastewater, had enhanced antimicrobial activity. HP-AgNPs-LCg, however, had the highest efficacy; therefore, only HP-AgNPs-LCg proceeded to the characterization stage for comparison with AgNPs-LCg. UV-Vis spectrophotometry indicated surface plasmon resonance (SPR) peaks at 400 nm for AgNPs-LCg and 360 nm for HP-AgNPs-LCg. The Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of O-H, N-H, and C-H groups in C. gigantea extract and AgNP samples. The smallest AgNPs-LCg were 56 nm, indicating successful RSM optimization. Scanning electron microscopy (SEM) analysis revealed spherical AgNPs-LCg and primarily cubic HP-AgNPs-LCg, with energy-dispersive X-ray spectroscopy (EDX) confirming silver's predominance. This study demonstrated that PO in any form significantly enhances the antimicrobial properties of AgNPs-LCg. The findings pave the way for the exploration of enhanced and environmentally sustainable antimicrobial agents, capitalizing on the natural resources found in Aceh Province, Indonesia.
Collapse
Affiliation(s)
- Pati Kemala
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairan Khairan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Pusat Riset Obat Herbal, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Muliadi Ramli
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Zuchra Helwani
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, Indonesia
| | - Asep Rusyana
- Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Vanizra F Lubis
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairunnas Ahmad
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Ghazi M Idroes
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Occupational Health and Safety, Faculty of Health Science, Universitas Abulyatama, Aceh Besar, Indonesia
| | - Teuku R Noviandy
- Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Pusat Riset Obat Herbal, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
19
|
Al-Haid S, Elalfy M, Alsyaed E, Abouelmagd M, Al-Jazzar A, Al-Hizab FA, Darwish WS, Hereba A, Elhadidy M. The adverse side effects of prenatal and postnatal rats' exposure to silver nanoparticles Induced toxicity. Open Vet J 2024; 14:1999-2006. [PMID: 39308729 PMCID: PMC11415893 DOI: 10.5455/ovj.2024.v14.i8.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background Silver nanotechnology is widely applied in industry and medicine, with an increased likelihood of environmental and food contamination. Aim This study aimed to explore the adverse effects of orally administering silver nanoparticles (AgNPs) to pregnant or lactating female rats on adults and the development of their offspring. Methods Forty female albino rats were used to assess the immediate impacts of AgNPs in two separate experiments. The experimental group received 1 ml of AgNPs, dissolved in deionized water, at doses of 0, 50, and 100 mg/kg of body weight from the 6th to the 15th day of gestation in pregnant albino rats. After a 20-day gestation period, euthanasia was performed on the female rats, followed by a gross examination post-dissection. Results The feti were preserved in ethyl alcohol and Poin's solution for the identification of skeletal and visceral malformations. It was noticed that feti of dams that received AgNPs showed teratogenicities such as delayed ossification and deletion of bones or ribs. Notably, dams showed necrosis and satellitosis with evidence of behavioral alteration. While rats' pups showed only brain edema and no behavioral changes. Conclusion AgNPs at a dose of 50 or 100 mg/kg induced teratogenic effect in terms of delayed ossification, abnormal limb formation, and brain edema in rat pups, however, induced necrosis and satellitosis in dam rats. Hence, greater emphasis should be placed on preventing exposure to Ag-NPs, especially among pregnant females.
Collapse
Affiliation(s)
- Sultan Al-Haid
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Elalfy
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Alsyaed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mamdouh Abouelmagd
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmad Al-Jazzar
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Fahad A. Al-Hizab
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Wageh Sobhy Darwish
- Food Hygiene, Safety, and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - AbdelRahman Hereba
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biomedical Physics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mona Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Physiology, Faculty of Medicine, Albaha University, Saudi Arabia
| |
Collapse
|
20
|
Emmanuel M. Unveiling the revolutionary role of nanoparticles in the oil and gas field: Unleashing new avenues for enhanced efficiency and productivity. Heliyon 2024; 10:e33957. [PMID: 39055810 PMCID: PMC11269882 DOI: 10.1016/j.heliyon.2024.e33957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Prominent oil corporations are currently engaged in a thorough examination of the potential implementation of nanoparticles within the oil and gas sector. This is evidenced by the substantial financial investments made towards research and development, which serves as a testament to the significant consideration given to nanoparticles. Indeed, nanoparticles has garnered increasing attention and innovative applications across various industries, including but not limited to food, biomedicine, electronics, and materials. In recent years, the oil and gas industry has conducted extensive research on the utilization of nanoparticles for diverse purposes, such as well stimulation, cementing, wettability, drilling fluids, and enhanced oil recovery. To explore the manifold uses of nanoparticles in the oil and gas sector, a comprehensive literature review was conducted. Reviewing several published study data leads to the conclusion that nanoparticles can effectively increase oil recovery by 10 %-15 % of the initial oil in place while tertiary oil recovery gives 20-30 % extra initial oil in place. Besides, it has been noted that the properties of the reservoir rock influence the choice of the right nanoparticle for oil recovery. The present work examines the utilization of nanoparticles in the oil and gas sector, providing a comprehensive analysis of their applications, advantages, and challenges. The article explores various applications of nanoparticles in the industry, including enhanced oil recovery, drilling fluids, wellbore strengthening, and reservoir characterization. By delving into these applications, the article offers a thorough understanding of how nanoparticles are employed in different processes within the sector. This analysis may prove highly advantageous for future studies and applications in the oil and gas sector.
Collapse
Affiliation(s)
- Marwa Emmanuel
- University of Dodoma, College of Natural and Mathematical Sciences, Chemistry Department, Dodoma, Tanzania
| |
Collapse
|
21
|
Neciosup-Puican AA, Pérez-Tulich L, Trujillo W, Parada-Quinayá C. Green Synthesis of Silver Nanoparticles from Anthocyanin Extracts of Peruvian Purple Potato INIA 328- Kulli papa. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1147. [PMID: 38998752 PMCID: PMC11243217 DOI: 10.3390/nano14131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
In this work, AgNPs were synthesized using an anthocyanin extract from Peruvian purple potato INIA 328-Kulli papa. The anthocyanin extract was obtained through a conventional extraction with acidified ethanolic aqueous solvent. This extract acted as both a reducing and stabilizing agent for the reduction of silver ions. Optimization of synthesis parameters, including pH, reaction time, and silver nitrate (AgNO3) concentration, led to the optimal formation of AgNPs at pH 10, with a reaction time of 30 min and an AgNO3 concentration of 5 mM. Characterization techniques such as X-ray diffraction (XRD) and dynamic light scattering (DLS) revealed that the AgNPs had a crystallite size of 9.42 nm and a hydrodynamic diameter of 21.6 nm, with a zeta potential of -42.03 mV, indicating favorable colloidal stability. Fourier Transform Infrared (FTIR) analysis confirmed the presence of anthocyanin functional groups on the surface of the AgNPs, contributing to their stability. Furthermore, the bacterial activity of the AgNPs was evaluated by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). For E. coli, the MIC was 0.5 mM (0.05 mg/mL) and the MBC was 4.5 mM (0.49 mg/mL). Similarly, for S. aureus, the MIC was 0.5 mM (0.05 mg/mL) and the MBC was 4.0 mM (0.43 mg/mL). These results highlight the potential benefits of AgNPs synthesized from Peruvian purple potato anthocyanin extract, both in biomedical and environmental contexts.
Collapse
Affiliation(s)
| | - Luz Pérez-Tulich
- Bioengineering and Chemical Engineering Department, Universidad de Ingenieria y Tecnologia-UTEC, Lima 15063, Peru
- Bioengineering Research Center-BIO, Universidad de Ingenieria y Tecnologia-UTEC, Lima 15063, Peru
| | - Wiliam Trujillo
- Industrial Engineering Department, Universidad Tecnológica del Perú-UTP, Lima 15046, Peru
| | - Carolina Parada-Quinayá
- Bioengineering and Chemical Engineering Department, Universidad de Ingenieria y Tecnologia-UTEC, Lima 15063, Peru
- Bioengineering Research Center-BIO, Universidad de Ingenieria y Tecnologia-UTEC, Lima 15063, Peru
| |
Collapse
|
22
|
Malik MA, Wani AH, Bhat MY, Siddiqui S, Alamri SAM, Alrumman SA. Fungal-mediated synthesis of silver nanoparticles: a novel strategy for plant disease management. Front Microbiol 2024; 15:1399331. [PMID: 39006753 PMCID: PMC11239364 DOI: 10.3389/fmicb.2024.1399331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Various traditional management techniques are employed to control plant diseases caused by bacteria and fungi. However, due to their drawbacks and adverse environmental effects, there is a shift toward employing more eco-friendly methods that are less harmful to the environment and human health. The main aim of the study was to biosynthesize silver Nanoparticles (AgNPs) from Rhizoctonia solani and Cladosporium cladosporioides using a green approach and to test the antimycotic activity of these biosynthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). During the study, the presence of strong plasmon absorbance bands at 420 and 450 nm confirmed the AgNPs biosynthesis by the fungi Rhizoctonia solani and Cladosporium cladosporioides. The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Assessment of the antifungal activity of the silver nanoparticles against various plant pathogenic fungi was carried out by agar well diffusion assay. Different concentration of AgNPs, 5 mg/mL 10 mg/mL and 15 mg/mL were tested to know the inhibitory effect of fungal plant pathogens viz. Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum, Fusarium metavorans, and Aspergillus aflatoxiformans. However, 15 mg/mL concentration of the AgNPs showed excellent inhibitory activity against all tested fungal pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.
Collapse
Affiliation(s)
- Mansoor Ahmad Malik
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Abdul Hamid Wani
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Mohd Yaqub Bhat
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Saad A M Alamri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sulaiman A Alrumman
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
23
|
Qadeer A, Khan A, Khan NM, Wajid A, Ullah K, Skalickova S, Chilala P, Slama P, Horky P, Alqahtani MS, Alreshidi MA. Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals. Heliyon 2024; 10:e31728. [PMID: 38845989 PMCID: PMC11153202 DOI: 10.1016/j.heliyon.2024.e31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Aamir Khan
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Noor Muhammad Khan
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University Dera Ismail Khan, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Kaleem Ullah
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 RH, UK
| | | |
Collapse
|
24
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
25
|
Cui J, Shu H, Zhu P, Cao Z, Wang S, Cao P. Enhancing Antimicrobial Performance of Gauze via Modification by Ag-Loaded Polydopamine Submicron Particles. J Funct Biomater 2024; 15:152. [PMID: 38921526 PMCID: PMC11205189 DOI: 10.3390/jfb15060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Silver nanoparticles (AgNPs) are known for their antibacterial properties and their ability to promote wound healing. By incorporating silver nanoparticles into medical gauze, the resulting composite material shows promise as an advanced wound dressing. However, clinical applications are hindered by challenges related to the stability of silver nanoparticle loading on the gauze as nanoparticle leaching can compromise antibacterial efficacy. In this study, silver nanoparticles were immobilized onto polydopamine (PDA) submicron particles, which were then used to modify medical gauze. Energy dispersive spectroscopy (EDS) was employed to analyze the elemental distribution on the modified gauze, confirming successful surface modification. The antibacterial properties of the modified gauze were assessed using a laser scanning confocal microscope (CLSM). The results demonstrated a significant reduction in the adhesion rates of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by 99.1% and 63%, respectively, on the PDA-Ag-modified gauze. Optical density (OD) measurements at 590 nm indicated that the modified gauze effectively inhibited biofilm formation, underscoring its potent antimicrobial capabilities. Further antibacterial efficacy was evaluated by diluting and plating co-cultured bacterial solutions with the modified dressing, followed by 24 h incubation and colony counting. The gauze exhibited an antibacterial efficiency of 99.99% against E. coli and 99.8% against S. aureus. Additionally, cell compatibility tests, involving the co-culture of PDA-Ag composites with human cells, demonstrated excellent biocompatibility. These findings suggest that PDA-Ag-modified medical gauze holds significant potential for the treatment of infected wounds, offering a promising solution to improve wound care through enhanced antimicrobial activity and biocompatibility.
Collapse
Affiliation(s)
- Junnan Cui
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.C.); (H.S.); (P.Z.)
| | - Haobo Shu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.C.); (H.S.); (P.Z.)
| | - Panpan Zhu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.C.); (H.S.); (P.Z.)
| | - Zhimin Cao
- Institute of Intelligent Manufacturing and Smart Transportation, Suzhou City University, Suzhou 215104, China;
| | - Shuilin Wang
- Institute of Intelligent Manufacturing and Smart Transportation, Suzhou City University, Suzhou 215104, China;
| | - Pan Cao
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.C.); (H.S.); (P.Z.)
| |
Collapse
|
26
|
Omeiri M, El Hadidi E, Awad R, Al Boukhari J, Yusef H. Aluminum oxide, cobalt aluminum oxide, and aluminum-doped zinc oxide nanoparticles as an effective antimicrobial agent against pathogens. Heliyon 2024; 10:e31462. [PMID: 38813232 PMCID: PMC11133899 DOI: 10.1016/j.heliyon.2024.e31462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Since the clock of antimicrobial resistance was set, modern medicine has shed light on a new cornerstone in technology to overcome the worldwide dread of the post-antimicrobial era. Research organizations are exploring the use of nanotechnology to modify metallic crystals from macro to nanoscale size, demonstrating significant interest in the field of antimicrobials. Herein, the antimicrobial activities of aluminum oxide (Al2O3), cobalt aluminum oxide (CoAl2O4), and aluminum doped zinc oxide (Zn0.9Al0.1O) nanoparticles were examined against some nosocomial pathogens. The study confirmed the formation and characterization of Al2O3, CoAl2O4, and Zn0.9Al0.1O nanoparticles using various techniques, revealing the generation of pure nanoscale nanoparticles. With inhibition zones ranging from 9 to 14 mm and minimum inhibitory concentrations varying from 4 mg/mL to 16 mg/mL, the produced nanoparticles showed strong antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Meanwhile, the bactericidal concentrations ranged from 8 mg/mL to 40 mg/mL. In culture, Zn0.9Al0.1O NPs demonstrated a unique ability to inhibit the development of nosocomial infections with high bactericidal activity (8 mg/mL). Transmission electron microscope images revealed changes in cell shape, bacterial cell wall morphology, cytoplasmic membrane, and protoplasm due to the introduction of tested nanoparticles. These results pave the way for the use of these easily bacterial wall-piercing nanoparticles in combination with potent antibiotics to overcome the majority of bacterial strains' resistance.
Collapse
Affiliation(s)
- Mohamad Omeiri
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Beirut, Lebanon
| | - Esraa El Hadidi
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Ramadan Awad
- Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon
- Department of Physics, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Jamalat Al Boukhari
- Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Hoda Yusef
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
27
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
28
|
Harper BJ, Engstrom AM, Harper SL, Mackiewicz MR. Impacts of Differentially Shaped Silver Nanoparticles with Increasingly Complex Hydrophobic Thiol Surface Coatings in Small-Scale Laboratory Microcosms. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:654. [PMID: 38668148 PMCID: PMC11054431 DOI: 10.3390/nano14080654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
We investigated the impacts of spherical and triangular-plate-shaped lipid-coated silver nanoparticles (AgNPs) designed to prevent surface oxidation and silver ion (Ag+) dissolution in a small-scale microcosm to examine the role of shape and surface functionalization on biological interactions. Exposures were conducted in microcosms consisting of algae, bacteria, crustaceans, and fish embryos. Each microcosm was exposed to one of five surface chemistries within each shape profile (at 0, 0.1, or 0.5 mg Ag/L) to investigate the role of shape and surface composition on organismal uptake and toxicity. The hybrid lipid-coated AgNPs did not result in any significant release of Ag+ and had the most significant toxicity to D. magna, the most sensitive species, although the bacterial population growth rate was reduced in all exposures. Despite AgNPs resulting in increasing algal growth over the experiment, we found no correlation between algal growth and the survival of D. magna, suggesting that the impacts of the AgNPs on bacterial survival influenced algal growth rates. No significant impacts on zebrafish embryos were noted in any exposure. Our results demonstrate that the size, shape, and surface chemistry of AgNPs can be engineered to achieve specific goals while mitigating nanoparticle risks.
Collapse
Affiliation(s)
- Bryan J. Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.J.H.); (A.M.E.)
| | - Arek M. Engstrom
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.J.H.); (A.M.E.)
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Stacey L. Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.J.H.); (A.M.E.)
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
- Oregon Nanoscience and Microtechnologies Institute, Corvallis, OR 97331, USA
| | | |
Collapse
|
29
|
Ali MAS, Abdel-Rahim EAM, Mahmoud AAA, Mohamed SE. Innovative textiles treated with TiO 2-AgNPs with succinic acid as a cross-linking agent for medical uses. Sci Rep 2024; 14:8045. [PMID: 38580674 PMCID: PMC10997752 DOI: 10.1038/s41598-024-56653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO2-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO2-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO2-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO2-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO2-AgNPs. In the treatment with 0.01% AgNPs and TiO2-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO2-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.
Collapse
Affiliation(s)
| | | | - Azza Abdel-Aziz Mahmoud
- Cotton Technology Research Division, Cotton Research Institute, Agriculture Research Center, Giza, Egypt
| | - Sahar Emam Mohamed
- Cotton Technology Research Division, Cotton Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
30
|
Zhai X, Yan W, Liu S, Tian L, Zhang Y, Zhao Y, Ni Y, Shen H, Wang J, Wan Z, Jiang F, Xin L. Silver nanoparticles induce iron accumulation-associated cognitive impairment via modulating neuronal ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123555. [PMID: 38369090 DOI: 10.1016/j.envpol.2024.123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in daily life and medical fields owing to their unique physicochemical properties. Daily exposure to AgNPs has become a great concern regarding their potential toxicity to human beings, especially to the central nervous system. Ferroptosis, a newly recognized programmed cell death, was recently reported to be associated with the neurodegenerative process. However, whether and how ferroptosis contributes to AgNPs-induced neurotoxicity remain unclear. In this study, we investigated the role of ferroptosis in neurotoxic effects induced by AgNPs using in vitro and in vivo models. Our results showed that AgNPs induced a notable dose-dependent cytotoxic effect on HT-22 cells and cognitive impairment in mice as indicated by a decline in learning and memory and brain tissue injuries. These findings were accompanied by iron overload caused by the disruption of the iron transport system and activation of NCOA4-mediated autophagic degradation of ferritin. The excessive free iron subsequently induced GSH depletion, loss of GPX and SOD activities, differential expression of Nrf2 signaling pathway elements, down-regulation of GPX4 protein and production of lipid peroxides, initiating ferroptosis cascades. The mitigating effects of ferrostatin-1 and deferoxamine on iron overload, redox imbalance, neuronal cell death, impairment of mice learning and memory, Aβ deposition and synaptic plasticity reduction suggested ferroptosis as a potential molecular mechanism in AgNPs-induced neurotoxicity. Taken together, these results demonstrated that AgNPs induced neuronal cell death and cognitive impairment with Aβ deposition and reduction of synaptic plasticity, which were mediated by ferroptosis caused by iron-mediated lipid peroxidation. Our study provides new insights into the underlying mechanisms of AgNPs-induced neurotoxicity and predicts potential preventive strategies.
Collapse
Affiliation(s)
- Xuedi Zhai
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China; Yancheng Center for Disease Prevention and Control, 198 Open Avenue, Yancheng, Jiangsu, China
| | - Weici Yan
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Shuhui Liu
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Liang Tian
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Yidan Zhang
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Yiwei Zhao
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Yebo Ni
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Han Shen
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jianshu Wang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, Jiangsu, China
| | - Zhongxiao Wan
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Fei Jiang
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Lili Xin
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China; School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
31
|
Wohlleben W, Bossa N, Mitrano DM, Scott K. Everything falls apart: How solids degrade and release nanomaterials, composite fragments, and microplastics. NANOIMPACT 2024; 34:100510. [PMID: 38759729 DOI: 10.1016/j.impact.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.g., what is released, how does release happen, and how much material is released) depend on the composition and internal (nano)structures of the material as well as the applied stresses during the lifecycle. We consider, in some depth, releases from mechanical, weathering and thermal stresses and specifically address the use cases of fused-filament 3D printing, dermal contact, food contact and textile washing. Solid materials can release embedded nanomaterials, composite fragments, or micro- and nanoplastics, as well as volatile organics, ions and dissolved organics. The identity of the release is often a heterogenous mixture and requires adapted strategies for sampling and analysis, with suitable quality control measures. Control materials enhance robustness by enabling comparative testing, but reference materials are not always available as yet. The quantity of releases is typically described by time-dependent rates that are modulated by the nature and intensity of the applied stress, the chemical identity of the polymer or other solid matrix, and the chemical identity and compatibility of embedded engineered nanomaterials (ENMs) or other additives. Standardization of methods and the documentation of metadata, including all the above descriptors of the tested material, applied stresses, sampling and analytics, are identified as important needs to advance the field and to generate robust, comparable assessments. In this regard, there are strong methodological synergies between the study of all solid materials, including the study of micro- and nanoplastics. From an outlook perspective, we review the hazard of the released entities, and show how this informs risk assessment. We also address the transfer of methods to related issues such as tyre wear, advanced materials and advanced manufacturing, biodegradable polymers, and non-solid matrices. As the consideration of released entities will become more routine in industry via lifecycle assessment in Safe-and-Sustainable-by-Design practices, release assessments will require careful design of the study with quality controls, the use of agreed-on test materials and standardized methods where these exist and the adoption of clearly defined data reporting practices that enable data reuse, meta-analyses, and comparative studies.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Analytical and Materials Science, 67056 Ludwigshafen, Germany.
| | - Nathan Bossa
- TEMAS Solutions GmbH, Lätterweg 5, 5212 Hausen, Switzerland; Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS-8372, Gaithersburg, MD 20899, United States
| |
Collapse
|
32
|
Gebara RC, Abreu CBD, Rocha GS, Mansano ADS, Assis M, Moreira AJ, Santos MA, Pereira TM, Virtuoso LS, Melão MDGG, Longo E. Effects of ZnWO 4 nanoparticles on growth, photosynthesis, and biochemical parameters of the green microalga Raphidocelis subcapitata. CHEMOSPHERE 2024; 353:141590. [PMID: 38460844 DOI: 10.1016/j.chemosphere.2024.141590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Nanoparticles have applications in many sectors in the society. ZnWO4 nanoparticles (ZnWO4-NPs) have potential in the fabrication of sensors, lasers, and batteries, and in environmental remediation. Thus, these NPs may reach aquatic ecosystems. However, we still do not know their effects on aquatic biota and, to our knowledge, this is the first study that evaluates the toxicity of ZnWO4-NPs in a eukaryotic organism. We evaluated the toxicity of ZnWO4-NPs on the green microalga Raphidocelis subcapitata for 96 h, in terms of growth, cell parameters, photosynthesis, and biochemical analysis. Results show that most of Zn was presented in its particulate form, with low amounts of Zn2+, resulting in toxicity at higher levels. The growth was affected from 8.4 mg L-1, with 96h-IC50 of 23.34 mg L-1. The chlorophyll a (Chl a) content increased at 30.2 mg L-1, while the fluorescence of Chl a (FL3-H) decreased at 15.2 mg L-1. We observed increased ROS levels at 44.4 mg L-1. Regarding photosynthesis, the NPs affected the oxygen evolving complex (OEC) and the efficiency of the photosystem II at 22.9 mg L-1. At 44.4 mg L-1 the qP decreased, indicating closure of reaction centers, probably affecting carbon assimilation, which explains the decay of carbohydrates. There was a decrease of qN (non-regulated energy dissipation, not used in photosynthesis), NPQ (regulated energy dissipation) and Y(NPQ) (regulated energy dissipation via heat), indicating damage to the photoprotection system; and an increase in Y(NO), which is the non-regulated energy dissipation via heat and fluorescence. The results showed that ZnWO4-NPs can affect the growth and physiological and biochemical parameters of the chlorophycean R. subcapitata. Microalgae are the base of aquatic food chains, the toxicity of emerging contaminants on microalgae can affect entire ecosystems. Therefore, our study can provide some help for better protection of aquatic ecosystems.
Collapse
Affiliation(s)
- Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Cínthia Bruno de Abreu
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Giseli Swerts Rocha
- Universitat Rovira i Virgili, Escola Tècnica Superior d'Enginyeria Química, Departament d'Enginyeria Química, Av. Països Catalans, 26, 43007, Tarragona, Spain
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology (DHb), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Marcelo Assis
- Department of Analytical and Physical Chemistry, University Jaume I (UJI), Castelló, Spain
| | - Ailton José Moreira
- São Paulo State University (UNESP), Institute of Chemistry, 14800-060, Araraquara, SP, Brazil
| | | | - Thalles Maranesi Pereira
- Chemistry Institute, Universidade Federal de Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Luciano Sindra Virtuoso
- Chemistry Institute, Universidade Federal de Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, 700, Centro, 37130-000, Alfenas, MG, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology (DHb), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
33
|
Díez-Pascual AM. Carbon-Based Nanomaterials 4.0. Int J Mol Sci 2024; 25:3032. [PMID: 38474275 DOI: 10.3390/ijms25053032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Research on carbon-based nanomaterials, such as carbon nanotubes and graphene and its derivatives, has experienced exponential development in recent years [...].
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Departamento de Química Analítica, Facultad de Ciencias, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra, Madrid-Barcelona Km. 33.6, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
34
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
35
|
Golabi Azad S, Cem Özyurt H. In vitro and in vivo effects of green-synthesized silver nanoparticles against Giardia lamblia infection. ARCHIVES OF RAZI INSTITUTE 2024; 79:218-225. [PMID: 39192963 PMCID: PMC11345486 DOI: 10.32592/ari.2024.79.1.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/07/2023] [Indexed: 08/29/2024]
Abstract
The current experimental study is designed to examine the in vitro and in vivo effects of green synthesized silver nanoparticles (AgNPs) against Giardia lamblia, a major cause of parasitic diarrhea. The precipitation method was employed for the green synthesis of AgNPs by Astragalus ecbatanus aqueous extract. In the, in vitro, Giardia lamblia cysts and trophozoites were exposed to AgNPs at 10, 20, and 40 mg/mL for 10-360 min. The effects of AgNPs on trophozoite plasma membrane and their cytotoxic effects on normal and colon cancer cells were evaluated using Sytox green and MTT assay for cell viability. The in vivo assay included BALB/c mice, infected by Giardia, treated with AgNPs at 10, 15, and 20 mg/kg/day for one week. On the 8th day post-infection, stool examination was conducted to assess the presence of Giardia cysts and the reduction rate. The size distribution of AgNPs ranged between 5 and 80 nm, with the maximum particle size observed at 40-60 nm. AgNPs significantly (P<0.001) increased the mortality of Giardia lamblia trophozoites in a dose-dependent manner. Specifically, AgNPs at concentrations of 200 and 300 μg/mL destroyed Giardia lamblia cysts after 4 and 2 h, respectively. Trophozoites of Giardia lamblia showed more sensitivity to AgNPs compared to cysts. At concentrations of 100, 200, and 300 μg/mL, AgNPs eliminated all trophozoites after 4, 2, and 1 h of treatment, respectively. AgNPs dose-dependently reduced (P<0.001) the parasite load and viability of Giardia lamblia cysts. Exposure of Giardia lamblia trophozoites to AgNPs dose-dependently increased the plasma membrane permeability as indicated by rise in the exposed fluorescence. The CC50 value AgNPs for colon cancer and normal cell lines was 402.3 μg/mL and 819.6 μg/mL, respectively. The selectivity value greater than 2 (2.04), suggests that these AgNPs are safe for normal cells in comparison with cancer cells. This experimental study showed that AgNPs green synthesized by Astragalus ecbatanus exhibited significant in vitro and in vivo anti-Giardia activity, positioning them as potential candidates for Giardia infection treatment. Nevertheless, further research on the precise mechanisms of action and comprehensive exploration of all toxicity aspects associated with this type of AgNPs need to be considered.
Collapse
Affiliation(s)
- S Golabi Azad
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | - H Cem Özyurt
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| |
Collapse
|
36
|
Al-Radadi NS, Al-Bishri WM, Salem NA, ElShebiney SA. Plant-mediated green synthesis of gold nanoparticles using an aqueous extract of Passiflora ligularis, optimization, characterizations, and their neuroprotective effect on propionic acid-induced autism in Wistar rats. Saudi Pharm J 2024; 32:101921. [PMID: 38283153 PMCID: PMC10820356 DOI: 10.1016/j.jsps.2023.101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024] Open
Abstract
The current study was conducted to examine an innovative method for synthesizing gold nanoparticles (AuNPs) from an aqueous sweet granadilla (Passiflora ligularis Juss) P. ligularis. Furthermore, the synthesized AuNPs were used to explore their potential neuroprotective impact against propionic acid (PPA)-induced autism. A sweet granadilla extract was used to achieve the synthesis of AuNPs. The structural and dimensional dispersion of AuNPs were confirmed by different techniques, including UV-Vis spectrophotometer (UV-Vis), X-ray Diffraction (XRD) Pattern, Energy Dispersive X-ray (EDX), Zeta potential, and High-Resolution Transmission Electron Microscopy (HRTEM) analysis. The AuNPs mediated by P. ligularis adopt a spherical shape morphology and the particle size was distributed in the range of 8.43-13 nm without aggregation. Moreover, in vivo, the anti-autistic effects of AuNPs administration were higher than those of P. ligularis extract per second. In addition, the reduced anxiety and neurobehavioral deficits of AuNPs were observed in autistic rats which halted the brain oxidative stress, reduced inflammatory cytokines, ameliorated neurotransmitters, and neurochemical release, and suppressed apoptotic genes (p < 0.05). The alleviated antiapoptotic gene expression and histopathological analysis confirmed that the treatment of AuNPs showed significant neural pathways that aid in reducing tissue damage and necrosis. The results emphasize that the biomedical activity was increased by using the green source synthesis P. ligularis -AuNPs. Additionally, the formulation of AuNPs demonstrates strong neuroprotective effects against PPA-induced autism that were arbitrated by a range of different mechanisms, such as anti-inflammatory, antioxidant, neuromodulator, and antiapoptotic effects.
Collapse
Affiliation(s)
- Najlaa S. Al-Radadi
- Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawarah 14177, Saudi Arabia
| | - Widad M. Al-Bishri
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Neveen A. Salem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Shaimaa A. ElShebiney
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
37
|
Seyed Alian R, Flasz B, Kędziorski A, Majchrzycki Ł, Augustyniak M. Concentration- and Time-Dependent Dietary Exposure to Graphene Oxide and Silver Nanoparticles: Effects on Food Consumption and Assimilation, Digestive Enzyme Activities, and Body Mass in Acheta domesticus. INSECTS 2024; 15:89. [PMID: 38392509 PMCID: PMC10888715 DOI: 10.3390/insects15020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
The advancement of nanotechnology poses a real risk of insect exposure to nanoparticles (NPs) that can enter the digestive system through contaminated food or nanopesticides. This study examines whether the exposure of model insect species-Acheta domesticus-to increasing graphene oxide (GO) and silver nanoparticle (AgNP) concentrations (2, 20, and 200 ppm and 4, 40, and 400 ppm, respectively) could change its digestive functions: enzymes' activities, food consumption, and assimilation. We noticed more pronounced alterations following exposure to AgNPs than to GO. They included increased activity of α-amylase, α-glucosidase, and lipase but inhibited protease activity. Prolonged exposure to higher concentrations of AgNPs resulted in a significantly decreased food consumption and changed assimilation compared with the control in adult crickets. A increase in body weight was observed in the insects from the Ag4 group and a decrease in body weight or no effects were observed in crickets from the Ag40 and Ag400 groups (i.e., 4, 40, or 400 ppm of AgNPs, respectively), suggesting that even a moderate disturbance in nutrient and energy availability may affect the body weight of an organism and its overall condition. This study underscores the intricate interplay between NPs and digestive enzymes, emphasizing the need for further investigation to comprehend the underlying mechanisms and consequences of these interactions.
Collapse
Affiliation(s)
- Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Łukasz Majchrzycki
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| |
Collapse
|
38
|
Asefian S, Ghavam M. Green and environmentally friendly synthesis of silver nanoparticles with antibacterial properties from some medicinal plants. BMC Biotechnol 2024; 24:5. [PMID: 38263231 PMCID: PMC10807138 DOI: 10.1186/s12896-023-00828-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Recently there have been a variety of methods to synthesize silver nanoparticles, among which the biosynthesis method is more noticeable due to features like being eco-friendly, simple, and cost-efficient. The present study aims for the green synthesis of silver nanoparticles from the extract of the three plants A. wilhelmsi, M. chamomilla, and C. longa; moreover, it pledges to measure the antibacterial activity against some variants causing a skin rash. The morphology and size of the synthesized silver nanoparticles were evaluated by UV.vis, XRD, SEM, and FTIR analyses. Then results showed a color alteration from light yellow to dark brown and the formation of silver nanoparticles. The absorption peak with the wavelength of approximately 450 nm resulting from the Spectrophotometry analysis confirmed the synthesis of silver nanoparticles. The presence of strong and wide peaks in FTIR indicated the presence of OH groups. The SEM results showed that most synthesized nanoparticles had a spherical angular structure and their size was about 10 to 20 nm. The highest inhibition power was demonstrated by silver nanoparticles synthesized from the extract combined from all three species against Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis (23 mm) which had a performance far more powerful than the extract. Thus, it can be understood that the nanoparticles synthesized from these three species can act as potential environment-friendly alternatives to inhibit some variations causing skin disorders; an issue that calls for further clinical studies.
Collapse
Affiliation(s)
- Samira Asefian
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
| | - Mansureh Ghavam
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.
| |
Collapse
|
39
|
Kim DY, Kim M, Sung JS, Koduru JR, Nile SH, Syed A, Bahkali AH, Seth CS, Ghodake GS. Extracellular synthesis of silver nanoparticle using yeast extracts: antibacterial and seed priming applicationss. Appl Microbiol Biotechnol 2024; 108:150. [PMID: 38240838 DOI: 10.1007/s00253-023-12920-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 01/23/2024]
Abstract
The evolution and rapid spread of multidrug-resistant (MDR) bacterial pathogens have become a major concern for human health and demand the development of alternative antimicrobial agents to combat this emergent threat. Conventional intracellular methods for producing metal nanoparticles (NPs) using whole-cell microorganisms have limitations, including binding of NPs to cellular components, potential product loss, and environmental contamination. In contrast, this study introduces a green, extracellular, and sustainable methodology for the bio-materialization of silver NPs (AgNPs) using renewable resource cell-free yeast extract. These extracts serve as a sustainable, biogenic route for both reducing the metal precursor and stabilizing the surface of AgNPs. This method offers several advantages such as cost-effectiveness, environment-friendliness, ease of synthesis, and scalability. HR-TEM imaging of the biosynthesized AgNPs revealed an isotropic growth route, resulting in an average size of about ~ 18 nm and shapes ranging from spherical to oval. Further characterization by FTIR and XPS results revealed various functional groups, including carboxyl, hydroxyl, and amide contribute to enhanced colloidal stability. AgNPs exhibited potent antibacterial activity against tested MDR strains, showing particularly high efficacy against Gram-negative bacteria. These findings suggest their potential role in developing alternative treatments to address the growing threat of antimicrobial resistance. Additionally, seed priming experiments demonstrated that pre-sowing treatment with AgNPs improves both the germination rate and survival of Sorghum jowar and Zea mays seedlings. KEY POINTS: •Yeast extract enables efficient, cost-effective, and eco-friendly AgNP synthesis. •Biosynthesized AgNPs showed strong antibacterial activity against MDR bacteria. •AgNPs boost seed germination and protect against seed-borne diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedical Campus, 32 Dongguk-Ro, Ilsanadong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedical Campus, 32 Dongguk-Ro, Ilsanadong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Shivraj Hariram Nile
- Division of Food and Nutrition, DBT-National Agri-Food Biotechnology Institute, Mohali, Sahibzada Ajit Singh Nagar, 140308, Punjab, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, 10326, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
40
|
El Bestawy E, El-Hameed ASA, Fadl E. Desalination of seawater using integrated microbial biofilm/cellulose acetate membrane and silver NPs/activated carbon nanocomposite in a continuous mode. Sci Rep 2024; 14:274. [PMID: 38168504 PMCID: PMC10762133 DOI: 10.1038/s41598-023-50311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The main objective of the present study was to desalinate seawater using Bacillus cereus gravel biofilm and cellulose acetate (CA) membranes with and without silver nanoparticles (AgNPs) as a potent and safe disinfectant for the treated water. Six desalination trials (I, II, III, IV, V and VI) were performed using the proposed biofilm/cellulose membrane. Results confirmed that Bacillus cereus gravel biofilm (microbial desalination) is the optimal system for desalination of seawater. It could achieve 45.0% RE (initial salinity: 44,478 mg/L), after only 3 h compared to the other tested treatments. It could also achieve 42, 42, 57, 43 and 59% RE for TDS, EC, TSS, COD and BOD, respectively. To overcome the problem of the residual salinity and reach complete elimination of salt content for potential reuse, multiple units of the proposed biofilm can be used in sequence. As a general conclusion, the Bacillus cereus biofilm system can be considered as remarkably efficient, feasible, rapid, clean, renewable, durable, environmentally friendly and easily applied technology compared to the very costly and complicated common desalination technologies. Up to our knowledge, this is the first time microbial biofilm was developed and used as an effective system for seawater desalination.
Collapse
Affiliation(s)
- Ebtesam El Bestawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
| | - Adel Salah Abd El-Hameed
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt
| | - Eman Fadl
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
41
|
Ganganboina AB, Park EY. Signal-Amplified Nanobiosensors for Virus Detection Using Advanced Nanomaterials. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:381-412. [PMID: 38337075 DOI: 10.1007/10_2023_244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Rapid diagnosis and treatment of infectious illnesses are crucial for clinical outcomes and public health. Biosensing developments enhance diagnostics at the point of care. This is superior to traditional procedures, which need centralized lab facilities, specialized personnel, and large equipment. The emerging coronavirus epidemic threatens global health and economic security. Increasing viral surveillance and regulatory actions against disease transmission necessitate rapid, sensitive testing tools for viruses. Due to their sensitivity and specificity, biosensors offer a possible reliable and quantifiable viral detection method. Current advances in genetic engineering, such as genetic alteration and material engineering, have provided several opportunities to enhance biosensors' sensitivity, selectivity, and recognition efficiency. This chapter explains biosensing techniques, biosensor varieties, and signal amplification technologies. Challenges and potential developments for viral microorganisms based on biosensors and signal amplification were also investigated.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, Ibaraki, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
42
|
Dong J, Yang B, Wang H, Cao X, He F, Wang L. Reveal molecular mechanism on the effects of silver nanoparticles on nitrogen transformation and related functional microorganisms in an agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166765. [PMID: 37660816 DOI: 10.1016/j.scitotenv.2023.166765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Silver nanoparticles (AgNPs) are widely present in aquatic and soil environment, raising significant concerns about their impacts on creatures in ecosystem. While the toxicity of AgNPs on microorganisms has been reported, their effects on biogeochemical processes and specific functional microorganisms remain relatively unexplored. In this study, a 28-day microcosmic experiment was conducted to investigate the dose-dependent effects of AgNPs (10 mg and 100 mg Ag kg-1 soil) on nitrogen transformation and functional microorganisms in agricultural soils. The molecular mechanisms were uncovered by examining change in functional microorganisms and metabolic pathways. To enable comparison, the toxicity of positive control with an equivalent Ag+ dose from CH3COOAg was also included. The results indicated that both AgNPs and CH3COOAg enhanced nitrogen fixation and nitrification, corresponding to increased relative abundances of associated functional genes. However, they inhibited denitrification via downregulating nirS, nirK, and nosZ genes as well as reducing nitrate and nitrite reductase activities. In contrast to high dose of AgNPs, low levels increased bacterial diversity. AgNPs and CH3COOAg altered the activities of associated metabolic pathways, resulting in the enrichment of specific taxa that demonstrated tolerance to Ag. At genus level, AgNPs increased the relative abundances of nitrogen-fixing Microvirga and Bacillus by 0.02 %-629.39 % and 14.44 %-30.10 %, respectively, compared with control group (CK). The abundances of denitrifying bacteria, such as Rhodoplanes, Pseudomonas, and Micromonospora, decreased by 19.03 % to 32.55 %, 24.73 % to 50.05 %, and 15.66 % to 76.06 %, respectively, compared to CK. CH3COOAg reduced bacterial network complexity, diminished the symbiosis mode compared to AgNPs. The prediction of genes involved in metabolic pathways related to membrane transporter and cell motility showed sensitive to AgNPs exposure in the soil. Further studies involving metabolomics are necessary to reveal the essential effects of AgNPs and CH3COOAg on biogeochemical cycle of elements in agricultural soil.
Collapse
Affiliation(s)
- Jinhao Dong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Xinlei Cao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Fei He
- Jinan Environmental Research Academy, Jinan 250098, China
| | - Lijiao Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
43
|
Czyż K, Dobrzański Z, Kowalska-Góralska M, Senze M, Wyrostek A. The effect of nanosilver-based preparation on microbiological quality of poultry litter. Arch Anim Breed 2023; 66:421-431. [PMID: 38205378 PMCID: PMC10776883 DOI: 10.5194/aab-66-421-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024] Open
Abstract
The study aimed to examine an effect of the preparation based on nanosilver suspension on mineral carrier on poultry litter microbiological profile. The study was conducted on Ross 308 broiler chickens. Three groups were formed, 84 birds in each. Preparation used in the study was composed of aqueous nanosilver suspension sprayed on mineral sorbent. Birds were maintained on straw-sawdust litter; the groups were differentiated due to preparation application (C - control without preparation, I - preparation applied once at the beginning, II - preparation added each week). Pooled litter samples were collected from the top layer of the litter (six samplings) in order to determine mesophilic bacteria count. Additionally, on the last day of the experiment litter samples were collected from three points (by drinker, feeder, pen corner) to analyze the total number of microorganisms, Salmonella spp., Escherichia coli, Enterococci, and molds. In the case of mesophilic bacteria count, the highest decrease was noted for group II. Total number of microorganisms determined in various points of the pen did not give clear relationship; in some cases even an increase was found. Salmonella spp. decreased as a result of preparation addition; the highest decrease was noted for samples collected by feeders. The results for Escherichia coli are not unequivocal. However, a decrease was found in the case of drinkers and feeders compared to control, especially in group II. An addition of preparation caused a decrease in Enterococci, especially for samples collected by feeders in group II. Similar tendency was found for molds. The study demonstrated that the preparation exhibits bactericidal properties. However, its effect varies depending on microorganism kind and sample collection point.
Collapse
Affiliation(s)
- Katarzyna Czyż
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, 51-630, Poland
| | - Zbigniew Dobrzański
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, 51-630, Poland
| | - Monika Kowalska-Góralska
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, 51-630, Poland
| | - Magdalena Senze
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, 51-630, Poland
| | - Anna Wyrostek
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Wrocław, 51-630, Poland
| |
Collapse
|
44
|
NajeerAhamed MJ, Soundharajan R, Srinivasan H. Antibacterial, antibiofilm, and antivirulence effects of nanoparticles synthesized from Colletotrichum gloeosporioides in pathogenic E.coli. Microb Pathog 2023; 185:106420. [PMID: 37879451 DOI: 10.1016/j.micpath.2023.106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Antimicrobial resistance is a global problem and antibiotics are becoming ineffective due to the resistance developed by bacteria. In this current research, silver nanoparticles were synthesized from aqueous extract of endophytic fungi Colletotrichum gloeosporioides (CgAgNPs) and characterized by various methods. CgAgNPs efficacy was analyzed by performing antimicrobial assays in Escherichia coli ATCC 25922 and antibiotic resistant pathogenic strains. Upon treatment with CgAgNPs biofilm formation was reduced in all E.coli strains. In vitro cytotoxicity assays revealed that CgAgNPs were able to increase the membrane permeability and induced leakage of sugars and proteins. CgAgNPs induced oxidative stress in E. coli strains led to lipid peroxidation and release of malonaldehyde. The CgAgNPs were able to modulate the anti-oxidant system of cells hence there was a reduction in Glutathione reductase, Catalase and Superoxide dismutase enzymes activities. Analysis of expression of gene encoding CTX-M-15 showed the down regulation upon treatment with ampicillin and CgAgNPs. Overall, the results suggest that CgAgNPs control growth, biofilm formation in E. coli through induction of oxidative stress, interference with antioxidant enzymes, cell content leakage and finally downregulating the virulence gene by interfering with transcription and translation in E. coli. In future, CgAgNPs can be incorporated in formulations to break antibiotic resistance in antibiotic resistant pathogenic E. coli.
Collapse
Affiliation(s)
- Mohamed Juvad NajeerAhamed
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Ranjani Soundharajan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Hemalatha Srinivasan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India.
| |
Collapse
|
45
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
46
|
Burak D, Rahman MA, Seo DC, Byun JY, Han J, Lee SE, Cho SH. In Situ Metal Deposition on Perhydropolysilazane-Derived Silica for Structural Color Surfaces with Antiviral Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54143-54156. [PMID: 37942676 DOI: 10.1021/acsami.3c12622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Structural coloration has recently sparked considerable attention on the laboratory and industrial scale. Structural colors can create vivid, saturated, and long-lasting colors on metallic surfaces for optical filters, digital displays, and surface decoration. This study used an all-solution, low-cost method, free of a specific setup procedure, to fabricate structural colors of a multilayered metal-dielectric structure based on interference effects within a Fabry-Perot cavity. The insulating (dielectric) layer was produced from perhydropolysilazane, an inorganic silicon-containing polymer, from which hydrogen was liberated during conversion into silica and applied in situ to reduce metallic nanoparticles on the silica surface. This simple manufacturing technique contributes to the fabrication of large, high-quality surfaces, which could potentially be employed for surface decoration. The fabricated surfaces also exhibited excellent hydrophobic properties with contact angles up to 137°, endowing them with self-cleaning properties. In addition, the antiviral and antibacterial impact of the silver (Ag)/silica (SiO2)/stainless steel (SUS) film was also examined, as Ag has been reported to have antimicrobial and, recently, antiviral properties. According to three independently conducted antiviral assays, the fluorescence expression of virus-infected cells, PCR analysis, and modified tissue culture infectious dose assay, the film inhibited lentivirus by 75, 97, and 99% when exposed to the virus for 20 min, 1 h, and 20 min, respectively. Furthermore, the film had exceptional antibacterial activity with no colony growth observed for 24 and 12 h of inoculation. It is thus conceivable that these structural color-based films can be used to not only decorate metal surfaces with aesthetic colors but also limit virus and bacterium propagation successfully.
Collapse
Affiliation(s)
- Darya Burak
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology (Nanomaterials Science and Engineering), University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Md Abdur Rahman
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Dong-Chan Seo
- Research Animal Resources Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Ji Young Byun
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Joonsoo Han
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - So-Hye Cho
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology (Nanomaterials Science and Engineering), University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
47
|
Zendehdel AA, Sorouraddin SM, Farajzadeh MA. In-situ formation of the adsorbent based on octadecylamine for the extraction of Ag + ions from aqueous solutions and its determination by microinjection flame atomic absorption spectrometry. ANAL SCI 2023; 39:1901-1908. [PMID: 37594680 DOI: 10.1007/s44211-023-00399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
In this research, a dispersive solid phase extraction procedure based on changing the solubility of octadecylamine with pH was proposed to determine Ag+ ions in different water samples. For this purpose, first, the pH of sample solution containing the analyte was adjusted to 10.5. Then desired volume of the octadecylamine dissolved in acidic solution was injected into the solution. Because of the low solubility of octadecylamine in alkaline solution, a cloudy state was formed. The produced octadecylamine particles acted as a complexing agent for Ag+ ions and adsorbent for the formed complex. The obtained cloudy solution was centrifuged and the sedimented particles were removed and dissolved in a diluted nitric acid solution. It was injected into a flame atomic absorption spectrometry to determine the extracted amounts of the analyte. The effect of important parameters such as the amount of octadecylamine, volume of nitric acid, and centrifugation and vortexing conditions on the extraction efficiency of the procedure was studied and optimized. In optimal conditions, the developed method showed a linear range of 0.50-200 µg L-1. The limits of detection and quantification were 0.18 and 0.50 µg L-1, respectively. Extraction recovery was 93.6%. The relative standard deviations were less than 4%. The effectiveness of the method was investigated by determination of Ag+ ions in water and wastewater samples.
Collapse
Affiliation(s)
- Ali Asghar Zendehdel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
48
|
Deng Y, Zhou Z, Zhang C, Li H, Lan J, Wu J, Wang S. Enhancing the Ag-loading capacity on Ti 3C 2T x sheets as hybrid fillers to form composite coatings with excellent antibacterial properties. RSC Adv 2023; 13:28951-28963. [PMID: 37795049 PMCID: PMC10545980 DOI: 10.1039/d3ra05188a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
The settlement of microorganisms is an unwanted process in various practical fields, where also the first attaching microorganisms could promote other bacterial adhesion, causing an acceleration of bioaccumulation on the solid surface and damage to the surface functions. Developing an advanced composite coating with anti-microorganism attachment features is still a big challenge, and the critical element in any such method is to find an efficient functional agent for use in the coating system that could extend the service period. MXenes have received increasing attentions owing to their unique layer structure and large specific surface area. Increasing studies have been devoted to the development of MXene/polymer composites with creatively designed structures to realize various specific functions. Herein, two-dimensional (2D) transition metal carbide material MXene as a carrier was etched and decorated with cellulose to enhance the anchor points to grasp functional Ag nanoparticles via a simple method. The MXene nanosheets (Ti3C2Tx) were modified by cellulose to graft hydroxy groups on their surface, and then they were incorporated into silver nanoparticles (Ag NPs). The results showed that the cellulose could increase the loading content of the Ag NPs on the MXene surface, and also could act as a stabilized material to form the composite filler MXene@cellulose@Ag NPs (MAC), which could serve as a functional agent. Furthermore, the obtained product MAC filler exhibited excellent dispersibility and stability among all the tested fillers (MXene and MA), and it could help avoid aggregation and promote homogenous dispersal in the coating network. Besides, MAC displayed outstanding antibacterial activities against E. coli and S. aureus at the same concentration among all the fillers. When the filler was embedded into the coating system, the composite coating PCB-MAC possessed abundant active Ag+ ions released by the Ag NPs, which could work against bacterial growth and achieve a favorable antibacterial inhibition effect. Therefore, we believe that the active MAC filler maintained high antibacterial efficiency, evincing its potential as a desirable agent for obtaining an excellent anti-adhesive behavior in numerous broad applications, such as the environment field or medical area.
Collapse
Affiliation(s)
- Yajun Deng
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, Jimei University Xiamen 361021 China
| | - Zijie Zhou
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, Jimei University Xiamen 361021 China
| | - Changan Zhang
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, Jimei University Xiamen 361021 China
| | - Hui Li
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, Jimei University Xiamen 361021 China
| | - Jianfeng Lan
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, Jimei University Xiamen 361021 China
| | - Jianhua Wu
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, Jimei University Xiamen 361021 China
| | - Shibin Wang
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, Jimei University Xiamen 361021 China
| |
Collapse
|
49
|
Pulvirenti L, Lombardo C, Salmeri M, Bongiorno C, Mannino G, Lo Presti F, Cambria MT, Condorelli GG. Self-assembled BiFeO 3@MIL-101 nanocomposite for antimicrobial applications under natural sunlight. DISCOVER NANO 2023; 18:113. [PMID: 37697156 PMCID: PMC10495303 DOI: 10.1186/s11671-023-03883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/04/2023] [Indexed: 09/13/2023]
Abstract
In this paper, we report on the synthesis of a new hybrid photocatalytic material activated by natural sunlight irradiation. The material consists of multiferroic nanoparticles of bismuth ferrite (BFO) modified through the growth of the Fe-based MIL-101 framework. Material characterization, conducted using various techniques (X-ray diffraction, transmission electron microscopy, FTIR, and X-ray photoelectron spectroscopies), confirmed the growth of the MIL-101 metal-organic framework on the BFO surface. The obtained system possesses the intrinsic photo-degradative properties of BFO nanoparticles significantly enhanced by the presence of MIL-101. The photocatalytic activity of this material was tested in antibacterial experiments conducted under natural sunlight exposure within the nanocomposite concentration range of 100-0.20 µg/ml. The MIL-modified BFO showed a significant decrease in both Minimum Inhibiting Concentration and Minimum Bactericide Concentration values compared to bare nanoparticles. This confirms the photo-activating effect of the MIL-101 modification. In particular, they show an increased antimicrobial activity against the tested Gram-positive species and the ability to begin to inhibit the growth of the four Escherichia coli strains, although at the maximum concentration tested. These results suggest that the new nanocomposite BiFeO3@MOF has been successfully developed and has proven to be an effective antibacterial agent against a wide range of microorganisms and a potential candidate in disinfection processes.
Collapse
Affiliation(s)
- Luca Pulvirenti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Cinzia Lombardo
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Via S. Sofia 97, 95125, Catania, Italy
| | - Mario Salmeri
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Via S. Sofia 97, 95125, Catania, Italy
| | | | | | - Francesca Lo Presti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Maria Teresa Cambria
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Via S. Sofia 97, 95125, Catania, Italy.
| | - Guglielmo Guido Condorelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- Consorzio INSTM UdR di Catania, Catania, Italy.
| |
Collapse
|
50
|
Gessi A, Formaglio P, Semeraro B, Summa D, Tamisari E, Tamburini E. Electrolyzed Hypochlorous Acid (HOCl) Aqueous Solution as Low-Impact and Eco-Friendly Agent for Floor Cleaning and Sanitation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6712. [PMID: 37754572 PMCID: PMC10530460 DOI: 10.3390/ijerph20186712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Recently, the use of disinfectants has been becoming a diffused and sometimes indiscriminate practice of paramount importance to limit the spreading of infections. The control of microbial contamination has now been concentrated on the use of traditional agents (i.e., hypochlorite, ozone). However, their prolonged use can cause potential treats, for both human health and environment. Currently, low-impact but effective biocides that are prepared in a way that avoids waste, with a very low toxicity, and safe and easy to handle and store are strongly needed. In this study, produced electrochemically activated hypochlorous (HOCl) acid solutions are investigated and proposed, integrated in a scrubbing machine for floor cleaning treatment. Such an innovative machine has been used for floor cleaning and sanitation in order to evaluate the microbial charge and organic dirt removal capacity of HOCl in comparison with a machine charged with traditional Ecolabel standard detergent. The potential damage on floor materials has also been investigated by means of Scanning Electron Microscope (SEM). A comparative Life Cycle Assessment (LCA) analysis has been carried out for evaluating the sustainability of the use of the HOCl-based and detergent-based machine.
Collapse
Affiliation(s)
- Alessandro Gessi
- ENEA Research Center, SSPT-MET-DISPREV, Via Martiri di Montesole, 40129 Bologna, Italy;
| | - Paolo Formaglio
- GATEGREEN Srl, Via Armari 9, 44121 Ferrara, Italy; (P.F.); (B.S.)
- Department of Chemical, Pharmaceutical and Agrarian Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Bruno Semeraro
- GATEGREEN Srl, Via Armari 9, 44121 Ferrara, Italy; (P.F.); (B.S.)
| | - Daniela Summa
- Department of Chemical, Pharmaceutical and Agrarian Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Elena Tamisari
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| | - Elena Tamburini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|