1
|
Vieira T, Silva JC, Kubinova S, Borges JP, Henriques C. Evaluation of Gelatin-Based Poly(Ester Urethane Urea) Electrospun Fibers Using Human Mesenchymal and Neural Stem Cells. Macromol Biosci 2024; 24:e2400014. [PMID: 39072995 DOI: 10.1002/mabi.202400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Indexed: 07/30/2024]
Abstract
Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).
Collapse
Affiliation(s)
- Tânia Vieira
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Jorge Carvalho Silva
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Sarka Kubinova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - João P Borges
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Ciência dos Materiais, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Célia Henriques
- CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
2
|
Vieira T, Afonso AF, Correia C, Henriques C, Borges JP, Silva JC. Electrospun poly(lactic acid) membranes with defined pore size to enhance cell infiltration. Heliyon 2024; 10:e36091. [PMID: 39224377 PMCID: PMC11367500 DOI: 10.1016/j.heliyon.2024.e36091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Electrospun membranes are compact structures with small pore sizes that hinder cell infiltration, resulting in membranes with cells attached only to the external surface rather than throughout the entire volume. Thus, there is a need to increase the pore size of electrospun membranes maintaining their structural similarity to the extracellular matrix. In this work, we used glucose crystals embedded in polyethylene oxide (PEO) fibers to create large pores in poly(lactic acid) (PLA) electrospun membranes to allow for cellular infiltration. The PEO fibers containing glucose crystals of different sizes (>50, 50-100 and 100-150 μm) and in varying concentrations (10, 15 and 20 %) were co-electrospun with PLA fibers and subsequently leached out using distilled water. PLA fibrous membranes without glucose crystals were also produced as controls. The membranes were examined for their morphology, mechanical properties, and potential to support the proliferation of fibroblasts. In addition, the immune response to the membranes was evaluated using monocyte-derived macrophages. The glucose crystals were uniformly distributed in the PLA membranes and their removal created open pores without collapsing the structure. Although a reduced Young's modulus was observed for membranes produced using higher glucose crystal concentrations and larger crystal sizes, the structural integrity remained intact, and the values are still suitable for tissue engineering. In vitro results showed that the scaffolds supported the adhesion and proliferation of fibroblasts and the pores created in the PLAmembranes were large enough for fibroblasts infiltration and colonization of the entire scaffold without inducing an inflammatory response.
Collapse
Affiliation(s)
- Tânia Vieira
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Ana Filipa Afonso
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Catarina Correia
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Célia Henriques
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - João Paulo Borges
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Jorge Carvalho Silva
- Centro de Investigação de Materiais, Institute for Nanostructures, Nanomodelling and Nanofabrication, CENIMAT-I3N, Portugal
- Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
3
|
Gavinho SR, Pádua AS, Holz LIV, Sá-Nogueira I, Silva JC, Borges JP, Valente MA, Graça MPF. Bioactive Glasses Containing Strontium or Magnesium Ions to Enhance the Biological Response in Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2717. [PMID: 37836358 PMCID: PMC10574208 DOI: 10.3390/nano13192717] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 10/15/2023]
Abstract
The non-surgical treatments are being required to reconstruct damaged tissue, prioritizing our body's natural healing process. Thus, the use of bioactive materials such as bioactive glass has been studied to support the repair and restoration of hard and soft tissue. Thus, in this work Bioglass 45S5 was developed, adding 1 and 2%mol of SrO or MgO and the physical and biological properties were evaluated. The addition of MgO and SrO at the studied concentrations promoted the slight increase in non-bridging oxygens number, observed through the temperature shift in phase transitions to lower values compared to Bioglass 45S5. The insertion of the ions also showed a positive effect on Saos-2 cell viability, decreasing the cytotoxic of Bioglass 45S5. Besides the Ca/P ratio on the pellets surface demonstrating no evidence of higher reactivity between Bioglass 45S5 and Bioglass with Sr and Mg, micrographs show that at 24 h the Ca/P rich layer is denser than in Bioglass 45S5 after the contact with simulated body fluid. The samples with Sr and Mg show a higher antibacterial effect compared to Bioglass 45S5. The addition of the studied ions may benefit the biological response of Bioglass 45S5 in dental applications as scaffolds or coatings.
Collapse
Affiliation(s)
| | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (A.S.P.); (J.C.S.)
| | | | - Isabel Sá-Nogueira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal; (A.S.P.); (J.C.S.)
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Manuel Almeida Valente
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (S.R.G.); (M.P.F.G.)
| | | |
Collapse
|
4
|
Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater 2023; 27:505-545. [PMID: 37180643 PMCID: PMC10173014 DOI: 10.1016/j.bioactmat.2023.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.
Collapse
Affiliation(s)
- Rouyan Chen
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, SA, 5005, Australia
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Christopher B. Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
5
|
Hammami I, Gavinho SR, Pádua AS, Sá-Nogueira I, Silva JC, Borges JP, Valente MA, Graça MPF. Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applications: Fabrication, Structural, Electrical, and Biological Analysis. Int J Mol Sci 2023; 24:10571. [PMID: 37445749 DOI: 10.3390/ijms241310571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Implantology is crucial for restoring aesthetics and masticatory function in oral rehabilitation. Despite its advantages, certain issues, such as bacterial infection, may still arise that hinder osseointegration and result in implant rejection. This work aims to address these challenges by developing a biomaterial for dental implant coating based on 45S5 Bioglass® modified by zirconium insertion. The structural characterization of the glasses, by XRD, showed that the introduction of zirconium in the Bioglass network at a concentration higher than 2 mol% promotes phase separation, with crystal phase formation. Impedance spectroscopy was used, in the frequency range of 102-106 Hz and the temperature range of 200-400 K, to investigate the electrical properties of these Bioglasses, due to their ability to store electrical charges and therefore enhance the osseointegration capacity. The electrical study showed that the presence of crystal phases, in the glass ceramic with 8 mol% of zirconium, led to a significant increase in conductivity. In terms of biological properties, the Bioglasses exhibited an antibacterial effect against Gram-positive and Gram-negative bacteria and did not show cytotoxicity for the Saos-2 cell line at extract concentrations up to 25 mg/mL. Furthermore, the results of the bioactivity test revealed that within 24 h, a CaP-rich layer began to form on the surface of all the samples. According to our results, the incorporation of 2 mol% of ZrO2 into the Bioglass significantly improves its potential as a coating material for dental implants, enhancing both its antibacterial and osteointegration properties.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
6
|
Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implant. Int J Mol Sci 2023; 24:ijms24065244. [PMID: 36982320 PMCID: PMC10049186 DOI: 10.3390/ijms24065244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Dental implants have emerged as one of the most consistent and predictable treatments in the oral surgery field. However, the placement of the implant is sometimes associated with bacterial infection leading to its loss. In this work, we intend to solve this problem through the development of a biomaterial for implant coatings based on 45S5 Bioglass® modified with different amounts of niobium pentoxide (Nb2O5). The structural feature of the glasses, assessed by XRD and FTIR, did not change in spite of Nb2O5 incorporation. The Raman spectra reveal the Nb2O5 incorporation related to the appearance of NbO4 and NbO6 structural units. Since the electrical characteristics of these biomaterials influence their osseointegration ability, AC and DC electrical conductivity were studied by impedance spectroscopy, in the frequency range of 102–106 Hz and temperature range of 200–400 K. The cytotoxicity of glasses was evaluated using the osteosarcoma Saos-2 cells line. The in vitro bioactivity studies and the antibacterial tests against Gram-positive and Gram-negative bacteria revealed that the samples loaded with 2 mol% Nb2O5 had the highest bioactivity and greatest antibacterial effect. Overall, the results showed that the modified 45S5 bioactive glasses can be used as an antibacterial coating material for implants, with high bioactivity, being also non-cytotoxic to mammalian cells.
Collapse
|
7
|
Baptista S, Pereira JR, Guerreiro BM, Baptista F, Silva JC, Freitas F. Cosmetic emulsion based on the fucose-rich polysaccharide FucoPol: Bioactive properties and sensorial evaluation. Colloids Surf B Biointerfaces 2023; 225:113252. [PMID: 36931042 DOI: 10.1016/j.colsurfb.2023.113252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
In this study, the physicochemical characteristics, bioactive properties, and sensorial evaluation of a O/W cosmetic formulation containing FucoPol, a fucose-containing bacterial polysaccharide, were assessed. The stability of the FucoPol-based cream, named F-cream, was demonstrated over a period of 2 months at different temperatures (4, 20 and 30 °C), during which it maintained the organoleptic characteristics and pH (5.88-6.19), with minimal variations on the apparent viscosity. Furthermore, no breaking mechanisms occurred upon centrifuging the samples (accelerated stability test) kept at 4 °C and at 30 °C for 60 days. The F-cream presented a shear-thinning and solid-liquid behavior consistent with its envisaged use for topical applications, proving to be a suitable candidate for an anti-aging application due to its antioxidant capacity and effective photoprotection, maintaining cellular preservation. Moreover, the formulation was proven non-cytotoxic for HaCaT cells at concentrations between 0.78 and 12.5 mg/mL, promoting HFFF2 cell migration (46-70 % of wound closure) at a concentration of 2.5 mg/mL, and HaCaT cell migration at a concentration of 10 mg/mL (95-98 % of wound closure). Upon application over the skin, the F-cream provided a hydration and softness with desired spreadability with no residues after application. These findings show that FucoPol has good potential to be used as a functional and/or active ingredient in cosmetic formulations, forming an emulsified cream with appealing sensorial properties that can act as a moisturizer with photoprotection, antioxidant, and regeneration properties.
Collapse
Affiliation(s)
- Sílvia Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; 73100, Lda. Edifício Arcis, Rua Ivone Silva, 6, 4º piso, 1050-124 Lisboa, Portugal
| | - João R Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; CENIMAT/I3N, Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Bruno M Guerreiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; CENIMAT/I3N, Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Filipa Baptista
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge C Silva
- CENIMAT/I3N, Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
| |
Collapse
|
8
|
Gavinho SR, Pádua AS, Sá-Nogueira I, Silva JC, Borges JP, Costa LC, Graça MPF. Fabrication, Structural and Biological Characterization of Zinc-Containing Bioactive Glasses and Their Use in Membranes for Guided Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:956. [PMID: 36769963 PMCID: PMC9919611 DOI: 10.3390/ma16030956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Polymeric membranes are widely used in guided bone regeneration (GBR), particularly in dentistry. In addition, bioactive glasses can be added to the polymers in order to develop a matrix that is osteoconductive and osteoinductive, increasing cell adhesion and proliferation. The bioactive glasses allow the insertion into its network of therapeutic ions in order to add specific biological properties. The addition of zinc into bioactive glasses can promote antibacterial activity and induce the differentiation and proliferation of the bone cells. In this study, bioactive glasses containing zinc (0.25, 0.5, 1 and 2 mol%) were developed and structurally and biologically characterized. The biological results show that the Zn-containing bioactive glasses do not present significant antibacterial activity, but the addition of zinc at the highest concentration does not compromise the bioactivity and promotes the viability of Saos-2 cells. The cell culture assays in the membranes (PCL, PCL:BG and PCL:BGZn2) showed that zinc addition promotes cell viability and an increase in alkaline phosphatase (ALP) production.
Collapse
Affiliation(s)
- Sílvia R. Gavinho
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Sofia Pádua
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge C. Silva
- I3N-CENIMAT and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João P. Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Luis C. Costa
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel Pedro F. Graça
- I3N and Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Preparation and In Vitro Characterization of Magnetic CS/PVA/HA/pSPIONs Scaffolds for Magnetic Hyperthermia and Bone Regeneration. Int J Mol Sci 2023; 24:ijms24021128. [PMID: 36674644 PMCID: PMC9863008 DOI: 10.3390/ijms24021128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Conventional bone cancer treatment often results in unwanted side effects, critical-sized bone defects, and inefficient cancer-cell targeting. Therefore, new approaches are necessary to better address bone cancer treatment and patient's recovery. One solution may reside in the combination of bone regeneration scaffolds with magnetic hyperthermia. By incorporating pristine superparamagnetic iron oxide nanoparticles (pSPIONs) into additively manufactured scaffolds we created magnetic structures for magnetic hyperthermia and bone regeneration. For this, hydroxyapatite (HA) particles were integrated in a polymeric matrix composed of chitosan (CS) and poly (vinyl alcohol) (PVA). Once optimized, pSPIONs were added to the CS/PVA/HA paste at three different concentrations (1.92, 3.77, and 5.54 wt.%), and subsequently additively manufactured to form a scaffold. Results indicate that scaffolds containing 3.77 and 5.54 wt.% of pSPIONs, attained temperature increases of 6.6 and 7.5 °C in magnetic hyperthermia testing, respectively. In vitro studies using human osteosarcoma Saos-2 cells indicated that pSPIONs incorporation significantly stimulated cell adhesion, proliferation and alkaline phosphatase (ALP) expression when compared to CS/PVA/HA scaffolds. Thus, these results support that CS/PVA/HA/pSPIONs scaffolds with pSPIONs concentrations above or equal to 3.77 wt.% have the potential to be used for magnetic hyperthermia and bone regeneration.
Collapse
|
10
|
Zhang Y, Chong JY, Zhao Y, Xu R, Asakawa A, Wang R. Facile hydrophobic modification of hydrophilic membranes by fluoropolymer coating for direct contact membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Khamplod T, Winterburn JB, Cartmell SH. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds - a step towards ligament repair applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:895-910. [PMID: 36570876 PMCID: PMC9769142 DOI: 10.1080/14686996.2022.2149034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
The incidence of anterior cruciate ligament (ACL) ruptures is approximately 50 per 100,000 people. ACL rupture repair methods that offer better biomechanics have the potential to reduce long term osteoarthritis. To improve ACL regeneration biomechanically similar, biocompatible and biodegradable tissue scaffolds are required. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with high 3-hydroxyvalerate (3HV) content, based scaffold materials have been developed, with the advantages of traditional tissue engineering scaffolds combined with attractive mechanical properties, e.g., elasticity and biodegradability. PHBV with 3HV fractions of 0 to 100 mol% were produced in a controlled manner allowing specific compositions to be targeted, giving control over material properties. In conjunction electrospinning conditions were altered, to manipulate the degree of fibre alignment, with increasing collector rotating speed used to obtain random and aligned PHBV fibres. The PHBV based materials produced were characterised, with mechanical properties, thermal properties and surface morphology being studied. An electrospun PHBV fibre mat with 50 mol% 3HV content shows a significant increase in elasticity compared to those with lower 3HV content and could be fabricated into aligned fibres. Biocompatibility testing with L929 fibroblasts demonstrates good cell viability, with the aligned fibre network promoting fibroblast alignment in the axial fibre direction, desirable for ACL repair applications. Dynamic load testing shows that the 50 mol% 3HV PHBV material produced can withstand cyclic loading with reasonable resilience. Electrospun PHBV can be produced with low batch variability and tailored, application specific properties, giving these biomaterials promise in tissue scaffold applications where aligned fibre networks are desired, such as ACL regeneration. .
Collapse
Affiliation(s)
- Thammarit Khamplod
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
- Henry Royce Institute, The University of Manchester, Manchester, UK
| | - James B. Winterburn
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Sarah H. Cartmell
- Henry Royce Institute, The University of Manchester, Manchester, UK
- Department of Materials Science, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Gavinho SR, Pádua AS, Sá-Nogueira I, Silva JC, Borges JP, Costa LC, Graça MPF. Biocompatibility, Bioactivity, and Antibacterial Behaviour of Cerium-Containing Bioglass ®. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244479. [PMID: 36558332 PMCID: PMC9783236 DOI: 10.3390/nano12244479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 05/31/2023]
Abstract
The main reason for the increased use of dental implants in clinical practice is associated with aesthetic parameters. Implants are also presented as the only technique that conserves and stimulates natural bone. However, there are several problems associated with infections, such as peri-implantitis. This disease reveals a progressive inflammatory action that affects the hard and soft tissues surrounding the implant, leading to implant loss. To prevent the onset of this disease, coating the implant with bioactive glasses has been suggested. In addition to its intrinsic function of promoting bone regeneration, it is also possible to insert therapeutic ions, such as cerium. Cerium has several advantages when the aim is to improve osseointegration and prevent infectious problems with dental implant placement. It promotes increased growth and the differentiation of osteoblasts, improves the mechanical properties of bone, and prevents bacterial adhesion and proliferation that may occur on the implant surface. This antibacterial effect is due to its ability to disrupt the cell wall and membrane of bacteria, thus interfering with vital metabolic functions such as respiration. In addition, its antioxidant effect reverses oxidative stress after implantation in bone. In this work, Bioglass 45S5 with CeO2 with different percentages (0.25, 0.5, 1, and 2 mol%) was developed by the melt-quenching method. The materials were analyzed in terms of morphological, structural, and biological (cytotoxicity, bioactivity, and antibacterial activity) properties. The addition of cerium did not promote structural changes to the bioactive glass, which shows no cytotoxicity for the Saos-2 cell line up to 25 mg/mL of extract concentration for all cerium contents. For the maximum cerium concentration (2 mol%) the bioactive glass shows an evident inhibitory effect for Escherichia coli and Streptococcus mutans bacteria. Furthermore, all samples showed the beginning of the deposition of a CaP-rich layer on the surface of the material after 24 h.
Collapse
Affiliation(s)
- Sílvia R. Gavinho
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | - Ana Sofia Pádua
- I3N-CENIMAT, New University of Lisbon, 2825-097 Caparica, Portugal
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge C. Silva
- I3N-CENIMAT, New University of Lisbon, 2825-097 Caparica, Portugal
| | - João P. Borges
- I3N-CENIMAT, New University of Lisbon, 2825-097 Caparica, Portugal
| | - Luis C. Costa
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal
| | | |
Collapse
|
13
|
Fabrication of conductive hybrid scaffold based on polyaniline/polyvinyl alcohol–chitosan nanoparticles for skin tissue engineering application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
14
|
Cheesbrough A, Sciscione F, Riccio F, Harley P, R'Bibo L, Ziakas G, Darbyshire A, Lieberam I, Song W. Biobased Elastomer Nanofibers Guide Light-Controlled Human-iPSC-Derived Skeletal Myofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110441. [PMID: 35231133 PMCID: PMC9131876 DOI: 10.1002/adma.202110441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/25/2022] [Indexed: 05/07/2023]
Abstract
Generating skeletal muscle tissue that mimics the cellular alignment, maturation, and function of native skeletal muscle is an ongoing challenge in disease modeling and regenerative therapies. Skeletal muscle cultures require extracellular guidance and mechanical support to stabilize contractile myofibers. Existing microfabrication-based solutions are limited by complex fabrication steps, low throughput, and challenges in measuring dynamic contractile function. Here, the synthesis and characterization of a new biobased nanohybrid elastomer, which is electrospun into aligned nanofiber sheets to mimic the skeletal muscle extracellular matrix, is presented. The polymer exhibits remarkable hyperelasticity well-matched to that of native skeletal muscle (≈11-50 kPa), with ultimate strain ≈1000%, and elastic modulus ≈25 kPa. Uniaxially aligned nanofibers guide myoblast alignment, enhance sarcomere formation, and promote a ≈32% increase in myotube fusion and ≈50% increase in myofiber maturation. The elastomer nanofibers stabilize optogenetically controlled human induced pluripotent stem cell derived skeletal myofibers. When activated by blue light, the myofiber-nanofiber hybrid constructs maintain a significantly higher (>200%) contraction velocity and specific force (>280%) compared to conventional culture methods. The engineered myofibers exhibit a power density of ≈35 W m-3 . This system is a promising new skeletal muscle tissue model for applications in muscular disease modeling, drug discovery, and muscle regeneration.
Collapse
Affiliation(s)
- Aimee Cheesbrough
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Fabiola Sciscione
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Federica Riccio
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Peter Harley
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Lea R'Bibo
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Georgios Ziakas
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Arnold Darbyshire
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| | - Ivo Lieberam
- Centre for Gene Therapy and Regenerative MedicineMRC Centre for Neurodevelopmental DisordersCentre for Developmental NeurobiologyKings College LondonLondonSE1 9RTUK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and RegenerationDepartment of Surgical BiotechnologyDivision of Surgery and Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| |
Collapse
|
15
|
Study on the Incorporation of Chitosan Flakes in Electrospun Polycaprolactone Scaffolds. Polymers (Basel) 2022; 14:polym14081496. [PMID: 35458246 PMCID: PMC9032814 DOI: 10.3390/polym14081496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 12/18/2022] Open
Abstract
Hybrid scaffolds obtained by combining two or more biopolymers are studied in the context of tissue regeneration due to the possibility of achieving new functional properties or structural features. The aim of this work was to produce a new type of hybrid polycaprolactone (PCL)/chitosan (CS) electrospun mat through the controlled deposition of CS flakes interspaced between the PCL fibers. A poly(ethylene oxide) (PEO) solution was used to transport CS flakes with controlled size. This, and the PCL solution, were simultaneously electrospun onto a rotatory mandrel in a perpendicular setup. Different PCL/CS mass ratios were also studied. The morphology of the resulting fibers, evaluated by SEM, confirmed the presence of the CS flakes between the PCL fibers. The addition of PEO/CS fibers resulted in hydrophilic mats with lower Young’s modulus relatively to PCL mats. In vitro cell culture results indicated that the addition of CS lowers both the adhesion and the proliferation of human dermal fibroblasts. The present work demonstrates the feasibility of achieving a controlled deposition of a polymeric component in granular form onto a collector where electrospun nanofibers are being deposited, thereby producing a hybrid scaffold.
Collapse
|
16
|
Amiryaghoubi N, Noroozi Pesyan N, Fathi M, Omidi Y. The design of polycaprolactone-polyurethane/chitosan composite for bone tissue engineering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Paula CTB, Pereira P, Coelho JFJ, Fonseca AC, Serra AC. Development of light-degradable poly(urethane-urea) hydrogel films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112520. [PMID: 34857299 DOI: 10.1016/j.msec.2021.112520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Biocompatible hydrogels are exciting platforms that have stood out in recent years for their outstanding potential for biomedical applications. For these applications, the ability of the material to respond to an external stimulus can be a relevant addition. This responsiveness allows the material to modify its physical properties in such a way that it can deliver molecules that support the healing process or allow easy removal of the films from the tissue. Among the polymers used to produce these systems, polyurethane (PU) and polyurethane-urea (PUU) are some of the most cited examples. In this work, a new hydrogel-sensitive PUU film is proposed. These films are prepared from polyethylene glycol (PEG) and contain a ROS-responsive telechelic β-aminoacrylate bond. The hydrogel films showed interesting mechanical and thermal properties, good water uptake and low cytotoxicity, which makes them suitable for biomedical applications. More importantly, the hydrogel films exhibited a light-degradable profile through an innovative ROS-mediated cleavage process, as indicated by the loss of mechanical properties.
Collapse
Affiliation(s)
- Carlos T B Paula
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Patrícia Pereira
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Arménio C Serra
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| |
Collapse
|
18
|
Bazgir M, Zhang W, Zhang X, Elies J, Saeinasab M, Coates P, Youseffi M, Sefat F. Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4773. [PMID: 34500862 PMCID: PMC8432541 DOI: 10.3390/ma14174773] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
The current study aimed to evaluate the characteristics and the effects of degradation on the structural properties of Poly(lactic-co-glycolic acid) (PLGA)- and polycaprolactone (PCL)-based nanofibrous scaffolds. Six scaffolds were prepared by electrospinning, three with PCL 15% (w/v) and three with PLGA 10% (w/v), with electrospinning processing times of 30, 60 and 90 min. Both types of scaffolds displayed more robust mechanical properties with increased spinning times. The tensile strength of both scaffolds with 90-min electrospun membranes did not show a significant difference in their strengths, as the PCL and PLGA scaffolds measured at 1.492 MPa ± 0.378 SD and 1.764 MPa ± 0.7982 SD, respectively. All membranes were shown to be hydrophobic under a wettability test. A degradation behaviour study was performed by immersing all scaffolds in phosphate-buffered saline (PBS) solution at room temperature for 12 weeks and for 4 weeks at 37 °C. The effects of degradation were monitored by taking each sample out of the PBS solution every week, and the structural changes were investigated under a scanning electron microscope (SEM). The PCL and PLGA scaffolds showed excellent fibre structure with adequate degradation, and the fibre diameter, measured over time, showed slight increase in size. Therefore, as an example of fibre water intake and progressive degradation, the scaffold's percentage weight loss increased each week, further supporting the porous membrane's degradability. The pore size and the porosity percentage of all scaffolds decreased substantially over the degradation period. The conclusion drawn from this experiment is that PCL and PLGA hold great promise for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Morteza Bazgir
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China;
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China;
| | - Jacobo Elies
- Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Phil Coates
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| | - Mansour Youseffi
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
19
|
Xing Z, Zhao C, Wu S, Zhang C, Liu H, Fan Y. Hydrogel-based therapeutic angiogenesis: An alternative treatment strategy for critical limb ischemia. Biomaterials 2021; 274:120872. [PMID: 33991951 DOI: 10.1016/j.biomaterials.2021.120872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease (PAD), resulting in the total or partial loss of limb function. Although the conventional treatment strategy of CLI (e.g., medical treatment and surgery) can improve blood perfusion and restore limb function, many patients are unsuitable for these strategies and they still face the threats of amputation or death. Therapeutic angiogenesis, as a potential solution for these problems, attempts to manipulate blood vessel growth in vivo for augment perfusion without the help of extra pharmaceutics and surgery. With the rise of interdisciplinary research, regenerative medicine strategies provide new possibilities for treating many clinical diseases. Hydrogel, as an excellent biocompatibility material, is an ideal candidate for delivering bioactive molecules and cells for therapeutic angiogenesis. Besides, hydrogel could precisely deliver, control release, and keep the bioactivity of cargos, making hydrogel-based therapeutic angiogenesis a new strategy for CLI therapy. In this review, we comprehensively discuss the approaches of hydrogel-based strategy for CLI treatment as well as their challenges, and future directions.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
20
|
Sta. Agueda JRH, Chen Q, Maalihan RD, Ren J, da Silva ÍGM, Dugos NP, Caldona EB, Advincula RC. 3D printing of biomedically relevant polymer materials and biocompatibility. MRS COMMUNICATIONS 2021; 11:197-212. [PMID: 33936866 PMCID: PMC8075026 DOI: 10.1557/s43579-021-00038-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 05/06/2023]
Abstract
ABSTRACT Research on polymer materials for additive manufacturing technology in biomedical applications is as promising as it is numerous, but biocompatibility of printable materials still remains a big challenge. Changes occurring during the 3D-printing processes itself may have adverse effects on the compatibility of the completed print. This prospective will put emphasis on the different additives and processes that can have a direct impact on biocompatibility during and after 3D printing of polymer materials. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Joseph Rey H. Sta. Agueda
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Manufacturing Engineering and Management, De La Salle University, 1004 Manila, Philippines
- Department of Chemical Engineering, De La Salle University, 1004 Manila, Philippines
| | - Qiyi Chen
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Reymark D. Maalihan
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Food Engineering and Material Testing and Calibration Center, Batangas State University, 4200 Batangas City, Philippines
| | - Jingbo Ren
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Ítalo G. M. da Silva
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Nathaniel P. Dugos
- Department of Chemical Engineering, De La Salle University, 1004 Manila, Philippines
| | - Eugene B. Caldona
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996 USA
| | - Rigoberto C. Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996 USA
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
21
|
Esmail A, Pereira JR, Zoio P, Silvestre S, Menda UD, Sevrin C, Grandfils C, Fortunato E, Reis MAM, Henriques C, Oliva A, Freitas F. Oxygen Plasma Treated-Electrospun Polyhydroxyalkanoate Scaffolds for Hydrophilicity Improvement and Cell Adhesion. Polymers (Basel) 2021; 13:polym13071056. [PMID: 33801747 PMCID: PMC8036702 DOI: 10.3390/polym13071056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Poly(hydroxyalkanoates) (PHAs) with differing material properties, namely, the homopolymer poly(3-hydroxybutyrate), P(3HB), the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), with a 3HV content of 25 wt.% and a medium chain length PHA, and mcl-PHA, mainly composed of 3-hydroxydecanoate, were studied as scaffolding material for cell culture. P(3HB) and P(3HB-co-3HV) were individually spun into fibers, as well as blends of the mcl-PHA with each of the scl-PHAs. An overall biopolymer concentration of 4 wt.% was used to prepare the electrospinning solutions, using chloroform as the solvent. A stable electrospinning process and good quality fibers were obtained for a solution flow rate of 0.5 mL h−1, a needle tip collector distance of 20 cm and a voltage of 12 kV for P(3HB) and P(3HB-co-3HV) solutions, while for the mcl-PHA the distance was increased to 25 cm and the voltage to 15 kV. The scaffolds’ hydrophilicity was significantly increased under exposure to oxygen plasma as a surface treatment. Complete wetting was obtained for the oxygen plasma treated scaffolds and the water uptake degree increased in all treated scaffolds. The biopolymers crystallinity was not affected by the electrospinning process, while their treatment with oxygen plasma decreased their crystalline fraction. Human dermal fibroblasts were able to adhere and proliferate within the electrospun PHA-based scaffolds. The P(3HB-co-3HV): mcl-PHA oxygen plasma treated scaffold highlighted the most promising results with a cell adhesion rate of 40 ± 8%, compared to 14 ± 4% for the commercial oxygen plasma treated polystyrene scaffold AlvetexTM. Scaffolds based on P(3HB-co-3HV): mcl-PHA blends produced by electrospinning and submitted to oxygen plasma exposure are therefore promising biomaterials for the development of scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Asiyah Esmail
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Nova University Lisbon, 2780-157 Oeiras, Portugal; (P.Z.); (A.O.)
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - João R. Pereira
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
| | - Patrícia Zoio
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Nova University Lisbon, 2780-157 Oeiras, Portugal; (P.Z.); (A.O.)
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Sara Silvestre
- CENIMAT/i3N, Materials Science Department, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (S.S.); (U.D.M.); (E.F.)
| | - Ugur Deneb Menda
- CENIMAT/i3N, Materials Science Department, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (S.S.); (U.D.M.); (E.F.)
| | - Chantal Sevrin
- CEIB-Interfaculty Research Centre of Biomaterials, University of Liège, B-4000 Liège, Belgium; (C.S.); (C.G.)
| | - Christian Grandfils
- CEIB-Interfaculty Research Centre of Biomaterials, University of Liège, B-4000 Liège, Belgium; (C.S.); (C.G.)
| | - Elvira Fortunato
- CENIMAT/i3N, Materials Science Department, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (S.S.); (U.D.M.); (E.F.)
| | - Maria A. M. Reis
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
| | - Célia Henriques
- CENIMAT/i3N, Physics Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal;
| | - Abel Oliva
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Nova University Lisbon, 2780-157 Oeiras, Portugal; (P.Z.); (A.O.)
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Chemistry Department, Nova School of Sciences and Technology, 2829-516 Caparica, Portugal; (A.E.); (J.R.P.); (M.A.M.R.)
- Correspondence: ; Tel.: +35-12-1294-8300
| |
Collapse
|
22
|
González-Torres M, Serrano-Aguilar IH, Cabrera-Wrooman A, Sánchez-Sánchez R, Pichardo-Bahena R, Melgarejo-Ramírez Y, Leyva-Gómez G, Cortés H, de Los Angeles Moyaho-Bernal M, Lima E, Ibarra C, Velasquillo C. Gamma radiation-induced grafting of poly(2-aminoethyl methacrylate) onto chitosan: A comprehensive study of a polyurethane scaffold intended for skin tissue engineering. Carbohydr Polym 2021; 270:117916. [PMID: 34364636 DOI: 10.1016/j.carbpol.2021.117916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 01/12/2023]
Abstract
A novel brush-like poly(2-aminoethyl methacrylate) (PAEMA) was grafted onto chitosan (CS) through gamma radiation-induced polymerization. The copolymer (CS-g-PAEMA) was used to prepare a sodium acetate leached poly(urethane-urea) scaffold. The above derivatives were developed, synthesized, and characterized to meet the specific characteristics of biomaterials. The results revealed that this method is an easy and successful route for grafting PAEMA onto CS. The feasibility of preparing a CS-g-PAEMA polyurethane foam was confirmed by mechanical, morphometric, spectroscopic, and cytotoxic studies. The scaffold showed high biocompatibility both in vitro and in vivo. The first experiment proved that CS-based polyurethane efficiently allows the dynamic culturing of human fibroblast cells. Additionally, an in vivo study in a murine model indicated a complete integration of the scaffold to surrounding subcutaneous tissue as supported by the histological and histochemical assessments. The aforementioned results support the use of CS-g-PAEMA poly(saccharide-urethane) as a model of in vitro-engineered skin.
Collapse
Affiliation(s)
- Maykel González-Torres
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Ilian Haide Serrano-Aguilar
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Alejandro Cabrera-Wrooman
- Laboratorio de Tejido Conjuntivo, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Raúl Pichardo-Bahena
- Servicio de Anatomía Patológica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Yaaziel Melgarejo-Ramírez
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | | | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Clemente Ibarra
- Unidad de Ingeniería de Tejidos, Terapia celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Cristina Velasquillo
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| |
Collapse
|
23
|
Chitosan grafted/cross-linked with biodegradable polymers: A review. Int J Biol Macromol 2021; 178:325-343. [PMID: 33652051 DOI: 10.1016/j.ijbiomac.2021.02.200] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/29/2022]
Abstract
Public perception of polymers has been drastically changed with the improved plastic management at the end of their life. However, it is widely recognised the need of developing biodegradable polymers, as an alternative to traditional petrochemical polymers. Chitosan (CH), a biodegradable biopolymer with excellent physiological and structural properties, together with its immunostimulatory and antibacterial activity, is a good candidate to replace other polymers, mainly in biomedical applications. However, CH has also several drawbacks, which can be solved by chemical modifications to improve some of its characteristics such as solubility, biological activity, and mechanical properties. Many chemical modifications have been studied in the last decade to improve the properties of CH. This review focussed on a critical analysis of the state of the art of chemical modifications by cross-linking and graft polymerization, between CH or CH derivatives and other biodegradable polymers (polysaccharides or proteins, obtained from microorganisms, synthetized from biomonomers, or from petrochemical products). Both techniques offer the option of including a wide variety of functional groups into the CH chain. Thus, enhanced and new properties can be obtained in accordance with the requirements for different applications, such as the release of drugs, the improvement of antimicrobial properties of fabrics, the removal of dyes, or as scaffolds to develop bone tissues.
Collapse
|
24
|
Luo K, Wang L, Chen X, Zeng X, Zhou S, Zhang P, Li J. Biomimetic Polyurethane 3D Scaffolds Based on Polytetrahydrofuran Glycol and Polyethylene Glycol for Soft Tissue Engineering. Polymers (Basel) 2020; 12:polym12112631. [PMID: 33182432 PMCID: PMC7697348 DOI: 10.3390/polym12112631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, a novel polyurethane porous 3D scaffold based on polyethylene glycol (PEG) and polytetrahydrofuran glycol (PTMG) was developed by in situ polymerization and freeze drying. Aliphatic hexamethylene diisocyanate (HDI) as a nontoxic and safe agent was adopted to produce the rigid segment in polyurethane polymerization. The chemical structure, macrostructure, and morphology—as well as mechanical strength of the scaffolds—were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), and tensile tests. The results show that the HDI can react mildly with hydroxyl (–OH) groups of PEG and PTMG, while gas foaming action caused by the release of CO2 occurred simultaneously in the reactive process, resulting in a uniform porous structure of PU scaffold. Moreover, the scaffolds were soaked in water and freeze dried to obtain higher porosity and more interconnective microstructures. The scaffolds have a porosity of over 70% and pore size from 100 to 800 μm. The mechanical properties increased with increasing PEG content, while the hydrophilicity increased as well. After immersion in simulated body fluid (SBF), the scaffolds presented a stable surface structure. The gas foaming/freezing drying process is an excellent method to prepare skin tissue engineering scaffold from PTMG/PEG materials with high porosity and good inter connectivity.
Collapse
Affiliation(s)
| | - Li Wang
- Correspondence: (L.W.); (S.Z.); (J.L.)
| | | | | | | | | | | |
Collapse
|
25
|
3D Propolis-Sodium Alginate Scaffolds: Influence on Structural Parameters, Release Mechanisms, Cell Cytotoxicity and Antibacterial Activity. Molecules 2020; 25:molecules25215082. [PMID: 33147742 PMCID: PMC7662765 DOI: 10.3390/molecules25215082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, the main aim was to fabricate propolis (Ps)-containing wound dressing patches using 3D printing technology. Different combinations and structures of propolis (Ps)-incorporated sodium alginate (SA) scaffolds were developed. The morphological studies showed that the porosity of developed scaffolds was optimized when 20% (v/v) of Ps was added to the solution. The pore sizes decreased by increasing Ps concentration up to a certain level due to its adhesive properties. The mechanical, swelling-degradation (weight loss) behaviors, and Ps release kinetics were highlighted for the scaffold stability. An antimicrobial assay was employed to test and screen antimicrobial behavior of Ps against Escherichia coli and Staphylococcus aureus strains. The results show that the Ps-added scaffolds have an excellent antibacterial activity because of Ps compounds. An in vitro cytotoxicity test was also applied on the scaffold by using the extract method on the human dermal fibroblasts (HFFF2) cell line. The 3D-printed SA–Ps scaffolds are very useful structures for wound dressing applications.
Collapse
|
26
|
Jiao Y, Li C, Liu L, Wang F, Liu X, Mao J, Wang L. Construction and application of textile-based tissue engineering scaffolds: a review. Biomater Sci 2020; 8:3574-3600. [PMID: 32555780 DOI: 10.1039/d0bm00157k] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering (TE) provides a practicable method for tissue and organ repair or substitution. As the most important component of TE, a scaffold plays a critical role in providing a growing environment for cell proliferation and functional differentiation as well as good mechanical support. And the restorative effects are greatly dependent upon the nature of the scaffold including the composition, morphology, structure, and mechanical performance. Medical textiles have been widely employed in the clinic for a long time and are being extensively investigated as TE scaffolds. However, unfortunately, the advantages of textile technology cannot be fully exploited in tissue regeneration due to the ignoring of the diversity of fabric structures. Therefore, this review focuses on textile-based scaffolds, emphasizing the significance of the fabric design and the resultant characteristics of cell behavior and extracellular matrix reconstruction. The structure and mechanical behavior of the fabrics constructed by various textile techniques for different tissue repairs are summarized. Furthermore, the prospect of structural design in the TE scaffold preparation was anticipated, including profiled fibers and some unique and complex textile structures. Hopefully, the readers of this review would appreciate the importance of structural design of the scaffold and the usefulness of textile-based TE scaffolds in tissue regeneration.
Collapse
Affiliation(s)
- Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Sarabiyan Nejad S, Babaie A, Bagheri M, Rezaei M, Abbasi F, Shomali A. Effects of graphene quantum dot (
GQD
) on photoluminescence, mechanical, thermal and shape memory properties of thermoplastic polyurethane nanocomposites. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sanaz Sarabiyan Nejad
- Chemistry Department, Science FacultyAzarbaijan Shahid Madani University Tabriz Iran
| | - Amin Babaie
- Institute of Polymeric Materials, Polymer Engineering FacultySahand University of Technology Tabriz Iran
| | - Massoumeh Bagheri
- Chemistry Department, Science FacultyAzarbaijan Shahid Madani University Tabriz Iran
| | - Mostafa Rezaei
- Institute of Polymeric Materials, Polymer Engineering FacultySahand University of Technology Tabriz Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials, Polymer Engineering FacultySahand University of Technology Tabriz Iran
| | - Ashkan Shomali
- Chemistry Department, Science FacultyAzarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
28
|
Chen C, Huang K, Zhu J, Bi Y, Wang L, Jiang J, Zhu T, Yan X, Zhao J. A novel elastic and controlled-release poly(ether-ester-urethane)urea scaffold for cartilage regeneration. J Mater Chem B 2020; 8:4106-4121. [PMID: 32253395 DOI: 10.1039/c9tb02754h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the tissue engineering of cartilage, scaffolds with appropriate elasticity and controlled-release properties are essential. Herein, we synthesized a poly(ether-ester-urethane)urea scaffold with a pendant amino group (PEEUUN) through a de-protection process from PEEUU-Boc polymers and grafted kartogenin (KGN) onto the PEEUUN scaffolds (PEEUUN-KGN). Characterization, performance tests, scaffold biocompatibility analysis, and chondrogenesis evaluation both in vitro and in vivo were conducted. The results revealed that the PEEUUN-KGN scaffolds were degradable and three-dimensional (3D) with interconnected pores, and possessed good elasticity, as well as excellent cytocompatibility. Meanwhile, KGN on the PEEUUN-KGN scaffolds underwent stable sustained release for a long time and promoted human umbilical cord mesenchymal stem cells (HUCMSCs) to differentiate into chondrocytes in vitro, thus enhancing cartilage regeneration in vivo. In conclusion, the present PEEUUN-KGN scaffolds would have application potential for cartilage tissue engineering.
Collapse
Affiliation(s)
- Chang'an Chen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|