1
|
Vieira WT, Viegas JSR, da Silva MGC, de Oliveira Nascimento L, Vieira MGA, Sarmento B. Self-assembly mucoadhesive beads of κ-carrageenan/sericin for indomethacin oral extended release. Int J Biol Macromol 2024; 270:132062. [PMID: 38705340 DOI: 10.1016/j.ijbiomac.2024.132062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Oral drug administration, especially when composed of mucoadhesive delivery systems, has been a research trend due to increased residence time and contact with the mucosa, potentially increasing drug bioavailability and stability. In this context, this study aimed to develop self-assembly mucoadhesive beads composed of blends of κ-carrageenan and sericin (κ-Car/Ser) loaded with the anti-inflammatory drug indomethacin (IND). We investigated the swelling, adhesion behaviour, and mechanical/physical properties of the beads, assessing their effects on cell viability, safety and permeation characteristics in both 2D and triple-culture model. The swelling ratio of the beads indicated pH-responsiveness, with maximum water absorption at pH 6.8, and strong mucoadhesion, increasing primarily with higher polymer concentrations. The beads exhibited thermal stability and no chemical interaction with IND, showing improved mechanical properties. Furthermore, the beads remained stable during accelerated and long-term storage studies. The beads were found to be biocompatible, and IND encapsulation improved cell viability (>70 % in both models, 79 % in VN) and modified IND permeation through the models (6.3 % for F5 formulation (κ-Car 0.90 % w/v | Ser 1.2 % w/v| IND 3.0 g); 10.9 % for free IND, p < 0.05). Accordingly, κ-Car/Ser/IND beads were demonstrated to be a promising IND drug carrier to improve oral administration while mitigating the side effects of non-steroidal anti-inflammatories.
Collapse
Affiliation(s)
- Wedja Timóteo Vieira
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Juliana Santos Rosa Viegas
- i3S - Institute for Research & Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Meuris Gurgel Carlos da Silva
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Laura de Oliveira Nascimento
- University of Campinas, School of Pharmaceutical Sciences, Rua Cândido Portinari, 200, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-871, Brazil
| | - Melissa Gurgel Adeodato Vieira
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil.
| | - Bruno Sarmento
- i3S - Institute for Research & Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IUCS-CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
2
|
Wang Q, Dong X, Castañeda-Reyes ED, Wu Y, Zhang S, Wu Z, Wang Z, Dai L, Xu B, Xu F. Chitosan and sodium alginate nanocarrier system: Controlling the release of rapeseed-derived peptides and improving their therapeutic efficiency of anti-diabetes. Int J Biol Macromol 2024; 265:130713. [PMID: 38471612 DOI: 10.1016/j.ijbiomac.2024.130713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Rapeseed-derived peptides (RPPs) can maintain the homeostasis of human blood glucose by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) and activating the calcium-sensing receptor (CaSR). However, these peptides are susceptible to hydrolysis in the gastrointestinal tract. To enhance the therapeutic potential of these peptides, we developed a chitosan/sodium alginate-based nanocarrier to encapsulate two RPP variants, rapeseed-derived cruciferin peptide (RCPP) and rapeseed-derived napin peptide (RNPP). A convenient three-channel device was employed to prepare chitosan (CS)/sodium alginate (ALG)-RPPs nanoparticles (CS/ALG-RPPs) at a ratio of 1:3:1 for CS, ALG, and RPPs. CS/ALG-RPPs possessed optimal encapsulation efficiencies of 90.7 % (CS/ALG-RNPP) and 91.4 % (CS/ALG-RCPP), with loading capacities of 15.38 % (CS/ALG-RNPP) and 16.63 % (CS/ALG-RCPP) at the specified ratios. The electrostatic association between CS and ALG was corroborated by zeta potential and near infrared analysis. 13C NMR analysis verified successful RPPs loading, with CS/ALG-RNPP displaying superior stability. Pharmacokinetics showed that both nanoparticles were sustained release and transported irregularly (0.43 < n < 0.85). Compared with the control group, CS/ALG-RPPs exhibited significantly increased glucose tolerance, serum GLP-1 (Glucagon-like peptide 1) content, and CaSR expression which play pivotal roles in glucose homeostasis (*p < 0.05). These findings proposed that CS/ALG-RPPs hold promise in achieving sustained release within the intestinal epithelium, thereby augmenting the therapeutic efficacy of targeted peptides.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Xinran Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Erick Damian Castañeda-Reyes
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ying Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Siling Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Zeyu Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, People's Republic of China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230601, People's Republic of China.
| |
Collapse
|
3
|
Touzout Z, Abdellaoui N, Hadj-Hamou AS. Conception of pH-sensitive calcium alginate/poly vinyl alcohol hydrogel beads for controlled oral curcumin delivery systems. Antibacterial and antioxidant properties. Int J Biol Macromol 2024; 263:130389. [PMID: 38403207 DOI: 10.1016/j.ijbiomac.2024.130389] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Curcumin, a bioactive compound derived from the rhizome of Curcuma longa, has gained widespread attention for its potential therapeutic properties, including anti-inflammatory, antioxidant and anticancer effects. However, its poor aqueous solubility, instability and limited bioavailability have hindered its clinical applications. New beads formulations based on sodium alginate biopolymer (SA) and poly vinyl alcohol (PVA) were successfully prepared and evaluated as a potential drug vehicle for extended release of curcumin (Cur). Pristine and curcumin loaded calcium alginate/poly vinyl alcohol beads (CA/PVA and CA/PVA/Cur) at different compositions of SA and PVA were prepared by an ionotropic gelation method of SA followed by two freeze-thawing (FT) cycles for further crosslinking of PVA. Characterization techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, thermogravimetric analysis (TGA) and x-ray diffraction (XRD) were used to confirm the successful microencapsulation of curcumin within the CA/PVA microcapsules. Furthermore, the swelling of pristine beads, pH-sensitive properties and in vitro release studies of curcumin loaded beads were investigated at 37 °C in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The effect of the polymer blend ratio, the encapsulation efficiency (EE %) of curcumin, the loading capacity (LC μg/mg), the sphericity factor (SF), the antioxidant activity of the elaborated beads and their antimicrobial properties against bacteria and fungi were just as much evaluated. The obtained results indicate that the swelling and the behavior of the developed beads were influenced by the pH of the test medium and the PVA content. The introduction of PVA into the SA matrix greatly enhanced the physicochemical properties, the encapsulation efficiency and the loading capacity of the elaborated microparticles. Results also suggested that the antioxidant activity of the loaded beads (CA/PVA/Cur) showed a higher DPPH radical scavenging activity while the bacterial and fungal strains proved sensitive to the different formulations used in the assay. Moreover, the important drug encapsulation efficiency and the sustainable drug release of these materials make them promising for the development of new drug carrier systems for colon targeting.
Collapse
Affiliation(s)
- Zineb Touzout
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria
| | - Naima Abdellaoui
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria.
| | - Assia Siham Hadj-Hamou
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria
| |
Collapse
|
4
|
Vieira WT, Nicolini MVS, da Silva MGC, Nascimento LDO, Vieira MGA. κ-Carrageenan/sericin polymer matrix modified with different crosslinking agents and thermal crosslinking: Improved release profile of mefenamic acid. Int J Biol Macromol 2024; 262:129823. [PMID: 38296146 DOI: 10.1016/j.ijbiomac.2024.129823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
The crosslinking of the polymer matrix with compatible macromolecules results in a three-dimensional network structure that offers an enhancement in the controlled release properties of the material. In this sense, this work aimed to improve the release profile of mefenamic acid (MAC) through crosslinking strategies. κ-Carrageenan/sericin crosslinked blend was obtained by covalent and thermal crosslinking and the different formulations were characterized. The gastroresistant potential and release profile were evaluated in the dissolution assay. The effect and characterization of the particles were investigated. Multiple units presented high entrapment efficiency (94.11-104.25), high drug loading (36.50-47.50 %) and adequate particle size (1.34-1.57 mm) with rough surface and visually spherical shape. The Weibull model showed that drug release occurred by relaxation, erosion and Fickian diffusion. Material stability and absence of MAC -polymer interactions were demonstrated by FTIR and thermogravimetric analysis. DSC showed a stable character of MAC in the drug-loaded beads. Moreover, the application studies of κ-Car/Ser/carboxymethylcellulose in the in vitro intestine mode showed that the crosslinked blend increased cell viability (>85 %), while free MAC exhibited a cytotoxic effect. Finally, the crosslinked k-Car/Ser blend MAC -loaded showed promising properties of a sustained release form of anti-inflammatory drug.
Collapse
Affiliation(s)
- Wedja Timóteo Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Maria Vitória Silva Nicolini
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Laura de Oliveira Nascimento
- University of Campinas, School of Pharmaceutical Sciences, Cândido Portinari, St. 200, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-871, Brazil
| | - Melissa Gurgel Adeodato Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil.
| |
Collapse
|
5
|
Vieira WT, da Silva MGC, de Oliveira Nascimento L, Vieira MGA. Development and characterization of crosslinked k-carrageenan/sericin blend with covalent agents or thermal crosslink for indomethacin extended release. Int J Biol Macromol 2023; 246:125558. [PMID: 37392907 DOI: 10.1016/j.ijbiomac.2023.125558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Modified release of multiparticulate pharmaceutical forms is a key therapeutic strategy to reduce side effects and toxicity caused by high and repeated doses of immediate-release oral drugs. This research focused on the encapsulation of indomethacin (IND) in the crosslinked k-Car/Ser polymeric matrix by covalent and thermal methods to evaluate drug delivery modulation and properties of the crosslinked blend. Therefore, the entrapment efficiency (EE %), drug loading (DL %) and physicochemical properties of the particles were investigated. The particles presented a spherical shape and a rough surface with a mean diameter of 1.38-2.15 mm (CCA) and 1.56-1.86 mm (thermal crosslink). FTIR investigation indicated the presence of IDM in the particles and X-ray pattern showed the maintenance of crystallinity of IDM. The in vitro release in acidic medium (pH 1.2) and phosphate buffer saline solution (pH 6.8) was 1.23-6.81 % and 81-100 %, respectively. Considering the results, the formulations remained stable after 6 months. The Weibull equation was adequately fitted for all formulations and a diffusion mechanism, swelling and relaxation of chain were observed. IDM-loaded k-carrageenan/sericin/CMC increases cell viability (> 75 % for neutral red and > 81 % for MTT). Finally, all formulations present gastro-resistance, pH response and altered release and have the potential to be used as drug delivery careers.
Collapse
Affiliation(s)
- Wedja Timóteo Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av., 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- University of Campinas, School of Chemical Engineering, Albert Einstein Av., 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Laura de Oliveira Nascimento
- University of Campinas, School of Pharmaceutical Sciences, Cândido Portinari, St. 200, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-871, Brazil
| | - Melissa Gurgel Adeodato Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av., 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil.
| |
Collapse
|
6
|
Wang J, Liu S, Huang J, Ren K, Zhu Y, Yang S. Alginate: Microbial production, functionalization, and biomedical applications. Int J Biol Macromol 2023; 242:125048. [PMID: 37236570 DOI: 10.1016/j.ijbiomac.2023.125048] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Alginates are natural polysaccharides widely participating in food, pharmaceutical, and environmental applications due to their excellent gelling capacity. Their excellent biocompatibility and biodegradability further extend their application to biomedical fields. The low consistency in molecular weight and composition of algae-based alginates may limit their performance in advanced biomedical applications. It makes microbial alginate production more attractive due to its potential for customizing alginate molecules with stable characteristics. Production costs remain the primary factor limiting the commercialization of microbial alginates. However, carbon-rich wastes from sugar, dairy, and biodiesel industries may serve as potential substitutes for pure sugars for microbial alginate production to reduce substrate costs. Fermentation parameter control and genetic engineering strategies may further improve the production efficiency and customize the molecular composition of microbial alginates. To meet the specific needs of biomedical applications, alginates may need functionalization, such as functional group modifications and crosslinking treatments, to achieve enhanced mechanical properties and biochemical activities. The development of alginate-based composites incorporated with other polysaccharides, gelatin, and bioactive factors can integrate the advantages of each component to meet multiple requirements in wound healing, drug delivery, and tissue engineering applications. This review provided a comprehensive insight into the sustainable production of high-value microbial alginates. It also discussed recent advances in alginate modification strategies and alginate-based composites for representative biomedical applications.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Kexin Ren
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Yan Zhu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Siying Yang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| |
Collapse
|
7
|
Vieira WT, da Silva MGC, de Oliveira Nascimento L, Vieira MGA. k-Carrageenan/sericin-based multiparticulate systems: A novel gastro-resistant polymer matrix for indomethacin delivery. Int J Biol Macromol 2023; 232:123381. [PMID: 36731703 DOI: 10.1016/j.ijbiomac.2023.123381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
This study aimed to develop a natural and multiparticulate carrier of k-carrageenan (k-Car) and sericin (Ser) for encapsulation of indomethacin (IND) in order to minimize gastrointestinal effects caused by immediate-release. Increasing the amount of IND in the formulations subtly reduced the entrapment efficiency (EE) and drug loading (DL) due to matrix saturation. Sericin was essential to improve EE and DL when compared to pure k-Car (EE > 90 % and DL > 47 %) with suitable particle sizes (1.3461 ± 0.1891-1.7213 ± 0.1586 mm). The incorporation and integrity of IND in the particles were confirmed by analytical techniques of HPLC, XRD, FTIR, and SEM. Additionally, the k-Car/Ser matrix was pH-responsive with low IND release at pH 1.2 and extended-release at pH 6.8. The Weibull model had an adequate fit to the experimental data with R2aju 0.950.99 and AIC 82.4-24.9, with curves in parabolic profile (b < 1) and indicative of a controlled drug-release mechanism by diffusion. Besides, k-Car/Ser/IND and placebo were not cytotoxic (cell viability > 85 % at 150-600 μM) for the Caco-2 cell line. Therefore, the polymeric matrix is gastro-resistant, stable, and biocompatible to carry indomethacin and deliver it to the intestinal environment.
Collapse
Affiliation(s)
- Wedja Timóteo Vieira
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Laura de Oliveira Nascimento
- University of Campinas, School of Pharmaceutical Sciences, Rua Cândido Portinari, 200, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-871, Brazil
| | - Melissa Gurgel Adeodato Vieira
- University of Campinas, School of Chemical Engineering, Av. Albert Einstein, 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil.
| |
Collapse
|
8
|
Mefenamic acid modified-release by encapsulation in a k-carrageenan/sericin blend. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Gao L, Xu M, Zhao W, Zou T, Wang F, Da J, Wang Y, Wang L. Ultrathin, elastic, and self-adhesive nanofiber bio-tape: An intraoperative drug-loading module for ureteral stents with localized and controlled drug delivery properties for customized therapy. Bioact Mater 2022; 18:128-137. [PMID: 35387174 PMCID: PMC8961457 DOI: 10.1016/j.bioactmat.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
During the postoperative management of urinary diseases, oral or intravenous administration of drugs and implanting ureteral stents are usually required, making localized drug delivery by ureteral stent a precise and effective medication strategy. In the traditional drug loading method, the drug was premixed in the implants in production lines and the versatility of drugs was restricted. However, the complex situation in the urinary system fails the possibility of finding a “one fits all” medication plan, and the intraoperative drug-loading of implants is highly desired to support customized therapy. Here, we designed an ultrathin (8 μm), elastic, and self-adhesive nanofiber bio-tape (NFBT) that can easily encapsulate drugs on the stent surface for controllable localized drug delivery. The NFBT exhibited high binding strength to a ureteral stent, a sustained release over 7 d in PBS for hydrophilic drug, and a zero-order release curve over 28 days for the hydrophobic drug nitrofurantoin (NFT). Further in vivo experiments using a porcine ureteral tract infection model demonstrated that NFBT loaded with NFT could significantly reduce the bacterial concentration in urine. The total amount of NFT delivered by the NFBT was about 2.68 wt% of the recommended dose for the systemic administration. An intra operation drug-loading strategy and drug carrier for personalized post-operation management of urinary disease. The NFBT is ultrathin (∼8 μm) with enough binding stress to resist displacement bought by ureteral peristalsis. In vivo antibacterial rate >99.9% for 28 d (porcine UTI model), with 2.68 wt% of the systemically administration dosage.
Collapse
|
10
|
Alavi SE, Raza A, Koohi Moftakhari Esfahani M, Akbarzadeh A, Abdollahi SH, Ebrahimi Shahmabadi H. Carboplatin Niosomal Nanoplatform for Potentiated Chemotherapy. J Pharm Sci 2022; 111:3029-3037. [PMID: 35675875 DOI: 10.1016/j.xphs.2022.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
This study aimed to characterize a stable nano-niosome formulation, which could reduce the adverse effects of carboplatin (CB) and improve its therapeutic efficacy in the treatment of breast cancer. For this purpose, CB-loaded polyethylene glycol (PEG)ylated niosome nanoparticles (PEG-NS-CB) were synthesized using the reverse-phase evaporation method. PEG-NS-CB (226.0 ± 10.6 nm) could release CB in a controlled manner and, compared to CB and CB-loaded non-PEGylated niosome (NS-CB), caused higher cytotoxicity effects against mouse breast cancer 4T1 cells (IC50: 83.4, 26.6, and 22.5 µM for CB, NS-CB, and PEG-NS-CB, respectively). Also, PEG-NS-CB demonstrated higher stability, in which its profile of drug release, cytotoxicity, and LE% did not change significantly three months after preparation compared to those at the production time. In addition, the in vivo results demonstrated that PEG-NS-CB caused higher therapeutic (the number of alive mice: 12, 15, and 17 out of 20 in CB, NS-CB, and PEG-NS-CB receiver groups, respectively) and less toxicity effects (weight loss of 17, 12.5, and 10% in CB, NS-CB, and PEG-NS-CB receiver groups, respectively), compared to NS-CB and CB in breast cancer-bearing mice. Overall, the results of this study suggest that PEG-NS-CB could be a promising formulation for the treatment of breast cancer.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Maedeh Koohi Moftakhari Esfahani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Hossein Abdollahi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
11
|
Impact of PEGylated Liposomal Doxorubicin and Carboplatin Combination on Glioblastoma. Pharmaceutics 2022; 14:pharmaceutics14102183. [PMID: 36297618 PMCID: PMC9609487 DOI: 10.3390/pharmaceutics14102183] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma is an incurable cancer with a 5-year survival chance of less than 5%. Chemotherapy is a therapeutic approach to treating the disease; however, due to the presence of the blood–brain barrier (BBB), the probability of success is low. To overcome this issue, nanoparticles are promising carriers for crossing the BBB and delivering drugs to the tumor. In this study, the anticancer efficacy of doxorubicin (DOX) and carboplatin (CB) loaded into polyethylene glycol (PEG)ylated liposome nanoparticles (PEG-Lip) and in treating brain cancer was evaluated in vitro and in vivo. The results demonstrated that PEG-Lip-DOX/CB with a size of 212 ± 10 nm was synthesized that could release the loaded drugs in a controlled manner, from which 56.3% of the loaded drugs were released after 52 h. In addition, PEG-Lip-DOX/CB could significantly increase the cytotoxicity effects of the drugs against rat glioma C6 cells (IC50: 8.7 and 12.9 µM for the drugs-loaded nanoparticles and DOX + CB, respectively). The in vivo results also demonstrated that PEGylated liposomes, compared to non-PEGylated liposomes (Lip) and DOX + CB, were more efficient in increasing the therapeutic effects and decreasing the side effects of the drugs, in which the survival times of the glioblastoma-bearing rats were 39, 35, and 30 days in the PEG-Lip-DOX/CB, Lip-DOX/CB, and DOX + CB receiver groups, respectively. In addition, the weight loss was found to be 8.7, 10.5, and 13%, respectively, in the groups. The results of the toxicity evaluation were also confirmed by histopathological studies. Overall, the results of this study demonstrated that the encapsulation of DOX and CB into PEG-Lip is a promising approach to improving the properties of DOX and CB in terms of their therapeutic effects and drug side effects for the treatment of glioblastoma.
Collapse
|
12
|
A PEGylated Nanostructured Lipid Carrier for Enhanced Oral Delivery of Antibiotics. Pharmaceutics 2022; 14:pharmaceutics14081668. [PMID: 36015294 PMCID: PMC9415149 DOI: 10.3390/pharmaceutics14081668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance is a major concern for public health throughout the world that severely restricts available treatments. In this context, methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a high percentage of S. aureus infections and mortality. To overcome this challenge, nanoparticles are appropriate tools as drug carriers to improve the therapeutic efficacy and decrease the toxicity of drugs. In this study, a polyethylene glycol (PEG)ylated nanostructured lipid carrier (PEG-NLC) was synthesized to improve the oral delivery of trimethoprim/sulfamethoxazole (TMP/SMZ) for the treatment of MRSA skin infection in vitro and in vivo. The nanoformulation (PEG-TMP/SMZ-NLC) was synthesized with size and drug encapsulation efficiencies of 187 ± 9 nm and 93.3%, respectively, which could release the drugs in a controlled manner at intestinal pH. PEG-TMP/SMZ-NLC was found efficient in decreasing the drugs’ toxicity by 2.4-fold in vitro. In addition, the intestinal permeability of TMP/SMZ was enhanced by 54%, and the antibacterial effects of the drugs were enhanced by 8-fold in vitro. The results of the stability study demonstrated that PEG-TMP/SMZ-NLC was stable for three months. In addition, the results demonstrated that PEG-TMP/SMZ-NLC after oral administration could decrease the drugs’ side-effects such as renal and hepatic toxicity by ~5-fold in MRSA skin infection in Balb/c mice, while it could improve the antibacterial effects of TMP/SMZ by 3 orders of magnitude. Overall, the results of this study suggest that the application of PEGylated NLC nanoparticles is a promising approach to improving the oral delivery of TMP/SMZ for the treatment of MRSA skin infection.
Collapse
|
13
|
Natural polysaccharides and proteins applied to the development of gastroresistant multiparticulate systems for anti-inflammatory drug delivery – A systematic review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Noureen S, Noreen S, Ghumman SA, Batool F, Hameed H, Hasan S, Noreen F, Elsherif MA, Bukhari SNA. Prunus armeniaca Gum-Alginate Polymeric Microspheres to Enhance the Bioavailability of Tramadol Hydrochloride: Formulation and Evaluation. Pharmaceutics 2022; 14:pharmaceutics14050916. [PMID: 35631501 PMCID: PMC9144292 DOI: 10.3390/pharmaceutics14050916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Combinations of polymers can improve the functional properties of microspheres to achieve desired therapeutic goals. Hence, the present study aimed to formulate Prunus armeniaca gum (PAG) and sodium alginate microsphere for sustained drug release. Blended and coated microspheres were prepared using the ionotropic gelation technique. The effect of polymer concentration variation was studied on the structural and functional properties of formulated microspheres. FTIR, XRD, and thermal analysis were performed to characterize the microspheres. All the formulations were well-formed spherical beads having an average diameter from 579.23 ± 07.09 to 657.67 ± 08.74 μm. Microspheres entrapped drugs within the range 65.86 ± 0.26–83.74 ± 0.79%. The pH-dependent swelling index of coated formulations was higher than blended. FTIR spectra confirmed the presence of characteristic peaks of entrapped Tramadol hydrochloride showing no drug-polymer interaction. In vitro drug release profile showed sustained release following the Korsmeyer-Peppas kinetic model with an R2 value of 0.9803–0.9966. An acute toxicology study employing the oral route in Swiss albino mice showed no signs of toxicity. It can be inferred from these results that blending PAG with sodium alginate can enhance the stability of alginate microspheres and improve its drug release profile by prolonging the release time.
Collapse
Affiliation(s)
- Shazia Noureen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +92-3018434400 (S.N.); +966-565-738-896 (S.N.A.B.)
| | | | - Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
| | - Huma Hameed
- IRSET, EHSEP, INSERM, University of Rennes 1, 35000 Rennes, France;
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.N.); (F.B.); (S.H.)
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Fozia Noreen
- Department of Chemistry, University of Sialkot, Sialkot 51010, Pakistan;
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +92-3018434400 (S.N.); +966-565-738-896 (S.N.A.B.)
| |
Collapse
|
15
|
Huang Y, Cao L, Parakhonskiy BV, Skirtach AG. Hard, Soft, and Hard- and-Soft Drug Delivery Carriers Based on CaCO 3 and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications. Pharmaceutics 2022; 14:909. [PMID: 35631494 PMCID: PMC9146629 DOI: 10.3390/pharmaceutics14050909] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Because free therapeutic drug molecules often have adverse effects on normal tissues, deliver scanty drug concentrations and exhibit a potentially low efficacy at pathological sites, various drug carriers have been developed for preclinical and clinical trials. Their physicochemical and toxicological properties are the subject of extensive research. Inorganic calcium carbonate particles are promising candidates as drug delivery carriers owning to their hardness, porous internal structure, high surface area, distinctive pH-sensitivity, low degradability, etc, while soft organic alginate hydrogels are also widely used because of their special advantages such as a high hydration, bio-adhesiveness, and non-antigenicity. Here, we review these two distinct substances as well as hybrid structures encompassing both types of carriers. Methods of their synthesis, fundamental properties and mechanisms of formation, and their respective applications are described. Furthermore, we summarize and compare similarities versus differences taking into account unique advantages and disadvantages of these drug delivery carriers. Moreover, rational combination of both carrier types due to their performance complementarity (yin-&yang properties: in general, yin is referred to for definiteness as hard, and yang is broadly taken as soft) is proposed to be used in the so-called hybrid carriers endowing them with even more advanced properties envisioned to be attractive for designing new drug delivery systems.
Collapse
Affiliation(s)
| | - Lin Cao
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Andre G. Skirtach
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
16
|
β-Lactoglobulin-Modified Mesoporous Silica Nanoparticles: A Promising Carrier for the Targeted Delivery of Fenbendazole into Prostate Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14040884. [PMID: 35456716 PMCID: PMC9024783 DOI: 10.3390/pharmaceutics14040884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
The clinical utilization of fenbendazole (FBZ) as a potential anticancer drug has been limited due to its low water solubility, which causes its low bioavailability. The development of a drug nanoformulation that includes the solubilizing agent as a drug carrier can improve solubility and bioavailability. In this study, Mobil Composition of Matter Number 48 (MCM-48) nanoparticles were synthesized and functionalized with succinylated β-lactoglobulin (BLG) to prevent early-burst drug release. The BLG-modified amine-functionalized MCM-48 (MCM-BLG) nanoparticles were loaded with FBZ to produce the drug nanoformulation (FBZ-MCM-BLG) and improved the water solubility and, consequently, its anticancer effects against human prostate cancer PC-3 cells. The prepared FBZ-MCM-BLG was characterized in terms of size, zeta potential, drug loading capacity, morphology, thermal and chemical analyses, drug release, cellular uptake, cell viability, cell proliferation, production of reactive oxygen species (ROS), and cell migration. The results demonstrated that the FBZ-MCM-BLG nanoparticles have a spherical morphology with a size and zeta potential of 369 ± 28 nm and 28 ± 0.4 mV, respectively. The drug loading efficiency of the new nanoformulation was 19%. The release of FBZ was pH-dependent; a maximum cumulative release of about 76 and 62% in 12 h and a burst release of 53 and 38% in the first 0.5 h was observed at pH 1.2 and 6.8, respectively. The prepared FBZ-MCM-BLG formulation demonstrated higher cytotoxicity effects against PC-3 cells by 5.6- and 1.8-fold, respectively, when compared to FBZ and FBZ-MCM nanoparticles. The new formulation also increased the production of ROS by 1.6- and 1.2-fold and inhibited the migration of PC-3 cells when compared to the FBZ and FBZ-MCM nanoparticles, respectively. Overall, FBZ-MCM-BLG nanoparticles improved FBZ delivery to PC-3 cells and have the potential to be evaluated for the treatment of prostate cancer following a comprehensive in vivo study.
Collapse
|
17
|
Yu H, Zhu Y, Hui A, Wang A. Novel eco-friendly spherical porous adsorbent fabricated from Pickering middle internal phase emulsions for removal of Pb(II) and Cd (II). J Environ Sci (China) 2022; 112:320-330. [PMID: 34955215 DOI: 10.1016/j.jes.2021.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/14/2023]
Abstract
Spherical porous materials prepared from the emulsion template used in the water treatment have displayed a vast prospect, as the high surface area, abundant porous structure, convenient operation and excellent adsorption performance. But the tedious fabrication process, high consumption of organic solvent and surfactant limited the application widely. Herein, a facile and eco-friendly spherical porous adsorbent (SPA) is fabricated from the green surfactant-free (corn oil)-in-water Pickering medium internal phase emulsions (Pickering MIPEs) via the convenient ion crosslinking procedure. The Pickering MIPEs synergistically stabilized with the semi-coke (SC), which is the natural particle produced from the shale oil distillation, and sodium alginate (SA) has excellent storage and anti-coalescence stability. The as-prepared porous adsorbent possessed the abundant pore structure, which provided favorable conditions for effective mass transfer in adsorption, and could be tuned by varying the SA dosage. The saturation adsorption capacities of Pb(II) and Cd(II) can be achieved with 460.54 and 278.77 mg/g within 45 min at 25°C, respectively. Overall, this study supplied a viable and eco-friendly route for fabricating the spherical porous adsorbent with a tunable porous structure for heavy metal ion wastewater.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Aiping Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
18
|
da Costa TB, da Silva MGC, Vieira MGA. Effective recovery of ytterbium through biosorption using crosslinked sericin-alginate beads: A complete continuous packed-bed column study. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126742. [PMID: 34348210 DOI: 10.1016/j.jhazmat.2021.126742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The recovery of rare-earth from secondary sources is essential for cleaner production. The development of natural biocomposites is promising for this purpose. Sericin is a waste protein from silk manufacturing. The highly polar groups on the surface of sericin facilitate blending and crosslinking with other polymers to produce biocomposites with improved properties. In this work, we investigate ytterbium recovery onto a natural biocomposite based on sericin/alginate/poly(vinyl alcohol) (SAPVA) in packed-bed column, aiming to establish a profitable application for sericin. Effects of flow rate and ytterbium inlet concentration showed that the highest exhaustion biosorption capacity (128.39 mg/g) and lowest mass transfer zone (4.13 cm) were reached under the operating conditions of 0.03 L/h and 87.95 mg/L. Four reusability cycles were performed under the optimum operating conditions using 0.3 mol/L HNO3. Ytterbium recovery was highly successful; desorption efficiency was higher than 97% and a final ytterbium-rich concentrate (3870 mg/L) was 44 times higher than input concentration. Regenerated beads characterization showed that the cation exchange mechanism plays a major function in continuous biosorption of ytterbium. SAPVA beads also showed higher biosorption/desorption performance for ytterbium than other competing ions. These results suggest the application of SAPVA may be an alternative for large-scale ytterbium recovery.
Collapse
Affiliation(s)
- Talles Barcelos da Costa
- School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 13083-852 Campinas, Brazil.
| | | | | |
Collapse
|
19
|
Zhang MK, Zhang XH, Han GZ. Magnetic alginate/PVA hydrogel microspheres with selective adsorption performance for aromatic compounds. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Kudzin MH, Giełdowska M, Mrozińska Z, Boguń M. Poly(lactic acid)/Zinc/Alginate Complex Material: Preparation and Antimicrobial Properties. Antibiotics (Basel) 2021; 10:1327. [PMID: 34827265 PMCID: PMC8614701 DOI: 10.3390/antibiotics10111327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate an antimicrobial and degradable composite material consisting of melt-blown poly(lactic acid) nonwoven fabrics, alginate, and zinc. This paper describes the method of preparation and the characterization of the physicochemical and antimicrobial properties of the new fibrous composite material. The procedure consists of fabrication of nonwoven fabric and two steps of dip-coating modification: (1) impregnation of nonwoven samples in the solution of alginic sodium salt and (2) immersion in a solution of zinc (II) chloride. The characterization and analysis of new material included scanning electron microscopy (SEM), specific surface area (SSA), and total/average pore volume (BET). The polylactide/alginate/Zn fibrous composite were subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli) bacterial strains, and the following fungal strains: Aspergillus niger van Tieghem and Chaetomium globosum. These results lay a technical foundation for the development and potential application of new composite as an antibacterial/antifungal material in biomedical areas.
Collapse
Affiliation(s)
- Marcin H. Kudzin
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland; (M.G.); (Z.M.); (M.B.)
| | | | | | | |
Collapse
|
22
|
da Costa TB, da Silva MGC, Vieira MGA. Biosorption of lanthanum using sericin/alginate/polyvinyl alcohol beads as a natural cation exchanger in a continuous fixed-bed column system. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Li Y, Wang C, Luan Y, Liu W, Chen T, Liu P, Liu Z. Preparation of
pH
‐responsive cellulose nanofibril/sodium alginate based hydrogels for drug release. J Appl Polym Sci 2021. [DOI: 10.1002/app.51647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuhang Li
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Cong Wang
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Yunhao Luan
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Wanyi Liu
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Tiantian Chen
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Pengtao Liu
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Zhong Liu
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
24
|
Evaluation of different covalent crosslinking agents into valsartan-loaded sericin and alginate particles for modified release. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.05.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Viscusi G, Gorrasi G. Facile preparation of layered double hydroxide (LDH)-alginate beads as sustainable system for the triggered release of diclofenac: Effect of pH and temperature on release rate. Int J Biol Macromol 2021; 184:271-281. [PMID: 34139243 DOI: 10.1016/j.ijbiomac.2021.05.217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/19/2022]
Abstract
This paper concerns the facile preparation of alginate beads encapsulating layered double hydroxide (LDH) intercalated with diclofenac sodium as drug delivery systems. To better evaluate the effect of LDH carrier, alginate beads loaded with free diclofenac were also prepared. Composites hydrogel beads were ionotropically crosslinked in CaCl2 solution at 4 °C. Thermal and barrier properties were evaluated and correlated with the presence of the inorganic phase. Swelling behavior was investigated over time. Release kinetics of diclofenac at different pH and temperatures were evaluated. The diclofenac release behavior appeared to be affected by the presence of LDH, the pH of release medium and the temperature allowing for fabricating a sustainable composite characterized by a triggered drug release rate. Finally, empirical relationships correlating the drug diffusion as a function of temperature and pH were extrapolated.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
26
|
Turanlı Y, Acartürk F. Fabrication and characterization of budesonide loaded colon-specific nanofiber drug delivery systems using anionic and cationic polymethacrylate polymers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Santinon C, Dantas de Freitas E, Gurgel Carlos da Silva M, Gurgel Adeodato Vieira M. Modification of valsartan drug release by incorporation into sericin/alginate blend using experimental design methodology. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Application of experimental design to evaluate the incorporation of naproxen into sericin/alginate particles prepared by ionic gelation technique. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Freitas ED, Vidart JM, da Silva MG, Vieira MG. Thermal characterization and stability investigation of sericin and alginate blend loaded with diclofenac sodium or ibuprofen. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|