1
|
Ali AA, Abo Dena AS, Fahmy T, El-Sherbiny IM, Sarhan A. Fabrication and preliminary characterization of conductive nanofillers-enhanced polymeric hydrogels for cardiac patch applications. Int J Biol Macromol 2025; 305:141177. [PMID: 39971078 DOI: 10.1016/j.ijbiomac.2025.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The development of conducting polymeric nanocomposites patches for cardiac tissue engineering has opened new possibilities for restoring the health of infarcted heart tissues. Herein, we report the fabrication of biocompatible and relatively cost-effective poly(vinyl alcohol)/alginate-based hydrogels patches modified with different conducting nanofillers such as silver nanoparticles, polyaniline nanofibers, copper oxide nanoleaves, and graphene oxide nanosheets. The impact of the different nanofiller materials on the molecular structure, charge transport mechanism and mechanical characteristics of the designed nanocomposites patches was investigated. In addition, some significant parameters of the nanocomposites were characterized such as swelling ability, antioxidant activity as well as hemocompatibility. Infrared spectroscopy results demonstrated the occurrence of different interactions between the included nanofillers and the polymer matrix depending on the type of the nanofiller. Moreover, conductivity measurements revealed that only the polyaniline nanofibers-modified nanocomposites hydrogels showed the highest conductivity compared to other counterparts. Mechanical characterization, antioxidant activity, swelling and hemocompatibility proved the suitability of the developed polyaniline nanofibers-modified nanocomposites hydrogels as potential candidates for successful application in cardiac tissue engineering.
Collapse
Affiliation(s)
- Asmaa A Ali
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt; Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Tarek Fahmy
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt.
| | - Afaf Sarhan
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
2
|
Bâldea I, Soran ML, Stegarescu A, Opriș O, Kacso I, Tripon S, Adascalitei A, Fericel IG, Decea R, Lung I. Lilium candidum Extract Loaded in Alginate Hydrogel Beads for Chronic Wound Healing. Gels 2025; 11:22. [PMID: 39851993 PMCID: PMC11765094 DOI: 10.3390/gels11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Chronic wounds are a major health problem, affecting millions of people worldwide. Resistance to treatment is frequently observed, requiring an extension of the wound healing time, and improper care can lead to more problems in patients. Smart wound dressings that provide a controlled drug release can significantly improve the healing process. In this paper, alginate beads with white lily leaf extract were prepared and tested for chronic wound healing. The obtained beads were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Also, the efficiency of extract encapsulation in alginate was determined as being of. The obtained hydrogel was tested on two normal human cell lines, respectively, dermal fibroblasts (BJ-CRL-2522-ATCC) and endothelial cells (human umbilical vein endothelial cells-HUVEC 2). The longer release of bioactive compounds from plant extract loaded in the alginate hydrogel resulted in more effective wound closure, compared to the extract alone, and scar formation, compared to the alginate hydrogel. Therefore, the effect of the white lily extract in combination with that of sodium alginate hydrogel improves the biological activity of the alginate hydrogel and increases the wound healing properties of the alginate.
Collapse
Affiliation(s)
- Ioana Bâldea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| | - Septimiu Tripon
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
- Electron Microscopy Center, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Alexandra Adascalitei
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Iulian George Fericel
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Roxana Decea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania; (I.B.); (A.A.); (I.G.F.); (R.D.)
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath, 400293 Cluj-Napoca, Romania; (M.-L.S.); (A.S.); (O.O.); (I.K.); (S.T.)
| |
Collapse
|
3
|
Rodrigues C, Tomoda BT, Viganó J, Braga ARC, de Moraes MA, Veggi PC. Production and Characterization of Silk Fibroin- Aloe vera Hydrogel: A Study on Extraction, Hydrogel Properties, and Release Mechanism. ACS OMEGA 2024; 9:50515-50525. [PMID: 39741835 PMCID: PMC11683634 DOI: 10.1021/acsomega.4c08193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/03/2025]
Abstract
This work investigated the production and characterization of a silk fibroin (SF) hydrogel incorporated with an Aloe vera (AV) extract. Four extraction methods, ultrasound-assisted extraction with bath and probe, stirring, and Soxhlet, were tested, while the hydrogel was produced by a one-step freeze-thaw method. Besides the extraction yield, the antioxidant capacity of the extracts was accessed, which allowed to select the extract obtained by ultrasound-assisted extraction to be incorporated into the hydrogels. Hydrogels were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Rheological assay, swelling behavior, and water uptake capacity were measured. The SF-AV hydrogel was submitted to release test, and the data were mathematically modeled. The hydrogels exhibited malleability, insolubility in water, interconnected pores, and thermal and physical stability. The SF-AV hydrogel released 37% extract over 330 min, with diffusion controlled by the Fickian mechanism. These promising results make the SF-AV hydrogel an attractive choice for wound dressing and other biomaterial-related applications.
Collapse
Affiliation(s)
- Camila
Lopes Rodrigues
- Department
of Chemical Engineering, Institute of Environmental, Chemical and
Pharmaceutical Sciences, Universidade Federal
de São Paulo, Diadema,SP 09913-030,Brazil
| | - Bruno Thorihara Tomoda
- Department
of Chemical Engineering, Institute of Environmental, Chemical and
Pharmaceutical Sciences, Universidade Federal
de São Paulo, Diadema,SP 09913-030,Brazil
| | - Juliane Viganó
- Faculdade
de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP 13635-900, Brasil
| | - Anna Rafaela Cavalcante Braga
- Department
of Chemical Engineering, Institute of Environmental, Chemical and
Pharmaceutical Sciences, Universidade Federal
de São Paulo, Diadema,SP 09913-030,Brazil
| | - Mariana Agostini de Moraes
- Department
of Chemical Engineering, Institute of Environmental, Chemical and
Pharmaceutical Sciences, Universidade Federal
de São Paulo, Diadema,SP 09913-030,Brazil
- School of
Chemical Engineering, Universidade Estadual
de Campinas, UNICAMP, Campinas, SP 13083-872, Brazil
| | - Priscilla Carvalho Veggi
- Department
of Chemical Engineering, Institute of Environmental, Chemical and
Pharmaceutical Sciences, Universidade Federal
de São Paulo, Diadema,SP 09913-030,Brazil
| |
Collapse
|
4
|
Bhoopathy J, Vedakumari Sathyaraj W, Yesudhason BV, Rajendran S, Dharmalingam S, Seetharaman J, Muthu R, Murugesan R, Raghunandhakumar S, Anandasadagopan SK. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:35-45. [PMID: 38112317 DOI: 10.1080/21691401.2023.2293784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Fabrication of haemostatic materials with excellent antimicrobial, biocompatible and biodegradable properties remains as a major challenge in the field of medicine. Haemostatic agents play vital role in protecting patients and military individuals during emergency situations. Natural polymers serve as promising materials for fabricating haemostatic compounds due to their efficacy in promoting hemostasis and wound healing. In the present work, sodium alginate/aloe vera/sericin (SA/AV/S) scaffold has been fabricated using a simple cost-effective casting method. The prepared SA/AV/S scaffolds were characterised for their physicochemical properties such as scanning electron microscope, UV-visible spectroscopy and Fourier transform infra-red spectroscopy. SA/AV/S scaffold showed good mechanical strength, swelling behaviour and antibacterial activity. In vitro experiments using erythrocytes proved the hemocompatible and biocompatible features of SA/AV/S scaffold. In vitro blood clotting assay performed using human blood demonstrated the haemostatic and blood absorption properties of SA/AV/S scaffold. Scratch wound assay was performed to study the wound healing efficacy of prepared scaffolds. Chick embryo chorioallantoic membrane assay carried out using fertilised embryos proved the angiogenic property of SA/AV/S scaffold. Thus, SA/AV/S scaffold could serve as a potential haemostatic healthcare product due to its outstanding haemostatic, antimicrobial, hemocompatible, biocompatible and angiogenic properties.
Collapse
Affiliation(s)
- Jayavardhini Bhoopathy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Selvarajan Rajendran
- Centre for Nano Science and Technology, Alagappa College of Technology Campus, Anna University, Chennai 600025, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jayashri Seetharaman
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ranjitha Muthu
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, GST Road, Chinna Kolambakkam, Palayanoor (PO), Tamil Nadu 603308, Tamil Nadu
| | - Ramachandran Murugesan
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, GST Road, Chinna Kolambakkam, Palayanoor (PO), Tamil Nadu 603308, Tamil Nadu
| | | | | |
Collapse
|
5
|
Yamdech R, Terahsongkran V, Terahsongkran V, Cherdchom S, Aramwit P. Development of Antioxidant-Active Sericin-Curcumin-Loaded Sodium Alginate/Polyvinyl Alcohol Films Crosslinked with Calcium Chloride as a Promising Wound Dressing Application. Polymers (Basel) 2024; 16:3197. [PMID: 39599288 PMCID: PMC11598768 DOI: 10.3390/polym16223197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Silk sericin (SS) and curcumin (Cur) possess significant antioxidant properties, making them highly beneficial for wound healing applications. This study aimed to develop SS-Cur-loaded sodium alginate/polyvinyl alcohol (SA/PVA) films crosslinked with calcium chloride, creating a biomaterial with enhanced stability and antioxidant properties. Wound dressings containing SS-Cur were fabricated by mixing SA and PVA at different ratios of 1:1, 1:2, 1:4, and 1:6. The resulting films were then crosslinked with calcium chloride in an ethanol solution to enhance film integrity. These films were characterized using several techniques, revealing that the presence of ethanol in calcium chloride affected film properties, including the gel fraction, swelling, film thickness, and FTIR analysis. The presence of ethanol in calcium chloride revealed the highest drug content in the SA/PVA films. In vitro release studies demonstrated sustained release of SS-Cur from all formulations. Cytotoxicity and antioxidant activity tests showed that SS-Cur-loaded SA/PVA films with ethanol in calcium chloride increased cell viability and enhanced antioxidant effects in L929 cells. In conclusion, this study demonstrates that the presence of ethanol in the crosslinking solution improved the functionality of SS-Cur-loaded SA/PVA films, making them promising candidates for wound healing and soft tissue regeneration.
Collapse
Affiliation(s)
- Rungnapha Yamdech
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Vareesa Terahsongkran
- Mater Dei School, 534 Phloen Chit Rd., Lumphini, Pathum Wan, Bangkok 10330, Thailand;
| | - Varis Terahsongkran
- Patumwan Demonstration School, Srinakharinwirot University, Henri Dunant Rd., Pathum Wan, Bangkok 10330, Thailand;
| | - Sarocha Cherdchom
- Department of Preventive and Social Medicine and Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10330, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
6
|
Odziomek K, Drabczyk AK, Kościelniak P, Konieczny P, Barczewski M, Bialik-Wąs K. The Role of Freeze-Drying as a Multifunctional Process in Improving the Properties of Hydrogels for Medical Use. Pharmaceuticals (Basel) 2024; 17:1512. [PMID: 39598423 PMCID: PMC11597604 DOI: 10.3390/ph17111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Freeze-drying is a dehydration method that extends the shelf life and stability of drugs, vaccines, and biologics. Recently, its role has expanded beyond preservation to improve novel pharmaceuticals and their carriers, such as hydrogels, which are widely studied for both drug delivery and wound healing. The main aim of this study was to explore the multifunctional role of freeze-drying in improving the physicochemical properties of sodium alginate/poly(vinyl alcohol)-based hydrogels for medical applications. Methods: The base matrix and hydrogels containing a nanocarrier-drug system, were prepared by chemical cross-linking and then freeze-dried for 24 h at -53 °C under 0.2 mBa. Key analyses included determination of gel fraction, swelling ratio, FT-IR, SEM, TG/DTG, in vitro drug release and kinetics, and cytotoxicity assessment. Results: Freeze-drying caused an increase in the gel fraction of the hydrogel with the dual drug delivery system from 55 ± 1.6% to 72 ± 0.5%. Swelling ability was pH-dependent and remained in the same range (175-282%). Thermogravimetric analysis showed that freeze-dried hydrogels exhibited higher thermal stability than their non-freeze-dried equivalents. The temperature at 10% weight loss increased from 194.0 °C to 198.9 °C for the freeze-dried drug-loaded matrix, and from 188.4 °C to 203.1 °C for the freeze-dried drug-free matrix. The average pore size of the freeze-dried hydrogels was in the range of 1.07 µm ± 0.54 to 1.74 µm ± 0.92. In vitro drug release revealed that active substances were released in a controlled and prolonged way, according to the Korsmeyer-Peppas model. The cumulative amount of salicylic acid released at pH = 9.0 after 96 h was 63%, while that of fluocinolone acetonide reached 73%. Both hydrogels were non-toxic to human fibroblast cells, maintaining over 90% cell viability after 48 h of incubation. Conclusions: The results show a high potential for commercialisation of the obtained hydrogels as medical dressings.
Collapse
Affiliation(s)
- Kacper Odziomek
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, 24 Warszawska Street, 31155 Cracow, Poland;
| | - Anna K. Drabczyk
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, 24 Warszawska Street, 31155 Cracow, Poland;
| | - Paulina Kościelniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, 6 Uniwersytetu Poznanskiego Street, 61614 Poznan, Poland; (P.K.); (P.K.)
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, 6 Uniwersytetu Poznanskiego Street, 61614 Poznan, Poland; (P.K.); (P.K.)
| | - Mateusz Barczewski
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 3 Piotrowo Street, 61138 Poznan, Poland;
| | - Katarzyna Bialik-Wąs
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Chemistry and Technology of Polymers, 24 Warszawska Street, 31155 Cracow, Poland
| |
Collapse
|
7
|
Yan L, Peng Y. Enhanced treatment of acute organophosphorus pesticide poisoning using activated charcoal-embedded sodium alginate-polyvinyl alcohol hydrogel. Biomed Mater Eng 2024; 35:489-498. [PMID: 38607746 DOI: 10.3233/bme-240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND The adsorption of activated charcoal is currently a major clinical treatment for acute organophosphorus pesticide poisoning (AOPP). However, the adsorption duration and efficiency of this method is unstable. OBJECTIVE In this study, a hydrogel embedding activated charcoal was prepared and its alleviating effects on AOPP were investigated. METHODS A composite hydrogel using sodium alginate and polyvinyl alcohol (SA-PVA) hydrogel was prepared in this study. The structural properties of the SA-PVA hydrogel were characterized via multiple analysis including FTIR, TGA, XRD, SEM, tensile strength and expansion rate. Based on these, activated charcoal (AC) was embedded within the SA-PVA hydrogel (SA-PVA-AC) and it was used for the treatment of AOPP. RESULTS Structural characterization indicated SA-PVA hydrogel possesses excellent mechanical properties and biocompatibility. The in vivo study demonstrated that SA-PVA-AC significantly alleviated the inflammation and oxidative damage in the liver, as evidenced by reduced levels of IL-6, TNF-α, and, IL-1β, SOD, and MDA. Furthermore, SA-PVA-AC treatment effectively re-regulated the activities of serum AST and ALT, exhibiting an improved effect on liver function. CONCLUSION The findings suggest that activated charcoal embedded within SA-PVA hydrogel has significant potential as a therapeutic agent in treating AOPP, and offering a novel approach to managing pesticide-induced toxicity.
Collapse
Affiliation(s)
- Li Yan
- Department of Occupational Disease and Pooning Medicine, The First Affiliated Hospital of Chongqing Medical and Pharaceutical College, Chongqing, China
| | - Ying Peng
- Department of Occupational Disease and Pooning Medicine, The First Affiliated Hospital of Chongqing Medical and Pharaceutical College, Chongqing, China
| |
Collapse
|
8
|
Ma X, Lin L, Peng K, Zheng Q, Feng Y, Chen Y. Construction and Performance Study of an Injectable Dual-Network Hydrogel Dressing with Inherent Drainage Function. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59143-59155. [PMID: 39431566 DOI: 10.1021/acsami.4c09483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
With the widespread utilization of moist wound dressings, the extended healing time and increased risk of wound infection caused by excessively moist environments have garnered significant attention. The development of hydrogel dressings that can effectively control the wound moisture level and promote healing is very important. Inspired by the pore-opening perspiration effect of the skin, this study constructed an injectable dual-network hydrogel, CMCS-OSA/AG/MXene, by the composition of a dynamic covalent network of carboxymethyl chitosan and oxidized sodium alginate based on the Schiff base and hydrogen bond network of the thermosensitive low-melting-point agar with the advantage of the upper critical solution temperature (UCST) effect. Under near-infrared (NIR) light stimulation, the CMCS-OSA/AG/MXene hydrogel shows characteristics conducive to rapid removal of wound exudate while maintaining an appropriate moist environment for the wound and excellent antibacterial effects with its photothermal responses. The excellent conductivity of the hydrogel can also promote cell proliferation under external electrical stimulation (ES). Further validation through animal experiments on a full-thickness skin defect model demonstrates the excellent capability of CMCS-OSA/AG/MXene in accelerating wound healing. This work provides an innovative approach to the development of injectable hydrogel dressing materials with inherent drainage functionality and shows a new avenue to wound moisture control and wound healing promotion.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Lizhi Lin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Kelin Peng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qianqian Zheng
- Department of Polymer Science and Engineering, Zhejiang University, Zhejiang 310027, China
| | - Yongqiang Feng
- Plastic Surgery Hospital of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China
| |
Collapse
|
9
|
Górska A, Baran E, Knapik-Kowalczuk J, Szafraniec-Szczęsny J, Paluch M, Kulinowski P, Mendyk A. Physically Cross-Linked PVA Hydrogels as Potential Wound Dressings: How Freezing Conditions and Formulation Composition Define Cryogel Structure and Performance. Pharmaceutics 2024; 16:1388. [PMID: 39598512 PMCID: PMC11597501 DOI: 10.3390/pharmaceutics16111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: Hydrogels produced using the freeze-thaw method have demonstrated significant potential for wound management applications. However, their production requires precise control over critical factors including freezing temperature and the choice of matrix-forming excipients, for which no consensus on the optimal conditions currently exists. This study aimed to address this gap by evaluating the effects of the above-mentioned variables on cryogel performance. Methods: Mechanical properties, absorption capacity, and microstructure were assessed alongside advanced analyses using differential scanning calorimetry (DSC) and low-field nuclear magnetic resonance relaxometry (LF TD NMR). Results: The results demonstrated that fully hydrolyzed polyvinyl alcohol (PVA) with a molecular weight above 61,000 g/mol is essential for producing high-performance cryogels. Among the tested formulations, an 8% (w/w) PVA56-98 solution (Mw~195,000; DH = 98.0-98.8%) with 10% (w/w) propylene glycol (PG) provided the best balance of stretchability, durability, and low adhesion. Notably, while -25 °C is often used for cryogel preparation, freezing the gel precursor at -80 °C yielded superior results, producing materials with more open, interconnected structures and enhanced mechanical strength and elasticity-deviating from conventional practices. Conclusions: The designed cryogel prototypes exhibited functional properties comparable to or even surpassing commercial wound dressings, except for absorption capacity, which remained lower. Despite this, the cryogel prototypes demonstrated potential as wound dressings, particularly for use in dry or minimally exuding wounds. All in all, this study provides a comprehensive analysis of the physicochemical and functional properties of PVA cryogels, establishing a strong foundation for the development of advanced wound dressing systems.
Collapse
Affiliation(s)
- Anna Górska
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Ewelina Baran
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Justyna Knapik-Kowalczuk
- Faculty of Science and Technology, Institute of Physics and SMCEBI, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (J.K.-K.); (M.P.)
| | | | - Marian Paluch
- Faculty of Science and Technology, Institute of Physics and SMCEBI, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (J.K.-K.); (M.P.)
| | - Piotr Kulinowski
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| |
Collapse
|
10
|
Mohammadi S, Khavarpour M, Ghadi A. Design of multiple-function matrix encapsulated with Marjoram extract to support cellular functions, stimulate collagen synthesis and decrease infection in wound. Sci Rep 2024; 14:21109. [PMID: 39256491 PMCID: PMC11387659 DOI: 10.1038/s41598-024-71525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
This study aimed to assess the role of the combination of design techniques of the engineered substrates, and the effect of encapsulating Marjoram (Origanum Majorana L.) into the matrix network was studied. To this end, PVA-PEG matrices were designed through 3 techniques of freeze-thaw (FT), the combination of both methods of freeze-drying and freeze-thawing(FT-FD), and ternary technique(freeze-drying,freeze-thawing,cross-linking(FT-FD/CL)), by combining equal volume ratios of both polymers. The results indicated the ternary technique can provide better physicochemical properties(porosity: 96%, lower degradation rate, higher modulus) compared to FT and FT-FD methods. Afterward, encapsulation of Marjoram-extracted bio-actives in the matrix network designed with the ternary technique demonstrated that the increase in the extract concentration up to 3% can increase encapsulation efficiency. The encapsulation also caused a more cohesive network by better bonding between functional groups in herbal biomolecules and polymer chains of the matrix. Mass transport mechanisms and release kinetics of matrix-encapsulated bio-actives indicated a deviation from Fickian diffusion and the release by diffusion and swelling process. Biologically, matrix-loaded herbal carbohydrate(Epi-alpha-Cadinol) improved fibroblast adhesion and distribution on the substrate surface, and led to the better synthesis of collagen fibers, especially in 3% herbal extract, and antibacterial activities owing to the controlled release of sesquiterpenoids and N-Acetyl-L-proline.
Collapse
Affiliation(s)
- Shahab Mohammadi
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Maryam Khavarpour
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Arezoo Ghadi
- Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
11
|
Sharma D, Sharma A, Bala R, Singh B. Investigations on physiochemical and biomedical properties of Aloe vera - Sterculia gum copolymeric dressings impregnated with antibiotic-anesthetic drugs to enhance wound healing. Int J Biol Macromol 2024; 267:131363. [PMID: 38583847 DOI: 10.1016/j.ijbiomac.2024.131363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Recently, various innovative advancements have been made in carbohydrate research to design versatile materials for biomedical applications. The current research focuses on the development of copolymeric hydrogel wound dressings (HWD) using a combination of aloe vera (AV) - sterculia gum (SG) - poly (vinylsulfonic acid) (VSA)-based with the aim to enhancing their efficacy in drug delivery (DD) applications. These hydrogel dressings were encapsulated with levofloxacin and lidocaine to address both microbial infection and pain. Copolymers were characterized by FESEM, SEM, EDS, AFM, 13C NMR, FTIR, XRD, and TGA-DTG analysis. Hydrogel exhibited a fluid absorption capacity of 4.52 ± 0.12 g per gram of polymeric dressing in simulated wound conditions. The hydrogels displayed a sustained release of drugs, demonstrating a non-Fickian diffusion mechanism. Polymer dressings revealed antibacterial, mucoadhesive, antioxidant, biocompatible and non-cytotoxic properties. Additionally, HWD displayed permeability to O2 and water vapour, yet was impermeable to microbial penetration. Overall, the findings of physiological, biochemical and drug delivery properties demonstrated the suitability of materials for wound dressing applications.
Collapse
Affiliation(s)
- Diwanshi Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Ashima Sharma
- Department of Physiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Ritu Bala
- Department of Chemistry, Government College Dharamshala, Himachal Pradesh, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
12
|
Mehrjou A, Hadaeghnia M, Ehsani Namin P, Ghasemi I. Sodium alginate/polyvinyl alcohol semi-interpenetrating hydrogels reinforced with PEG-grafted-graphene oxide. Int J Biol Macromol 2024; 263:130258. [PMID: 38423903 DOI: 10.1016/j.ijbiomac.2024.130258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Semi-interpenetrating polymer network (SIPN) hydrogels composed of sodium alginate/poly (vinyl alcohol), reinforced by PEG-grafted-graphene oxide (GO-g-PEG) were prepared by ionic crosslinking of sodium alginate. The impact of grafted PEG molecular weight with two molecular weights, i.e. 400 and 2000 g/mol, and component composition were studied on the morphology, swelling behavior, mechanical and dynamic properties. SEM observation showed fine dispersion and distribution of GO-g-PEG throughout the hydrogel indicating a good interaction of particles with the components. Our results revealed that although incorporating GO-g-PEG increases the water content, it significantly enhances the mechanical properties, i.e. tensile modulus, elongation at break, and fracture toughness with a more pronounced impact at higher PEG molecular weight. As a result, the tensile modulus and the elongation at break increased by 270 % and 28 %, respectively. The SA/PVA SIPN hydrogels reinforced with the GO-g-PEG exhibit a non-linear elastic behavior with a toe at low strains. This behavior is attributed to the unique structural features of SIPN hydrogels and the orientation of GO-g-PEG particles with proper interaction with the components. The small amplitude oscillatory shear was also performed to further study the impact of SA, PVA, and GO-g-PEG compositions on the microstructure of hydrogels.
Collapse
Affiliation(s)
- Abdolali Mehrjou
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Milad Hadaeghnia
- Department of Chemical and Material Engineering, Concordia University, Montreal, QC, Canada
| | - Parvin Ehsani Namin
- Facutly of Chemistry, Tehran North Branch of Islamic Azad University, Tehran, Iran
| | - Ismaeil Ghasemi
- Faculty of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran.
| |
Collapse
|
13
|
Kusjuriansah K, Rodhiyah M, Syifa NA, Luthfianti HR, Waresindo WX, Hapidin DA, Suciati T, Edikresnha D, Khairurrijal K. Composite Hydrogel of Poly(vinyl alcohol) Loaded by Citrus hystrix Leaf Extract, Chitosan, and Sodium Alginate with In Vitro Antibacterial and Release Test. ACS OMEGA 2024; 9:13306-13322. [PMID: 38524413 PMCID: PMC10955567 DOI: 10.1021/acsomega.3c10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Citrus hystrix leaves have been used traditionally as a spice, a traditional medicine for respiratory and digestive disorders, and a remedy for bacterial infections. This study reports on the synthesis of composite hydrogels using the freeze-thaw method with poly(vinyl alcohol) (PVA) as the building block loaded by C. hystrix leaf extract (CHLE). Additionally, chitosan (CS) and sodium alginate (SA) were also loaded, respectively, to increase the antibacterial activity and to control the extract release of the composite hydrogels. The combinations of the compositions were PVA, PVA/CHLE, PVA/CHLE/CS, PVA/CHLE/SA, and PVA/CHLE/SA/CS. The internal morphology of the hydrogels shows some changes after the PVA/CHLE hydrogel was loaded by CS, SA, and SA/CS. The analysis of the Fourier transform infrared (FTIR) spectra confirmed the presence of PVA, CHLE, CS, and SA in the composite hydrogels. From the X-ray diffraction (XRD) characterization, it was shown that the composite hydrogels maintained their semicrystalline properties with decreasing crystallinity degree after being loaded by CS, SA, and SA/CS, as also supported by differential scanning calorimetry (DSC) characterization. The compressive strength of the PVA/CHLE hydrogel decreases after the loading of CS, SA, and SA/CS, so that it becomes more elastic. Despite being loaded in the composite hydrogels, the CHLE retained its antibacterial activity, as evidenced in the in vitro antibacterial test. The loading of CS succeeded in increasing the antibacterial activity of the composite hydrogels, while the loading of SA resulted in the decrease of the antibacterial activity. The release of extract from the composite hydrogels was successfully slowed down after the loading of CS, SA, and SA/CS, resulting in a controlled release following the pseudo-Fickian diffusion. The cytotoxic activity test proved that all hydrogel samples can be used safely on normal cells up to concentrations above 1000 μg/mL.
Collapse
Affiliation(s)
- Kusjuriansah Kusjuriansah
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Marathur Rodhiyah
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Nabila Asy Syifa
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Halida Rahmi Luthfianti
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - William Xaveriano Waresindo
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Dian Ahmad Hapidin
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Tri Suciati
- Department
of Pharmaceutics, School of Pharmacy, Institut
Teknologi Bandung, Jalan
Ganesa 10, Bandung 40132, Indonesia
| | - Dhewa Edikresnha
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- University
Center of Excellence—Nutraceutical, Bioscience and Biotechnology
Research Center, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Khairurrijal Khairurrijal
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- University
Center of Excellence—Nutraceutical, Bioscience and Biotechnology
Research Center, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- Department
of Physics, Faculty of Sciences, Institut
Teknologi Sumatera, Jl.
Terusan Ryacudu, Lampung 35365, Indonesia
| |
Collapse
|
14
|
Wei C, Xing S, Li Y, Koosha M, Wang S, Chen H, Zhai Y, Wang L, Yang X, Fakhrullin R. Gelatin/carboxymethyl chitosan/aloe juice hydrogels with skin-like endurance and quick recovery: Preparation, characterization, and properties. Int J Biol Macromol 2024; 261:129720. [PMID: 38296139 DOI: 10.1016/j.ijbiomac.2024.129720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
Gelatin-based hydrogels have gained considerable attention due to their resemblance to the extracellular matrix and hydrophilic three-dimensional network structure. Apart from providing an air-permeable and moist environment, these hydrogels optimize the inflammatory microenvironment of the wounds. These properties make gelatin-based hydrogels highly competitive in the field of wound dressings. In this study, a series of composite hydrogels were prepared using gelatin (Gel) and carboxymethyl chitosan (CMCh) as primary materials, glutaraldehyde as a crosslinker, and aloe vera juice as an anti-inflammatory component. The properties of the hydrogel, including its rheological properties, microscopic structures, mechanical properties, swelling ratios, thermal stability, antibacterial properties, and biocompatibility, were investigated. The results demonstrate that the gelatin-based hydrogels exhibit good elasticity and rapid self-healing ability. The hydrogels exhibited slight shear behavior, which is advantageous for skin care applications. Furthermore, the inclusion of aloe vera juice into the hydrogel resulted in a dense structure, improved mechanical properties and enhanced swelling ratio. The Gel/CMCh/Aloe hydrogels tolerate a compressive strength similar to that of human skin. Moreover, the hydrogels displayed excellent cytocompatibility with HFF-1 cells, and exhibited antibacterial activity against E. coli and S. aureus. Lomefloxacin was used as a model drug to study the releasing behavior of the Gel/CMCh/aloe hydrogels. The results showed that the drug was released rapidly at the initial stage, and could continue to be released for 12 h, the maximum releasing rate exceeded 20 %. These findings suggest that the gelatin-based hydrogels hold great promise as effective wound dressings.
Collapse
Affiliation(s)
- Chunyan Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Mojtaba Koosha
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | - Shoujuan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Hua Chen
- Interventional department of Shandong Provincial Cancer Hospital Affiliated to Shandong First Medical University, Jinan 250117, China.
| | - Yuan Zhai
- Interventional department of Shandong Provincial Cancer Hospital Affiliated to Shandong First Medical University, Jinan 250117, China.
| | - Ling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Xiaodeng Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| |
Collapse
|
15
|
Oh GW, Kim SC, Cho KJ, Ko SC, Lee JM, Yim MJ, Kim KW, Kim HS, Kim JY, Lee DS, Heo SY, Kim YM, Jung WK. Poly(vinyl alcohol)/chitosan hydrogel incorporating chitooligosaccharide-gentisic acid conjugate with antioxidant and antibacterial properties as a potential wound dressing. Int J Biol Macromol 2024; 255:128047. [PMID: 37956810 DOI: 10.1016/j.ijbiomac.2023.128047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
The design and development of wound dressing with antioxidant and antibacterial properties to accelerate wound healing remain challenging. In this study, we synthesize a chitooligosaccharide-gentisic acid (COS-GSA) conjugate using the free-radical grafting method, and fabricate a poly(vinyl alcohol) (PVA)/chitosan (CH)/COS-GSA (PVA/CH/CG) hydrogel using a freeze-thaw method. We characterize the synthesized COS-GSA conjugates using through polyphenol assay, absorbance, and 1H NMR spectroscopy and evaluate their antioxidant properties. The COS-GSA conjugates are successfully synthesized and exhibit better antioxidant properties than pristine COSs. Subsequently, the fabricated hydrogel is characterized based on its morphological analysis, rheological properties, water contact angle, swelling, degradation, water retention properties, and COS-GSA release profiles. Finally, the biocompatibility of the fabricated hydrogel is evaluated on HDF and HaCaT cells through indirect and direct cytotoxicity. The PVA/CH/CG hydrogel exhibited significantly higher antioxidant properties (DPPH, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydrogen peroxide (H2O2) scavenging activities) and antibacterial activities (Staphylococcus aureus and Pseudomonas aeruginosa) compared to other fabricated hydrogels such as PVA, PVA/CH, and PVA/CH/COS (PVA/CH/C). These results provide evidence that PVA/CH/CG hydrogels with antioxidant, antibacterial, and non-cytotoxic properties have great potential for wound-dressing applications.
Collapse
Affiliation(s)
- Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Se-Chang Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Seok-Chun Ko
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Jeong Min Lee
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Kyung Woo Kim
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Hyun-Soo Kim
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, 2-9, Tongyeonghaean-ro, Tongyeong-si, Gyeongsangnam-do, 53064, Republic of Korea
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
16
|
Chelminiak-Dudkiewicz D, Machacek M, Dlugaszewska J, Wujak M, Smolarkiewicz-Wyczachowski A, Bocian S, Mylkie K, Goslinski T, Marszall MP, Ziegler-Borowska M. Fabrication and characterization of new levan@CBD biocomposite sponges as potential materials in natural, non-toxic wound dressing applications. Int J Biol Macromol 2023; 253:126933. [PMID: 37722631 DOI: 10.1016/j.ijbiomac.2023.126933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Wound healing is a complex process; therefore, new dressings are frequently required to facilitate it. In this study, porous bacterial levan-based sponges containing cannabis oil (Lev@CBDs) were prepared and fully characterized. The sponges exhibited a suitable swelling ratio, proper water vapor transmission rate, sufficient thermal stability, desired mechanical properties, and good antioxidant and anti-inflammatory properties. The obtained Lev@CBD materials were evaluated in terms of their interaction with proteins, human serum albumin and fibrinogen, of which fibrinogen revealed the highest binding effect. Moreover, the obtained biomaterials exhibited antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, as well as being non-hemolytic material as indicated by hemolysis tests. Furthermore, the sponges were non-toxic and compatible with L929 mouse fibroblasts and HDF cells. Most significantly, the levan sponge with the highest content of cannabis oil, in comparison to others, retained its non-hemolytic, anti-inflammatory, and antimicrobial properties after prolonged storage in a climate chamber at a constant temperature and relative humidity. The designed sponges have conclusively proven their beneficial physicochemical properties and, at the preliminary stage, biocompatibility as well, and therefore can be considered a promising material for wound dressings in future in vivo applications.
Collapse
Affiliation(s)
- Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Akademika Heyrovskeho 1203, 500-05 Hradec Kralove, Czech Republic
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Magdalena Wujak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Aleksander Smolarkiewicz-Wyczachowski
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Szymon Bocian
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Kinga Mylkie
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - T Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 10, 60-780 Poznan, Poland
| | - Michal P Marszall
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| |
Collapse
|
17
|
Yao Q, Guo J, Guan F, Li J, Bao D, He J, Ji X, Song X, Yang Q. Molybdenum disulfide nanoflowers - doped sodium alginate/polyvinyl alcohol porous xerogel for methylene blue and copper ion adsorption. Int J Biol Macromol 2023; 253:127397. [PMID: 37827402 DOI: 10.1016/j.ijbiomac.2023.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In order to improve the adsorption performance of MoS2, as well as to solve the problems of MoS2-powder in adsorption, which is prone to agglomeration and difficulty to be recycled, we prepared MoS2-nanoflowers(MoS2-NFs), and mixed them with sodium alginate/polyvinyl alcohol(SA/PVA) to prepare MoS2-NFs/SA/PVA xerogel(MSP) by freezing-lyophilization. Then two forms of xerogels - block-MSP(MSPB) and spherical-MSP(MSPS) were prepared, and they were used as methylene blue(MB) and Cu2+ adsorbent. It was found that MoS2-NFs were evenly dispersed inside the SA/PVA with no agglomeration, while the interior of MSPB/MSPS showed the structure of parallel-pores and radial-pores, respectively. The adsorption capacity of MSPB/MSPS on MB can reach 233 mg/g, which is five times higher than SA/PVA-gel, showing excellent synergistic-adsorption effect, and the adsorption capacity for Cu2+ reaches 271 mg/g. The adsorption mechanism indicated that the adsorption of MB by MSPB/MSPS conformed to pseudo-first-order model, with electrostatic force as the main force. And their adsorption of Cu2+ conformed to pseudo-second-order model and was dominated by Lewis acid/base soft-soft interactions. Notably, after long-term adsorption, MSPB/MSPS maintains its shape and more than 90 % of the adsorption capacity, ensuring the recovery and reuse of materials. So, MSPB/MSPS has great potential in adsorption, providing a new solution for sewage purification.
Collapse
Affiliation(s)
- Qiang Yao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, China.
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jia Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Da Bao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiahao He
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinbin Ji
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuecui Song
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qiang Yang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
18
|
Qureshi MAUR, Arshad N, Rasool A, Rizwan M, Rasheed T. Guar gum-based stimuli responsive hydrogels for sustained release of diclofenac sodium. Int J Biol Macromol 2023; 250:126275. [PMID: 37567541 DOI: 10.1016/j.ijbiomac.2023.126275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
In the current study, hydrogels for the controlled release of diclofenac sodium were synthesized from graphene oxide-reinforced guar gum and poly (N-vinyl-2-pyrrolidone) using the Solution Casting Technique. Varying concentrations of 3-Glycidyloxypropyl trimethoxysilane (GLYMO) were employed for the crosslinking of hydrogels. Further, the characterization of hydrogels was carried out using different techniques such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction, thermal analysis and scanning electron microscope. The FTIR investigations reveals particular functionalities and development of hydrogel interfaces. While thermal analysis prophesied that, improvement in forces among hydrogel components is directly proportional to the GLYMO concentration. In-vitro biodegradation test and cell viability assay against HEK-293 cell lines confirmed their biodegradable and biocompatible nature. GPG-32 demonstrated maximum antibacterial activity against P.aeruginosa and E.coli strains. The maximum swelling 2001 % and 1814 % in distilled water were recorded for GPG (control) and GPG-8 respectively that obeyed Fick's law. Hydrogels displayed high swelling responses at pH 6 in buffer and non-buffer solutions. In 2.5 h, 88.7 % diclofenac sodium was released which was determined by UV visible spectrophotometer. In conclusion, guar gum-based non-toxic, biocompatible and biodegradable hydrogels would be a model platform for targeting inflammation and pains. Furthermore, improved mechanical and viscoelastic behavior of hydrogels could also be explored for making drug loaded dressings for wound healing applications.
Collapse
Affiliation(s)
| | - Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University Islamabad, Pakistan.
| | - Atta Rasool
- School of Chemistry, University of the Punjab, 54590 Lahore, Pakistan
| | - Muhmmad Rizwan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
19
|
Chelu M, Musuc AM, Popa M, Calderon Moreno J. Aloe vera-Based Hydrogels for Wound Healing: Properties and Therapeutic Effects. Gels 2023; 9:539. [PMID: 37504418 PMCID: PMC10379830 DOI: 10.3390/gels9070539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Aloe vera-based hydrogels have emerged as promising platforms for the delivery of therapeutic agents in wound dressings due to their biocompatibility and unique wound-healing properties. The present study provides a comprehensive overview of recent advances in the application of Aloe vera-based hydrogels for wound healing. The synthesis methods, structural characteristics, and properties of Aloe vera-based hydrogels are discussed. Mechanisms of therapeutic agents released from Aloe vera-based hydrogels, including diffusion, swelling, and degradation, are also analyzed. In addition, the therapeutic effects of Aloe vera-based hydrogels on wound healing, as well as the reduction of inflammation, antimicrobial activity, and tissue regeneration, are highlighted. The incorporation of various therapeutic agents, such as antimicrobial and anti-inflammatory ones, into Aloe vera-based hydrogels is reviewed in detail. Furthermore, challenges and future prospects of Aloe vera-based hydrogels for wound dressing applications are considered. This review provides valuable information on the current status of Aloe vera-based hydrogels for the delivery of therapeutic agents in wound dressings and highlights their potential to improve wound healing outcomes.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
20
|
Mao G, Tian S, Shi Y, Yang J, Li H, Tang H, Yang W. Preparation and evaluation of a novel alginate-arginine-zinc ion hydrogel film for skin wound healing. Carbohydr Polym 2023; 311:120757. [PMID: 37028858 DOI: 10.1016/j.carbpol.2023.120757] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
In this paper, the mixed solution of sodium alginate (SA) and arginine (Arg) was dried into a film and then crosslinked with zinc ion to form sodium alginate-arginine-zinc ion (SA-Arg-Zn2+) hydrogel for skin wound dressings. SA-Arg-Zn2+ hydrogel had higher swelling ability, which was beneficial to absorbing wound exudate. Moreover, it exhibited antioxidant activity and strong inhibition against E. coli and S. aureus, and had no obvious cytotoxicity to NIH 3T3 fibroblasts. Compared with other dressings utilized in rat skin wound, SA-Arg-Zn2+ hydrogel showed better wound healing efficacy and the wound closure ratio reached to 100 % on the 14th day. The result of Elisa test indicated that SA-Arg-Zn2+ hydrogel down-regulated the expression of inflammatory factors (TNF-α and IL-6) and promoted the growth factor levels (VEGF and TGF-β1). Furthermore, H&E staining results confirmed that SA-Arg-Zn2+ hydrogel could reduce wound inflammation and accelerate re-epithelialization, angiogenesis and wound healing. Therefore, SA-Arg-Zn2+ hydrogel is an effective and innovative wound dressing, moreover, the preparation technique is simple and feasible for industrial application.
Collapse
|
21
|
Ajaz N, Bukhsh M, Kamal Y, Rehman F, Irfan M, Khalid SH, Asghar S, Rizg WY, Bukhary SM, Hosny KM, Alissa M, Safhi AY, Sabei FY, Khan IU. Development and evaluation of pH sensitive semi-interpenetrating networks: assessing the impact of itaconic acid and aloe vera on network swelling and cetirizine release. Front Bioeng Biotechnol 2023; 11:1173883. [PMID: 37229490 PMCID: PMC10203566 DOI: 10.3389/fbioe.2023.1173883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are crosslinked three-dimensional networks, and their properties can be easily tuned to target the various segments of the gastrointestinal tract (GIT). Cetirizine HCl (CTZ HCl) is an antihistaminic drug, which when given orally can upset the stomach. Moreover, this molecule has shown maximum absorption in the intestine. To address these issues, we developed a pH-responsive semi-interpenetrating polymer network (semi-IPN) for the delivery of CTZ HCl to the lower part of the GIT. Initially, 10 different formulations of itaconic acid-grafted-poly (acrylamide)/aloe vera [IA-g-poly (AAm)/aloe vera] semi-IPN were developed by varying the concentration of IA and aloe vera using the free radical polymerization technique. Based on swelling and sol-gel analysis, formulation F5 containing 0.3%w/w aloe vera and 6%w/w IA was chosen as the optimum formulation. The solid-state characterization of the optimized formulation (F5) revealed a successful incorporation of CTZ HCl in semi-IPN without any drug-destabilizing interaction. The in vitro drug release from F5 showed limited release in acidic media followed by a controlled release in the intestinal environment for over 72 h. Furthermore, during the in vivo evaluation, formulation F5 did not affect the hematological parameters, kidney, and liver functions. Clinical observations did not reveal any signs of illness in rabbits treated with hydrogels. Histopathological images of vital organs of treated animals showed normal cellular architecture. Thus, the results suggest a non-toxic nature and overall potential of the developed formulation as a targeted drug carrier.
Collapse
Affiliation(s)
- Nyla Ajaz
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| | - Munnaza Bukhsh
- Foundation University and Medical College Islamabad Department of Medicine, Islamabad, Pakistan
| | - Yousaf Kamal
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Karachi, Islamabad Campus, Islamabad, Pakistan
| | - Fauzia Rehman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waleed Y. Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sahar M. Bukhary
- Department of Chemical Laboratories, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
22
|
Isaeva E, Kisel A, Beketov E, Demyashkin G, Yakovleva N, Lagoda T, Arguchinskaya N, Baranovsky D, Ivanov S, Shegay P, Kaprin A. Effect of Collagen and GelMA on Preservation of the Costal Chondrocytes' Phenotype in a Scaffold in vivo. Sovrem Tekhnologii Med 2023; 15:5-16. [PMID: 37389022 PMCID: PMC10306965 DOI: 10.17691/stm2023.15.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 07/01/2023] Open
Abstract
The aim of the study was to compare type I collagen-based and methacryloyl gelatin-based (GelMA) hydrogels by their ability to form hyaline cartilage in animals after subcutaneous implantation of scaffolds. Materials and Methods Chondrocytes were isolated from the costal cartilage of newborn rats using 0.15% collagenase solution in DMEM. The cells was characterized by glycosaminoglycan staining with alcian blue. Chondrocyte scaffolds were obtained from 4% type I porcine atelocollagen and 10% GelMA by micromolding and then implanted subcutaneously into the withers of two groups of Wistar rats. Histological and immunohistochemical studies were performed on days 12 and 26 after implantation. Tissue samples were stained with hematoxylin and eosin, alcian blue; type I and type II collagens were identified by the corresponding antibodies. Results The implanted scaffolds induced a moderate inflammatory response in both groups when implanted in animals. By day 26 after implantation, both collagen and GelMA had almost completely resorbed. Cartilage tissue formation was observed in both animal groups. The newly formed tissue was stained intensively with alcian blue, and the cells were positive for both types of collagen. Cartilage tissue was formed among muscle fibers. Conclusion The ability of collagen type I and GelMA hydrogels to form hyaline cartilage in animals after subcutaneous implantation of scaffolds was studied. Both collagen and GelMA contributed to formation of hyaline-like cartilage tissue type in animals, but the chondrocyte phenotype is characterized as mixed. Additional detailed studies of possible mechanisms of chondrogenesis under the influence of each of the hydrogels are needed.
Collapse
Affiliation(s)
- E.V. Isaeva
- Senior Researcher, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - A.A. Kisel
- Researcher, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - E.E. Beketov
- Researcher, Laboratory of Medical and Environmental Dosimetry and Radiation Safety; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Associate Professor, Engineering Physics Institute of Biomedicine; Obninsk Institute for Nuclear Power Engineering — Branch of the National Research Nuclear University MEPhI, 1 Studgorodok, Obninsk, 249034, Russia
| | - G.A. Demyashkin
- Head of the Department of Pathomorphology; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Head of Department of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Malaya Trubetskaya St., Moscow, 119991, Russia
| | - N.D. Yakovleva
- Lecturer; Medical Technical School, 75 A Lenina St., Obninsk, 249037, Russia
| | - T.S. Lagoda
- Research Laboratory Assistant, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - N.V. Arguchinskaya
- Junior Researcher, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - D.S. Baranovsky
- Head of Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Researcher, Research and Educational Resource Center for Cellular Technologies; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - S.A. Ivanov
- Corresponding Member of the Russian Academy of Sciences, Director; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Professor, Department of Oncology and X-ray Radiology named after V.P. Kharchenko, Medical Institute; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - P.V. Shegay
- Head of the Center for Innovative Radiological and Regenerative Technologies; National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| | - A.D. Kaprin
- Professor, Academician of the Russian Academy of Sciences, General Director; National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia Head of the Department of Urology and Operative Nephrology with a Course of Oncourology, Medical Institute; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| |
Collapse
|
23
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Chelu M, Popa M, Ozon EA, Pandele Cusu J, Anastasescu M, Surdu VA, Calderon Moreno J, Musuc AM. High-Content Aloe vera Based Hydrogels: Physicochemical and Pharmaceutical Properties. Polymers (Basel) 2023; 15:polym15051312. [PMID: 36904552 PMCID: PMC10007233 DOI: 10.3390/polym15051312] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The present research focuses on the physicochemical and pharmacotechnical properties of new hydrogels obtained using allantoin, xanthan gum, salicylic acid and different concentrations of Aloe vera (5, 10, 20% w/v in solution; 38, 56, 71 wt% in dry gels). The thermal behavior of Aloe vera composite hydrogels was studied using DSC and TG/DTG analyses. The chemical structure was investigated using different characterization methods (XRD, FTIR and Raman spectroscopies) and the morphology of the hydrogels was studied SEM and AFM microscopy. Pharmacotechnical evaluation on tensile strength and elongation, moisture content, swelling and spreadability was also completed. Physical evaluation confirmed that the appearance of the prepared Aloe vera based hydrogels was homogeneous and the color varied from pale beige to deep opaque beige with increasing Aloe vera concentration. All other evaluation parameters, e.g., pH, viscosity, spreadability and consistency were found to be adequate in all hydrogel formulations. SEM and AFM images show that the structure of the hydrogels condensed into homogeneous polymeric solids with the addition of Aloe vera, in accordance with the decrease in peak intensities observed via XRD analysis. These results suggest interactions between the hydrogel matrix and Aloe vera as observed via FTIR and TG/DTG and DSC analyses. Considering that Aloe vera content higher than 10% (w/v) did not stimulate further interactions, this formulation (FA-10) can be used for further biomedical applications.
Collapse
Affiliation(s)
- Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Jeanina Pandele Cusu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Vasile Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| |
Collapse
|
25
|
Osetrov K, Uspenskaya M, Olekhnovich R. The model pH-controlled delivery system based on gelatin-tannin hydrogels containing ferrous ascorbate: iron release in vitro. Biomed Phys Eng Express 2023; 9. [PMID: 36758228 DOI: 10.1088/2057-1976/acbaa1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Hydrogels have become an essential class among all biomaterials. The specialized biomaterials are highly valued in the field of biomedical applications. One of the problems in wound management is local microelement deficiency associated with extensive wound lesions. The significant lack of elemental iron in the human body leads to serious consequences and prolongs treatment. The synthesis of gelatin-tannin hydrogels with ion delivery function is proposed in this study. The ability to release ions in low acid solution is a sphere of great interest. The pH drop in the wound cavity is usually associated with the contamination of some bacterial cultures. pH-controlled delivery of iron in buffer solutions (рН = 5.5/6.4/7.4) was considered for these hydrogels. The kinetics of iron release was determined by visible spectroscopy. Theoretical models were applied to describe the process of ion delivery. The structure of materials was examined by IR-spectroscopy and demonstrated the incorporation of ferrous ascorbate into hydrogel matrix. Thermal analysis was used to point out the key differences in thermal behavior by isoconversional methods (Flynn-Wall-Ozawa/Kissinger-Akahira-Sunose). The mechanical properties of the materials have been studied. The effect of iron ascorbate on polymer network parameters was discussed. The current study demonstrated the possibility of obtaining gelatin-tannin hydrogels for pH-dependent iron delivery. That provides future perspectives to expand the set of releasing microelements for biomedical applications.
Collapse
Affiliation(s)
- Konstantin Osetrov
- Center for Chemical Engineering, ITMO University, 197101, Saint-Petersburg, Russia
| | - Mayya Uspenskaya
- Center for Chemical Engineering, ITMO University, 197101, Saint-Petersburg, Russia
| | - Roman Olekhnovich
- Center for Chemical Engineering, ITMO University, 197101, Saint-Petersburg, Russia
| |
Collapse
|
26
|
Uttayarat P, Chiangnoon R, Thongnopkoon T, Noiruksa K, Trakanrungsie J, Phattanaphakdee W, Chittasupho C, Athikomkulchai S. Electron Beam Irradiation Cross-Linked Hydrogel Patches Loaded with Red Onion Peel Extract for Transdermal Drug Delivery: Formulation, Characterization, Cytocompatibility, and Skin Permeation. Gels 2023; 9:gels9010052. [PMID: 36661818 PMCID: PMC9858140 DOI: 10.3390/gels9010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The use of bioactive molecules derived from medicinal plants in wound healing has recently attracted considerable attention in both research and public interest. In this work, we demonstrated the first attempt to incorporate the extract from Thai red onion skins in hydrogel patches intended for transdermal delivery. The red onion skin extract (ROSE) was first prepared and evaluated for cytotoxicity by MTT assay with both L929 and human dermal fibroblast cells. Hydrogel patches with porous microstructure and high water content were fabricated from polyvinyl alcohol (PVA) by electron beam irradiation and characterized for their physical, mechanical, morphological, and cytocompatible properties prior to the loading of ROSE. After decontamination by electron beam irradiation, the in vitro release profile exhibited the burst release of extract from ROSE-coated hydrogel patches within 5 h, followed by the sustained release up to 48 h. Finally, evaluation of skin permeation using Franz cell setup with a newborn pig skin model showed that the permeation of ROSE from the hydrogel patch increased with time and reached the maximum of 262 µg/cm2, which was well below the cytotoxicity threshold, at 24 h. These results demonstrated that our ROSE-coated hydrogel patches could potentially be used in transdermal delivery.
Collapse
Affiliation(s)
- Pimpon Uttayarat
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
| | - Rattanakorn Chiangnoon
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
| | - Thanu Thongnopkoon
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Kesinee Noiruksa
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Jirachaya Trakanrungsie
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Wattanaporn Phattanaphakdee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.C.); (S.A.)
| | - Sirivan Athikomkulchai
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
- Correspondence: (C.C.); (S.A.)
| |
Collapse
|
27
|
Evaluating the Skin Interactions and Permeation of Alginate/Fucoidan Hydrogels Per Se and Associated with Different Essential Oils. Pharmaceutics 2023; 15:pharmaceutics15010190. [PMID: 36678818 PMCID: PMC9861241 DOI: 10.3390/pharmaceutics15010190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Marine polysaccharides are recognized for their biological properties and their application in the drug delivery field, favoring hydrogel-forming capacities for cutaneous application towards several dermatological conditions. Essential oils have been widely used in skin, not only for their remarkable biological properties, but also for their capacity to enhance permeation through the skin layers and to confer a pleasant scent to the formulation. In this study, menthol, L-linalool, bergamot oil, and β-pinene were incorporated in alginate/fucoidan hydrogels to evaluate their skin permeation enhancement profile and assess their influence on the skin organization. The combinations of different essential oils with the marine-based fucoidan/alginate hydrogel matrix were characterized, resulting in formulations with pseudoplastic rheological properties favorable for a uniform application in the skin. The ex vivo Franz diffusion permeation assays revealed that calcein loaded in bergamot-alginate/fucoidan hydrogel permeated more than 15 mg out of the initial 75 mg than when in linalool-alginate/fucoidan, alginate/fucoidan or hydrogel without any incorporated oil. Skin calcein retention for menthol- and pinene-alginate/fucoidan hydrogels was 15% higher than in the other conditions. Infrared micro-spectroscopic analysis through synchrotron-based Fourier Transform Infrared Microspectroscopy evidenced a symmetric shift in CH3 groups towards higher wavenumber, indicating lipids' fluidization and less lateral packing, characterized by a band at 1468 cm-1, with the bergamot-alginate/fucoidan, which contributes to enhancing skin permeation. The study highlights the effect of the composition in the design of formulations for topical or transdermal delivery systems.
Collapse
|
28
|
Ashames A, Pervaiz F, Al-Tabakha M, Khalid K, Hassan N, Shoukat H, Buabeid M, Murtaza G. Synthesis of cross-linked carboxymethyl cellulose and poly (2-acrylamido-2-methylpropane sulfonic acid) hydrogel for sustained drug release optimized by Box-Behnken Design. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Glinka M, Filatova K, Kucińska-Lipka J, Šopík T, Domincová Bergerová E, Mikulcová V, Wasik A, Sedlařík V. Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin. Molecules 2022; 27:molecules27207045. [PMID: 36296639 PMCID: PMC9609933 DOI: 10.3390/molecules27207045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Three porous matrices based on poly(lactic acid) are proposed herein for the controlled release of amikacin. The materials were fabricated by the method of spraying a surface liquid. Description is given as to the possibility of employing a modifier, such as a silica nanocarrier, for prolonging the release of amikacin, in addition to using chitosan to improve the properties of the materials, e.g., stability and sorption capacity. Depending on their actual composition, the materials exhibited varied efficacy for drug loading, as follows: 25.4 ± 2.2 μg/mg (matrices with 0.05% w/v of chitosan), 93 ± 13 μg/mg (with 0.08% w/v SiO2 amikacin modified nanoparticles), and 96 ± 34 μg/mg (matrices without functional additives). An in vitro study confirmed extended release of the drug (amikacin, over 60 days), carried out in accordance with the mathematical Kosmyer–Pepas model for all the materials tested. The matrices were also evaluated for their effectiveness in inhibiting the growth of bacteria such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Concurrent research was conducted on the transdermal absorption, morphology, elemental composition, and thermogravimetric properties of the released drug.
Collapse
Affiliation(s)
- Marta Glinka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Katerina Filatova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Tomáš Šopík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Eva Domincová Bergerová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Veronika Mikulcová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Andrzej Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
- Correspondence:
| | - Vladimir Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| |
Collapse
|
30
|
Jin SG. Production and application of biomaterials based on polyvinyl alcohol (PVA) as wound dressing: A mini review. Chem Asian J 2022; 17:e202200595. [PMID: 36066570 DOI: 10.1002/asia.202200595] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/31/2022] [Indexed: 11/11/2022]
Abstract
The development of ideal wound dressing with excellent properties, such as exudate absorption capacity, drug release control ability, and increased wound healing, is currently a major requirement for wound healing. Polyvinyl alcohol (PVA) is a biodegradable semi-crystalline synthetic polymer that has been used in the field of biotechnology such as tissue regeneration, wound dressing, and drug delivery systems. In recent years, PVA-based wound dressing materials have received considerable attention due to their excellent properties such as biodegradability, biocompatibility, non-toxicity and low cost. PVA can be used as a wound dressing material to create the necessary moist wound environment, improve the physical properties of the dressing, and increase the wound healing rates. In addition, PVA can also be mixed with other organic and inorganic materials and can be used for drug delivery and wound healing. This review article addresses the role of biomaterials based on PVA mixed with other ingredients for wound dressing. It also focuses on its recent use in wound dressings as carriers of active substances.
Collapse
Affiliation(s)
- Sung Giu Jin
- Dankook University - Cheonan Campus, Department of Pharmaceutical Engineering, 119 Dandae-ro, Dongnam-gu, 31116, Cheonan, KOREA, REPUBLIC OF
| |
Collapse
|
31
|
Pawłowicz K, Paczkowska-Walendowska M, Osmałek T, Cielecka-Piontek J. Towards the Preparation of a Hydrogel from Lyophilisates of the Aloe arborescens Aqueous Extract. Pharmaceutics 2022; 14:pharmaceutics14071489. [PMID: 35890383 PMCID: PMC9319300 DOI: 10.3390/pharmaceutics14071489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Aloe gel is a medicinal raw material with proven pharmacological activity. The health-promoting properties of other species of Aloe upon topical application prompted us to develop a formulation for the topical application of A. arborescence species. As a result of the gel preparation from the aqueous lyophilized extracts of three-year-old leaves of A. arborescence, no changes in the composition of the content of aloins A and aloenin A were found. The potential to neutralize free radicals was tested using DPPH and CUPRAC techniques, which confirmed the anti-radical activity of the lyophilisate. Screening of the inhibition of enzymes, the hyperactivity of which is associated with adverse changes in the skin of a pro-inflammatory nature, was performed. Importantly, using the PAMPA SKIN model, the possibility of the penetration of selected extract compounds (aloin A and aloenin A) through the skin was proven. Then, two formulations were prepared based on sodium alginate and hydroxypropyl methylcellulose (HPMC) and the hydrogels were characterized (rheological analysis, drug release profiles, permeability, and stability studies). HPMC-based hydrogel was the one with a targeted release of active substances and greater stability. Aloe arborescens hydrogel matrices seem to be a promising treatment strategy for inflammatory surface damage based on “green technology” at the stage of extract preparation and development of the drug form for topical application.
Collapse
Affiliation(s)
- Kamil Pawłowicz
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.P.); (M.P.-W.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Warta, Poland
| | | | - Tomasz Osmałek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.P.); (M.P.-W.)
- Correspondence:
| |
Collapse
|
32
|
He S, Liu J, He S, Liu A, Shao W. Double crosslinked polyvinyl alcohol/gelatin/silver sulfadiazine sponges with excellent antibacterial performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Wang Y, Fan J, Zhao H, Song X, Ji Z, Xie C, Chen F, Meng Y. Biomimetic Robust Starch Composite Films with Super-Hydrophobicity and Vivid Structural Colors. Int J Mol Sci 2022; 23:ijms23105607. [PMID: 35628421 PMCID: PMC9145899 DOI: 10.3390/ijms23105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
The starch composite films (SCFs) will be one of the best alternative packaging materials to petroleum based plastic films, which mitigates white pollution and energy consumption. However, weak mechanical stability, water resistance, and dyeability has hindered the application of SCFs. Herein, a bioinspired robust SCFs with super-hydrophobicity and excellent structural colors were prepared by fiber-reinforcement and assembling SiO2/Polydimethylsiloxane (PDMS) amorphous arrays on the surface of SCFs. The properties of the designed SCFs were investigated by various methods including scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), a tensile test, contact angle (CA) test, and an optical test. The results showed that the obtained SCFs possessed a higher tensile strength (55.17 MPa) attributed to the formed abundant hydrogen bonds between the molecular chains of the starch, cellulose fiber, and polyvinyl alcohol. Benefiting from the nanostructure with rough surface which were modified by materials with low surface free energy, the contact angle and sliding angle of the film reached up to 154° and 2°, respectively. The colors which were produced by the constructive interference of the coherent scattered light could cover all of the visible regions by tuning the diameters of the SiO2 nanoparticles. The strategy in the present study not only reinforces the mechanical strength and water resistance of SCFs but also provides an environmentally friendly way to color the them, which shows unprecedented application potential in packaging materials of the starch composite films.
Collapse
Affiliation(s)
- Yateng Wang
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianru Fan
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Hao Zhao
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Xiaoming Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Zhe Ji
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
| | - Congxia Xie
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
| | - Fushan Chen
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yao Meng
- College of Chemistry and Molecular Engineering, Eco-Chemical Engineering Cooperative Innovation Center of Shandong, Qingdao University of Science & Technology, Qingdao 266042, China; (Y.W.); (J.F.); (H.Z.); (C.X.); (F.C.)
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (X.S.); (Z.J.)
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Correspondence:
| |
Collapse
|
34
|
Cheng Y, Lin J, Zheng Y, Chen X, Lu C. High-Performance Gel-Spun Poly(vinyl alcohol) Fibers Reinforced by Organosolv Lignin- graft-poly(acrylic acid). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yu Cheng
- Shanghai Frontiers Science Center of Modern Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiaxian Lin
- Shanghai Frontiers Science Center of Modern Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuanyuan Zheng
- Shanghai Frontiers Science Center of Modern Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Xinyi Chen
- Shanghai Frontiers Science Center of Modern Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Chunhong Lu
- Shanghai Frontiers Science Center of Modern Textiles, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
35
|
Alruwaili NK, Ahmad N, Alzarea AI, Alomar FA, Alquraini A, Akhtar S, Shahari MSB, Zafar A, Elmowafy M, Elkomy MH, Dolzhenko AV, Iqbal MS. Arabinoxylan-Carboxymethylcellulose Composite Films for Antibiotic Delivery to Infected Wounds. Polymers (Basel) 2022; 14:polym14091769. [PMID: 35566937 PMCID: PMC9103158 DOI: 10.3390/polym14091769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Modern dressings should provide for local delivery of antibiotics and protect the wound from bacterial infection, dehydration and environmental factors to achieve optimal healing. The local delivery of antibiotics can reduce adverse effects and resistance challenges. In this study, we fabricated film dressings composed of arabinoxylan (AX) from Plantago ovata seed husks and carboxymethylcellulose (CMC) by a solvent cast method for the delivery of the antibiotic amikacin (AMK). To determine the suitability of the prepared AX-CMC composite films as wound dressings and drug delivery materials, their physical, chemical, mechanical, morphological, thermal, pharmaceutical, antimicrobial, cytocompatible, and drug delivery properties were investigated. The results demonstrated that the dressings were suitable for delivering the drug at the wound site in a sustained manner and keeping the environment moist for rapid healing. The AMK-loaded AX-CMC films exhibited controlled release of AMK, excellent antibacterial activity, and cytocompatibility. Thus, the AX-CMC composite films appear to be promising bioactive dressing materials for the prevention of wound infections.
Collapse
Affiliation(s)
- Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (N.K.A.); (A.Z.); (M.E.); (M.H.E.)
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (N.K.A.); (A.Z.); (M.E.); (M.H.E.)
- Correspondence:
| | - Abdulaziz I. Alzarea
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Fadhel A. Alomar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia;
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Muhammad Syafiq Bin Shahari
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (M.S.B.S.); (A.V.D.)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (N.K.A.); (A.Z.); (M.E.); (M.H.E.)
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (N.K.A.); (A.Z.); (M.E.); (M.H.E.)
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (N.K.A.); (A.Z.); (M.E.); (M.H.E.)
| | - Anton V. Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (M.S.B.S.); (A.V.D.)
| | - Mohammad Saeed Iqbal
- Department of Chemistry, Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan;
| |
Collapse
|
36
|
Bialik-Wąs K, Miastkowska M, Sapuła P, Pluta K, Malina D, Chwastowski J, Barczewski M. Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes. Pharmaceutics 2022; 14:773. [PMID: 35456607 PMCID: PMC9031596 DOI: 10.3390/pharmaceutics14040773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, the preparation method of bio-hybrid hydrogels incorporated into a system of salicylic acid-pH/thermosensitive nanocarriers to speed up the wound-healing process was developed. This combination creates a dual drug delivery system, which releases the model hydrophobic active substance-salicylic acid-in a gradual and controlled manner for an extended time. Our research team has determined the various properties of bio-hybrid hydrogels based on their physicochemical (swelling degree, and degradation), structural (FT-IR), morphological (SEM), and mechanical (elongation tests) traits. Moreover, empty pH/thermosensitive nanocarriers and their salicylic acid-containing systems were characterized using the following methods: DLS, TG/DTG, and DSC. Additionally, salicylic acid release profiles directly from thermosensitive nanocarriers were compared to the bio-hybrid matrix. These studies were conducted in PBS (pH = 7.4) for 7 days using the USP4 method. To evaluate the antibacterial properties of the obtained materials, the inhibition of growth of Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger-as the main microorganisms responsible for human infections-were tested. The obtained results indicated that the pH/thermosensitive nanocarrier-salicylic acid system and bio-hybrid hydrogels are characterized by antibacterial activity against both S. aureus and E. coli.
Collapse
Affiliation(s)
- Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (M.M.); (P.S.)
| | - Małgorzata Miastkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (M.M.); (P.S.)
| | - Paulina Sapuła
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (M.M.); (P.S.)
| | - Klaudia Pluta
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (K.P.); (D.M.); (J.C.)
| | - Dagmara Malina
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (K.P.); (D.M.); (J.C.)
| | - Jarosław Chwastowski
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (K.P.); (D.M.); (J.C.)
| | - Mateusz Barczewski
- Institute of Materials Technology, Faculty of Mechanical Engineering and Management, Poznan University of Technology, 24 Jana Pawła II St., 60965 Poznan, Poland;
| |
Collapse
|
37
|
Development and Characterization of Gentamicin-Loaded Arabinoxylan-Sodium Alginate Films as Antibacterial Wound Dressing. Int J Mol Sci 2022; 23:ijms23052899. [PMID: 35270041 PMCID: PMC8911204 DOI: 10.3390/ijms23052899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Biopolymer-based antibacterial films are attractive materials for wound dressing application because they possess chemical, mechanical, exudate absorption, drug delivery, antibacterial, and biocompatible properties required to support wound healing. Herein, we fabricated and characterized films composed of arabinoxylan (AX) and sodium alginate (SA) loaded with gentamicin sulfate (GS) for application as a wound dressing. The FTIR, XRD, and thermal analyses show that AX, SA, and GS interacted through hydrogen bonding and were thermally stable. The AXSA film displays desirable wound dressing characteristics: transparency, uniform thickness, smooth surface morphology, tensile strength similar to human skin, mild water/exudate uptake capacity, water transmission rate suitable for wound dressing, and excellent cytocompatibility. In Franz diffusion release studies, >80% GS was released from AXSA films in two phases in 24 h following the Fickian diffusion mechanism. In disk diffusion assay, the AXSA films demonstrated excellent antibacterial effect against E.coli, S. aureus, and P. aeruginosa. Overall, the findings suggest that GS-loaded AXSA films hold potential for further development as antibacterial wound dressing material.
Collapse
|
38
|
Tian B, Cheng J, Zhang T, Liu Y, Chen D. Multifunctional chitosan-based film loaded with hops β-acids: Preparation, characterization, controlled release and antibacterial mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Bialik-Wąs K, Raftopoulos KN, Pielichowski K. Alginate Hydrogels with Aloe vera: The Effects of Reaction Temperature on Morphology and Thermal Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:748. [PMID: 35160695 PMCID: PMC8836575 DOI: 10.3390/ma15030748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023]
Abstract
In this study, we investigated the impact of reaction temperature on the physicochemical, structural, morphological, and thermal properties of sodium alginate/poly (vinyl alcohol)-based hydrogels, both in the pure form and with the addition of 20% (v/v) Aloe vera solution. The materials were prepared by chemical crosslinking at temperatures in the range of 65-75 °C. Poly (ethylene glycol) diacrylate was used as a crosslinking agent. The extent to which the crosslinking reaction proceeded was studied as a function of the reaction temperature, along with the thermal properties and morphology of the final materials. A measurement of gel fraction, in agreement with differential scanning calorimetry and Fourier transform infrared spectroscopy, showed that a higher temperature of reaction promoted the crosslinking reaction. On the basis of the aforementioned techniques, as well as by energy dispersive X-ray analysis under an electron microscope, it was also shown that the bioadditive Aloe vera promoted the crosslinking reaction.
Collapse
Affiliation(s)
- Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Str., 31155 Cracow, Poland
| | - Konstantinos N. Raftopoulos
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Str., 31155 Cracow, Poland; (K.N.R.); (K.P.)
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Str., 31155 Cracow, Poland; (K.N.R.); (K.P.)
| |
Collapse
|
40
|
Characterization and Topical Study of Aloe Vera Hydrogel on Wound-Healing Process. Polymers (Basel) 2021; 13:polym13223958. [PMID: 34833257 PMCID: PMC8623201 DOI: 10.3390/polym13223958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Wound healing is fundamental to restore the tissue integrity. A topical study of the influence of Aloe vera hydrogel, formulated with 1,2-propanediol (propanediol) and triethanolamine (TEA), on the skin wound-healing process was investigated in female Wistar rats. FTIR spectroscopy confirms the presence of carboxylic acid and methyl ester carboxylate groups related with important compounds that confer the hydrogel a good interaction with proteins and growth factors. SEM images show a microstructure and micro-roughness that promote a good adhesion to the wound. Therefore, the swelling kinetics and the contact angle response contribute to the understanding of the in vivo results of the animal test. The results indicated that the Aloe vera hydrogel, prepared with propanediol and TEA, together with its superficial characteristics, improve its rapid penetration without drying out the treated tissue. This produced a positive influence on inflammation, angiogenesis, and wound contraction, reducing 29% the total healing time, reaching the total closure of the wound in 15 days.
Collapse
|
41
|
The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl alcohol)-Based Hydrogels for Wound Dressing Application. Int J Mol Sci 2021; 22:ijms222112022. [PMID: 34769449 PMCID: PMC8584732 DOI: 10.3390/ijms222112022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
The impact of different amounts of glycerin, which was used in the system of sodium alginate/poly(vinyl alcohol) (SA/PVA) hydrogel materials on the properties, such as gel fraction, swelling ability, degradation in simulated body fluids, morphological analysis, and elongation tests were presented. The study shows a significant decrease in the gel fraction from 80.5 ± 2.1% to 45.0 ± 1.2% with the increase of glycerin content. The T5 values of the tested hydrogels were varied and range from 88.7 °C to 161.5 °C. The presence of glycerin in the matrices significantly decreased the thermal resistance, which was especially visible by T10 changes (273.9 to 163.5 °C). The degradation tests indicate that most of the tested materials do not degrade throughout the incubation period and maintain a constant ion level after 7-day incubation. The swelling abilities in distilled water and phosphate buffer solution are approximately 200-300%. However, we noticed that these values decrease with the increase in glycerin content. All tested matrices are characterized by the maximum elongation rate at break in a range of 37.6-69.5%. The FT-IR analysis exhibits glycerin changes in hydrogel structures, which is associated with the cross-linking reaction. Additionally, cytotoxicity results indicate good adhesion properties and no toxicity towards normal human dermal fibroblasts.
Collapse
|
42
|
Ma T, Zhai X, Huang Y, Zhang M, Li P, Du Y. Cerium ions crosslinked sodium alginate-carboxymethyl chitosan spheres with antibacterial activity for wound healing. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
İnan B, Özçimen D. Preparation and characterization of microalgal oil loaded alginate/poly (vinyl alcohol) electrosprayed nanoparticles. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Lima TDPDL, Passos MF. Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1910-1925. [PMID: 34156314 DOI: 10.1080/09205063.2021.1946461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skin wounds are damage to the epithelial layer and the integrity of living tissue. The healing mechanism is dynamic and complex, and often treatments with wound dressings help in tissue regeneration, reducing the risk of infections. Polymeric hydrogels become good candidates for wet curing process. These materials prevent dehydration of the tissue and avoid discomfort to the patient when changing the dressing. In this short review, we demonstrate the importance of the healing process, the types of skin wounds, and the hydrogels that are potentially attractive as wound dressings.
Collapse
|
45
|
Alven S, Khwaza V, Oyedeji OO, Aderibigbe BA. Polymer-Based Scaffolds Loaded with Aloe vera Extract for the Treatment of Wounds. Pharmaceutics 2021; 13:961. [PMID: 34206744 PMCID: PMC8309095 DOI: 10.3390/pharmaceutics13070961] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
The treatment of wounds is one challenging biomedical field due to delayed wound healing common in chronic wounds. Several factors delay wound healing, including microbial infections, malnutrition, underlying physiological conditions, etc. Most of the currently used wound dressing materials suffer from poor antimicrobial properties, poor biodegradability and biocompatibility, and weak mechanical performance. Plant extracts, such as Aloe vera, have attracted significant attention in wound management because of their interesting biological properties. Aloe vera is composed of essential constituents beneficial for the wound healing process, such as amino acids, vitamins C and E, and zinc. Aloe vera influences numerous factors that are involved in wound healing and stimulates accelerated healing. This review reports the therapeutic outcomes of aloe vera extract-loaded polymer-based scaffolds in wound management.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (S.A.); (V.K.); (O.O.O.)
| |
Collapse
|
46
|
Zahid M, Lodhi M, Rehan ZA, Tayyab H, Javed T, Shabbir R, Mukhtar A, EL Sabagh A, Adamski R, Sakran MI, Siuta D. Sustainable Development of Chitosan/ Calotropis procera-Based Hydrogels to Stimulate Formation of Granulation Tissue and Angiogenesis in Wound Healing Applications. Molecules 2021; 26:3284. [PMID: 34072397 PMCID: PMC8198538 DOI: 10.3390/molecules26113284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/31/2023] Open
Abstract
The formation of new scaffolds to enhance healing magnitude is necessarily required in biomedical applications. Granulation tissue formation is a crucial stage of wound healing in which granulation tissue grows on the surface of a wound by the formation of connective tissue and blood vessels. In the present study, porous hydrogels were synthesized using chitosan incorporating latex of the Calotropis procera plant by using a freeze-thaw cycle to stimulate the formation of granulation tissue and angiogenesis in wound healing applications. Structural analysis through Fourier transform infrared (FTIR) spectroscopy confirmed the interaction between chitosan and Calotropis procera. Latex extract containing hydrogel showed slightly higher absorption than the control during water absorption analysis. Thermogravimetric analysis showed high thermal stability of the 60:40 combination of chitosan (CS) and Calotropis procera as compared to all other treatments and controls. A fabricated scaffold application on a chick chorioallantoic membrane (CAM) showed that all hydrogels containing latex extract resulted in a significant formation of blood vessels and regeneration of cells. Overall, the formation of connective tissues and blood capillaries and healing magnitude decreased in ascending order of concentration of extract.
Collapse
Affiliation(s)
- Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (M.Z.); (M.L.); (H.T.)
| | - Maria Lodhi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (M.Z.); (M.L.); (H.T.)
| | - Zulfiqar Ahmad Rehan
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Hamna Tayyab
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan; (M.Z.); (M.L.); (H.T.)
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.)
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.)
| | - Ahmed Mukhtar
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Ayman EL Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33156, Egypt;
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Mohamed I. Sakran
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| |
Collapse
|
47
|
Bialik-Wąs K, Królicka E, Malina D. Impact of the Type of Crosslinking Agents on the Properties of Modified Sodium Alginate/Poly(vinyl Alcohol) Hydrogels. Molecules 2021; 26:2381. [PMID: 33921906 PMCID: PMC8072894 DOI: 10.3390/molecules26082381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022] Open
Abstract
Here, we report on studies on the influence of different crosslinking methods (ionic and chemical) on the physicochemical (swelling ability and degradation in simulated body fluids), structural (FT-IR spectra analysis) and morphological (SEM analysis) properties of SA/PVA hydrogels containing active substances of natural origin. First, an aqueous extract of Echinacea purpurea was prepared using a Soxhlet apparatus. Next, a series of modified SA/PVA-based hydrogels were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and, additionally, the ionic reaction in the presence of a 5% w/v calcium chloride solution. The compositions of SA/PVA/E. purpurea-based hydrogels contained a polymer of natural origin-sodium alginate (SA, 1.5% solution)-and a synthetic polymer-poly(vinyl alcohol) (PVA, Mn = 72,000 g/mol, 10% solution)-in the ratio 2:1, and different amounts of the aqueous extract of E. purpurea-5, 10, 15 or 20% (v/v). Additionally, the release behavior of echinacoside from the polymeric matrix was evaluated in phosphate-buffered saline (PBS) at 37 °C. The results indicate that the type of the crosslinking method has a direct impact on the release profile. Consequently, it is possible to design a system that delivers an active substance in a way that depends on the application.
Collapse
Affiliation(s)
- Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Ewelina Królicka
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Dagmara Malina
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| |
Collapse
|
48
|
Górska A, Krupa A, Majda D, Kulinowski P, Kurek M, Węglarz WP, Jachowicz R. Poly(Vinyl Alcohol) Cryogel Membranes Loaded with Resveratrol as Potential Active Wound Dressings. AAPS PharmSciTech 2021; 22:109. [PMID: 33718994 PMCID: PMC7956935 DOI: 10.1208/s12249-021-01976-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrogel wound dressings are highly effective in the therapy of wounds. Yet, most of them do not contain any active ingredient that could accelerate healing. The aim of this study was to prepare hydrophilic active dressings loaded with an anti-inflammatory compound - trans-resveratrol (RSV) of hydrophobic properties. A special attention was paid to select such a technological strategy that could both reduce the risk of irritation at the application site and ensure the homogeneity of the final hydrogel. RSV dissolved in Labrasol was combined with an aqueous sol of poly(vinyl) alcohol (PVA), containing propylene glycol (PG) as a plasticizer. This sol was transformed into a gel under six consecutive cycles of freezing (-80 °C) and thawing (RT). White, uniform and elastic membranes were successfully produced. Their critical features, namely microstructure, mechanical properties, water uptake and RSV release were studied using SEM, DSC, MRI, texture analyser and Franz-diffusion cells. The cryogels made of 8 % of PVA showed optimal tensile strength (0.22 MPa) and elasticity (0.082 MPa). The application of MRI enabled to elucidate mass transport related phenomena in this complex system at the molecular (detection of PG, confinement effects related to pore size) as well as at the macro level (swelling). The controlled release of RSV from membranes was observed for 48 h with mean dissolution time of 18 h and dissolution efficiency of 35 %. All in all, these cryogels could be considered as a promising new active wound dressings.
Collapse
Affiliation(s)
- Anna Górska
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland.
| | - Dorota Majda
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Piotr Kulinowski
- Institute of Technology, Pedagogical University of Krakow, Cracow, Poland
| | - Mateusz Kurek
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Władysław P Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688, Cracow, Poland
| |
Collapse
|