1
|
Arora D, Vanshita, Bhati H, Bansal K. Recent advancements in genistein nanocarrier systems for effective cancer management. Med Oncol 2025; 42:101. [PMID: 40072692 DOI: 10.1007/s12032-025-02649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Cancer continues to be a significant global health concern, consistently ranking as one of the leading causes of mortality across diverse populations and socio-economic contexts. Genistein, a soy-derived isoflavonoid, has gained significant attention for its diverse health benefits, particularly its potent anticancer activity. Emerging pre-clinical and clinical evidences highlights its ability to modulate key cellular processes, including apoptosis, autophagy, angiogenesis, metastasis, immune responses and cell cycle regulation. Despite its therapeutic potential, the clinical translation of genistein is limited by its poor pharmacokinetics, low aqueous solubility, and rapid metabolic degradation, resulting in suboptimal bioavailability. To address these limitations, various nanotechnology-based formulations have been developed, significantly improving the bioavailability, stability, and therapeutic efficacy of genistein. Functionalized nanocarriers further enhance its effectiveness by enabling targeted drug delivery, reducing off-target toxicities, and achieving sustained release at the tumor site. This review provides a comprehensive overview of advanced nanoformulations for genistein delivery emphasizing their efficacy against prevalent cancers such as breast, lung, and colon cancer. By exploring the interplay between genistein's therapeutic potential and innovative drug delivery systems, this review underscores the transformative impact of nanotechnology in overcoming the limitations of conventional cancer therapies and improving patience compliance.
Collapse
Affiliation(s)
- Diya Arora
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Vanshita
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India.
| |
Collapse
|
2
|
Silva-Pinto PA, de Pontes JTC, Aguilar-Morón B, Canales CSC, Pavan FR, Roque-Borda CA. Phytochemical insights into flavonoids in cancer: Mechanisms, therapeutic potential, and the case of quercetin. Heliyon 2025; 11:e42682. [PMID: 40084006 PMCID: PMC11904581 DOI: 10.1016/j.heliyon.2025.e42682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Quercetin, a flavonoid known for its potent antioxidant and anti-inflammatory properties, has gained attention in cancer therapy due to its ability to modulate key molecular pathways involved in tumor progression and immune evasion. This review provides a comprehensive analysis of quercetin's effects on pathways such as PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and JAK/STAT, which are central to cancer cell survival, proliferation, and apoptosis. Through inhibition of PI3K/Akt/mTOR and MAPK/ERK signaling, quercetin promotes apoptosis and reduces proliferation specifically in cancer cells while sparing healthy cells. Additionally, quercetin downregulates NF-κB activity and modulates JAK/STAT signaling, enhancing immune recognition of cancer cells and decreasing inflammation in the tumor microenvironment. Emerging nanoformulation strategies are also discussed, highlighting how nanotechnology can improve quercetin's bioavailability and targeting capabilities. Unlike other reviews, this work uniquely integrates molecular insights with cutting-edge nanoformulations, showcasing quercetin's dual potential as a therapeutic agent and an immune modulator in the evolving landscape of cancer treatment. This review underscores quercetin's multifaceted role in cancer treatment and suggests future directions to optimize its clinical efficacy, particularly in combination with conventional therapies.
Collapse
Affiliation(s)
- Piero Alex Silva-Pinto
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa, 04000, Republic of Peru
| | - Janaína Teixeira Costa de Pontes
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Brigitte Aguilar-Morón
- Facultad de Ingeniería de Procesos – Universidad Nacional de San Agustín, Arequipa, Arequipa, Republic of Peru
| | | | - Fernando Rogério Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Cesar Augusto Roque-Borda
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa, 04000, Republic of Peru
| |
Collapse
|
3
|
Morsy HM, Zaky MY, Yassin NYS, Khalifa AYZ. Nanoparticle-based flavonoid therapeutics: Pioneering biomedical applications in antioxidants, cancer treatment, cardiovascular health, neuroprotection, and cosmeceuticals. Int J Pharm 2025; 670:125135. [PMID: 39732216 DOI: 10.1016/j.ijpharm.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Flavonoids, a type of natural polyphenolic molecule, have garnered significant research interest due to their ubiquitous nature and diverse biological activities, including antioxidant, anti-inflammatory, and anticancer effects, making them appealing to various scientific disciplines. In this regard, the use of a flavonoid nanoparticle delivery system is to overcome low bioavailability, bioactivity, poor aqueous solubility, systemic absorption, and intensive metabolism. Therefore, this review summarizes the classification of nanoparticles (liposomes, polymeric, and solid lipid nanoparticles) and the advantages of using nanoparticle-flavonoid formulations to boost flavonoid bioavailability. Moreover, this review illustrated the pioneering biomedical applications of nanoparticle-based flavonoid therapeutics, as well as safety and toxicity considerations of using a flavonoid nanoparticle delivery system.
Collapse
Affiliation(s)
- Hadeer M Morsy
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt.
| | - Nour Y S Yassin
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt
| | - Ashraf Y Z Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.
| |
Collapse
|
4
|
Motawea A, Maria SN, Maria DN, Jablonski MM, Ibrahim MM. Genistein transfersome-embedded topical delivery system for skin melanoma treatment: in vitro and ex vivo evaluations. Drug Deliv 2024; 31:2372277. [PMID: 38952058 PMCID: PMC11221477 DOI: 10.1080/10717544.2024.2372277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Skin melanoma is considered the most dangerous form of skin cancer due to its association with high risk of metastasis, high mortality rate and high resistance to different treatment options. Genistein is a natural isoflavonoid with known chemotherapeutic activity. Unfortunately, it has low bioavailability due to its poor aqueous solubility and excessive metabolism. In the current study, genistein was incorporated into transferosomal hydrogel to improve its bioavailability. The prepared transferosomal formulations were characterized regarding: particle size; polydispersity index; zeta potential; encapsulation efficiency; TEM; FTIR; DSC; XRD; in vitro drug release; viscosity; pH; ex vivo anti-tumor activity on 3D skin melanoma spheroids and 1-year stability study at different storage temperatures. The optimized formulation has high encapsulation efficiency with an excellent particle size that will facilitate its penetration through the skin. The transfersomes have a spherical shape with sustained drug release profile. The anti-tumor activity evaluation of genistein transfersome revealed that genistein is a potent chemotherapeutic agent with enhanced penetration ability through the melanoma spheroids when incorporated into transfersomes. Stability study results demonstrate the high physical and chemical stability of our formulations. All these outcomes provide evidence that our genistein transferosomal hydrogel is a promising treatment option for skin melanoma.
Collapse
Affiliation(s)
- Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sara N. Maria
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Doaa N. Maria
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Monica M. Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mohamed Moustafa Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
5
|
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, Dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res 2024; 14:2845-2916. [PMID: 39003425 PMCID: PMC11385056 DOI: 10.1007/s13346-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Several efforts have been extensively accomplished for the amelioration of the cancer treatments using different types of new drugs and less invasives therapies in comparison with the traditional therapeutic modalities, which are widely associated with numerous drawbacks, such as drug resistance, non-selectivity and high costs, restraining their clinical response. The application of natural compounds for the prevention and treatment of different cancer cells has attracted significant attention from the pharmaceuticals and scientific communities over the past decades. Although the use of nanotechnology in cancer therapy is still in the preliminary stages, the application of nanotherapeutics has demonstrated to decrease the various limitations related to the use of natural compounds, such as physical/chemical instability, poor aqueous solubility, and low bioavailability. Despite the nanotechnology has emerged as a promise to improve the bioavailability of the natural compounds, there are still limited clinical trials performed for their application with various challenges required for the pre-clinical and clinical trials, such as production at an industrial level, assurance of nanotherapeutics long-term stability, physiological barriers and safety and regulatory issues. This review highlights the most recent advances in the nanocarriers for natural compounds secreted from plants, bacteria, fungi, and marine organisms, as well as their role on cell signaling pathways for anticancer treatments. Additionally, the clinical status and the main challenges regarding the natural compounds loaded in nanocarriers for clinical applications were also discussed.
Collapse
Affiliation(s)
- Tatiana Andreani
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Centre & Inov4Agro, Department of Biology, Faculty of Sciences of University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Claudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Thacilla Menezes
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mayara R Dos Santos
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
6
|
Jakhmola A, Hornsby TK, Kashkooli FM, Kolios MC, Rod K, Tavakkoli JJ. Green synthesis of anti-cancer drug-loaded gold nanoparticles for low-intensity pulsed ultrasound targeted drug release. Drug Deliv Transl Res 2024; 14:2417-2432. [PMID: 38240946 DOI: 10.1007/s13346-024-01516-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 11/01/2024]
Abstract
In the present work, we have designed a one-pot green protocol in which anti-cancer drugs (curcumin and doxorubicin) can be directly loaded on the surface of gold nanoparticles during their formation. We have further demonstrated that low-intensity pulsed ultrasound (LIPUS) can be used to effectively induce the release of anti-cancer drugs from the surface of gold nanoparticles in an ex vivo tissue model. With this protocol, gold nanoparticles can be easily loaded with different types of anticancer drugs, irrespective of their affinity towards water, and even hydrophobic molecules, like curcumin, can be attached onto the gold nanoparticles in an aqueous medium. The method is very simple and straightforward and does not require stirring or mechanical shaking. The drug molecules interact with the gold seeds formed during the reduction and growth process and modulate the final morphology into a spherical shape. A black-colored colloidal solution of gold nanowire networks is formed in the absence of these anti-cancer drug molecules in the reaction mixture. We used hyperspectral-enhanced dark field microscopy to examine the uptake of gold nanoparticles by breast cancer cells. Upon exposure to LIPUS, the release of the anti-cancer drug from the particle surface can be quantified by fluorescence measurements. This release of drug molecules along with trisodium citrate from the surface of gold nanoparticles by ultrasound resulted in their destabilization and subsequent aggregation, which could be visually observed through the change in the color of colloidal sol. Cancer cell viability was studied by MTT assay to examine the efficacy of this nanoparticle-based drug delivery system. Ultraviolet-visible spectroscopy, dynamic light scattering (DLS), and transmission electron microscope (TEM) analysis were used to characterize the nanoparticles and quantify anti-cancer drug release.
Collapse
Affiliation(s)
- Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | | | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Kevin Rod
- Toronto Poly Clinic Inc., Toronto, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Canada.
- iBEST, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
7
|
Fattahi MR, Dehghani M, Paknahad S, Rahiminia S, Zareie D, Hoseini B, Oroomi TR, Motedayyen H, Arefnezhad R. Clinical insights into nanomedicine and biosafety: advanced therapeutic approaches for common urological cancers. Front Oncol 2024; 14:1438297. [PMID: 39193389 PMCID: PMC11347329 DOI: 10.3389/fonc.2024.1438297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Urological cancers including those of the prostate, bladder, and kidney, are prevalent and often lethal malignancies besides other less common ones like testicular and penile cancers. Current treatments have major limitations like side effects, recurrence, resistance, high costs, and poor quality of life. Nanotechnology offers promising solutions through enhanced diagnostic accuracy, targeted drug delivery, controlled release, and multimodal imaging. This review reflects clinical challenges and nanomedical advances across major urological cancers. In prostate cancer, nanoparticles improve delineation and radiosensitization in radiation therapy, enable fluorescent guidance in surgery, and enhance chemotherapy penetration in metastatic disease. Nanoparticles also overcome bladder permeability barriers to increase the residence time of intravesical therapy and chemotherapy agents. In renal cancer, nanocarriers potentiate tyrosine kinase inhibitors and immunotherapy while gene vectors and zinc oxide nanoparticles demonstrate antiproliferative effects. Across modalities, urological applications of nanomedicine include polymeric, liposomal, and metal nanoparticles for targeted therapy, prodrug delivery, photodynamic therapy, and thermal ablation. Biosafety assessments reveal favorable profiles but clinical translation remains limited, necessitating further trials. In conclusion, nanotechnology holds significant potential for earlier detection, precise intervention, and tailored treatment of urological malignancies, warranting expanded research to transform patient outcomes.
Collapse
Affiliation(s)
- Mohammad Reza Fattahi
- Student Research Committee, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Shafa Rahiminia
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Deniz Zareie
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behzad Hoseini
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
P BS, Periasamy T, Alarfaj AA, Arulselvan P, Ravindran R, Suriyaprakash J, Thangavelu I. Pemetrexed loaded gold nanoparticles as cytotoxic and apoptosis inducers in lung cancer cells through ROS generation and mitochondrial dysfunction pathway. Biotechnol Appl Biochem 2024; 71:779-790. [PMID: 38475937 DOI: 10.1002/bab.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Abstract
Supramolecular nanoparticles containing peptides and drugs have recently gained recognition as an effective tumor treatment drug delivery system. A multitarget drug termed pemetrexed is effective against various cancers, including nonsmall cell lung cancer. The work aims to establish the capability of pemetrexed gold nanoparticles (PEM-AuNPs) to induce apoptosis and explore molecular changes. X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscope, and transmission electron microscope were used to investigate the synthesized nanoparticles. The MTT assay was utilized to investigate the anticancer properties of PEM-AuNPs at varying concentrations (50, 100, and 200 µM). PEM-AuNPs demonstrated a decrease in cell viability with 55.87%, 43.04%, and 25.59% for A549 cells and 54.31%, 37.40%, and 25.84% for H1299 cells at the respective concentrations. To assess apoptosis and perform morphological analysis, diverse biochemical staining techniques, including acridine orange-ethidium bromide and 4',6-diamidino-2-phenylindole nuclear staining assays, were employed. Additionally, 2',7'-dichlorofluorescein diacetate staining confirmed the induction of reactive oxygen species generation, while JC-1 staining validated the impact on the mitochondrial membrane at the IC50 concentration of PEM-AuNPs. Thus, the study demonstrated that the synthesized PEM-AuNPs exhibited enhanced anticancer activity against both A549 and H1299 cells.
Collapse
Affiliation(s)
- Baby Shakila P
- Department of Biochemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Tiruchengode, Namakkal, Tamilnadu, India
| | - Tamilmani Periasamy
- Department of Biochemistry, Muthayammal College of Arts and Science (Autonomous), Namakkal, India
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rajeswari Ravindran
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak, Ipoh, Malaysia
| | - Jagadeesh Suriyaprakash
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | | |
Collapse
|
9
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
10
|
Kowalska A, Adamska E, Grobelna B. Medical Applications of Silver and Gold Nanoparticles and Core-Shell Nanostructures Based on Silver or Gold Core: Recent Progress and Innovations. ChemMedChem 2024; 19:e202300672. [PMID: 38477448 DOI: 10.1002/cmdc.202300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Nanoparticles (NPs) of noble metals such as silver (Ag NPs) or gold (Au NPs) draw the attention of scientists looking for new compounds to use in medical applications. Scientists have used metal NPs because of their easy preparation, biocompatibility, ability to influence the shape and size or modification, and surface functionalization. However, to fully use their capabilities, both the benefits and their potential threats should be considered. One possibility to reduce the potential threat and thus prevent the extinction of their properties resulting from the agglomeration, they are covered with a neutral material, thus obtaining core-shell nanostructures that can be further modified and functionalized depending on the subsequent application. In this review, we focus on discussing the properties and applications of Ag NPs and Au NPs in the medical field such as the treatment of various diseases, drug carriers, diagnostics, and many others. In addition, the following review also discusses the use and potential applications of Ag@SiO2 and Au@SiO2 core-shell nanostructures, which can be used in cancer therapy and diagnosis, treatment of infections, or tissue engineering.
Collapse
Affiliation(s)
- Agata Kowalska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stosza Gdańsk, 63, 80-308, Gdansk, Poland
| | - Elżbieta Adamska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stosza Gdańsk, 63, 80-308, Gdansk, Poland
| | - Beata Grobelna
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stosza Gdańsk, 63, 80-308, Gdansk, Poland
| |
Collapse
|
11
|
Shete V, Mahajan NM, Shivhare R, Akkewar A, Gupta A, Gurav S. Genistein: A promising phytoconstituent with reference to its bioactivities. Phytother Res 2024. [PMID: 38831683 DOI: 10.1002/ptr.8256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
Genistein, a potent phytoconstituent, has garnered significant attention for its diverse bioactivities, making it a subject of extensive research and exploration. This review delves into the multifaceted properties of genistein, encompassing its antioxidant and anticancer potential. Its ability to modulate various cellular pathways and interact with diverse molecular targets has positioned it as a promising candidate in the prevention and treatment of various diseases. This review provides a comprehensive examination of Genistein, covering its chemical properties, methods of isolation, synthesis, therapeutic attributes with regard to cancer management, and the proposed mechanisms of action as put forth by researchers.
Collapse
Affiliation(s)
- Vaishnavi Shete
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Wardha, Maharashtra, India
| | - Nilesh M Mahajan
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Ruchi Shivhare
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Ashish Akkewar
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Amisha Gupta
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa, India
| |
Collapse
|
12
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
13
|
Khanam A, Singh G, Narwal S, Chopra B, Dhingra AK. A Review on Novel Applications of Nanotechnology in the Management of Prostate Cancer. Curr Drug Deliv 2024; 21:1161-1179. [PMID: 37888818 DOI: 10.2174/0115672018180695230925113521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Prostate cancer continues to be a serious danger to men's health, despite advances in the field of cancer nanotechnology. Although different types of cancer have been studied using nanomaterials and theranostic systems derived from nanomaterials, they have not yet reached their full potential for prostate cancer due to issues with in vivo biologic compatibility, immune reaction responses, accurate targetability, as well as a therapeutic outcome related to the nano-structured mechanism. METHOD The ultimate motive of this article is to understand the theranostic nanotechnology-based scheme for treating prostate cancer. The categorization of diverse nanomaterials in accordance with biofunctionalization tactics and biomolecule sources has been emphasized in this review so that they might potentially be used in clinical contexts and future advances. These opportunities can enhance the direct visualization of prostate tumors, early identification of prostate cancer-associated biomarkers at extremely low detection limits, and finally, the therapy for prostate cancer. RESULT In December 2022, a thorough examination of the scientific literature was carried out utilizing the Web of Science, PubMed, and Medline databases. The goal was to analyze novel applications of nanotechnology in the treatment of prostate cancer, together with their structural layouts and functionalities. CONCLUSION The various treatments and the reported revolutionary nanotechnology-based systems appear to be precise, safe, and generally successful; as a result, this might open up a new avenue for the detection and eradication of prostate cancer.
Collapse
Affiliation(s)
- Arshi Khanam
- Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra-136119, Haryana, India
| | - Gurvirender Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University Kurukshetra-136119, Haryana, India
| | - Smita Narwal
- Global Research Institute of Pharmacy, Radaur, Yamunanagar-135133, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Ashwani K Dhingra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
14
|
Joshi H, Gupta DS, Abjani NK, Kaur G, Mohan CD, Kaur J, Aggarwal D, Rani I, Ramniwas S, Abdulabbas HS, Gupta M, Tuli HS. Genistein: a promising modulator of apoptosis and survival signaling in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2893-2910. [PMID: 37300702 DOI: 10.1007/s00210-023-02550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Genistein, a commonly occurring isoflavone, has recently gained popularity owing to its ever-expanding spectrum of pharmacological benefits. In addition to health benefits such as improved bone health and reduced postmenopausal complications owing to its phytoestrogen properties, it has been widely evaluated for its anti-cancer potential. Several studies have established the potential for its usage in the management of breast, lung, and prostate cancers, and its usage has significantly evolved from early applications in traditional systems of medicine. This review offers an insight into its current status of usage, the chemistry, and pharmacokinetics of the molecule, an exploration of its apoptotic mechanisms in cancer management, and opportunities for synergism to improve therapeutic outcomes. In addition to this, the authors have presented an overview of recent clinical trials, to offer an understanding of contemporary studies and explore prospects for a greater number of focused trials, moving forward. Advancements in the application of nanotechnology as a strategy to improve safety and efficacy have also been highlighted, with a brief discussion of results from safety and toxicology studies.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | | | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, 134007, Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
15
|
Entezari M, Yousef Abad GG, Sedghi B, Ettehadi R, Asadi S, Beiranvand R, Haratian N, Karimian SS, Jebali A, Khorrami R, Zandieh MA, Saebfar H, Hushmandi K, Salimimoghadam S, Rashidi M, Taheriazam A, Hashemi M, Ertas YN. Gold nanostructure-mediated delivery of anticancer agents: Biomedical applications, reversing drug resistance, and stimuli-responsive nanocarriers. ENVIRONMENTAL RESEARCH 2023; 225:115673. [PMID: 36906270 DOI: 10.1016/j.envres.2023.115673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnaz Sedghi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhaneh Ettehadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shafagh Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Razieh Beiranvand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Haratian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
16
|
Useini L, Mojić M, Laube M, Lönnecke P, Mijatović S, Maksimović-Ivanić D, Pietzsch J, Hey-Hawkins E. Carborane Analogues of Fenoprofen Exhibit Improved Antitumor Activity. ChemMedChem 2023; 18:e202200583. [PMID: 36583943 DOI: 10.1002/cmdc.202200583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Fenoprofen is a widely used nonsteroidal anti-inflammatory drug (NSAID) against rheumatoid arthritis, degenerative joint disease, ankylosing spondylitis and gout. Like other NSAIDs, fenoprofen inhibits the synthesis of prostaglandins by blocking both cyclooxygenase (COX) isoforms, COX-1 the "house-keeping" enzyme and COX-2 the induced isoform from pathological stimuli. Unselective inhibition of both COX isoforms results in many side effects, but off-target effects have also been reported. The steric modifications of the drugs could afford the desired COX-2 selectivity. Furthermore, NSAIDs have shown promising cytotoxic properties. The structural modification of fenoprofen using bulky dicarba-closo-dodecaborane(12) (carborane) clusters and the biological evaluation of the carborane analogues for COX inhibition and antitumor potential showed that the carborane analogues exhibit stronger antitumor potential compared to their respective aryl-based compounds.
Collapse
Affiliation(s)
- Liridona Useini
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| | - Marija Mojić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| | - Sanja Mijatović
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| |
Collapse
|
17
|
Nanoparticles loaded with pharmacologically active plant-derived natural products: Biomedical applications and toxicity. Colloids Surf B Biointerfaces 2023; 225:113214. [PMID: 36893664 DOI: 10.1016/j.colsurfb.2023.113214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.
Collapse
|
18
|
Jia W, Zhou L, Li L, Zhou P, Shen Z. Nano-Based Drug Delivery of Polyphenolic Compounds for Cancer Treatment: Progress, Opportunities, and Challenges. Pharmaceuticals (Basel) 2023; 16:ph16010101. [PMID: 36678599 PMCID: PMC9865384 DOI: 10.3390/ph16010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Polyphenols and their derivates, a kind of natural product distributed in herb plants, vegetables, and fruits, are the most abundant antioxidants in the human diet and have been found to display cancer-preventative effects in several epidemiological studies. The scientific community has also validated the anti-cancer bioactivities and low toxicities of polyphenolic compounds, including flavones, tannins, phenolic acids, and anthocyanins, through in vitro and in vivo studies. However, the low stability, weak targeting ability, poor solubility, and low bioavailability of pure polyphenolic agents have significantly impaired their treatment efficacy. Nowadays, nano-based technology has been applied to surmount these restrictions and maximize the treatment efficacy of polyphenols. In this review, we summarize the advantages and related mechanisms of polyphenols in cancer treatment. Moreover, aiming at the poor solubility and low bioavailability of pure polyphenols in vivo, the advantages of nano-based delivery systems and recent research developments are highlighted. Herein, particular emphasis is mainly placed on the most widely used nanomaterials in the delivery of natural products, including liposomes, micelles, and nanogels. Finally, we present an overview and the challenges of future implementations of nano-based delivery systems of polyphenolic compounds in the cancer therapeutic field.
Collapse
Affiliation(s)
- Wenhui Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou 571199, China
- Correspondence: (P.Z.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315211, China
- Correspondence: (P.Z.); (Z.S.)
| |
Collapse
|
19
|
Qian Z, Zhang Y, Yuan J, Gong S, Chen B. Current applications of nanomaterials in urinary system tumors. Front Bioeng Biotechnol 2023; 11:1111977. [PMID: 36890910 PMCID: PMC9986335 DOI: 10.3389/fbioe.2023.1111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The development of nanotechnology and nanomaterials has provided insights into the treatment of urinary system tumors. Nanoparticles can be used as sensitizers or carriers to transport drugs. Some nanoparticles have intrinsic therapeutic effects on tumor cells. Poor patient prognosis and highly drug-resistant malignant urinary tumors are worrisome to clinicians. The application of nanomaterials and the associated technology against urinary system tumors offers the possibility of improving treatment. At present, many achievements have been made in the application of nanomaterials against urinary system tumors. This review summarizes the latest research on nanomaterials in the diagnosis and treatment of urinary system tumors and provides novel ideas for future research on nanotechnologies in this field.
Collapse
Affiliation(s)
- Zhounan Qian
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Yuan
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Sun Gong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Hao B, Wei L, Cheng Y, Ma Z, Wang J. Advanced nanomaterial for prostate cancer theranostics. Front Bioeng Biotechnol 2022; 10:1046234. [PMID: 36394009 PMCID: PMC9663994 DOI: 10.3389/fbioe.2022.1046234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
Prostate cancer (PC) has the second highest incidence in men, according to global statistical data. The symptoms of PC in the early stage are not obvious, causing late diagnosis in most patients, which is the cause for missing the optimal treatment time. Thus, highly sensitive and precise early diagnosis methods are very important. Additionally, precise therapy regimens for good targeting and innocuous to the body are indispensable to treat cancer. This review first introduced two diagnosis methods, containing prostate-specific biomarkers detection and molecular imaging. Then, it recommended advanced therapy approaches, such as chemotherapy, gene therapy, and therapeutic nanomaterial. Afterward, we summarized the development of nanomaterial in PC, highlighting the importance of integration of diagnosis and therapy as the future direction against cancer.
Collapse
Affiliation(s)
- Bin Hao
- Department of Urology, Central Hospital, China Railway 17th Bureau Group Co., Ltd., Shanxi, China
| | - Li Wei
- Internal Medicine, Rongjun Hospital of Shanxi Province, Shanxi, China
| | - Yusheng Cheng
- Department of Urology, Central Hospital, China Railway 17th Bureau Group Co., Ltd., Shanxi, China
| | - Zhifang Ma
- Department of Urology, First Hospital of Shanxi Medical University, Shanxi, China
| | - Jingyu Wang
- College of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Hao Q, Wu Y, Vadgama JV, Wang P. Phytochemicals in Inhibition of Prostate Cancer: Evidence from Molecular Mechanisms Studies. Biomolecules 2022; 12:1306. [PMID: 36139145 PMCID: PMC9496067 DOI: 10.3390/biom12091306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer is one of the leading causes of death for men worldwide. The development of resistance, toxicity, and side effects of conventional therapies have made prostate cancer treatment become more intensive and aggressive. Many phytochemicals isolated from plants have shown to be tumor cytotoxic. In vitro laboratory studies have revealed that natural compounds can affect cancer cell proliferation by modulating many crucial cellular signaling pathways frequently dysregulated in prostate cancer. A multitude of natural compounds have been found to induce cell cycle arrest, promote apoptosis, inhibit cancer cell growth, and suppress angiogenesis. In addition, combinatorial use of natural compounds with hormone and/or chemotherapeutic drugs seems to be a promising strategy to enhance the therapeutic effect in a less toxic manner, as suggested by pre-clinical studies. In this context, we systematically reviewed the currently available literature of naturally occurring compounds isolated from vegetables, fruits, teas, and herbs, with their relevant mechanisms of action in prostate cancer. As there is increasing data on how phytochemicals interfere with diverse molecular pathways in prostate cancer, this review discusses and emphasizes the implicated molecular pathways of cell proliferation, cell cycle control, apoptosis, and autophagy as important processes that control tumor angiogenesis, invasion, and metastasis. In conclusion, the elucidation of the natural compounds' chemical structure-based anti-cancer mechanisms will facilitate drug development and the optimization of drug combinations. Phytochemicals, as anti-cancer agents in the treatment of prostate cancer, can have significant health benefits for humans.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
22
|
Hussein AM, Attaai AH, Zahran AM. Genistein anticancer efficacy during induced oral squamous cell carcinoma: an experimental study. J Egypt Natl Canc Inst 2022; 34:37. [PMID: 36058937 DOI: 10.1186/s43046-022-00140-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND About 7 million people die from various types of cancer every year representing nearly 12.5% of deaths worldwide. This fact raises the demand to develop new, effective anticancer, onco-suppressive, and chemoprotective agents for the future fighting of cancers. Genistein exhibits pleiotropic functions in cancer, metabolism, and inflammation. It functions as an antineoplastic agent through its effect on the cell cycle, apoptotic processes, angiogenesis, invasion, and metastasis. AIM OF THE STUDY The current study aimed to study the genistein onco-suppressive effects during 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters' buccal pouch utilizing flow cytometry analysis (FMA), as a fast-diagnosing tool, in addition to the histopathology. MATERIAL AND METHODS The buccal mucosa of adult male Syrian hamsters was painted with paraffin oil only (group 1), DMBA mixed in mineral oil (group 2), or orally administrated genistein along with painting DMBA (group 2B). The buccal mucosa was utilized for flow cytometric analysis and histopathological examination. RESULTS Grossly, DMBA-induced carcinogenesis started at the 9th week. Progressive signs appeared in the following weeks reaching to large ulcerative oral masses and exophytic nodules at the 21st week. Histologically, invasive well-differentiated oral squamous cell carcinoma (OSCC) appeared in the underlying tissues from the 12th week, showing malignant criteria. Genistein had delayed clinicopathological change, which started 6 weeks later, than the DMBA-painted hamsters, as mild epithelial dysplastic changes. This became moderate during the last 6 weeks, without dysplastic changes. Flow cytometry revealed that DMBA led to considerable variation in DNA proliferation activity, aneuploid DNA pattern, in 47.22% of hamsters and significantly raised the S-phase fragment (SPF) values, which drastically reduced after genistein treatment. CONCLUSION Taken together, genistein could be employed as an onco-suppressive agent for carcinogenesis. Moreover, FMA could be used as an aiding fast tool for diagnosis of cancer.
Collapse
Affiliation(s)
- Ahmed M Hussein
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Assiut University, Assiut, Egypt
| | - Abdelraheim H Attaai
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
23
|
Truong TH, Alcantara KP, Bulatao BPI, Sorasitthiyanukarn FN, Muangnoi C, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Chitosan-coated nanostructured lipid carriers for transdermal delivery of tetrahydrocurcumin for breast cancer therapy. Carbohydr Polym 2022; 288:119401. [PMID: 35450653 DOI: 10.1016/j.carbpol.2022.119401] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 01/05/2023]
Abstract
Chitosan (Ch)-coated nanostructured lipid carriers (NLCs) have great potential for transdermal delivery with high localization of chemotherapeutics in breast cancer. This study used tetrahydrocurcumin (THC), a primary metabolite of curcumin with enhanced antioxidant and anticancer properties, as a model compound to prepare NLCs. Response surface methodology was employed to optimize THC-loaded Ch-coated NLCs (THC-Ch-NLCs) fabricated by high-shear homogenization. The optimized THC-Ch-NLCs had particle size of 244 ± 18 nm, zeta potential of -17.5 ± 0.5 mV, entrapment efficiency of 76.6 ± 0.2% and drug loading of 0.28 ± 0.01%. In vitro release study of THC-Ch-NLCs showed sustained release following the Korsmeyer-Peppas model with Fickian and non-Fickian diffusion at pH 7.4 and 5.5, respectively. THC-Ch-NLCs demonstrated significantly enhanced in vitro skin permeation, cell uptake, and remarkable cytotoxicity toward MD-MBA-231 breast cancer cells compared to the unencapsulated THC, suggesting Ch-NLCs as potential transdermal nanocarriers of THC for triple-negative breast cancer treatment.
Collapse
Affiliation(s)
- Thien Hoang Truong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bryan Paul I Bulatao
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Feuangthit Niyamissara Sorasitthiyanukarn
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
24
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
25
|
Genistein: Therapeutic and Preventive Effects, Mechanisms, and Clinical Application in Digestive Tract Tumor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5957378. [PMID: 35815271 PMCID: PMC9259214 DOI: 10.1155/2022/5957378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
Genistein is one of the numerous recognized isoflavones that may be found in a variety of soybeans and soy products, including tofu and tofu products. The chemical name for genistein is 4', 5, 7-trihydroxyisoflavone, and it is found in plants. In recent years, the scientific world has become more interested in genistein because of its possible therapeutic effects on many forms of cancer. It has been widely investigated for its anticancer properties. The discovery of genistein's mechanism of action indicates its potential for apoptosis induction and cell cycle arrest in gastrointestinal cancer, especially gastric and colorectal cancer. Genistein's pharmacological activities as determined by the experimental studies presented in this review lend support to its use in the treatment of gastrointestinal cancer; however, additional research is needed in the future to determine its efficacy, safety, and the potential for using nanotechnology to increase bioavailability and therapeutic efficacy.
Collapse
|
26
|
Sohel M, Sultana H, Sultana T, Mamun AA, Amin MN, Hossain MA, Ali MC, Aktar S, Sultana A, Rahim ZB, Mitra S, Dash R. Chemotherapeutics activities of dietary phytoestrogens against prostate cancer: From observational to clinical studies. Curr Pharm Des 2022; 28:1561-1580. [PMID: 35652403 DOI: 10.2174/1381612828666220601153426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer remains one of the most frequent and deadliest malignancies in males, where the rate of disease progression is closely associated with the type of dietary intake, specifically Western-style diet. Indeed intake of the Asian diet, which contains abundant phytoestrogens, is inversely correlated with a higher risk of prostate cancer, suggesting a chemoprotective effect of phytoestrogen against cancer progression. Although the role of phytoestrogens in cancer treatment was well documented, their impact on prostate cancer is not well understood. Therefore, the present review discusses the possible chemopreventive effect of phytoestrogens, emphasizing their efficacy at the different stages of carcinogenesis. Furthermore, phytoestrogens provide a cytoprotective effect in conventional chemotherapy and enhance chemosensitivity to tumor cells, which have also been discussed. This compilation provides a solid basis for future research on phytoestrogens as a promising avenue for anticancer drug development and also recommends these beneficiary compounds in the daily diet to manage and prevent prostate cancer.
Collapse
Affiliation(s)
- Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka-1230. Bangladesh
| | - Habiba Sultana
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Tayeba Sultana
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka-1230. Bangladesh.,Pratyasha Health Biomedical Research Center, Dhaka-1230. Bangladesh
| | - Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Faculty of life science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suraiya Aktar
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
| | - Armin Sultana
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Zahed Bin Rahim
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
27
|
Synthesis and characterization of genistein magnetic molecularly imprinted polymers and their application in soy sauce products. Sci Rep 2021; 11:23183. [PMID: 34848802 PMCID: PMC8633317 DOI: 10.1038/s41598-021-02625-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
In this study, a novel method based on genistein magnetic molecularly imprinted polymers (Gen-MMIPs) was developed utilizing a surface molecular imprinting technique, in which genistein was used as the template molecule and Fe3O4 was used as the carrier. The synthesis of Gen-MMIPs was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicated that the diameter of the Gen-MMIPs was approximately 500 nm. Via analysis with a vibrating sample magnetometer (VSM), the saturation magnetization of Gen-MMIPs was determined to be 24.79 emu g−1. Fourier transform infrared (FT-IR) spectroscopy showed that polymer groups were on the surface of the magnetic carrier. Adsorption experiments suggested that the genistein adsorption capability of Gen-MMIPs was 5.81 mg g−1, and adsorption equilibrium was achieved within 20 min. Gen-MMIPs as dispersive solid-phase extraction (dSPE) adsorbents combined with HPLC were used to selectively separate genistein in soy sauce samples, and the recoveries ranged from 85.7 to 88.5% with relative standard deviations (RSDs) less than 5%, which proved that this method can be used for the detection of genistein residues in real samples.
Collapse
|
28
|
Ahmed S, Baijal G, Somashekar R, Iyer S, Nayak V. One Pot Synthesis of PEGylated Bimetallic Gold-Silver Nanoparticles for Imaging and Radiosensitization of Oral Cancers. Int J Nanomedicine 2021; 16:7103-7121. [PMID: 34712044 PMCID: PMC8545617 DOI: 10.2147/ijn.s329762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background Radiotherapy is an important treatment modality for many types of head and neck squamous cell carcinomas. Nanomaterials comprised of high atomic number (Z) elements are novel radiosensitizers enhance radiation injury by production of free radicals and subsequent DNA damage. Gold nanoparticles are upcoming as promising radiosensitizers due to their high (Z) biocompatibility, and ease for surface engineering. Bimetallic nanoparticles have shown enhanced anticancer activity compared to monometallic nanoparticles. Materials and Methods PEG-coated Au–Ag alloy nanoparticles (BNPs) were synthesized using facile one pot synthesis techniques. Size of ~50±5nm measured by dynamic light scattering. Morphology, structural composition and elemental mapping were analyzed by electron microscopy and SAXS (small-angle X-ray scattering). The radiosensitization effects on KB oral cancer cells were evaluated by irradiation with 6MV X-rays on linear accelerator. Nuclear damage was imaged using confocal microscopy staining cells with Hoechst stain. Computed tomography (CT) contrast enhancement of BNPs was compared to that of the clinically used agent, Omnipaque. Results BNPs were synthesized using PEG 600 as reducing and stabilizing agent. The surface charge of well dispersed colloidal BNPs solution was −5mV. Electron microscopy reveals spherical morphology. HAADF-STEM and elemental mapping studies showed that the constituent metals were Au and Ag intermixed nanoalloy. Hydrodynamic diameter was ~50±5nm due to PEG layer and water molecules absorption. SAXS measurement confirmed BNPs size around 35nm. Raman shift of around 20 cm−1 was observed when BNPs were coated with PEG. 1H NMR showed extended involvement of −OH in synthesis. BNPs efficiently enter cytoplasm of KB cells and demonstrated potent in vitro radiosensitization with enhancement ratio ~1.5–1.7. Imaging Hoechst-stained nuclei demonstrated apoptosis in a dose-dependent manner. BNPs exhibit better CT contrast enhancement ability compared to Omnipaque. Conclusion This bimetallic intermix nanoparticles could serve a dual function as radiosensitizer and CT contrast agent against oral cancers, and by extension possibly other cancers as well.
Collapse
Affiliation(s)
- Shameer Ahmed
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K.K. Birla Goa Campus, Sancoale, Goa, India
| | - Gunjan Baijal
- Department of Radiation Oncology, Manipal Hospital Goa, Panaji, Goa, India
| | - Rudrappa Somashekar
- Centre for Materials Science and Technology, Vijnana Bhavan, Mysore, Karnataka, India
| | - Subramania Iyer
- Department of Head and Neck Oncology, Amrita Institute of Medical Sciences, Ponekkara, Cochin, India
| | - Vijayashree Nayak
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K.K. Birla Goa Campus, Sancoale, Goa, India
| |
Collapse
|
29
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
30
|
Stolarczyk EU, Strzempek W, Łaszcz M, Leś A, Menaszek E, Sidoryk K, Stolarczyk K. Anti-Cancer and Electrochemical Properties of Thiogenistein-New Biologically Active Compound. Int J Mol Sci 2021; 22:8783. [PMID: 34445486 PMCID: PMC8395759 DOI: 10.3390/ijms22168783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Pharmacological and nutraceutical effects of isoflavones, which include genistein (GE), are attributed to their antioxidant activity protecting cells against carcinogenesis. The knowledge of the oxidation mechanisms of an active substance is crucial to determine its pharmacological properties. The aim of the present work was to explain complex oxidation processes that have been simulated during voltammetric experiments for our new thiolated genistein analog (TGE) that formed the self-assembled monolayer (SAM) on the gold electrode. The thiol linker assured a strong interaction of sulfur nucleophiles with the gold surface. The research comprised of the study of TGE oxidative properties, IR-ATR, and MALDI-TOF measurements of SAM before and after electrochemical oxidation. TGE has been shown to be electrochemically active. It undergoes one irreversible oxidation reaction and one quasi-reversible oxidation reaction in PBS buffer at pH 7.4. The oxidation of TGE results in electroactive products composed likely from TGE conjugates (e.g., trimers) as part of polymer. The electroactive centers of TGE and its oxidation mechanism were discussed using IR supported by quantum chemical and molecular mechanics calculations. Preliminary in-vitro studies indicate that TGE exhibits higher cytotoxic activity towards DU145 human prostate cancer cells and is safer for normal prostate epithelial cells (PNT2) than genistein itself.
Collapse
Affiliation(s)
- Elżbieta U. Stolarczyk
- Research Analytics Team, Analytical Department, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland;
| | - Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland;
- Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna Street, 30-068 Krakow, Poland;
| | - Marta Łaszcz
- Research Analytics Team, Analytical Department, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland;
| | - Andrzej Leś
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland; (A.L.); (K.S.)
| | - Elżbieta Menaszek
- Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna Street, 30-068 Krakow, Poland;
| | - Katarzyna Sidoryk
- Chemistry Group, Department of Pharmacy, Cosmetic Chemistry and Biotechnology, Łukasiewicz Research Network—Industrial Chemistry Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland;
| | - Krzysztof Stolarczyk
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland; (A.L.); (K.S.)
| |
Collapse
|
31
|
Ma Z, Dong Z. Dual anticancer drug-loaded self-assembled nanomaterials delivery system for the treatment of prostate cancer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2103-2117. [PMID: 34328067 DOI: 10.1080/09205063.2021.1958449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study explains the engineering of polylactide-polyethylene succinate glycol nanomaterials (NMs), to achieve superior anticancer effectiveness in prostate cancer therapy as a carriers of crizotinib (CZT) and marizomib (MAR). We have shown that the block polymers and hydrophobic drugs can be self-assembled to construct a highly stable nanocarrier with highly adaptable to support the use of cancer medicines. The Drug Release analysis revealed that the interference in the hydrophobic cores of micelles was a continuous release series. In both PC3pip and LNCAP prostate cancer cells, CZT@MAR NMs demonstrated noticeable cytotoxic effects in a dose-responsive method. In addition, morphology analysis and the AO-EB and nuclear staining assay showed a higher effectiveness in prostate cancer for nanomaterials. The polymeric nanomaterials displayed a prominent existence in the cytoplasmic cell regions, which shows a characteristic cell uptake by endocytosis. A significant apoptosis, compared to free CZT@MAR apoptosis, was found in the FITC-Annexin V/PI staining-based apoptosis analysis. In this juncture, the alternative drug delivery mechanism for the improvement of CZT@MAR chemotherapeutic effectiveness in prostate cancer chemotherapy modification PLA nanoparticles.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Urology Surgery, Shijiazhuang Third Hospital, Shijiazhuang, China
| | - Zhongyi Dong
- Department of Urology Surgery, Zaozhuang Municipal Hospital, Zaozhuang, China
| |
Collapse
|
32
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Sadia H, Qadri QR, Raza S, Irshad A, Akbar A, Reiner Ž, Al-Harrasi A, Al-Rawahi A, Satmbekova D, Butnariu M, Bagiu IC, Bagiu RV, Sharifi-Rad J. Genistein as a regulator of signaling pathways and microRNAs in different types of cancers. Cancer Cell Int 2021; 21:388. [PMID: 34289845 PMCID: PMC8296701 DOI: 10.1186/s12935-021-02091-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are complex diseases orchestrated by a plethora of extrinsic and intrinsic factors. Research spanning over several decades has provided better understanding of complex molecular interactions responsible for the multifaceted nature of cancer. Recent advances in the field of next generation sequencing and functional genomics have brought us closer towards unravelling the complexities of tumor microenvironment (tumor heterogeneity) and deregulated signaling cascades responsible for proliferation and survival of tumor cells. Phytochemicals have begun to emerge as potent beneficial substances aimed to target deregulated signaling pathways. Isoflavonoid genistein is an essential phytochemical involved in regulation of key biological processes including those in different types of cancer. Emerging preclinical evidence have shown its anti-cancer, anti-inflammatory and anti-oxidant properties. Testing of this substance is in various phases of clinical trials. Comprehensive preclinical and clinical trials data is providing insight on genistein as a modulator of various signaling pathways both at transcription and translation levels. In this review we have explained the mechanistic regulation of several key cellular pathways by genistein. We have also addressed in detail various microRNAs regulated by genistein in different types of cancer. Moreover, application of nano-formulations to increase the efficiency of genistein is also discussed. Understanding the pleiotropic potential of genistein to regulate key cellular pathways and development of efficient drug delivery system will bring us a step towards designing better chemotherapeutics.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office of Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Sajid Naeem
- School of Life Sciences, Lanzhuo University, Lanzhou, 730000 People’s Republic of China
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Qamar Raza Qadri
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Shahid Raza
- Office of Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa, 616 Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa, 616 Oman
| | - Dinara Satmbekova
- High School of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Monica Butnariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Timisoara, Romania
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timisoara, Romania
- Preventive Medicine Study Center, Timisoara, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|