1
|
Carmona-Ribeiro AM. Supramolecular Nanostructures for Vaccines. Biomimetics (Basel) 2021; 7:6. [PMID: 35076466 PMCID: PMC8788484 DOI: 10.3390/biomimetics7010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/31/2022] Open
Abstract
Although this is an era of pandemics and many devastating diseases, this is also a time when bionanotechnology flourishes, illuminating a multidisciplinary field where vaccines are quickly becoming a balsam and a prevention against insidious plagues. In this work, we tried to gain and also give a deeper understanding on nanovaccines and their way of acting to prevent or cure cancer, infectious diseases, and diseases caused by parasites. Major nanoadjuvants and nanovaccines are temptatively exemplified trying to contextualize our own work and its relative importance to the field. The main properties for novel adjuvants seem to be the nanosize, the cationic character, and the biocompatibility, even if it is achieved in a low dose-dependent manner.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, Butantan, São Paulo CEP 05508-000, SP, Brazil
| |
Collapse
|
2
|
Mimicking Native Display of CD0873 on Liposomes Augments Its Potency as an Oral Vaccine against Clostridioides difficile. Vaccines (Basel) 2021; 9:vaccines9121453. [PMID: 34960199 PMCID: PMC8708880 DOI: 10.3390/vaccines9121453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Mucosal vaccination aims to prevent infection mainly by inducing secretory IgA (sIgA) antibody, which neutralises pathogens and enterotoxins by blocking their attachment to epithelial cells. We previously demonstrated that encapsulated protein antigen CD0873 given orally to hamsters induces neutralising antibodies locally as well as systemically, affording partial protection against Clostridioides difficile infection. The aim of this study was to determine whether displaying CD0873 on liposomes, mimicking native presentation, would drive a stronger antibody response. The recombinant form we previously tested resembles the naturally cleaved lipoprotein commencing with a cysteine but lacking lipid modification. A synthetic lipid (DHPPA-Mal) was designed for conjugation of this protein via its N-terminal cysteine to the maleimide headgroup. DHPPA-Mal was first formulated with liposomes to produce MalLipo; then, CD0873 was conjugated to headgroups protruding from the outer envelope to generate CD0873-MalLipo. The immunogenicity of CD0873-MalLipo was compared to CD0873 in hamsters. Intestinal sIgA and CD0873-specific serum IgG were induced in all vaccinated animals; however, neutralising activity was greatest for the CD0873-MalLipo group. Our data hold great promise for development of a novel oral vaccine platform driving intestinal and systemic immune responses.
Collapse
|
3
|
Azuar A, Shibu MA, Adilbish N, Marasini N, Hung H, Yang J, Luo Y, Khalil ZG, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Poly(hydrophobic amino acid) Conjugates for the Delivery of Multiepitope Vaccine against Group A Streptococcus. Bioconjug Chem 2021; 32:2307-2317. [PMID: 34379392 DOI: 10.1021/acs.bioconjchem.1c00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide-based vaccines are composed of small, defined, antigenic peptide epitopes. They are designed to induce well-controlled immune responses. Multiple epitopes are often employed in these vaccines to cover strain variability of a pathogen. However, peptide epitopes cannot stimulate adequate immune responses on their own and require an adjuvant (immune stimulant) and/or delivery system. Here, we designed and synthesized a multiepitope vaccine candidate against Group A Streptococcus (GAS) composed of several B-cell epitopes (J8, PL1, and 88/30) derived from GAS M-protein, universal PADRE T-helper cell epitope, and a polyleucine self-adjuvanting unit. The vaccine components were conjugated together (using mercapto-maleimide and azide-alkyne Huisgen cycloaddition reactions) or delivered as a mixture. The conjugated multiepitope vaccine candidate self-assembled into small nanoparticles and chain-like aggregated nanoparticles (CLANs) that were able to induce the production of J8-, PL1-, and 88/30-specific antibodies in mice. The multiepitope conjugate and the physical mixture of conjugates bearing the individual epitopes produced similar nanoparticles and induced comparable immune responses. Hence, simple physical mixing can replace complex chemical conjugation to produce multiepitope nanoparticles with equivalent morphology and immunological efficacy. This greatly simplifies vaccine production.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mohini A Shibu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nomin Adilbish
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nirmal Marasini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hong Hung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yacheng Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zeinab G Khalil
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J Capon
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021; 18:2867-2888. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.
Collapse
Affiliation(s)
- Despo Chatzikleanthous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
5
|
Kaur A, Kaushik D, Piplani S, Mehta SK, Petrovsky N, Salunke DB. TLR2 Agonistic Small Molecules: Detailed Structure-Activity Relationship, Applications, and Future Prospects. J Med Chem 2020; 64:233-278. [PMID: 33346636 DOI: 10.1021/acs.jmedchem.0c01627] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are the pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) in microbial species. Among the various TLRs, TLR2 has a special place due to its ability to sense the widest repertoire of PAMPs owing to its heterodimerization with either TLR1 or TLR6, broadening its ligand diversity against pathogens. Various scaffolds are reported to activate TLR2, which include naturally occurring lipoproteins, synthetic lipopeptides, and small heterocyclic molecules. We described a detailed SAR in TLR2 agonistic scaffolds and also covered the design and chemistry for the conjugation of TLR2 agonists to antigens, carbohydrates, polymers, and fluorophores. The approaches involved in delivery of TLR2 agonists such as lipidation of antigen, conjugation to polymers, phosphonic acids, and other linkers to achieve surface adsorption, liposomal formulation, and encapsulating nanoparticles are elaborated. The crystal structure analysis and computational modeling are also included with the structural features that facilitate TLR2 activation.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Surinder K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| |
Collapse
|
6
|
Lipid Nanoparticle Acts as a Potential Adjuvant for Influenza Split Vaccine without Inducing Inflammatory Responses. Vaccines (Basel) 2020; 8:vaccines8030433. [PMID: 32756368 PMCID: PMC7565178 DOI: 10.3390/vaccines8030433] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccination is a critical and reliable strategy for controlling the spread of influenza viruses in populations. Conventional seasonal split vaccines (SVs) for influenza evoke weaker immune responses than other types of vaccines, such as inactivated whole-virion vaccines, although SVs are highly safe compared to other types. Here, we assessed the potential of the lipid nanoparticle (LNP) we developed as an adjuvant for conventional influenza SV as an antigen in mice. The LNP did not induce the production of cytokines such as interleukin-6 (IL-6) and IL-12 p40 by dendritic cells or the expression of co-stimulatory molecules on these cells in vitro. In contrast, an SV adjuvanted with LNP improved SV-specific IgG1 and IgG2 responses and the Th1 response compared to the SV alone in mice. In addition, SV adjuvanted with an LNP gave superior protection against the influenza virus challenge over the SV alone and was as effective as SV adjuvanted with aluminum salts in mice. The LNP did not provoke inflammatory responses such as inflammatory cytokine production and inflammatory immune cell infiltration in mice, whereas aluminum salts induced inflammatory responses. These results suggest the potential of the LNP as an adjuvant without inflammatory responses for influenza SVs. Our strategy should be useful for developing influenza vaccines with enhanced efficacy and safety.
Collapse
|
7
|
Xu Z, Rivera-Hernandez T, Moyle PM. Development of an Enzyme-Mediated, Site-Specific Method to Conjugate Toll-Like Receptor 2 Agonists onto Protein Antigens: Toward a Broadly Protective, Four Component, Group A Streptococcal Self-Adjuvanting Lipoprotein-Fusion Combination Vaccine. ACS Infect Dis 2020; 6:1770-1782. [PMID: 32407620 DOI: 10.1021/acsinfecdis.0c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subunit vaccines composed of protein antigens covalently attached to Toll-like receptor (TLR) agonists elicit superior immune responses compared to mixtures of antigens and TLR agonists. Among different conjugation approaches, enzyme-mediated ligation is one of the few that provides an opportunity for the generation of homogeneous, molecularly defined products in which protein antigens are maintained with native structures, which is most critical to elicit protective immune responses upon vaccination. Four highly conserved protein antigens from Group A Streptococcus (GAS) have the potential to be safe and efficacious vaccine candidates. After a TLR2 agonist fibroblast-stimulating lipopeptide-1 (FSL-1) was successfully attached onto each antigen using sortase A and techniques for their purification were developed, a combination vaccine containing interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), Group A Streptococcal C5a peptidase (SCPA), anchorless virulence factor arginine deiminase (ADI), and trigger factor (TF)-TLR2 conjugates was produced. This combination was assessed for immunity in mice and compared with mixtures of the four antigens with FSL-1 or alum. High titer antigen-specific IgG antibodies were detected from all vaccine groups, with antibodies elicited from FSL-1 conjugates around 10-fold higher compared to the FSL-1 mixture group. Furthermore, the FSL-1 conjugates afforded a more balanced TH1/TH2 immune response than the alum-adjuvanted group, suggesting that this combination vaccine represents a promising candidate for the prevention of GAS diseases. Thus, we established a conjugation platform that allows for the production of defined, site-specific antigen-adjuvant conjugates, which maintain the native three-dimensional structure of antigens and can be potentially applied to a variety of protein antigens.
Collapse
Affiliation(s)
- Zhenghui Xu
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Cátedras CONACYT - Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, México
| | - Peter Michael Moyle
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
8
|
Dai C, Stephenson RJ, Skwarczynski M, Toth I. Application of Fmoc-SPPS, Thiol-Maleimide Conjugation, and Copper(I)-Catalyzed Alkyne-Azide Cycloaddition "Click" Reaction in the Synthesis of a Complex Peptide-Based Vaccine Candidate Against Group A Streptococcus. Methods Mol Biol 2020; 2103:13-27. [PMID: 31879916 DOI: 10.1007/978-1-0716-0227-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fmoc solid-phase peptide synthesis (SPPS) is the most common approach used to synthesize natural and unnatural peptides. However, the synthesis of sequences longer than 30-60 amino acids is associated with a drastic reduction in peptide quality. Thus, large and complex peptides are normally synthesized as fragments, which are then conjugated together. Here, we describe the synthesis of a large, branched peptide, a multi-epitope vaccine candidate against Group A Streptococcus, with the help of microwave-assisted Fmoc-SPPS, thiol-maleimide conjugation, and copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) "click" reaction.
Collapse
Affiliation(s)
- Chuankai Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
9
|
Semisynthetic, self-adjuvanting vaccine development: Efficient, site-specific sortase A-mediated conjugation of Toll-like receptor 2 ligand FSL-1 to recombinant protein antigens under native conditions and application to a model group A streptococcal vaccine. J Control Release 2019; 317:96-108. [PMID: 31758971 DOI: 10.1016/j.jconrel.2019.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/10/2023]
Abstract
Protein antigens are, in general, weakly immunogenic, and therefore require co-delivery with adjuvants to stimulate potent immune responses. The fusion of (poly)peptide antigens to immunostimulatory adjuvants (e.g. Toll-like receptor (TLR) agonists) has been demonstrated to greatly improve vaccine potency compared to mixtures of antigen and adjuvant. Chemical approaches, to enable the rapid, site-specific and high-yielding linkage of TLR2 ligands to recombinant protein antigens, have been previously optimized. These approaches require the use of denaturing conditions to ensure high reaction yields, which limits their application, as maintenance of native protein folding is necessary to elicit antibodies against conformational epitopes. Here, this work aimed to optimize an alternative method, to ensure the efficient bioconjugation of TLR2 ligands onto folded protein antigens. An enzyme-mediated approach, using Staphylococcus aureus sortase A (or a penta mutant with enhanced efficiency), was optimized for reaction yield and time, as well as enzyme type and amount. This approach enabled the site-specific conjugation of the TLR2-agonist fibroblast-stimulating lipopeptide-1 (FSL-1) onto a model group A Streptococcus (GAS) recombinant polytope antigen under conditions that maintain protein folding, yielding a homogeneous, molecularly-defined product, with ligation yields as high as 90%. Following intramuscular (IM) administration of the ligation product to humanized plasminogen AlbPLG1 mice, high-titer, antigen-specific IgG antibodies were observed, which conferred protection against subcutaneous challenge with GAS strain 5448. In comparison, mixtures of the GAS antigen with aluminum hydroxide or FSL-1 failed to provide protection, with the FSL-1 mixture yielding ~1000-fold lower antigen-specific IgG antibody titers, and the mixture with alum yielding a Th2-biased response compared to the more balanced Th1/Th2 responses observed with the FSL-1 conjugate. Overall, a FSL-1 bioconjugation method for the efficient production of antigen-TLR2 agonist conjugates, which maintain protein folding, was produced, with broad utility for the development of self-adjuvanting vaccines against subunit protein antigens.
Collapse
|
10
|
Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel) 2019; 7:E58. [PMID: 31266253 PMCID: PMC6789462 DOI: 10.3390/vaccines7030058] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) infection can cause a variety of diseases in humans, ranging from common sore throats and skin infections, to more invasive diseases and life-threatening post-infectious diseases, such as rheumatic fever and rheumatic heart disease. Although research has been ongoing since 1923, vaccines against GAS are still not available to the public. Traditional approaches taken to develop vaccines for GAS failed due to poor efficacy and safety. Fortunately, headway has been made and modern subunit vaccines that administer minimal bacterial components provide an opportunity to finally overcome previous hurdles in GAS vaccine development. This review details the major antigens and strategies used for GAS vaccine development. The combination of antigen selection, peptide epitope modification and delivery systems have resulted in the discovery of promising peptide vaccines against GAS; these are currently in preclinical and clinical studies.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wanli Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, QLD 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Antibody responses to crucial functional epitopes as a novel approach to assess immunogenicity of vaccine adjuvants. Vaccine 2019; 37:3770-3778. [PMID: 31153687 DOI: 10.1016/j.vaccine.2019.05.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
We are interested in developing a vaccine that prevents genital herpes. Adjuvants have a major impact on vaccine immunogenicity. We compared two adjuvants, an experimental Merck Sharp & Dohme lipid nanoparticle (LNP) adjuvant, LNP-2, with CpG oligonucleotide combined with alum for immunogenicity in mice when administered with herpes simplex virus type 2 (HSV-2) glycoproteins C, D and E (gC2, gD2, gE2). The immunogens are intended to produce neutralizing antibodies to gC2 and gD2, antibodies to gD2 and gE2 that block cell-to-cell spread, and antibodies to gE2 and gC2 that block immune evasion from antibody and complement, respectively. Overall, CpG/alum was better at producing serum and vaginal IgG binding antibodies, neutralizing antibodies, antibodies that block virus spread from cell-to-cell, and antibodies that block immune evasion domains on gC2. We used a novel high throughput biosensor assay to further assess differences in immunogenicity by mapping antibody responses to seven crucial epitopes on gD2 involved in virus entry or cell-to-cell spread. We found striking differences between CpG/alum and LNP-2. Mice immunized with gD2 CpG/alum produced higher titers of antibodies than LNP-2 to six of seven crucial epitopes and produced antibodies to more crucial epitopes than LNP-2. Measuring epitope-specific antibodies helped to define mechanisms by which CpG/alum outperformed LNP-2 and is a valuable technique to compare adjuvants.
Collapse
|
12
|
Xu Z, Moyle PM. Bioconjugation Approaches to Producing Subunit Vaccines Composed of Protein or Peptide Antigens and Covalently Attached Toll-Like Receptor Ligands. Bioconjug Chem 2017; 29:572-586. [PMID: 28891637 DOI: 10.1021/acs.bioconjchem.7b00478] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traditional vaccines derived from attenuated or inactivated pathogens are effective at inducing antibody-based protective immune responses but tend to be highly reactogenic, causing notable adverse effects. Vaccines with superior safety profiles can be produced by subunit approaches, utilizing molecularly defined antigens (e.g., proteins and polysaccharides). These antigens, however, often elicit poor immunological responses, necessitating the use of adjuvants. Immunostimulatory adjuvants have the capacity to activate antigen presenting cells directly through specific receptors (e.g., Toll-like receptors (TLRs)), resulting in enhanced presentation of antigens as well as the secretion of proinflammatory chemokines and cytokines. Consequently, innate immune responses are amplified and adaptive immunity is generated. Recently, site-specific conjugation of such immunostimulatory adjuvants (e.g., TLR ligands) onto defined antigens has shown superior efficacy over unconjugated mixtures, suggesting that the development of chemically characterized immunostimulatory adjuvants and optimized approaches for their conjugation with antigens may provide a better opportunity for the development of potent, novel vaccines. This review briefly summarizes various TLR agonists utilized as immunostimulatory adjuvants and focuses on the development of techniques (e.g., recombinant, synthetic, and semisynthetic) for generating adjuvant-antigen fusion vaccines incorporating peptide or protein antigens.
Collapse
Affiliation(s)
- Zhenghui Xu
- School of Pharmacy , The University of Queensland , Woolloongabba 4102 , Queensland , Australia
| | - Peter Michael Moyle
- School of Pharmacy , The University of Queensland , Woolloongabba 4102 , Queensland , Australia
| |
Collapse
|
13
|
Wan Y, Dai W, Nevagi RJ, Toth I, Moyle PM. Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells. Acta Biomater 2017; 59:257-268. [PMID: 28655658 DOI: 10.1016/j.actbio.2017.06.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/23/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
The development of carriers for the delivery of oligonucleotide therapeutics is essential for the successful translation of gene therapies to the clinic. In the present study, a delivery system, which combines the fusogenic lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) with a well-defined synthetic multifunctional peptide, was produced and optimized for gene delivery, with the aim to develop an efficient gene delivery platform for breast cancer cells. For this purpose, a breast cancer-specific cell targeting peptide (CTP) was incorporated into our leading peptide-based gene delivery system (to generate DEN-K(GALA)-TAT-K(STR)-CTP) to improve its cell-specific internalization, and investigated in combination with a formulation approach (DOPE/1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)). DEN-K(GALA)-TAT-K(STR)-CTP alone efficiently complexed with DNA or siRNA, and promoted efficient cellular uptake, but low levels of gene expression. By adding the formulation approach, synergistic improvements in gene expression and silencing were observed compared to the peptide or formulation approaches alone. Of significance, this current system demonstrated more efficient gene knockdown when compared to the leading commercial siRNA delivery agent Lipofectamine® RNAiMAX. The utility of this system was demonstrated through the delivery of BCL2 (B-cell lymphoma 2) siRNA to MCF-7 cells, which led to near complete knockdown of the Bcl-2 protein, and inhibition of MCF-7 cell migration in a wound healing assay. The present peptide/lipid hybrid system is an excellent candidate for the delivery of DNA or siRNA into breast cancer cells. STATEMENT OF SIGNIFICANCE The identification of safe and effective delivery systems for DNA and siRNA is of great importance. Herein, we developed a well-defined, multifunctional and cell-specific lipidic peptide DEN-K(GALA)-TAT-K(STR)-CTP as a breast cancer cell targeted gene delivery vector. When combined with a lipid component (DOTAP/DOPE), the peptide/lipid hybrid system demonstrated higher gene expression or knockdown levels compared to the peptide or lipid approach alone when used to deliver pDNA or siRNA respectively, indicating synergistic enhancement of gene delivery efficiency. Importantly, this delivery strategy achieved greater knockdown of the Bcl-2 protein when compared to the leading commercial siRNA delivery system Lipofectamine® RNAiMAX, suggesting its potential utility for the targeted treatment of Bcl-2 overexpressing breast cancers.
Collapse
Affiliation(s)
- Yu Wan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Wei Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
| | - Reshma J Nevagi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia.
| |
Collapse
|
14
|
Sun ZY, Chen PG, Liu YF, Shi L, Zhang BD, Wu JJ, Zhao YF, Chen YX, Li YM. Self-Assembled Nano-Immunostimulant for Synergistic Immune Activation. Chembiochem 2017; 18:1721-1729. [PMID: 28618135 DOI: 10.1002/cbic.201700246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/11/2022]
Abstract
Immunotherapy has become one of the most promising therapies for the treatment of diseases. Synthetic immunostimulants and nanomaterial immunostimulant systems are indispensable for the activation of the immune system in cancer immunotherapy. Herein, a strategy for preparing self-assembled nano-immunostimulants (SANIs) for synergistic immune activation is reported. Three immunostimulants self-assemble into nanoparticles through electrostatic interactions. SANIs showed strong synergistic immunostimulation in macrophages. SANIs could also induce a strong antitumor immune response to inhibit tumor growth in mice and act as an efficient adjuvant of antitumor vaccines. Therefore, SANIs may be generally applied in cancer immunotherapy. This novel SANI strategy provides a new way for the development of both immunostimulants and -suppressants.
Collapse
Affiliation(s)
- Zhan-Yi Sun
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Pu-Guang Chen
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Fang Liu
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Shi
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo-Dou Zhang
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun-Jun Wu
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Zhao G, Chandrudu S, Skwarczynski M, Toth I. The application of self-assembled nanostructures in peptide-based subunit vaccine development. Eur Polym J 2017; 93:670-681. [PMID: 32226094 PMCID: PMC7094324 DOI: 10.1016/j.eurpolymj.2017.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/19/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Smaller polymer-peptide conjugates-based nanoparticles are often more immunogenic. Lipid-antigen conjugates-based nanoparticles can interact with immune receptors. Peptides with β-sheet conformation usually form nanofibers. α-Helical and random coil peptides tend to self-assemble into nanoparticles. Peptide-based nanostructures are usually poorer inducers of immune responses.
Peptide based-vaccines are becoming one of the most widely investigated prophylactic and therapeutic health care interventions against a variety of diseases, including cancer. However, the lack of a safe and highly efficient adjuvant (immune stimulant) is regarded as the biggest obstacle to vaccine development. The incorporation of a peptide antigen in a nanostructure-based delivery system was recently shown to overcome this obstacle. Nanostructures are often formed from antigens conjugated to molecules such as polymers, lipids, and peptide, with the help of self-assembly phenomenon. This review describes the application of self-assembly process for the production of peptide-based vaccine candidates and the ability of these nanostructures to stimulate humoral and cellular immune responses.
Collapse
Key Words
- (C18)2, N,N-dioctadecyl succinamic acid
- APC, antigen-presenting cell
- BMA, butyl methacrylate
- C16, 2-(R/S)-hexadecanoic acid
- CFA, complete Freund's adjuvant
- Conjugation
- CuAAC, copper-catalyzed azide-alkyne cycloaddition
- DLS, dynamic light scattering
- ELISA, enzyme-linked immunosorbent assay
- FDA, Food and Drug Administration
- GAS, group A streptococcus
- HCV, hepatitis C virus
- HIV, human immunodeficiency virus
- HPV, human papilloma virus
- IFA, incomplete Freund’s adjuvant
- IgG, immunoglobulin G
- LCP, lipid core peptide
- Lipopeptide
- Nanofiber
- Nanoparticle
- OVA, ovalbumin
- PADRE, pan DR epitope
- PBS, phosphate-buffered saline
- PDSMA, pyridyl disulfide methacrylamide
- PEG-PPS, poly(ethylene glycol)-stabilized poly(propylene sulfide) core nanoparticle
- Pam2Cys, dipalmitoyl-S-glyceryl cysteine
- Pam3Cys, tripalmitoyl-S-glyceryl cysteine
- PbCSP, Plasmodium berghei circumsporozoite protein
- Polymer
- SAP, self-assembling polypeptide
- SARS, severe acute respiratory syndrome
- Self-assembly
- T-VEC, talimogene laherparepvec
- TEM, transmission electron microscopy
- TLR2, toll-like receptor 2
- TLR4, toll-like receptor 4
- TLR9, toll-like receptor 9
- VLP, virus-like particle
- Vaccine
Collapse
Affiliation(s)
- Guangzu Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Saranya Chandrudu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Brisbane, Queensland 4102, Australia
- Corresponding author at: School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Zhang X, Song Y, Li Y, Cai M, Meng Y, Zhu H. Immunization with Streptococcal Heme Binding Protein (Shp) Protects Mice Against Group A Streptococcus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 973:115-124. [PMID: 28190144 DOI: 10.1007/5584_2016_198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Streptococcal heme binding protein (Shp) is a surface protein of the heme acquisition system that is an essential iron nutrient in Group A Streptococcus (GAS). Here, we tested whether Shp immunization protects mice from subcutaneous infection. Mice were immunized subcutaneously with recombinant Shp and then challenged with GAS. The protective effects against GAS challenge were evaluated two weeks after the last immunization. Immunization with Shp elicited a robust IgG response, resulting in high anti-Shp IgG titers in the serum. Immunized mice had a higher survival rate and smaller skin lesions than adjuvant control mice. Furthermore, immunized mice had lower GAS numbers at the skin lesions and in the liver, spleen and lung. Histological analysis with Gram staining showed that GAS invaded the surrounding area of the inoculation sites in the skin in control mice, but not in immunized mice. Thus, Shp immunization enhances GAS clearance and reduces GAS skin invasion and systemic dissemination. These findings indicate that Shp is a protective antigen.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Yingli Song
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuanmeng Li
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Minghui Cai
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuan Meng
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
17
|
Hussein WM, Xu J, Simerska P, Toth I. Synthesis of Multicomponent Peptide-Based Vaccine Candidates against Group A Streptococcus. Aust J Chem 2017. [DOI: 10.1071/ch16501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Group A streptococcus (GAS; Streptococcus pyogenes), known as the ‘flesh-eating bacterium’, is a human bacterial pathogen that normally causes benign infections (e.g. sore throat and pyoderma), but is also responsible for severe invasive infections (e.g. ‘flesh-eating’ disease and toxic shock syndrome), heart disease, and kidney failure. A safe commercial GAS vaccine is yet to be developed. Individual GAS antigens demonstrate potential universal expression across all GAS serotypes (>200 known), with dramatically reduced concern for autoimmune complications, and compelling efficacy in preclinical testing in mice. In this study, we developed a stepwise conjugation strategy, copper-catalysed alkyne–azide cycloaddition reaction (CuAAC), followed by mercapto–maleimide conjugation, to synthesise a multiantigenic, self-adjuvanting, peptide-based vaccine candidate against GAS. This multiantigenic vaccine includes two GAS antigens, J8 and NS1, a T-helper epitope, PADRE, and a self-adjuvanting moiety, dipalmitoyl serine.
Collapse
|
18
|
Hu QY, Berti F, Adamo R. Towards the next generation of biomedicines by site-selective conjugation. Chem Soc Rev 2016; 45:1691-719. [PMID: 26796469 DOI: 10.1039/c4cs00388h] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bioconjugates represent an emerging class of medicines, which offer therapeutic opportunities overtaking those of the individual components. Many novel bioconjugates have been explored in order to address various emerging medical needs. The last decade has witnessed the exponential growth of new site-selective bioconjugation techniques, however very few methods have made the way into human clinical trials. Here we discuss various applications of site-selective conjugation in biomedicines, including half-life extension, antibody-drug conjugates, conjugate vaccines, bispecific antibodies and cell therapy. The review is intended to highlight both the progress and challenges, and identify a potential roadmap to address the gap.
Collapse
Affiliation(s)
- Qi-Ying Hu
- Novartis Institutes for Biomedical Research (NIBR), 100 Technology Square, Cambridge, MA 02139, USA.
| | - Francesco Berti
- GSK Vaccines (former Novartis Vaccines & Diagnostics), Via Fiorentina 1, 53100 Siena, Italy.
| | - Roberto Adamo
- GSK Vaccines (former Novartis Vaccines & Diagnostics), Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
19
|
Chan A, Hussein WM, Ghaffar KA, Marasini N, Mostafa A, Eskandari S, Batzloff MR, Good MF, Skwarczynski M, Toth I. Structure–activity relationship of lipid core peptide-based Group A Streptococcus vaccine candidates. Bioorg Med Chem 2016; 24:3095-101. [DOI: 10.1016/j.bmc.2016.03.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 12/21/2022]
|
20
|
Yang L, Li W, Kirberger M, Liao W, Ren J. Design of nanomaterial based systems for novel vaccine development. Biomater Sci 2016; 4:785-802. [PMID: 26891972 DOI: 10.1039/c5bm00507h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With lower cell toxicity and higher specificity, novel vaccines have been greatly developed and applied to emerging infectious and chronic diseases. However, due to problems associated with low immunogenicity and complicated processing steps, the development of novel vaccines has been limited. With the rapid development of bio-technologies and material sciences, nanomaterials are playing essential roles in novel vaccine design. Incorporation of nanomaterials is expected to improve delivery efficiency, to increase immunogenicity, and to reduce the administration dosage. The purpose of this review is to discuss the employment of nanomaterials, including polymeric nanoparticles, liposomes, virus-like particles, peptide amphiphiles micelles, peptide nanofibers and microneedle arrays, in vaccine design. Compared to traditional methods, vaccines made from nanomaterials display many appealing benefits, including precise stimulation of immune responses, effective targeting to certain tissue or cells, and desirable biocompatibility. Current research suggests that nanomaterials may improve our approach to the design and delivery of novel vaccines.
Collapse
Affiliation(s)
- Liu Yang
- College of Light Industry and Food Sciences, South China University of Technology, Uangzhou 510640, China.
| | | | | | | | | |
Collapse
|
21
|
Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chem Sci 2015; 7:842-854. [PMID: 28791117 PMCID: PMC5529997 DOI: 10.1039/c5sc03892h] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/14/2015] [Indexed: 01/18/2023] Open
Abstract
Classically all vaccines were produced using live or attenuated microorganisms or parts of them. However, the use of whole organisms, their components or the biological process for vaccine production has several weaknesses. The presence of immunologically redundant biological components or biological impurities in such vaccines might cause major problems. All the disadvantageous of traditional vaccines might be overcome via the development of fully synthetic peptide-based vaccines. However, once minimal antigenic epitopes only are applied for immunisation, the immune responses are poor. The use of an adjuvant can overcome this obstacle; however, it may raise new glitches. Here we briefly summarise the current stand on peptide-based vaccines, discuss epitope and adjuvant design, and multi-epitope and nanoparticle-based vaccine approaches. This mini review discusses also the disadvantages and benefits associated with peptide-based vaccines. It proposes possible methods to overcome the weaknesses of the synthetic vaccine strategy and suggests future directions for its development.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- The University of Queensland , School of Chemistry and Molecular Biosciences , St Lucia 4072 , Australia .
| | - Istvan Toth
- The University of Queensland , School of Chemistry and Molecular Biosciences , St Lucia 4072 , Australia . .,The University of Queensland , Institute for Molecular Bioscience , St Lucia 4072 , Australia.,The University of Queensland , School of Pharmacy , Brisbane , QLD 4072 , Australia
| |
Collapse
|
22
|
Moyle PM, Dai W, Liu TY, Hussein WM, Maruthayanar P, Wells JW, McMillan NA, Skwarczynski M, Toth I. Combined synthetic and recombinant techniques for the development of lipoprotein-based, self-adjuvanting vaccines targeting human papillomavirus type-16 associated tumors. Bioorg Med Chem Lett 2015; 25:5570-5. [DOI: 10.1016/j.bmcl.2015.10.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
|
23
|
Abstract
Vaccination has a proven record as one of the most effective medical approaches to prevent the spread of infectious diseases. Traditional vaccine approaches involve the administration of whole killed or weakened microorganisms to stimulate protective immune responses. Such approaches deliver many microbial components, some of which contribute to protective immunity, and assist in guiding the type of immune response that is elicited. Despite their impeccable record, these approaches have failed to yield vaccines for many important infectious organisms. This has prompted a move towards more defined vaccines ('subunit vaccines'), where individual protective components are administered. This unit provides an overview of the components that are used for the development of modern vaccines including: an introduction to different vaccine types (whole organism, protein/peptide, polysaccharide, conjugate, and DNA vaccines); techniques for identifying subunit antigens; vaccine delivery systems; and immunostimulatory agents ('adjuvants'), which are fundamental for the development of effective subunit vaccines.
Collapse
|
24
|
Shen KY, Chang LS, Leng CH, Liu SJ. Self-adjuvanting lipoimmunogens for therapeutic HPV vaccine development: potential clinical impact. Expert Rev Vaccines 2014; 14:383-94. [PMID: 25455657 DOI: 10.1586/14760584.2015.966696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of therapeutic HPV vaccines is the induction of cytotoxic T lymphocyte immunity against HPV-associated cancers. Recombinant proteins and synthetic peptides have high safety profiles but low immunogenicity, which limits their efficacy when used in a vaccine. Self-adjuvanting lipid moieties have been conjugated to synthetic peptides or expressed as lipoproteins to enhance the immunogenicity of vaccine candidates. Mono-, di- and tri-palmitoylated peptides have been demonstrated to activate dendritic cells and induce robust cellular immunity against infectious diseases and cancer. Recently, a platform technology using the high-yield production of recombinant lipoproteins with Toll-like receptor 2 agonist activity was established for the development of novel subunit vaccines. This technology represents a novel strategy for the development of therapeutic HPV vaccines. In this review, we describe recent progress in the design of therapeutic HPV vaccines using lipoimmunogens.
Collapse
Affiliation(s)
- Kuan-Yin Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | | | | | | |
Collapse
|
25
|
Azmi F, Ahmad Fuaad AAH, Giddam AK, Batzloff MR, Good MF, Skwarczynski M, Toth I. Self-adjuvanting vaccine against group A streptococcus: application of fibrillized peptide and immunostimulatory lipid as adjuvant. Bioorg Med Chem 2014; 22:6401-8. [PMID: 25438764 DOI: 10.1016/j.bmc.2014.09.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/16/2014] [Accepted: 09/20/2014] [Indexed: 01/08/2023]
Abstract
Peptides are of great interest to be used as vaccine antigens due to their safety, ease of manufacturing and specificity in generating immune response. There have been massive discoveries of peptide antigens over the past decade. However, peptides alone are poorly immunogenic, which demand co-administration with strong adjuvant to enhance their immunogenicity. Recently, fibril-forming peptides such as Q11 and lipoamino acid-based carrier have been identified to induce substantial immune responses when covalently linked to peptide epitope. In this study, we have incorporated either Q11 or lipoamino acids to a peptide epitope (J14) derived from M protein of group A streptococcus to develop self-adjuvanting vaccines. J14, Q11 and lipoamino acids were also conjugated together in a single vaccine construct in an attempt to evaluate the synergy effect of combining multiple adjuvants. Physicochemical characterization demonstrated that the vaccine constructs folded differently and self-assembled into nanoparticles. Significantly, only vaccine constructs containing double copies of lipoamino acids (regardless in conjugation with Q11 or not) were capable to induce significant dendritic cells uptake and subsequent J14-specific antibody responses in non-sizes dependent manners. Q11 had minimal impact in enhancing the immunogenicity of J14 even when it was used in combination with lipoamino acids. These findings highlight the impact of lipoamino acids moiety as a promising immunostimulant carrier and its number of attachment to peptide epitope was found to have a profound effect on the vaccine immunogenicity.
Collapse
Affiliation(s)
- Fazren Azmi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia; Faculty of Pharmacy, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Abdullah Al Hadi Ahmad Fuaad
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Ashwini Kumar Giddam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
26
|
Targeting TLR2 for vaccine development. J Immunol Res 2014; 2014:619410. [PMID: 25057505 PMCID: PMC4098989 DOI: 10.1155/2014/619410] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/16/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023] Open
Abstract
Novel and more effective immunization strategies against many animal diseases may profit from the current knowledge on the modulation of specific immunity through stimulation of innate immune receptors. Toll-like receptor (TLR)2-targeting formulations, such as synthetic lipopeptides and antigens expressed in fusion with lipoproteins, have been shown to have built-in adjuvant properties and to be effective at inducing cellular and humoral immune mechanisms in different animal species. However, contradictory data has arisen concerning the profile of the immune response elicited. The benefits of targeting TLR2 for vaccine development are thus still debatable and more studies are needed to rationally explore its characteristics. Here, we resume the main features of TLR2 and TLR2-induced immune responses, focusing on what has been reported for veterinary animals.
Collapse
|
27
|
Abstract
Bioorthogonal, chemoselective ligation methods are an essential part of the tools utilized to investigate biochemical pathways. Specifically enzymatic approaches are valuable methods in this context due to the inherent specificity of the deployed enzymes and the mild conditions of the modification reactions. One of the most common strategies is based on the transpeptidation catalyzed by sortase A derived from Staphylococcus aureus. The procedure is well established and a wide variety of applications have been published to date. Here, implementations of sortase A, which range from protein labeling using fluorescence dyes and the preparation of cyclic proteins to the modification of entire cells, are summarized. Furthermore, there is a focus on the optimization approaches established to solve the drawbacks of sortase-mediated transpeptidation.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Bielefeld University, Department of Chemistry, Organic and Bioorganic Chemistry (OCIII), Universitätsstrasse 25, 33615 Bielefeld (Germany).
| |
Collapse
|
28
|
Moyle PM, Dai W, Zhang Y, Batzloff MR, Good MF, Toth I. Site-Specific Incorporation of Three Toll-Like Receptor 2 Targeting Adjuvants into Semisynthetic, Molecularly Defined Nanoparticles: Application to Group A Streptococcal Vaccines. Bioconjug Chem 2014; 25:965-78. [DOI: 10.1021/bc500108b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Peter M. Moyle
- School
of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Wei Dai
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Yingkai Zhang
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Michael R. Batzloff
- Institute
for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| | - Michael F. Good
- Institute
for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| | - Istvan Toth
- School
of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| |
Collapse
|
29
|
|