1
|
Araújo JL, Vieira JA, dos Santos Silva M, Lima AKO, da Silva Luz GV, Carneiro MLB, Azevedo RB. Benefits of using polymeric nanoparticles in breast cancer treatment: a systematic review. 3 Biotech 2023; 13:357. [PMID: 37818119 PMCID: PMC10560654 DOI: 10.1007/s13205-023-03779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 07/31/2023] [Indexed: 10/12/2023] Open
Abstract
Breast cancer comprises approximately 20% of all malignant neoplasm cases globally. Due to the limitations associated with conventional therapeutic approaches, extensive investigations have been undertaken to develop novel treatments that exhibit enhanced specificity and minimized adverse effects. Consequently, the application of polymeric nanoformulations for targeted drug delivery has gained significant attention within the biomedical field. Therefore, the primary objective of this study was to explore the inherent advantages and efficacy of employing polymeric nanoformulations for drug delivery in breast cancer treatment, as compared to traditional therapies. A comprehensive literature search was conducted across prominent databases including PubMed/MEDLINE, Embase, and Scopus, utilizing specific search strings. This meticulous approach yielded a total of 12 relevant articles for in-depth analysis and discussion. The findings from the selected studies underscore the effectiveness of employing polymeric nanoparticles as a drug delivery strategy, showcasing noteworthy improvements in cellular uptake and sustained intracellular retention of encapsulated therapeutic agents. Additionally, these nanoformulations exhibited superior efficacy, safety, and drug delivery capabilities. The utilization of polymeric nanoparticles in drug delivery has demonstrated a substantial enhancement in treatment efficacy, with the ability to achieve higher concentrations of active ingredients within tumor tissues, augment cellular uptake and drug concentrations, and sustain intracellular retention. Consequently, this innovative approach prolongs drug release in lower quantities, ultimately contributing to improved treatment outcomes.
Collapse
Affiliation(s)
- Joabe Lima Araújo
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília-DF, 70910-900 Brazil
| | - Julia Augusto Vieira
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília-DF, 70910-900 Brazil
| | - Mayla dos Santos Silva
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasília, 72444-240 Brazil
| | - Alan Kelbis Oliveira Lima
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília-DF, 70910-900 Brazil
| | - Glecia Virgolino da Silva Luz
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasília, 72444-240 Brazil
| | - Marcella Lemos Brettas Carneiro
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasília, 72444-240 Brazil
| | - Ricardo Bentes Azevedo
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília-DF, 70910-900 Brazil
| |
Collapse
|
2
|
Serrano-Martínez A, Victoria-Montesinos D, García-Muñoz AM, Hernández-Sánchez P, Lucas-Abellán C, González-Louzao R. A Systematic Review of Clinical Trials on the Efficacy and Safety of CRLX101 Cyclodextrin-Based Nanomedicine for Cancer Treatment. Pharmaceutics 2023; 15:1824. [PMID: 37514011 PMCID: PMC10383811 DOI: 10.3390/pharmaceutics15071824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
CRLX101 is a cyclodextrin-based nanopharmaceutical designed to improve the delivery and efficacy of the anti-cancer drug camptothecin. Cyclodextrins have unique properties that can enhance drug solubility, stability, and bioavailability, making them an attractive option for drug delivery. The use of cyclodextrin-based nanoparticles can potentially reduce toxicity and increase the therapeutic index compared to conventional chemotherapy. CRLX101 has shown promise in preclinical studies, demonstrating enhanced tumor targeting and prolonged drug release. This systematic review followed PRISMA guidelines, assessing the efficacy and toxicity of CRLX101 in cancer treatment using clinical trials. Studies from January 2010 to April 2023 were searched in PubMed, Scopus, Web of Science, and Cochrane Database of Systematic Reviews, using specific search terms. The risk of bias was assessed using ROBINS-I and Cochrane risk-of-bias tools. After screening 6018 articles, 9 were included in the final review. These studies, conducted between 2013 and 2022, focused on patients with advanced or metastatic cancer resistant to standard therapies. CRLX101 was often combined with other therapeutic agents, resulting in improvements such as increased progression-free survival and clinical benefit rates. Toxicity was generally manageable, with common adverse events including fatigue, nausea, and anemia.
Collapse
Affiliation(s)
- Ana Serrano-Martínez
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Murcia, Spain
| | - Desirée Victoria-Montesinos
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Murcia, Spain
| | - Ana María García-Muñoz
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Murcia, Spain
| | - Pilar Hernández-Sánchez
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Murcia, Spain
| | - Carmen Lucas-Abellán
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Murcia, Spain
| | - Rebeca González-Louzao
- Faculty of Pharmacy and Nutrition, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe, Murcia, Spain
| |
Collapse
|
3
|
Liu Y, Cheng W, Xin H, Liu R, Wang Q, Cai W, Peng X, Yang F, Xin H. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy. Cancer Nanotechnol 2023; 14:28. [PMID: 37009262 PMCID: PMC10042676 DOI: 10.1186/s12645-023-00174-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality. As a heterogeneous disease, it has different subtypes and various treatment modalities. In addition to conventional surgery, radiotherapy and chemotherapy, targeted therapy and immunotherapy have also been applied in the clinics. However, drug resistance and systemic toxicity still cannot be avoided. Based on the unique properties of nanoparticles, it provides a new idea for lung cancer therapy, especially for targeted immunotherapy. When nanoparticles are used as carriers of drugs with special physical properties, the nanodrug delivery system ensures the accuracy of targeting and the stability of drugs while increasing the permeability and the aggregation of drugs in tumor tissues, showing good anti-tumor effects. This review introduces the properties of various nanoparticles including polymer nanoparticles, liposome nanoparticles, quantum dots, dendrimers, and gold nanoparticles and their applications in tumor tissues. In addition, the specific application of nanoparticle-based drug delivery for lung cancer therapy in preclinical studies and clinical trials is discussed.
Collapse
Affiliation(s)
- Yifan Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenxu Cheng
- Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - HongYi Xin
- The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Guangdong, 524400 China
- The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Affiliated to Guangdong Medical University, Guangdong, 524400 China
| | - Ran Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Qinqi Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenqi Cai
- Xinzhou Traditional Chinese Medicine Hospital, Zhongnan Hospital of Wuhan University (Xinzhou), Hubei, 430000 China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Fuyuan Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
| | - HongWu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
- Research Center of Molecular Medicine, Medical College of Chifeng University, Inner Mongolian Autonomous Region, Chifeng, 024000 China
| |
Collapse
|
4
|
Nguyen-Trinh QN, Trinh KXT, Trinh NT, Vo VT, Li N, Nagasaki Y, Vong LB. A silica-based antioxidant nanoparticle for oral delivery of Camptothecin which reduces intestinal side effects while improving drug efficacy for colon cancer treatment. Acta Biomater 2022; 143:459-470. [PMID: 35235866 DOI: 10.1016/j.actbio.2022.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
Camptothecin (CPT) is a potent anticancer agent for the treatment of colorectal cancer; however, it exhibits some limitations, including poor solubility, low stability, and low bioavailability via oral administration, which restrict its usability in clinical treatments. In addition, overproduction of reactive oxygen species (ROS) during chemotherapy induces drug resistance and severe intestinal side effects. In this study, silica-installed ROS scavenging nanoparticles (siRNP) with 50-60 nm in diameter were employed to overcome the aforementioned drawbacks of CPT. The solubility of CPT was significantly improved by incorporating it into the core of the nanoparticle, forming CPT-loaded siRNP (CPT@siRNP). The anticancer activity of CPT@siRNP against colorectal cancer cells (C-26) in vitro was significantly improved as compared to free CPT through higher efficiency of intracellular internalization and induction of apoptosis. Owing to its antioxidant properties, CPT@siRNP reduced cytotoxicity to normal endothelial cells, which was in sharp contrast to the high toxicity of free CPT. Oral administration of CPT and CPT@siRNP to the C-26 tumor-bearing mice exhibited antitumor activity, accompanied by effective suppression of tumor growth. Although CPT treatment suppressed tumor progression, it caused severe side effects, including intestinal damage and significant bodyweight loss. Interestingly, such noticeable side effects were not observed in the mice treated with CPT@siRNP, and the effect of tumor growth inhibition tended to be similar to or higher than that of CPT treatment. The results obtained in this study indicate that CPT@siRNP is a potential therapeutic nanomedicine for the treatment of colon cancer. STATEMENT OF SIGNIFICANCE: Here we employed silica-containing antioxidant nanoparticle (siRNP) as promising oral delivery nanocarrier of campothecin (CPT) to treat colon cancer. The design of siRNP via covalent conjugation of antioxidant nitroxide radicals and the silanol groups in the polymer backbone contributes to a significant increase in the absorption of hydrophobic drug molecules inside the core and enhances the stability of nanoparticles in the gastrointestinal environment for oral drug delivery. CPT-loaded siRNP (CPT@siRNP) significantly improved solubility of CPT. As compared to free CTP, the CPT@siRNP treatment showed a significantly higher toxicity to colon cancer cell, inhibition of cancer cell migration, and induction of apopotosis. With the antioxidant feature, siRNP also significantly suppressed the intestinal side effects caused by CPT treatment in tumor-bearing mouse model.
Collapse
|
5
|
Martín-Sabroso C, Fraguas-Sánchez AI, Raposo-González R, Torres-Suárez AI. Perspectives in Breast and Ovarian Cancer Chemotherapy by Nanomedicine Approach: Nanoformulations in Clinical Research. Curr Med Chem 2021; 28:3271-3286. [PMID: 32814522 DOI: 10.2174/0929867327666200819115403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast and ovarian carcinomas represent major health problems in women worldwide. Chemotherapy constitutes the main treatment strategy, and the use of nanocarriers, a good tool to improve it. Several nanoformulations have already been approved, and others are under clinical trials for the treatment of both types of cancers. OBJECTIVE This review focuses on the analysis of the nanoformulations that are under clinical research in the treatment of these neoplasms. RESULTS Currently, there are 6 nanoformulations in clinical trials for breast and ovarian carcinomas, most of them in phase II and phase III. In the case of breast cancer treatment, these nanomedicines contain paclitaxel; and, for ovarian cancer, nanoformulations containing paclitaxel or camptothecin analogs are being evaluated. The nanoencapsulation of these antineoplastics facilitates their administration and reduces their systemic toxicity. Nevertheless, the final approval and commercialization of nanoformulations may be limited by other aspects like lack of correlation between the efficacy results evaluated at in vitro and in vivo levels, difficulty in producing large batches of nanoformulations in a reproducible manner and high production costs compared to conventional formulations of antineoplastics. However, these challenges are not insurmountable and the number of approved nanoformulations for cancer therapy is growing. CONCLUSION Reviewed nanoformulations have shown, in general, excellent results, demonstrating a good safety profile, a higher maximum tolerated dose and a similar or even slightly better antitumor efficacy compared to the administration of free drugs, reinforcing the use of nano-chemotherapy in both breast and ovarian tumors.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Rafaela Raposo-González
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| |
Collapse
|
6
|
Schmidt KT, Chau CH, Strope JD, Huitema ADR, Sissung TM, Price DK, Figg WD. Antitumor Activity of NLG207 (Formerly CRLX101) in Combination with Enzalutamide in Preclinical Prostate Cancer Models. Mol Cancer Ther 2021; 20:915-924. [PMID: 33632874 PMCID: PMC8102325 DOI: 10.1158/1535-7163.mct-20-0228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
Effective treatments for patients with metastatic castration-resistant prostate cancer following disease progression on enzalutamide are currently an unmet clinical need. Simultaneous inhibition of the hypoxia-inducible factor (HIF)-1α and androgen receptor (AR) pathways has been previously shown to overcome enzalutamide resistance in vitro Combination treatment with NLG207, a nanoparticle-drug conjugate of camptothecin and inhibitor of HIF-1α, and enzalutamide was evaluated in preclinical prostate cancer models of enzalutamide resistance. The effect of NLG207 and enzalutamide on average tumor volume and tumor re-growth after 3 weeks of treatment was evaluated in vivo using the subcutaneous 22Rv1 xenograft and castrated subcutaneous VCaP xenograft models. Correlative assessments of antitumor activity were evaluated in vitro using cell proliferation and qPCR assays. NLG207 8 mg/kg alone and in combination with enzalutamide reduced average tumor volume by 93% after 3 weeks of treatment (P < 0.05) in comparison with vehicle control in the subcutaneous 22Rv1 xenograft model. Notably, the addition of NLG207 also enhanced the efficacy of enzalutamide alone in the castrated subcutaneous VCaP xenograft model, decreasing the median rate of tumor growth by 51% (P = 0.0001) in comparison with enzalutamide alone. In vitro assessments of cell proliferation and gene expression further demonstrated antitumor activity via AR-HIF-1α crosstalk inhibition. Combination treatment with NLG207 and enzalutamide was shown to be effective in preclinical prostate cancer models of enzalutamide resistance. Clinical investigation of this treatment combination is ongoing (NCT03531827).
Collapse
Affiliation(s)
- Keith T Schmidt
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cindy H Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jonathan D Strope
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alwin D R Huitema
- Department Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tristan M Sissung
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Douglas K Price
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William D Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
7
|
Shreyash N, Sonker M, Bajpai S, Tiwary SK. Review of the Mechanism of Nanocarriers and Technological Developments in the Field of Nanoparticles for Applications in Cancer Theragnostics. ACS APPLIED BIO MATERIALS 2021; 4:2307-2334. [PMID: 35014353 DOI: 10.1021/acsabm.1c00020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer cannot be controlled by the usage of drugs alone, and thus, nanotechnology is an important technique that can provide the drug with an impetus to act more effectively. There is adequate availability of anticancer drugs that are classified as alkylating agents, hormones, or antimetabolites. Nanoparticle (NP) carriers increase the residence time of the drug, thereby enhancing the survival rate of the drug, which otherwise gets washed off owing to the small size of the drug particles by the excretory system. For example, for enhancing the circulation, a coating of nonfouling polymers like PEG and dextran is done. Famous drugs such as doxorubicin (DOX) are commonly encapsulated inside the nanocomposite. The various classes of nanoparticles are used to enhance drug delivery by aiding it to fight against the tumor. Targeted therapy aims to attack the cells with features common to the cancer cells while minimizing damage to the normal cell, and these therapies work in one in four ways. Some block the cancer cells from reproducing newer cells, others release toxic substances to kill the cancer cells, some stimulate the immune system to destroy the cancer cells, and some block the growth of more blood vessels around cancer cells, which starve the cells of the nutrients, which is needed for their growth. This review aims to testify the advancements nanotechnology has brought in cancer therapy, and its statements are supported with recent research findings and clinical trial results.
Collapse
|
8
|
Bai H, Wang J, Phan CU, Chen Q, Hu X, Shao G, Zhou J, Lai L, Tang G. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nat Commun 2021; 12:759. [PMID: 33536421 PMCID: PMC7858623 DOI: 10.1038/s41467-021-21071-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
The malignancy of colorectal cancer (CRC) is connected with inflammation and tumor-associated macrophages (TAMs), but effective therapeutics for CRC are limited. To integrate therapeutic targeting with tumor microenvironment (TME) reprogramming, here we develop biocompatible, non-covalent channel-type nanoparticles (CNPs) that are fabricated through host-guest complexation and self-assemble of mannose-modified γ-cyclodextrin (M-γ-CD) with Regorafenib (RG), RG@M-γ-CD CNPs. In addition to its carrier role, M-γ-CD serves as a targeting device and participates in TME regulation. RG@M-γ-CD CNPs attenuate inflammation and inhibit TAM activation by targeting macrophages. They also improve RG's anti-tumor effect by potentiating kinase suppression. In vivo application shows that the channel-type formulation optimizes the pharmacokinetics and bio-distribution of RG. In colitis-associated cancer and CT26 mouse models, RG@M-γ-CD is proven to be a targeted, safe and effective anti-tumor nanomedicine that suppresses tumor cell proliferation, lesions neovascularization, and remodels TME. These findings indicate RG@M-γ-CD CNPs as a potential strategy for CRC treatment.
Collapse
Affiliation(s)
- Hongzhen Bai
- Department of Chemistry, Zhejiang University, 310028, Hangzhou, PR China
| | - Jianwei Wang
- Department of Chemistry, Zhejiang University, 310028, Hangzhou, PR China
| | - Chi Uyen Phan
- Department of Chemistry, Zhejiang University, 310028, Hangzhou, PR China
| | - Qi Chen
- Department of Chemistry, Zhejiang University, 310028, Hangzhou, PR China
| | - Xiurong Hu
- Department of Chemistry, Zhejiang University, 310028, Hangzhou, PR China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, 210029, Nanjing, PR China
| | - Jun Zhou
- Department of Chemistry, Zhejiang University, 310028, Hangzhou, PR China
| | - Lihua Lai
- Department of Pharmacology, School of Medicine, Zhejiang University, 310058, Hangzhou, PR China.
| | - Guping Tang
- Department of Chemistry, Zhejiang University, 310028, Hangzhou, PR China.
| |
Collapse
|
9
|
Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare EN, Padil VVT, Zarrabi A, Pourreza N, Miltyk W, Maiti TK. A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydr Polym 2020; 250:116952. [PMID: 33049857 DOI: 10.1016/j.carbpol.2020.116952] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Graphene-based bionanocomposites are employed in several ailments, such as cancers and infectious diseases, due to their large surface area (to carry drugs), photothermal properties, and ease of their functionalization (owing to their active groups). Modification of graphene-derivatives with polysaccharides is a promising strategy to decrease their toxicity and improve target ability, which consequently enhances their biotherapeutic efficacy. Herein, functionalization of graphene-based materials with carbohydrate polymers (e.g., chitosan, starch, alginate, hyaluronic acid, and cellulose) are presented. Subsequently, recent advances in graphene nanomaterial/polysaccharide-based bionanocomposites in infection treatment and cancer therapy are comprehensively discussed. Pharmacogenomic and toxicity assessments for these bionanocomposites are also highlighted to provide insight for future optimized and smart investigations and researches.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran.
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, 80126, Italy
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská, 1402/2, Liberec, Czech Republic
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
10
|
Li Y, Liu Y, Du B, Cheng G. Reshaping Tumor Blood Vessels to Enhance Drug Penetration with a Multistrategy Synergistic Nanosystem. Mol Pharm 2020; 17:3151-3164. [PMID: 32787273 DOI: 10.1021/acs.molpharmaceut.0c00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Genyang Cheng
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Zhao C, Zeng C, Ye S, Dai X, He Q, Yang B, Zhu H. Yes-associated protein (YAP) and transcriptional coactivator with a PDZ-binding motif (TAZ): a nexus between hypoxia and cancer. Acta Pharm Sin B 2020; 10:947-960. [PMID: 32642404 PMCID: PMC7332664 DOI: 10.1016/j.apsb.2019.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common feature of solid tumors. As transcription factors, hypoxia-inducible factors (HIFs) are the master regulators of the hypoxic microenvironment; their target genes function in tumorigenesis and tumor development. Intriguingly, both yes-associated protein (YAP) and its paralog transcriptional coactivator with a PDZ-binding motif (TAZ) play fundamental roles in the malignant progression of hypoxic tumors. As downstream effectors of the mammalian Hippo pathway, YAP and/or TAZ (YAP/TAZ) are phosphorylated and sequestered in the cytoplasm by the large tumor suppressor kinase 1/2 (LATS1/2)-MOB kinase activator 1 (MOB1) complex, which restricts the transcriptional activity of YAP/TAZ. However, dephosphorylated YAP/TAZ have the ability to translocate to the nucleus where they induce transcription of target genes, most of which are closely related to cancer. Herein we review the tumor-related signaling crosstalk between YAP/TAZ and hypoxia, describe current agents and therapeutic strategies targeting the hypoxia–YAP/TAZ axis, and highlight questions that might have a potential impact in the future.
Collapse
Affiliation(s)
- Chenxi Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenming Zeng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Song Ye
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaoyang Dai
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding author. Tel.: +86 571 882028401; fax: +86 571 88208400.
| |
Collapse
|
12
|
Jug M. Cyclodextrin-based drug delivery systems. NANOMATERIALS FOR CLINICAL APPLICATIONS 2020:29-69. [DOI: 10.1016/b978-0-12-816705-2.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Bhaskaran NA, Chevala NT, Kumar L. Nanopharmacokinetics, pharmacodynamics (PK/PD), and clinical relationship. NANOMEDICINES FOR BREAST CANCER THERANOSTICS 2020:245-268. [DOI: 10.1016/b978-0-12-820016-2.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Padhi S, Behera A. Nanotechnology Based Targeting Strategies for the Delivery of Camptothecin. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41842-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Saghafi T, Taheri RA, Parkkila S, Emameh RZ. Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. Int J Mol Sci 2019; 20:E2939. [PMID: 31208095 PMCID: PMC6627131 DOI: 10.3390/ijms20122939] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3'-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.
Collapse
Affiliation(s)
- Tayebeh Saghafi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 14965/161 Tehran, Iran.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland.
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
16
|
He MH, Chen L, Zheng T, Tu Y, He Q, Fu HL, Lin JC, Zhang W, Shu G, He L, Yuan ZX. Potential Applications of Nanotechnology in Urological Cancer. Front Pharmacol 2018; 9:745. [PMID: 30038573 PMCID: PMC6046453 DOI: 10.3389/fphar.2018.00745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/19/2018] [Indexed: 01/16/2023] Open
Abstract
Nowadays, the potential scope of nanotechnology in uro-oncology (cancers of the prostate, bladder, and kidney) is broad, ranging from drug delivery, prevention, and diagnosis to treatment. Novel drug delivery methods using magnetic nanoparticles, gold nanoparticles, and polymeric nanoparticles have been investigated in prostate cancer. Additionally, renal cancer treatment may be profoundly influenced by applications of nanotechnology principles. Various nanoparticle-based strategies for kidney cancer therapy have been proposed. Partly due to the dilution of drug concentrations by urine production, causing inadequate drug delivery to tumor cells in the treatment of bladder cancer, various multifunctional bladder-targeted nanoparticles have been developed to enhance therapeutic efficiency. In each of these cancer research fields, nanotechnology has shown several advantages over widely used traditional methods. Different types of nanoparticles improve the solubility of poorly soluble drugs, and multifunctional nanoparticles have good specificity toward prostate, renal, and bladder cancer. Moreover, nanotechnology can also combine with other novel technologies to further enhance effectivity. As our understanding of nanotechnologies grows, additional opportunities to improve the diagnosis and treatment of urological cancer are excepted to arise. In this review, we focus on nanotechnologies with potential applications in urological cancer therapy and highlight clinical areas that would benefit from nanoparticle therapy.
Collapse
Affiliation(s)
- Ming-Hui He
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Zheng
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Tu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian He
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hua-Lin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ju-Chun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Zhi-Xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Fang S, Hou Y, Ling L, Wang D, Ismail M, Du Y, Zhang Y, Yao C, Li X. Dimeric camptothecin derived phospholipid assembled liposomes with high drug loading for cancer therapy. Colloids Surf B Biointerfaces 2018; 166:235-244. [DOI: 10.1016/j.colsurfb.2018.02.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
18
|
Li BS, Huang JY, Guan J, Chen LH. Camptothecin inhibits the progression of NPC by regulating TGF-β-induced activation of the PI3K/AKT signaling pathway. Oncol Lett 2018; 16:552-558. [PMID: 29963130 DOI: 10.3892/ol.2018.8688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/11/2018] [Indexed: 12/28/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a type of cancer that is characterized by increased invasiveness, metastatic potential and tumor recurrence. Camptothecin has been demonstrated to exhibit anticancer activity. However, the potential underlying molecular mechanisms mediated by camptothecin in NPC cells remain elusive. In the present study, the efficacy of camptothecin for NPC was investigated in vitro and in vivo. Additionally, the potential signaling pathway mediated by camptothecin in NPC cells was also examined. The results indicated that the viability and aggressiveness of NPC cells were suppressed by camptothecin treatment in a dose-dependent manner. Camptothecin administration downregulated the expression levels of cell-cycle-associated proteins including cyclin 1, cyclin-dependent kinase (CDK)1 and CDK2 in NPC cells. Expression levels of migration-associated proteins including vimentin, fibronectin and epithelial cadherin were regulated by camptothecin treatment in NPC cells. Additionally, camptothecin inhibited the expression of transforming growth factor-β (TGF-β), phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT), whereas TGF-β overexpression abrogated camptothecin-mediated inhibition of PI3K and AKT expression and camptothecin-mediated inhibition of the viability and aggressiveness of NPC cells. Camptothecin significantly inhibited tumor growth and increased survival times in a mouse model of cancer. In conclusion, these results indicate that camptothecin treatment may inhibit the viability of NPC cells and aggressiveness by regulating the TGF-β-induced PI3K/AKT signaling pathways, which in turn may be a potential molecular target for the treatment of NPC.
Collapse
Affiliation(s)
- Ben-Shan Li
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Oncology, People's Hospital of Jiangmen, Jiangmen, Guangdong 529000, P.R. China
| | - Ji-Yi Huang
- Department of E.N.T., People's Hospital of Jiangmen, Jiangmen, Guangdong 529000, P.R. China
| | - Jing Guan
- Department of Oncology, People's Hospital of Jiangmen, Jiangmen, Guangdong 529000, P.R. China
| | - Long-Hua Chen
- Department of Radiation Oncology, Nanfang Hospital Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
19
|
Spa SJ, Welling MM, van Oosterom MN, Rietbergen DDD, Burgmans MC, Verboom W, Huskens J, Buckle T, van Leeuwen FWB. A Supramolecular Approach for Liver Radioembolization. Theranostics 2018; 8:2377-2386. [PMID: 29721086 PMCID: PMC5928896 DOI: 10.7150/thno.23567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
Hepatic radioembolization therapies can suffer from discrepancies between diagnostic planning (scout-scan) and the therapeutic delivery itself, resulting in unwanted side-effects such as pulmonary shunting. We reasoned that a nanotechnology-based pre-targeting strategy could help overcome this shortcoming by directly linking pre-interventional diagnostics to the local delivery of therapy. Methods: The host-guest interaction between adamantane and cyclodextrin was employed in an in vivo pre-targeting set-up. Adamantane (guest)-functionalized macro albumin aggregates (MAA-Ad; d = 18 μm) and (radiolabeled) Cy5 and β-cyclodextrin (host)-containing PIBMA polymers (99mTc-Cy50.5CD10PIBMA39; MW ~ 18.8 kDa) functioned as the reactive pair. Following liver or lung embolization with (99mTc)-MAA-Ad or (99mTc)-MAA (control), the utility of the pre-targeting concept was evaluated after intravenous administration of 99mTc-Cy50.5CD10PIBMA39. Results: Interactions between MAA-Ad and Cy50.5CD10PIBMA39 could be monitored in solution using confocal microscopy and were quantified by radioisotope-based binding experiments. In vivo the accumulation of the MAA-Ad particles in the liver or lungs yielded an approximate ten-fold increase in accumulation of 99mTc-Cy50.5CD10PIBMA39 in these organs (16.2 %ID/g and 10.5 %ID/g, respectively) compared to the control. Pre-targeting with MAA alone was shown to be only half as efficient. Uniquely, for the first time, this data demonstrates that the formation of supramolecular interactions between cyclodextrin and adamantane can be used to drive complex formation in the chemically challenging in vivo environment. Conclusion: The in vivo distribution pattern of the cyclodextrin host could be guided by the pre-administration of the adamantane guest, thereby creating a direct link between the scout-scan (MAA-Ad) and delivery of therapy.
Collapse
Affiliation(s)
- Silvia J. Spa
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Agrotechnology and Food services, subdivision BioNanoTechnology, Wageningen University, Wageningen, The Netherlands
| | - Mick M. Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias N. van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne D. D. Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Nuclear Medicine Section, Leiden University Medical Center, Leiden The Netherlands
| | - Mark C. Burgmans
- Interventional Radiology, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem Verboom
- Molecular NanoFabrication group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Agrotechnology and Food services, subdivision BioNanoTechnology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
20
|
DMET™ (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget 2018; 7:54028-54050. [PMID: 27304055 PMCID: PMC5288240 DOI: 10.18632/oncotarget.9927] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/29/2016] [Indexed: 02/07/2023] Open
Abstract
In the era of personalized medicine, high-throughput technologies have allowed the investigation of genetic variations underlying the inter-individual variability in drug pharmacokinetics/pharmacodynamics. Several studies have recently moved from a candidate gene-based pharmacogenetic approach to genome-wide pharmacogenomic analyses to identify biomarkers for selection of patient-tailored therapies. In this aim, the identification of genetic variants affecting the individual drug metabolism is relevant for the definition of more active and less toxic treatments. This review focuses on the potentiality, reliability and limitations of the DMET™ (Drug Metabolism Enzymes and Transporters) Plus as pharmacogenomic drug metabolism multi-gene panel platform for selecting biomarkers in the final aim to optimize drugs use and characterize the individual genetic background.
Collapse
|
21
|
Lin CJ, Lin YL, Luh F, Yen Y, Chen RM. Preclinical effects of CRLX101, an investigational camptothecin-containing nanoparticle drug conjugate, on treating glioblastoma multiforme via apoptosis and antiangiogenesis. Oncotarget 2018; 7:42408-42421. [PMID: 27285755 PMCID: PMC5173144 DOI: 10.18632/oncotarget.9878] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are difficult to treat in clinical practice. This study was aimed to investigate the preclinical efficacy of CRLX101, an investigational nanoparticle-drug conjugate developed by conjugating camptothecin (CPT) with cyclodextrin-polyethylene glycol, against gliomas. CPT fluorescence was detected across tight-junction barriers and in mouse plasma and brain. Following CRLX101 treatment, CPT was distributed in the cytoplasm of human U87 MG glioma cells. U87 MG cell viability was decreased by CRLX101 and CPT. Moreover, CRLX101 induced less cytotoxicity to human astrocytes compared to CPT. Exposure of U87 MG cells to CRLX101 induced G2/M cell cycle arrest and apoptosis. Administration of CRLX101 induced apoptosis in mice brain tumor tissues and prolonged the survival rate of mice. In addition, CRLX101 inhibited hypoxia and angiogenesis by suppressing the expression of carbonic anhydrase IX, vascular endothelial growth factor, and CD31 in tumor sections. Taken together, this preclinical study showed that CRLX101 possesses antitumor abilities by inducing cell cycle arrest and apoptosis in glioma cells and inhibiting tumor angiogenesis, thereby prolonging the lifespan of mice bearing intracranial gliomas. These data support further research of CRLX101 in patients with brain tumors.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Lin
- Brain Disease Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Frank Luh
- Sino-American Cancer Foundation, Temple City, California, USA
| | - Yun Yen
- Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Brain Disease Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Anesthetics and Toxicology Research Center and Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
22
|
Balasubramanian V, Liu Z, Hirvonen J, Santos HA. Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Adv Healthc Mater 2018; 7. [PMID: 28570787 DOI: 10.1002/adhm.201700432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Explosive growth of nanomedicines continues to significantly impact the therapeutic strategies for effective cancer treatment. Despite the significant progress in the development of advanced nanomedicines, successful clinical translation remains challenging. As cancer nanomedicine is a multidisciplinary field, the fundamental problem is that the knowledge gaps stem from different vantage points in the understanding of cancer nanomedicines. The complexities and heterogenecity of both nanomedicines and cancer are further demanding the integration of highly diverse expertise to develop clinically translatable cancer nanomedicines. This progress report aims to discuss the current understanding of cancer nanomedicines between different research areas in terms of nanoparticle engineering, formulation, tumor patho-physiology and clinical medicine, as well as to identify the knowledge gaps lying at the interface between the different fields of research in nanomedicine. Here we also highlight for the necessity to harmonize the multidisciplinary effort in the research of nanomedicines in order to bridge the knowledge and to advance the full understanding in cancer nanomedicines. A paradigm shift is needed in the strategic development of disease specific nanomedicines in order to foster the successful translation into clinic of future cancer nanomedicines.
Collapse
Affiliation(s)
- Vimalkumar Balasubramanian
- Division of Pharmaceutical Chemistry and Technology; Drug Research Program; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Zehua Liu
- Division of Pharmaceutical Chemistry and Technology; Drug Research Program; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology; Drug Research Program; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Hélder A. Santos
- Helsinki Institute of Life Science; HiLIFE; University of Helsinki; FI-00014 Helsinki Finland
| |
Collapse
|
23
|
Voss MH, Hussain A, Vogelzang N, Lee JL, Keam B, Rha SY, Vaishampayan U, Harris WB, Richey S, Randall JM, Shaffer D, Cohn A, Crowell T, Li J, Senderowicz A, Stone E, Figlin R, Motzer RJ, Haas NB, Hutson T. A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma. Ann Oncol 2017; 28:2754-2760. [PMID: 28950297 DOI: 10.1093/annonc/mdx493] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nanoparticle-drug conjugates enhance drug delivery to tumors. Gradual payload release inside cancer cells augments antitumor activity while reducing toxicity. CRLX101 is a novel nanoparticle-drug conjugate containing camptothecin, a potent inhibitor of topoisomerase I and the hypoxia-inducible factors 1α and 2α. In a phase Ib/2 trial, CRLX101 + bevacizumab was well tolerated with encouraging activity in metastatic renal cell carcinoma (mRCC). We conducted a randomized phase II trial comparing CRLX101 + bevacizumab versus standard of care (SOC) in refractory mRCC. PATIENTS AND METHODS Patients with mRCC and 2-3 prior lines of therapy were randomized 1 : 1 to CRLX101 + bevacizumab versus SOC, defined as investigator's choice of any approved regimen not previously received. The primary end point was progression-free survival (PFS) by blinded independent radiological review in patients with clear cell mRCC. Secondary end points included overall survival, objective response rate and safety. RESULTS In total, 111 patients were randomized and received ≥1 dose of drug (CRLX101 + bevacizumab, 55; SOC, 56). Within the SOC arm, patients received single-agent bevacizumab (19), axitinib (18), everolimus (7), pazopanib (4), sorafenib (4), sunitinib (2), or temsirolimus (2). In the clear cell population, the median PFS on the CRLX101 + bevacizumab and SOC arms was 3.7 months (95% confidence interval, 2.0-4.3) and 3.9 months (95% confidence interval 2.2-5.4), respectively (stratified log-rank P = 0.831). The objective response rate by IRR was 5% with CRLX101 + bevacizumab versus 14% with SOC (Mantel-Haenszel test, P = 0.836). Consistent with previous studies, the CRLX101 + bevacizumab combination was generally well tolerated, and no new safety signal was identified. CONCLUSIONS Despite promising efficacy data on the earlier phase Ib/2 trial of mRCC, this randomized trial did not demonstrate improvement in PFS for the CRLX101 + bevacizumab combination when compared with approved agents in patients with heavily pretreated clear cell mRCC. Further development in this disease is not planned. CLINICAL TRIAL IDENTIFICATION NCT02187302 (NIH).
Collapse
Affiliation(s)
- M H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York. mailto:
| | - A Hussain
- Department of Medicine, Greenebaum Cancer Center, University of Maryland, Baltimore
| | - N Vogelzang
- Department of Hematology/Oncology, Comprehensive Cancer Centers of Nevada, Las Vegas; US Oncology Research, USA
| | - J L Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - B Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul
| | - S Y Rha
- Department of Medicine, Severance Hospital, Seoul, Korea
| | - U Vaishampayan
- Department of Oncology, Karmanos Cancer Institute, Detroit
| | - W B Harris
- Department of Hematology/Oncology, Emory University Winship Cancer Institute, Atlanta
| | - S Richey
- US Oncology Research, USA; Department of Medicine, Texas Oncology, Fort Worth
| | - J M Randall
- Department of Medicine, University of California, San Diego, La Jolla
| | - D Shaffer
- US Oncology Research, USA; Department of Medicine, Albany Medical Center, NYOH, Albany
| | - A Cohn
- US Oncology Research, USA; Department of Clinical Research, Rocky Mountain Cancer Centers, Denver
| | - T Crowell
- Department of Medicine, Cerulean Pharma Inc., Waltham
| | - J Li
- Department of Medicine, Cerulean Pharma Inc., Waltham
| | - A Senderowicz
- Department of Medicine, Cerulean Pharma Inc., Waltham
| | - E Stone
- Department of Medicine, Cerulean Pharma Inc., Waltham
| | - R Figlin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles
| | - R J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - N B Haas
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - T Hutson
- US Oncology Research, USA; Department of Medicine, Texas Oncology, Dallas, USA
| |
Collapse
|
24
|
Repetto O, De Re V. Coagulation and fibrinolysis in gastric cancer. Ann N Y Acad Sci 2017; 1404:27-48. [PMID: 28833193 DOI: 10.1111/nyas.13454] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Coagulation is a highly conserved process occurring after an injury to a blood vessel and resulting in hemostasis. In the thrombus microenvironment, finely orchestrated events restore vessel integrity through platelet activation, adhesion, and aggregation (primary hemostasis), followed by the coagulation cascades, thrombin generation, and fibrin clot deposition (secondary hemostasis). Several studies on cancer have provided insight into dramatic changes to coagulation-related events (i.e., fibrin clot deposition, fibrinolysis) during tumor pathogenesis, progression, and metastasis, in addition to a tumor-driven systemic activation of hemostasis and thrombosis (Trousseau's syndrome). Diverse molecular and cellular effectors participate in the cross talk between hemostasis and tumors. Here, we focus on some aspects of the interconnection between cancer biology and hemostatic components, with particular attention to some key coagulation-related proteins (e.g., tissue factor, thrombin, fibrinogen, and D-dimers) in the particular case of gastric cancer (GC). Recent advances in deciphering the complex molecular link between GC and the coagulation system are described, showing their important roles in better management of patients affected by GC.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| |
Collapse
|
25
|
Rey S, Schito L, Wouters BG, Eliasof S, Kerbel RS. Targeting Hypoxia-Inducible Factors for Antiangiogenic Cancer Therapy. Trends Cancer 2017; 3:529-541. [PMID: 28718406 DOI: 10.1016/j.trecan.2017.05.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
Hypoxia (low O2) is a pathobiological hallmark of solid cancers, resulting from the imbalance between cellular O2 consumption and availability. Hypoxic cancer cells (CCs) stimulate blood vessel sprouting (angiogenesis), aimed at restoring O2 delivery to the expanding tumor masses through the activation of a transcriptional program mediated by hypoxia-inducible factors (HIFs). Here, we review recent data suggesting that the efficacy of antiangiogenic (AA) therapies is limited in some circumstances by HIF-dependent compensatory responses to increased intratumoral hypoxia. In lieu of this evidence, we discuss the potential of targeting HIFs as a strategy to overcome these instances of AA therapy resistance.
Collapse
Affiliation(s)
- Sergio Rey
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Luana Schito
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, ON, Canada; Radiation Oncology, University of Toronto, ON, Canada
| | | | - Robert S Kerbel
- Radiation Oncology, University of Toronto, ON, Canada; Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
26
|
Waddington DEJ, Sarracanie M, Zhang H, Salameh N, Glenn DR, Rej E, Gaebel T, Boele T, Walsworth RL, Reilly DJ, Rosen MS. Nanodiamond-enhanced MRI via in situ hyperpolarization. Nat Commun 2017; 8:15118. [PMID: 28443626 PMCID: PMC5414045 DOI: 10.1038/ncomms15118] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/01/2017] [Indexed: 11/05/2022] Open
Abstract
Nanodiamonds are of interest as nontoxic substrates for targeted drug delivery and as highly biostable fluorescent markers for cellular tracking. Beyond optical techniques, however, options for noninvasive imaging of nanodiamonds in vivo are severely limited. Here, we demonstrate that the Overhauser effect, a proton–electron polarization transfer technique, can enable high-contrast magnetic resonance imaging (MRI) of nanodiamonds in water at room temperature and ultra-low magnetic field. The technique transfers spin polarization from paramagnetic impurities at nanodiamond surfaces to 1H spins in the surrounding water solution, creating MRI contrast on-demand. We examine the conditions required for maximum enhancement as well as the ultimate sensitivity of the technique. The ability to perform continuous in situ hyperpolarization via the Overhauser mechanism, in combination with the excellent in vivo stability of nanodiamond, raises the possibility of performing noninvasive in vivo tracking of nanodiamond over indefinitely long periods of time. Hyperpolarized magnetic resonance imaging can enhance imaging contrast by orders of magnitude, but applications are limited by the thermal relaxation of hyperpolarized states. Here, Waddington et al. demonstrate the on-demand hyperpolarization of hydrogen spins through the Overhauser effect with nanodiamonds.
Collapse
Affiliation(s)
- David E J Waddington
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Mathieu Sarracanie
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Huiliang Zhang
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - Najat Salameh
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| | - David R Glenn
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - Ewa Rej
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Torsten Gaebel
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas Boele
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ronald L Walsworth
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
| | - David J Reilly
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Matthew S Rosen
- A.A. Martinos Center for Biomedical Imaging, Suite 2301, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA.,Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Clere N, To KHT, Legeay S, Bertrand S, Helesbeux JJ, Duval O, Faure S. Pro-Angiogenic Effects of Low Dose Ethoxidine in a Murine Model of Ischemic Hindlimb: Correlation between Ethoxidine Levels and Increased Activation of the Nitric Oxide Pathway. Molecules 2017; 22:molecules22040627. [PMID: 28417947 PMCID: PMC6154657 DOI: 10.3390/molecules22040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 11/16/2022] Open
Abstract
Ethoxidine, a benzo[c]phenanthridine derivative, has been identified as a potent inhibitor of topoisomerase I in cancer cell lines. Our group has reported paradoxical properties of ethoxidine in cellular processes leading to angiogenesis on endothelial cells. Because low concentration ethoxidine is able to favor angiogenesis, the present study aimed to investigate the ability of 10-9 M ethoxidine to modulate neovascularization in a model of mouse hindlimb ischemia. After inducing unilateral hindlimb ischemia, mice were treated for 21 days with glucose 5% or with ethoxidine, to reach plasma concentrations equivalent to 10-9 M. Laser Doppler analysis showed that recovery of blood flow was 1.5 fold higher in ethoxidine-treated mice in comparison with control mice. Furthermore, CD31 staining and angiographic studies confirmed an increase of vascular density in ethoxidine-treated mice. This ethoxidine-induced recovery was associated with an increase of NO production through an enhancement of eNOS phosphorylation on its activator site in skeletal muscle from ischemic hindlimb. Moreover, real-time RT-PCR and western blots have highlighted that ethoxidine has pro-angiogenic properties by inducing a significant enhancement in vegf transcripts and VEGF expression, respectively. These findings suggest that ethoxidine could contribute to favor neovascularization after an ischemic injury by promoting the NO pathway and VEGF expression.
Collapse
Affiliation(s)
- Nicolas Clere
- MINT, Univ Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
- Department of Pharmaceutical Pharmacology and Physiology, UFR Santé-School of Pharmacy, University of Angers, F-49045 Angers, France.
| | - Kim Hung Thien To
- Department of Pharmaceutical Pharmacology and Physiology, UFR Santé-School of Pharmacy, University of Angers, F-49045 Angers, France.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA.
| | - Samuel Legeay
- MINT, Univ Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
- Department of Pharmaceutical Pharmacology and Physiology, UFR Santé-School of Pharmacy, University of Angers, F-49045 Angers, France.
| | - Samuel Bertrand
- EA 2160, Univ Nantes, Université Bretagne Loire, F-44200 Nantes, France.
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| | - Jean Jacques Helesbeux
- SONAS, SFR QUASAV 4207, UPRES EA921, Univ Angers, Université Bretagne Loire, F-49035 Angers, France.
| | - Olivier Duval
- SONAS, SFR QUASAV 4207, UPRES EA921, Univ Angers, Université Bretagne Loire, F-49035 Angers, France.
| | - Sébastien Faure
- MINT, Univ Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
- Department of Pharmaceutical Pharmacology and Physiology, UFR Santé-School of Pharmacy, University of Angers, F-49045 Angers, France.
| |
Collapse
|
28
|
Choi Y, Jiang F, An H, Park HJ, Choi JH, Lee H. A pharmacogenomic study on the pharmacokinetics of tacrolimus in healthy subjects using the DMET TM Plus platform. THE PHARMACOGENOMICS JOURNAL 2017; 17:174-179. [PMID: 26882121 DOI: 10.1038/tpj.2015.99] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/22/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022]
Abstract
Genetic association studies on the pharmacokinetics of tacrolimus have reported conflicting results, except for the role of the CYP3A5*3 polymorphism. The objective of this study was to identify genetic variants affecting the pharmacokinetics of tacrolimus using the DMETTM Plus microarray in 42 healthy males. Aside from CYP3A5*3, the rs3814055 polymorphism in the NR1I2 gene was associated with the tacrolimus pharmacokinetics based on false discovery rate-corrected multiple tests and the least absolute shrinkage and selection operator analysis. The area under the concentration-time curve to the last quantifiable time point (AUClast) was 3.42 times greater in subjects with homozygous mutations in both genes (CYP3A5*3/*3 and NR1I2 T/T) than in wild-type subjects. The two variants explained the 54% variability in the tacrolimus AUClast. An in vitro luciferase reporter assay indicated that downregulation of PXR expression is the likely molecular mechanism responsible for the increased exposure to tacrolimus in subjects carrying the rs3814055 C>T variant.
Collapse
Affiliation(s)
- Y Choi
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - F Jiang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - H An
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
- Department of Statistics, Seoul National University, Seoul, Korea
| | - H J Park
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - J H Choi
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Korea
| | - H Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Abstract
The drug camptothecin has a wide range of antitumor effects in cancers including gastric cancer, rectal and colon cancer, liver cancer, and lung cancer. Camptothecin-based drugs inhibit topoisomerase 1 (Topo 1), leading to destruction of DNA, and are currently being used as important chemotherapeutic agents in clinical antitumor treatment. However, the main obstacle associated with cancer therapy is represented by systemic toxicity of conventional anticancer drugs and their low accumulation at the tumor site. In addition, low bioavailability, poor water solubility, and other shortcomings hinder their anticancer activity. Different from traditional pharmaceutical preparations, nanotechnology-dependent nanopharmaceutical preparations have become one of the main strategies for different countries worldwide to overcome drug development problems. In this review, we summarized the current hotspots and discussed a variety of camptothecin-based nanodrugs for cancer therapy. We hope that through this review, more efficient drug delivery systems could be designed with potential applications in clinical cancer therapy.
Collapse
Affiliation(s)
- Yan Wen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingze Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaoli Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xinhe Xiong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhongxiao Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xingjie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Martin AR, Ronco C, Demange L, Benhida R. Hypoxia inducible factor down-regulation, cancer and cancer stem cells (CSCs): ongoing success stories. MEDCHEMCOMM 2017; 8:21-52. [PMID: 30108689 PMCID: PMC6071925 DOI: 10.1039/c6md00432f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
In cancers, hypoxia inducible factor 1 (HIF-1) is an over-expressed transcription factor, which regulates a large set of genes involved in tumour vascularization, metastases, and cancer stem cells (CSCs) formation and self-renewal. This protein has been identified as a relevant target in oncology and several HIF-1 modulators are now marketed or in advanced clinical trials. The purpose of this review is to summarize the advances in the understanding of its regulation and its inhibition, from the medicinal chemist point of view. To this end, we selected in the recent literature relevant examples of "hit" compounds, including small-sized organic molecules, pseudopeptides and nano-drugs, exhibiting in vitro and/or in vivo both anti-HIF-1 and anti-tumour activities. Whenever possible, a particular emphasis has been dedicated to compounds that selectively target CSCs.
Collapse
Affiliation(s)
- Anthony R Martin
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Cyril Ronco
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| | - Luc Demange
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
- UFR des Sciences Pharmaceutiques , Université Paris Descartes , Sorbonne Paris Cité , 4 avenue de l'Observatoire , Paris Fr-75006 , France
- UFR Biomédicale des Saints Pères , 45 rue des Saints Pères , Paris Fr-75006 , France
| | - Rachid Benhida
- Université Côte d'Azur , CNRS , Institut de Chimie de Nice UMR 7272 - 06108 Nice , France . ; ; ; Tel: +33 4 92076143
| |
Collapse
|
31
|
Yuan ZX, Mo J, Zhao G, Shu G, Fu HL, Zhao W. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells. Front Pharmacol 2016; 7:423. [PMID: 27891093 PMCID: PMC5103413 DOI: 10.3389/fphar.2016.00423] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022] Open
Abstract
Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rationale for therapies targeting this aggressive cell population. Precise identification of renal CSC populations and the complete cell hierarchy will accurately inform characterization of disease subtypes. This will ultimately contribute to more personalized and targeted therapies. Here, we summarize potential targeting strategies for renal cancer cells and renal CSCs, including tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors (mTOR), interleukins, CSC marker inhibitors, bone morphogenetic protein-2, antibody drug conjugates, and nanomedicine. In conclusion, targeting therapies for RCC represent new directions for exploration and clinical investigation and they plant a seed of hope for advanced clinical care.
Collapse
Affiliation(s)
- Zhi-Xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Guixian Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Hua-Lin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
32
|
Pham E, Yin M, Peters CG, Lee CR, Brown D, Xu P, Man S, Jayaraman L, Rohde E, Chow A, Lazarus D, Eliasof S, Foster FS, Kerbel RS. Preclinical Efficacy of Bevacizumab with CRLX101, an Investigational Nanoparticle-Drug Conjugate, in Treatment of Metastatic Triple-Negative Breast Cancer. Cancer Res 2016; 76:4493-503. [PMID: 27325647 DOI: 10.1158/0008-5472.can-15-3435] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
VEGF pathway-targeting antiangiogenic drugs, such as bevacizumab, when combined with chemotherapy have changed clinical practice for the treatment of a broad spectrum of human cancers. However, adaptive resistance often develops, and one major mechanism is elevated tumor hypoxia and upregulated hypoxia-inducible factor-1α (HIF1α) caused by antiangiogenic treatment. Reduced tumor vessel numbers and function following antiangiogenic therapy may also affect intratumoral delivery of concurrently administered chemotherapy. Nonetheless, combining chemotherapy and bevacizumab can lead to improved response rates, progression-free survival, and sometimes, overall survival, the extent of which can partly depend on the chemotherapy backbone. A rational, complementing chemotherapy partner for combination with bevacizumab would not only reduce HIF1α to overcome hypoxia-induced resistance, but also improve tumor perfusion to maintain intratumoral drug delivery. Here, we evaluated bevacizumab and CRLX101, an investigational nanoparticle-drug conjugate containing camptothecin, in preclinical mouse models of orthotopic primary triple-negative breast tumor xenografts, including a patient-derived xenograft. We also evaluated long-term efficacy of CRLX101 and bevacizumab to treat postsurgical, advanced metastatic breast cancer in mice. CRLX101 alone and combined with bevacizumab was highly efficacious, leading to complete tumor regressions, reduced metastasis, and greatly extended survival of mice with metastatic disease. Moreover, CRLX101 led to improved tumor perfusion and reduced hypoxia, as measured by contrast-enhanced ultrasound and photoacoustic imaging. CRLX101 durably suppressed HIF1α, thus potentially counteracting undesirable effects of elevated tumor hypoxia caused by bevacizumab. Our preclinical results show pairing a potent cytotoxic nanoparticle chemotherapeutic that complements and improves concurrent antiangiogenic therapy may be a promising treatment strategy for metastatic breast cancer. Cancer Res; 76(15); 4493-503. ©2016 AACR.
Collapse
Affiliation(s)
- Elizabeth Pham
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Melissa Yin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Christina R Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Donna Brown
- Cerulean Pharma Inc., Waltham, Massachusetts
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Ellen Rohde
- Cerulean Pharma Inc., Waltham, Massachusetts
| | - Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | - F Stuart Foster
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
34
|
CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc Natl Acad Sci U S A 2016; 113:3850-4. [PMID: 27001839 DOI: 10.1073/pnas.1603018113] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanoparticle-based therapeutics are being used to treat patients with solid tumors. Whereas nanoparticles have been shown to preferentially accumulate in solid tumors of animal models, there is little evidence to prove that intact nanoparticles localize to solid tumors of humans when systemically administered. Here, tumor and adjacent, nonneoplastic tissue biopsies are obtained through endoscopic capture from patients with gastric, gastroesophageal, or esophageal cancer who are administered the nanoparticle CRLX101. Both the pre- and postdosing tissue samples adjacent to tumors show no definitive evidence of either the nanoparticle or its drug payload (camptothecin, CPT) contained within the nanoparticle. Similar results are obtained from the predosing tumor samples. However, in nine of nine patients that were evaluated, CPT is detected in the tumor tissue collected 24-48 h after CRLX101 administration. For five of these patients, evidence of the intact deposition of CRLX101 nanoparticles in the tumor tissue is obtained. Indications of CPT pharmacodynamics from tumor biomarkers such as carbonic anhydrase IX and topoisomerase I by immunohistochemistry show clear evidence of biological activity from the delivered CPT in the posttreatment tumors.
Collapse
|
35
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1713] [Impact Index Per Article: 190.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
36
|
Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:579-601. [PMID: 26800431 DOI: 10.1002/wnan.1384] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
Nanosponges (NSs) are a new age branched cyclodextrin (CD) polymeric systems exhibiting tremendous potential in pharmaceutical, agro science, and biomedical applications. Over the past decade, different varieties of NS based on the type of CD and the crosslinker have been developed tailored for specific applications. NS technology has been instrumental in achieving solubilization, stabilization, sustained release, enhancement of activity, permeability enhancement, protein delivery, ocular delivery, stimuli sensitive drug release, enhancement of bioavailability, etc. There is a major explosion of research in the area of NS-aided cancer therapeutics. A wide of anticancer molecules both from a pharmacological and physicochemical perspective have been developed as NS formulations by several groups including ours. Our objective in this review is to capture a systematic and comprehensive snapshot of the state-of-the-art of NS-aided cancer therapeutics reported so far. This review will provide an ideal platform for both the formulation scientists working on new polymeric/drug development and cancer biologists/scientists to understand the current nanotechnologies in CD-based NS-aided cancer therapeutics. The scope of the review is limited to small molecules and CD-based NS. The review covers in detail the problems associated with anticancer small molecules, and the solution provided by CD-based NS specifically for camptothecin, curcumin, paclitaxel, tamoxifen, resveratrol, quercetin, oxygen-NS, temozolomide, doxorubicin, and 5-Fluorouracil. WIREs Nanomed Nanobiotechnol 2016, 8:579-601. doi: 10.1002/wnan.1384 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shankar Swaminathan
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | | |
Collapse
|
37
|
Dai L, Liu J, Luo Z, Li M, Cai K. Tumor therapy: targeted drug delivery systems. J Mater Chem B 2016; 4:6758-6772. [DOI: 10.1039/c6tb01743f] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the main targeted drug delivery systems for tumor therapy, including the targeting sites, strategies, mechanisms and preclinical/clinical trials.
Collapse
Affiliation(s)
- Liangliang Dai
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Junjie Liu
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Menghuan Li
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
38
|
Graña-Suárez L, Verboom W, Huskens J. Fluorescent supramolecular nanoparticles signal the loading of electrostatically charged cargo. Chem Commun (Camb) 2016; 52:2597-600. [DOI: 10.1039/c5cc09074a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular nanoparticles (SNPs) become responsive to the loading of cargo by attaching a fluorescent dye to one of the building blocks. The SNPs shrink upon loading them with a positively charged cargo polymer. When using a dye-labeled cargo, FRET occurs between the SNP components and the cargo.
Collapse
Affiliation(s)
- Laura Graña-Suárez
- Molecular Nanofabrication group
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Willem Verboom
- Molecular Nanofabrication group
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication group
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| |
Collapse
|
39
|
Affiliation(s)
- Yuanzeng Min
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Joseph M Caster
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Michael J Eblan
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Carolina Institute of Nanomedicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
40
|
Bush SF, Paluh JL, Piro G, Rao V, Prasad RV, Eckford A. Defining Communication at the Bottom. ACTA ACUST UNITED AC 2015. [DOI: 10.1109/tmbmc.2015.2465513] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2014; 200:138-57. [PMID: 25545217 DOI: 10.1016/j.jconrel.2014.12.030] [Citation(s) in RCA: 1242] [Impact Index Per Article: 112.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death worldwide. Currently available therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology towards the development of nanomedicine products holds great promise to improve therapeutic strategies against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multi-functionality. They can improve the pharmacokinetic and pharmacodynamic profiles of conventional therapeutics and may thus optimize the efficacy of existing anti-cancer compounds. In this review, we discuss state-of-the-art nanoparticles and targeted systems that have been investigated in clinical studies. We emphasize the challenges faced in using nanomedicine products and translating them from a preclinical level to the clinical setting. Additionally, we cover aspects of nanocarrier engineering that may open up new opportunities for nanomedicine products in the clinic.
Collapse
|
42
|
Pham E, Birrer MJ, Eliasof S, Garmey EG, Lazarus D, Lee CR, Man S, Matulonis UA, Peters CG, Xu P, Krasner C, Kerbel RS. Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin Cancer Res 2014; 21:808-18. [PMID: 25524310 DOI: 10.1158/1078-0432.ccr-14-2810] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Increased tumor hypoxia and hence elevated hypoxia-inducible factor-1α (HIF1α) is thought to limit the efficacy of vascular endothelial growth factor (VEGF) pathway-targeting drugs by upregulating adaptive resistance genes. One strategy to counteract this is to combine antiangiogenic drugs with agents able to suppress HIF1α. One such possibility is the investigational drug CRLX101, a nanoparticle-drug conjugate (NDC) containing the payload camptothecin, a known topoisomerase-I poison. EXPERIMENTAL DESIGN CRLX101 was evaluated both as a monotherapy and combination with bevacizumab in a preclinical mouse model of advanced metastatic ovarian cancer. These preclinical studies contributed to the rationale for undertaking a phase II clinical study to evaluate CRLX101 monotherapy in patients with advanced platinum-resistant ovarian cancer. RESULTS Preclinically, CRLX101 is highly efficacious as a monotherapy when administered at maximum-tolerated doses. Furthermore, chronic low-dose CRLX101 with bevacizumab reduced bevacizumab-induced HIF1α upregulation and resulted in synergistic efficacy, with minimal toxicity in mice. In parallel, initial data reported here from an ongoing phase II clinical study of CRLX101 monotherapy shows measurable tumor reductions in 74% of patients and a 16% RECIST response rate to date. CONCLUSIONS Given these preclinical and initial clinical results, further clinical studies are currently evaluating CRLX101 in combination with bevacizumab in ovarian cancer and warrant the evaluation of this therapy combination in other cancer types where HIF1α is implicated in pathogenesis, as it may potentially be able to improve the efficacy of antiangiogenic drugs.
Collapse
Affiliation(s)
- Elizabeth Pham
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Michael J Birrer
- Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | - Christina R Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Carolyn Krasner
- Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, Massachusetts.
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|