1
|
Patel D, Wairkar S. Hyaluronate-incorporated edaravone nanostructured lipid carriers for nose-to-brain targeting- biphasic DoE optimization, pharmacokinetic, and brain distribution studies. Int J Biol Macromol 2025; 310:143236. [PMID: 40246124 DOI: 10.1016/j.ijbiomac.2025.143236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The present research aimed to develop nasal delivery for edaravone (EDR), a BCS class-IV neuroprotective agent. EDR nanostructured lipid carriers (EDR NLCs) were developed by melt-emulsification probe sonication using Geleol™ (solid lipid), Miglyol®812N and coconut oil (liquid lipid), Tween 20 (surfactant), Lipoid S75 (emulsifier) and sodium hyaluronate (SH) as mucoadhesive agent. A biphasic optimization approach for NLCs was implemented using the Plackett-Burman design and Box-Behnken design to comprehensively understand key formulation and process variables affecting critical attributes of NLCs. The mucoadhesive strength of optimized EDR-SH NLCs was 2.22-fold higher than EDR NLCs. Drug release of NLCs was 2-fold higher than EDR. The partial amorphous nature of EDR in the NLC matrix was evident from DSC and XRD results. A pharmacokinetic study in rats revealed that EDR-SH NLCs exhibited 4.42-fold, 1.27-fold and 8.75-fold enhanced AUC than EDR, EDR NLCs and marketed formulation. In brain distribution, drug targeting efficiency and direct transport percentage of EDR-SH NLCs were 2.4-fold, 1.17-fold higher than EDR, indicating efficient brain targeting via direct pathways. Thus, nasal delivery of EDR-SH NLCs improves brain targeting and provides a self-administration alternative for long-term use to mitigate neurological disorders.
Collapse
Affiliation(s)
- Dhrumi Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India..
| |
Collapse
|
2
|
A Samra T, Elbahwy IA, A Mowafy H, I Afouna M. Enhancing ocular drug delivery: development and in vivo evaluation of mucoadhesive nanostructured lipid carriers for terbinafine. Pharm Dev Technol 2025:1-13. [PMID: 40184488 DOI: 10.1080/10837450.2025.2488999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/31/2025] [Indexed: 04/06/2025]
Abstract
This study investigated incorporating Terbinafine Hydrochloride (TH) into chitosan-coated nanostructured lipid carrier (NLCs) to improve ocular treatment for fungal keratitis. Solubility studies were conducted to determine the most suitable lipids for NLCs formulation. TH-loaded NLCs were prepared via emulsification followed by ultrasonication. The impact of various lipids and surfactants on the formulation was investigated. The optimal formulation (TH-NLC10) was coated with chitosan (0.5% w/v), resulting in the coated TH-NLC10-CS 0.05% formulation. This formulation was evaluated for physicochemical properties, morphology, in-vitro release, mucoadhesion, permeation, and in vivo efficacy in treating ocular fungal keratitis in rabbits. Results revealed variations in lipids and surfactants significantly affected particle size. All prepared TH-NLCs formulations within the nanometer range. Physicochemical characterizations of the coated TH-NLC10-CS 0.05% showed 88.37 ± 2.41 nm size, 20.2 ± 1.4 mV zeta potential, 93.3 ± 1.5% w/w entrapment efficiency, and spherical morphology. TH-NLC10-CS 0.05% exhibited sustained TH release (66.65 ± 4.3% over 8 h) and strong mucoadhesion as indicated by a decrease in zeta potential from +20.2 ± 1.4 mV to +2.9 ± 0.7 mV. TH-NLC10-CS 0.05% demonstrated a 2.4-fold increase in TH permeation compared to plain TH, along with effective in vivo antifungal activity. This study confirms that mucoadhesive NLCs with TH are promising for the treatment of ocular fungal keratitis.
Collapse
Affiliation(s)
- Tarek A Samra
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Armed Forces, Egyptian Doping Control Laboratory
| | - Ibrahim A Elbahwy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hammam A Mowafy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohsen I Afouna
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
K K SP, Narayansamy D. Advancements in nanotechnology for targeted drug delivery in idiopathic pulmonary fibrosis: a focus on solid lipid nanoparticles and nanostructured lipid carriers. Drug Dev Ind Pharm 2025; 51:285-294. [PMID: 39963904 DOI: 10.1080/03639045.2025.2468811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE This review aims to explore innovative therapeutic strategies, with a particular focus on recent advancements in drug delivery systems using bioinspired nanomaterials such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for the idiopathic pulmonary fibrosis (IPF). SIGNIFICANCE OF THE REVIEW Current treatments for IPF, including the FDA-approved anti-fibrotic agents pirfenidone and nintedanib, primarily aim to slow disease progression rather than reverse fibrosis. Bioinspired nanomaterials like SLNs and NLCs have shown promise in enhancing the efficacy of anti-fibrotic agents by improving drug solubility, stability, and targeted delivery. These systems not only minimize systemic side effects but also maximize therapeutic impact in lung tissues, offering a new hope for improved patient management and outcomes in this debilitating disease. KEY FINDINGS SLNs facilitate sustained drug release and have demonstrated potential in delivering phosphodiesterase type 5 inhibitors effectively to lung cells. NLCs, on the other hand, exhibit superior biocompatibility and controlled release properties, making them suitable for pulmonary applications. Studies indicate that both SLNs and NLCs can enhance the bioavailability of drugs like ciprofloxacin and montelukast, thereby improving treatment outcomes in pulmonary conditions. CONCLUSION The integration of nanotechnology into anti-fibrotic therapy represents a significant advancement in addressing the challenges posed by IPF. By leveraging the unique properties of SLNs and NLCs, there is potential to overcome the limitations of current treatments and provide new therapeutic options that offer better management and improved outcomes for patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Suriya Prakaash K K
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayansamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
4
|
Sun Y, Ren Z, Zhang Z, Yang K, Jin Y, Deng H, Liu Y, Wang J, Ji P, Liu P. Triple synergistic enhancement of breast cancer treatment via chemotherapy, chemodynamic therapy, and tumor starvation therapy driven by lipid-COF nanoparticles. Sci Rep 2025; 15:9791. [PMID: 40118934 PMCID: PMC11928539 DOI: 10.1038/s41598-025-94393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
In this study, a novel cascade nano delivery system, Cur/Gox@LCOF, was developed for enhanced breast cancer therapy. The system loads curcumin (Cur) and glucose oxidase (Gox) into a lipid copper-based organic framework (LCOF) carrier for enhanced tumor therapy. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS), which showed that they had a uniform spherical morphology with an average particle size of about 80 nm, displaying stable colloidal properties. The system showed excellent stability under simulated physiological conditions and exhibited pH-responsive drug release properties, contributing to the controlled release of Cur and Gox. The results of in vitro cellular experiments showed that Cur/Gox@LCOF significantly enhanced the production of reactive oxygen species (ROS), leading to significant cytotoxicity in cancer cells. In addition, the system also demonstrated enhanced therapeutic efficacy and good biocompatibility in a tumor mouse model. Thus, this study developed a nanocarrier platform for triple synergistic chemokinetic/chemotherapy/starvation therapy, which has promising applications in the efficient treatment of tumors.
Collapse
Affiliation(s)
- Yiya Sun
- The First Affiliated Hospital of Jinzhou Medical University, Jin Zhou, 121000, China
| | - Zhenkun Ren
- The Third Affiliated Hospital of Jinzhou Medical University, Jin Zhou, 121000, China
| | - Zhiruo Zhang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Kexin Yang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Yufan Jin
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Hanyu Deng
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Yingzi Liu
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Jiali Wang
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310000, PR China.
| | - Peng Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jin Zhou, 121000, China.
| |
Collapse
|
5
|
Keshari R, Dewani M, Kaur N, Patel GK, Singh SK, Chandra P, Prasad R, Srivastava R. Lipid Nanocarriers as Precision Delivery Systems for Brain Tumors. Bioconjug Chem 2025; 36:347-366. [PMID: 39937652 DOI: 10.1021/acs.bioconjchem.5c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Brain tumors, particularly glioblastomas, represent the most complicated cancers to treat and manage due to their highly invasive nature and the protective barriers of the brain, including the blood-brain barrier (BBB). The efficacy of currently available treatments, viz., radiotherapy, chemotherapy, and immunotherapy, are frequently limited by major side effects, drug resistance, and restricted drug penetration into the brain. Lipid nanoparticles (LNPs) have emerged as a promising and targeted delivery system for brain tumors. Lipid nanocarriers have gained tremendous attention for brain tumor therapeutics due to multiple drug encapsulation abilities, controlled release, better biocompatibility, and ability to cross the BBB. Herein, a detailed analysis of the design, mechanisms, and therapeutic benefits of LNPs in brain tumor treatment is discussed. Moreover, we also discuss the safety issues and clinical developments of LNPs and their current and future challenges. Further, we also focused on the clinical transformation of LNPs in brain tumor therapy by eliminating side effects and engineering the LNPs to overcome the related biological barriers, which provide personalized, affordable, and low-risk treatment options.
Collapse
Affiliation(s)
- Roshan Keshari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mahima Dewani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Navneet Kaur
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India-211004
| | - Sumit Kumar Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Altuwaijri N, Fitaihi R, Alkathiri FA, Bukhari SI, Altalal AM, Alsalhi A, Alsulaiman L, Alomran AO, Aldosari NS, Alqhafi SA, Alhamdan M, Alfaraj R. Assessing the Antibacterial Potential and Biofilm Inhibition Capability of Atorvastatin-Loaded Nanostructured Lipid Carriers via Crystal Violet Assay. Pharmaceuticals (Basel) 2025; 18:417. [PMID: 40143193 PMCID: PMC11944405 DOI: 10.3390/ph18030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Atorvastatin (ATR), an antihyperlipidemic drug with a potential antibacterial effect, was investigated in this study. Like other statins, ATR has been repurposed for several uses, ranging from anti-inflammatory to antimicrobial applications, and has demonstrated successful results. However, the efficacy of ATR is limited by its low solubility, indicating an opportunity for its encapsulation in a nanotechnology-based drug delivery system. Methods: Nanostructured lipid carrier (NLC) formulations were prepared using high-pressure homogenization and ultrasonication. The formulations were characterized, including their particle size, polydispersity index, zeta potential, encapsulation efficiency, and in vitro release. Antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) was evaluated using the growth curve (bacterial growth over time) and well diffusion methods (zone of inhibition and minimum inhibitory concentration (MIC) determination). The crystal violet assay was employed to assess biofilm inhibition. Results: The NLC formulations were optimized, and the size and zeta potential of the blank nanoparticles were 130 ± 8.39 nm and -35 ± 0.5 mV, respectively. In comparison, the encapsulated NLCs had a size of 142 ± 52.20 nm and a zeta potential of -31 ± 1.41 mV. The average encapsulation efficiency was 94%, and 70% of the drug was released after 24 h. The ATR-loaded NLCs showed significantly enhanced antibacterial activity by reducing the minimum inhibitory concentration by 2.5-fold for E. coli, 1.8-fold for S. aureus, and 1.4-fold for MRSA, and promoting more effective bacterial growth inhibition. Notably, biofilm inhibition was significantly improved with ATR-NLCs, achieving 80% inhibition for S. aureus, 40% for E. coli, and 30% for MRSA, compared to free ATR (p < 0.001). These findings suggest that NLC encapsulation enhances ATR's antimicrobial efficacy and biofilm suppression. Conclusions: This study identified NLCs as successful carriers of ATR, significantly enhancing its antibacterial efficacy and biofilm inhibition capabilities. This formulation, which shows antimicrobial potential against both Gram-positive and Gram-negative bacteria, should be further studied and developed against different resistant microbial strains.
Collapse
Affiliation(s)
- Njoud Altuwaijri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Rawan Fitaihi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Fai A. Alkathiri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Alanoud M. Altalal
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Alyaa Alsalhi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Lama Alsulaiman
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Aljawhara O. Alomran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Noura S. Aldosari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Safa A. Alqhafi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Majd Alhamdan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (F.A.A.); (S.I.B.); (A.M.A.); (A.A.); (L.A.); (A.O.A.); (S.A.A.); (M.A.); (R.A.)
| |
Collapse
|
7
|
Vurro D, Liboà A, D'Onofrio I, De Giorgio G, Scaravonati S, Crepaldi M, Barcellona A, Sciancalepore C, Galstyan V, Milanese D, Riccò M, D'Angelo P, Tarabella G. Sericin Electrodes with Self-Adhesive Properties for Biosignaling. ACS Biomater Sci Eng 2025; 11:1776-1791. [PMID: 39904518 DOI: 10.1021/acsbiomaterials.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The combination of green manufacturing approaches and bioinspired materials is growingly emerging in different scenarios, in particular in medicine, where widespread medical devices (MDs) as commercial electrodes for electrophysiology strongly increase the accumulation of solid waste after use. Electrocardiogram (ECG) electrodes exploit electrolytic gels to allow the high-quality recording of heart signals. Beyond their nonrecyclability/nonrecoverability, gel drying also affects the signal quality upon prolonged monitoring of biopotentials. Moreover, gel composition often causes skin reactions. This study aims to address the above limitation by presenting a composite based on the combination of silk sericin (SS) as a structural material, poly(vinyl alcohol) (PVA) as a robustness enhancer, and CaCl2 as a plasticizer. SS/PVA/CaCl2 formulations, optimized in terms of weight content (wt %) of single constituents, result in a biocompatible, biodegradable "green" material (free from potentially irritating cross-linking agents) that is, above all, self-adhesive on skin. The best formulation, i.e., SS(4 wt %)/PVA(4 wt %)/CaCl2(20 wt %), in terms of long-lasting skin adhesion (favored by calcium-ion coordination in the presence of environmental/skin humidity) and time-stability of electrode impedance, is used to assemble ECG electrodes showing quality trace recording over longer time scales (up to 6 h) than commercial electrodes. ECG recording is performed using customized electronics coupled to an app for data visualization.
Collapse
Affiliation(s)
- Davide Vurro
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Aris Liboà
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
- Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Ilenia D'Onofrio
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
- Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Giuseppe De Giorgio
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Silvio Scaravonati
- Department of Mathematical, Physical and Computer Sciences, University of Parma, GISEL & INSTM, Parco Area delle Scienze 7/A, Parma 43124, Italy
| | - Marco Crepaldi
- Electronic Design Laboratory, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genova 16152, Italy
| | - Alessandro Barcellona
- Electronic Design Laboratory, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genova 16152, Italy
| | - Corrado Sciancalepore
- Department of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, Parma 43124, Italy
| | - Vardan Galstyan
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Daniel Milanese
- Department of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, Parma 43124, Italy
| | - Mauro Riccò
- Electronic Design Laboratory, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genova 16152, Italy
| | - Pasquale D'Angelo
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| |
Collapse
|
8
|
Guedes IL, Nascimento MOD, Dias LDS, Araujo-Nobre ARD, Barreto HM, Abi-Chacra ÉDA, Fialho ACV, Vale GC, Carvalho ALM. Lipid nanocarrier containing eugenol for denture hygiene: evaluation of efficacy against Candida biofilms. J Appl Oral Sci 2025; 33:e20240455. [PMID: 40073014 PMCID: PMC12002739 DOI: 10.1590/1678-7757-2024-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND This article is derived from Irisvaldo Lima Guedes's Master's dissertation and is available at the address: https://sigaa.ufpi.br/sigaa/public/programa/noticias_desc.jsf?lc=pt_BR&id=370¬icia=519307121 Eugenol has demonstrated efficacy against Candida spp., which is highly prevalent in denture wearers. However, the low water solubility and high volatility limit its application. The encapsulation in nanostructured lipid carriers (NLCs) may be a viable approach for developing new sanitizing agents for denture hygiene. OBJECTIVE To develop a sanitizing dispersion for denture hygiene using nanostructured lipid carriers (NLCs) containing eugenol and to evaluate the efficacy against Candida spp. biofilms. METHODOLOGY The formulation was prepared using the ultrasonication method and characterized in terms of particle size (PS), polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE). The minimum inhibitory concentration (MIC) was determined by the broth microdilution method and the antifungal activity was evaluated by four treatment groups (nanostructured formulation containing eugenol (NFE), free eugenol (FE), saline solution (SS), and the drug-free formulation NFW after eight hours of immersion in biofilms of two Candida species (Candida albicans and Candida glabrata) adhered to polymethyl methacrylate resin specimens. RESULTS The nanoparticles of NFE showed a particle size of 199.5±2.55 nanometers (nm) as measured by DLS, high homogeneity (0.07±0.02), an EE of 83.07±0.23, and a negative ZP (-25.86±0.65). The MICs of FE for Candida albicans and Candida glabrata were up to 10 times (64 µg/mL) and eight times (128 µg/mL) higher, respectively, than the MICs of NFE (6 µg/mL and 16 µg/mL). The biofilms of these microorganisms showed a significant reduction after immersion in NFE compared to the other tested groups (FE, NBF, and SS) (P<0.0001). CONCLUSION The NFE demonstrated fungicidal activity against the isolated strains and significantly reduced Candida biofilms, thus showing promising performance for the sanitization of dentures over eight hours.
Collapse
Affiliation(s)
- Irisvaldo Lima Guedes
- Universidade Federal do Piauí, Programa de Pós-Graduação em Odontologia (PPGO), Teresina, Piauí, Brasil
| | | | - Leandro de Sousa Dias
- Universidade Federal do Piauí, Departamento de Parasitologia e Microbiologia, Teresina, Piauí, Brasil
| | - Alyne Rodrigues de Araujo-Nobre
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa de Biodiversidade e Biotecnologia (Biotec), Parnaíba, Piauí, Brasil
| | - Humberto Medeiros Barreto
- Universidade Federal do Piauí, Departamento de Parasitologia e Microbiologia, Teresina, Piauí, Brasil
| | | | | | - Gláuber Campos Vale
- Universidade Federal do Piauí, Programa de Pós-Graduação em Odontologia (PPGO), Teresina, Piauí, Brasil
| | - André Luis Menezes Carvalho
- Universidade Federal do Piauí, Programa de Pós-Graduação em Odontologia (PPGO), Teresina, Piauí, Brasil
- Universidade Federal do Piauí, Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Teresina, Piauí, Brasil
| |
Collapse
|
9
|
Idres YM, Idris A, Gao W. Preclinical testing of antiviral siRNA therapeutics delivered in lipid nanoparticles in animal models - a comprehensive review. Drug Deliv Transl Res 2025:10.1007/s13346-025-01815-x. [PMID: 40000558 DOI: 10.1007/s13346-025-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The advent of RNA interference (RNAi) technology through the use of short-interfering RNAs (siRNAs) represents a paradigm shift in the fight against viral infections. siRNAs, with their ability to directly target and silence specific posttranscriptional genes, offer a novel mechanism of action distinct from that of traditional pharmacotherapeutics. This review delves into the growing field of siRNA therapeutics against viral infections, highlighting their critical role in contemporary antiviral strategies. Importantly, this review will solely focus on the use of lipid nanoparticles (LNPs) as the ideal antiviral siRNA delivery agent for use in vivo. We discuss the challenges of siRNA delivery and how LNPs have emerged as a pivotal solution to enhance antiviral efficacy. Specifically, this review focuses on work that have preclinically tested LNP formulated siRNA on virus infection animal models. Since the COVID-19 pandemic, we have witnessed a resurgence in the field of RNA-based therapies, including siRNAs against viruses including, SARS-CoV-2. Notably, the critical importance of LNPs as the ideal carrier for precious 'RNA cargo' can no longer be ignored with the advent of mRNA-LNP based COVID-19 vaccines. siRNA-based therapeutics represents an emerging class of anti-infective drugs with a foreseeable future as suitable antiviral agents.
Collapse
Affiliation(s)
- Yusuf M Idres
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wenqing Gao
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Arneth B, Abdelmonem R, El-Nabarawi MA, Teaima MH, Rashwan KO, Soliman MA, Al-Samadi IEI. Optimized Hesperidin-Loaded Lipid Nanoparticles with Tea Tree Oil for Enhanced Wound Healing: Formulation, Characterization, and Evaluation. Pharmaceuticals (Basel) 2025; 18:290. [PMID: 40143069 PMCID: PMC11946831 DOI: 10.3390/ph18030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 03/28/2025] Open
Abstract
Objectives: This study aimed to develop hesperidin solid lipid nanoparticles (HESP-SLNs) to enhance their stability, solubility, and sustained release for wound healing; further enhancement was achieved through prepared nanostructured lipid carriers (HESP-NLCs) using Tea Tree Oil (TTO) to explore their synergistic efficacy. Methods: A factorial design of 24 trials was established to evaluate the influence of lipid type (X1), lipid conc (%) (X2), surfactant type (X3), and sonication amplitude (%) (X4) of prepared HESP-SLNs on the particle size (nm) (Y1), polydispersibility index (Y2), zeta potential (Y3), and encapsulation efficiency (%) (Y4). The optimized HESP-SLNs formula was selected utilizing Design Expert® software version 13, which was additionally enhanced by preparing TTO-loaded HESP-NLCs. In vitro release, Raman spectroscopy, and transmission electron microscopy were carried out for both lipid nanoparticles. Cytotoxicity, in vivo wound-healing assessments, and skin irritancy tests were performed to evaluate the performance of TTO-incorporated HESP-NLCs compared to HESP-SLNs. Results: The optimized formula demonstrated PS (280 ± 1.35 nm), ZP (-39.4 ± 0.92 mV), PDI (0.239 ± 0.012), and EE% (88.2 ± 2.09%). NLCs enhanced Q6% release, (95.14%) vs. (79.69%), for SLNs and showed superior antimicrobial efficacy. Both lipid nanoparticles exhibited spherical morphology and compatibility between HESP and excipients. NLCs achieved the highest wound closure percentage, supported by histological analysis and inflammatory biomarker outcomes. Cytotoxicity evaluation showed 87% cell viability compared to untreated HSF cells, and the skin irritancy test confirmed the safety of NLCs. Conclusions: TTO-loaded HESP-NLCs are promising candidates exhibiting superior wound-healing capabilities, making them a potential therapeutic option for cutaneous wound management.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt; (R.A.); (M.A.S.); (I.E.I.A.-S.)
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt; (M.A.E.-N.)
| | - Mahmoud Hassan Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt; (M.A.E.-N.)
| | - Kareem Omar Rashwan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| | - Mohamed A. Soliman
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt; (R.A.); (M.A.S.); (I.E.I.A.-S.)
| | - Inas Essam Ibrahim Al-Samadi
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt; (R.A.); (M.A.S.); (I.E.I.A.-S.)
| |
Collapse
|
11
|
Abid F, Kim S, Savaliya B, Cesari L, Amirmostofian M, Abdella S, Trott DJ, Page SW, Garg S. Targeting Acne: Development of Monensin-Loaded Nanostructured Lipid Carriers. Int J Nanomedicine 2025; 20:2181-2204. [PMID: 39990290 PMCID: PMC11847435 DOI: 10.2147/ijn.s497108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose The emergence of antimicrobial resistance (AMR) has made treating acne vulgaris increasingly challenging, thus underscoring the urgent need for new antibacterial therapies. This research aimed to discover, for the first time, the efficacy of monensin (MON) against acne pathogens by encapsulating MON in nanostructured lipid carriers (NLCs) to achieve targeted topical delivery. Methods MON-loaded NLCs were formulated and optimized using the Design of Experiments (DoE) approach and incorporated in a gel formulation. The potential of MON, MON-NLCs, and its gel formulation was investigated against resistant human isolates of C. acnes, Staphylococcus aureus (S. aureus), and Staphylococcus epidermidis (S. epidermidis) using the agar dilution method. Using the porcine ear skin, the ex vivo deposition of MON was evaluated in different skin layers. The cytotoxicity assay was also performed at antibacterial concentrations using the keratinocyte cell line. Results MON-loaded NLCs were developed using stearic acid, oleic acid, and Tween® 80 and optimized with particle size, polydispersity index, and zeta potential of 96.65 ± 0.94 nm, 0.13 ± 0.01, and -36.50 ± 0.30 mV, respectively. The ex vivo deposition experiments showed that MON did not penetrate any skin layer using its water dispersion. However, a significant amount of MON was deposited into the epidermal layer using MON-NLC (4219.86 ± 388.32 ng/cm²) and gel formulation (8180.73 ± 482.37 ng/cm²), whereas no MON permeated to the dermis layer using gel formulation. The antibacterial study revealed the potential of MON, MON-NLC, and gel formulation against C. acnes isolates (MIC range 0.125-4 µg/mL, 0.25-4 µg/mL, and 0.125-1 µg/mL respectively). The cell viability results suggested MON-NLC formulation as a safe topical treatment effective at antibacterial concentrations. Conclusion This research highlights the novel ability of MON against resistant acne-causing pathogens and the potential of MON-NLCs to deliver MON to the targeted epidermal skin layer effectively.
Collapse
Affiliation(s)
- Fatima Abid
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Bhumika Savaliya
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Laura Cesari
- Faculty of Pharmacy, Aix-Marseille Université, Marseille, 13007, France
| | - Marzieh Amirmostofian
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | | | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
12
|
Gambaro R, Chain CY, Scioli-Montoto S, Moreno A, Huck-Iriart C, Ruiz ME, Cisneros JS, Lamas DG, Tau J, Gehring S, Islan GA, Rodenak-Kladniew B. Phytoactive-Loaded Lipid Nanocarriers for Simvastatin Delivery: A Drug Repositioning Strategy Against Lung Cancer. Pharmaceutics 2025; 17:255. [PMID: 40006622 PMCID: PMC11858925 DOI: 10.3390/pharmaceutics17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Drug repurposing explores new applications for approved medications, such as simvastatin (SV), a lipid-lowering drug that has shown anticancer potential but is limited by solubility and side effects. This study aims to enhance SV delivery and efficacy against lung cancer cells using bioactive lipid nanoparticles formulated with plant-derived monoterpenes as both nanostructuring agents and anticancer molecules. Methods: Lipid nanoparticles were produced by ultrasonication and characterized for morphology, size, zeta potential, and polydispersity index (PDI). Monoterpenes (linalool-LN-, limonene, 1,8-cineole) or Crodamol® were used as liquid lipids. Encapsulation efficiency (EE), release profiles, stability, biocompatibility, protein adsorption, cytotoxicity, and anticancer effects were evaluated. Results: The nanoparticles exhibited high stability, size: 94.2 ± 0.9-144.0 ± 2.6 nm, PDI < 0.3, and zeta potential: -4.5 ± 0.7 to -16.3 ± 0.8 mV. Encapsulation of SV in all formulations enhanced cytotoxicity against A549 lung cancer cells, with NLC/LN/SV showing the highest activity and being chosen for further investigation. Sustained SV release over 72 h and EE > 95% was observed for NLC/LN/SV. SAXS/WAXS analysis revealed that LN altered the crystallographic structure of nanoparticles. NLC/LN/SV demonstrated excellent biocompatibility and developed a thin serum protein corona in vitro. Cellular studies showed efficient uptake by A549 cells, G0/G1 arrest, mitochondrial hyperpolarization, reactive oxygen species production, and enhanced cell death compared to free SV. NLC/LN/SV more effectively inhibited cancer cell migration than free SV. Conclusions: NLC/LN/SV represents a promising nanocarrier for SV repurposing, combining enhanced anticancer activity, biocompatibility, and sustained stability for potential lung cancer therapy.
Collapse
Affiliation(s)
- Rocío Gambaro
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
| | - Cecilia Y. Chain
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), La Plata 1900, Buenos Aires, Argentina; (C.Y.C.); (J.S.C.)
| | - Sebastian Scioli-Montoto
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina; (S.S.-M.); (M.E.R.)
| | - Ailin Moreno
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| | - Cristián Huck-Iriart
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Universidad Nacional de San Martín (UNSAM)--Investigaciones Científicas y Tecnológicas (CONICET), Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, San Martín 1650, Buenos Aires, Argentina; (C.H.-I.); (D.G.L.)
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - María Esperanza Ruiz
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina; (S.S.-M.); (M.E.R.)
| | - José S. Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), La Plata 1900, Buenos Aires, Argentina; (C.Y.C.); (J.S.C.)
| | - Diego G. Lamas
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Universidad Nacional de San Martín (UNSAM)--Investigaciones Científicas y Tecnológicas (CONICET), Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, San Martín 1650, Buenos Aires, Argentina; (C.H.-I.); (D.G.L.)
| | - Julia Tau
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| | - Stephan Gehring
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
| | - Germán A. Islan
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Boris Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| |
Collapse
|
13
|
Talele P, Jadhav A, Sahu S, Shimpi N. Experimental approaches to evaluate solid lipid nanoparticle-based drug delivery systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1451-1466. [PMID: 39851141 DOI: 10.1039/d4ay01659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Solid lipid nanoparticles (SLNs) are potential drug carriers due to the several advantages they offer. The physicochemical stability of lipid carriers varies significantly due to their diverse compositions and structures. Appropriate analytical methods are required for the complete characterization of SLNs. Physicochemical characterization includes analysis of bulk properties like particle size, size distribution, zeta potential, morphology, stability, polymorphism, crystallinity, and molecular level properties like microenvironments within nanoparticles and their interactions with drugs. Moreover, drug loading, drug entrapment efficiency, and drug release kinetics are essential parameters to evaluate the efficacy of SLNs as drug delivery systems. In addition to testing the physicochemical stability and functionality of SLN formulations, it is essential to investigate their desired actions through in vivo studies, which are beyond the scope of this article. This review briefly discusses the different experimental techniques and their applications in the field of solid lipid nanoparticles. These techniques can also be used to characterize nanostructure lipid carriers, which are second-generation lipid nanoparticles.
Collapse
Affiliation(s)
- Paurnima Talele
- Shri Guru Gobind Singhji Institute of Engineering & Technology, Nanded 431606, India
| | - Anand Jadhav
- Material Science Laboratory, Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai 400098, India.
| | - Saugata Sahu
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| | - Navinchandra Shimpi
- Material Science Laboratory, Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai 400098, India.
| |
Collapse
|
14
|
Elhassan E, Omolo CA, Gafar MA, Ismail EA, Ibrahim UH, Khan R, Lesouhaitier M, Kubes P, Govender T. Multifunctional hyaluronic acid-based biomimetic/pH-responsive hybrid nanostructured lipid carriers for treating bacterial sepsis. J Biomed Sci 2025; 32:19. [PMID: 39930418 PMCID: PMC11812216 DOI: 10.1186/s12929-024-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION The application of biomimetic and stimuli-responsive nanocarriers displays considerable promise in improving the management of bacterial sepsis and overcoming antimicrobial resistance. Therefore, the study aimed to synthesize a novel hyaluronic acid-lysine conjugate (HA-Lys) and to utilize the attributes of the synthesized HA-Lys with Tocopherol succinate (TS) and Oleylamine (OLA) in the formulation of multifunctional biomimetic pH-responsive HNLCs loaded with vancomycin (VCM-HNLCs), to combat bacterial sepsis. METHODS A novel hyaluronic acid-lysine conjugate (HA-Lys) was synthesized and characterized using FTIR and 1H NMR spectroscopy. Vancomycin-loaded hybrid nanosystems (VCM-HNLCs) were prepared through hot homogenization ultrasonication and evaluated for particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE%). In vitro biocompatibility was assessed via MTT assay and red blood cell hemolysis test. The binding affinity to TLR2 and TLR4 was measured using microscale thermophoresis (MST). Drug release was evaluated using the dialysis bag method. Antimicrobial activity against MRSA and efflux pump inhibition were also determined. Efficacy was demonstrated in an MRSA-induced sepsis mice model. RESULTS The VCM-HNLCs, produced via hot homogenization ultrasonication, exhibited particle size (PS), polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE%) of 110.77 ± 1.692 nm, 0.113 ± 0.022, - 2.92 ± 0.210 mV, and 76.27 ± 1.200%, respectively. In vitro, biocompatibility was proven by hemolysis and cytotoxicity studies. The VCM-HNLCs demonstrated targetability to human Toll-like receptors (TLR 2 and 4) as validated by microscale thermophoresis (MST). VCM-HNLCs showed a twofold reduction in MIC values at physiological pH compared to the bare VCM against S. aureus and MRSA for 48 h. While at pH 6.0, MIC values were reduced by fourfold in the first 24 h and by eightfold in the subsequent 48 and 72 h against tested strains. Furthermore, VCM-HNLCs showed inhibitory effects against MRSA efflux pumps, reactive oxygen species (ROS), and lipopolysaccharide (LPS)-induced hyperinflammation. In an MRSA-induced sepsis mice model, VCM-HNLCs demonstrated superior efficacy compared to free VCM, significantly eliminated bacteria and improved survival rates. CONCLUSIONS Overall, these results highlight the potential of VCM-HNLCs as novel multifunctional nanocarriers to combat antimicrobial resistance (AMR) and enhance sepsis outcomes.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Mathieu Lesouhaitier
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
15
|
Wang YZ, Wang ZX, Jiang HJ, Ni LH, Ju H, Wu YC, Li HJ. Advances in the use of nanotechnology for treating gout. Nanomedicine (Lond) 2025; 20:355-369. [PMID: 39873132 PMCID: PMC11812334 DOI: 10.1080/17435889.2025.2457315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Gout is a commonly occurring form of inflammatory arthritis caused by persistently elevated levels of uric acid. Its incidence rate rises with the increases of living standards and poor dietary habits, which has a considerable impact on the quality of life of the patients. Although there is a wide assortment of drugs available for the management of gout, the effectiveness and security of these drugs are limited by their poor chemical stability and insufficient targeting. Therefore, development of effective nanomedicine systems to overcome these problems and treat gout becomes a high priority. This review provides a detailed introduction research progress on developing advanced nanomedicines using polymers, hydrogel, nanocapsules, lipids, bionic vesicles, inorganic artificial organelles and electronically controlled conveyor systems carriers to improve gout therapy.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Zi-Xuan Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | | | - Li-Hui Ni
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Hao Ju
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| |
Collapse
|
16
|
Xu Y, Li P, Sun S, Chen Y, Feng L, Jiang D, Wan C, Li J, Cai X. Glycyrrhizinate Monoammonium Cysteine-Loaded Lipid Nanoparticles Allow for Improved Acute Liver Injury Therapy. Pharmaceutics 2025; 17:90. [PMID: 39861738 PMCID: PMC11769283 DOI: 10.3390/pharmaceutics17010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Acute liver injury (ALI) is a prevalent and potentially lethal condition globally, where pharmacotherapy plays a vital role. However, challenges such as rapid drug excretion and insufficient concentration at hepatic lesions often impede the treatment's effectiveness. Methods: We successfully prepared glycyrrhizinate monoammonium cysteine (GMC)-loaded lipid nanoparticles (LNPs) using high-pressure homogenization. The characterization and safety of the LNPs were measured using electrophoretic light scattering (ELS), transmission electron microscopy (TEM), dynamic light scattering (DLS), cytotoxicity assays, and hemolysis tests. The distribution of LNPs in mice was explored using fluorescence labeling methods. The encapsulation efficiency of LNP-GMC was detected using High-Performance Liquid Chromatography (HPLC), and its slow-release effect on GMC was assessed through dialysis. The therapeutic effects of LNP-GMC and pure GMC on the ALI model were evaluated using fibroblast activation protein inhibitor (FAPI) PET imaging, blood biochemical indicators, and liver pathology slices. Results: The encapsulation of GMC in LNPs enhances drug stability and prolongs its hepatic retention, significantly improving its bioavailability and sustained release within the liver. This study also explores the expression of fibroblast activation protein (FAP) in ALI, employing 68Ga-FAPI PET/CT imaging for effective differentiation and assessment of liver injury. Conclusions: Our results suggest that LNPs offer an enhanced therapeutic approach for ALI treatment, reducing the required drug dosage, and 68Ga-FAPI PET/CT imaging provides a novel method for diagnosis and treatment assessment. This study contributes valuable insights into the utilization of LNPs in liver disease treatment, presenting a promising direction for future clinical applications.
Collapse
Affiliation(s)
- Yunjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.)
| | - Pinghui Li
- The School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010050, China;
| | - Shiran Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.)
| | - Yulin Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.)
| | - Lixia Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.)
| | - Jianbo Li
- Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiong Cai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.)
| |
Collapse
|
17
|
Lim HS, Choi WI, Lim JM. Continuous Production of Docetaxel-Loaded Nanostructured Lipid Carriers Using a Coaxial Turbulent Jet Mixer with Heating System. Molecules 2025; 30:279. [PMID: 39860147 PMCID: PMC11767693 DOI: 10.3390/molecules30020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The continuous synthesis of nanoparticles (NPs) has been actively studied due to its great potential to produce NPs with reproducible and controllable physicochemical properties. Here, we achieved the high throughput production of nanostructured lipid carriers (NLCs) using a coaxial turbulent jet mixer with an added heating system. This device, designed for the crossflow of precursor solution and non-solvent, combined with the heating system, efficiently dissolves solid lipids and surfactants. We reported the flow regime according to the Reynolds number (Re). Also, we confirmed the size controllability of NLCs as dependent on both Re and lipid concentration. The optimized synthesis yields NLCs around 80 nm, ideal for targeted drug delivery by enhanced permeability and retention (EPR) effect. The coaxial turbulent jet mixer enables effective mixing, producing uniform size distribution of NLCs. The NLCs prepared using the coaxial turbulent jet mixer were smaller, more uniform, and had higher drug loading compared to the NLCs synthesized by a bulk nanoprecipitation method, showcasing its potential for advancing nanomedicine.
Collapse
Affiliation(s)
- Hyeon Su Lim
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungcheongbuk-do, Republic of Korea
| | - Jong-Min Lim
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
- Department of Chemical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
18
|
Myo NZ, Kamwa R, Jamnong T, Swasdipisal B, Somrak P, Rattanamalakorn P, Neatsawang V, Apiwatsiri P, Yata T, Hampson DJ, Prapasarakul N. Metabolomic profiling and antibacterial efficacy of probiotic-derived cell-free supernatant encapsulated in nanostructured lipid carriers against canine multidrug-resistant bacteria. Front Vet Sci 2025; 11:1525897. [PMID: 39830167 PMCID: PMC11739306 DOI: 10.3389/fvets.2024.1525897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Aim This study aimed to investigate the antibacterial efficacy of probiotic-derived cell-free supernatants (CFS) encapsulated within nanostructured lipid carriers (NLCs) against multidrug-resistant Pseudomonas aeruginosa and Staphylococcus pseudintermedius. Additionally, it aimed to identify specific bioactive compounds that contribute to the reported antibacterial properties by characterizing the metabolite substances present in the CFS using a metabolomic analysis technique. Methods Eight strains of lactic acid bacteria including Lactiplantibacillus plantarum (L22F and L25F), Pediococcus acidilactici (P72N, BF9, BF 14, BYF 20 and BYF 26) and Ligilactobacillus salivarius (BF 12) were selected as probiotic candidates. The inhibitory activity of their cell free supernatant (CFS) was tested against clinical strains of P. aeruginosa and S. pseudintermedius isolated from skin wounds of dogs and cats. An untargeted metabolomic approach based on liquid chromatography-mass spectrometry (LC-MS) identified potential antibacterial metabolites in the CFS. Cell-Free Supernatants-Nanostructured Lipid Carriers (CFS-NLCs) were developed, and their antibacterial activity and minimum bactericidal concentration (MBC) were analysed. Results Despite the strong multidrug-resistant nature of the pathogens, CFS displayed a moderate antibacterial activity against most tested strains. The acidic nature of the CFS, combined with bioactive antibacterial metabolites like Kanzonol V and 1-Hexanol, likely contributed to its inhibitory effects against pathogenic bacteria; notably, Kanzonol V was abundant in the CFS of L22F, BF12 and BYF26 (L22F_CFS, BF12_CFS and BYF26_CFS), while 1-Hexanol was particularly enriched in CFS of P72N (P72N_CFS), with both compounds effectively targeting bacterial cell membranes to disrupt cell integrity, leading to bacterial cell death. Other beneficial compounds such as Pyroglutamylleucine, Trigoneoside VIII and 18-Nor-4(19),8,11,13-abietatetraene which are likely to have anti-inflammatory, antimicrobial and antioxidant activities, were also detected in the CFS. The CFS-NLCs maintained their antibacterial activity and 30-60% dilutions of product completely inhibited the growth of pathogen strains even after three-months storage at room temperature. Conclusion These findings suggest that CFS-NLCs could be a promising biotic therapy for treating hospital infections such as canine dermatitis and otitis caused by multidrug-resistant P. aeruginosa and S. pseudintermedius.
Collapse
Affiliation(s)
- Nay Zin Myo
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ratchnida Kamwa
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thitirat Jamnong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Busaba Swasdipisal
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Papavarin Somrak
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Phanchompoo Rattanamalakorn
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Vipada Neatsawang
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Yata
- Department of Veterinary Biochemistry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - David J. Hampson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnostic and Monitoring of Animal Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Sabale V, Belokar V, Jiwankar M, Sabale P. Nanostructured Lipid Carrier-loaded In Situ Gel for Ophthalmic Drug Delivery: Preparation and In Vitro Characterization Studies. Pharm Nanotechnol 2025; 13:171-183. [PMID: 38213174 DOI: 10.2174/0122117385266639231029192409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Nanostructured lipid carriers (NLCs) are explored as vehicles for ophthalmic drug delivery owing to their better drug loading, good permeation, and satisfactory safety profile. OBJECTIVES The purpose of the study was to fabricate and characterize an in situ ocular gel of loratadine as a model drug based on NLCs to enhance the drug residence time. METHODS NLCs were fabricated using the microemulsion method in which solid lipid as Compritol 888 ATO, lipid as oleic acid, surfactant as Tween 80, and isopropyl alcohol as co-surfactant as alcohol were used. Based on the evaluation of formulation batches of NLCs, the optimized batch was selected and further utilized for the formulation of in situ gel containing Carbopol 934 and HPMC K15M as gelling agents, and characterized Results: The optimized NLCs of loratadine exhibited entrapment efficiency of 83.13 ± 0.13% and an average particle size of 18.98 ± 1.22 nm. Drug content and drug release were found to be 98.67 and 92.48%, respectively. Excellent rheology and mucoadhesion were demonstrated by the loratadine NLC-loaded in situ gel to enhance its attachment to the mucosa. NLC-based in situ ocular gel showed the desired results for topical administration. The prepared gel was observed to be non-irritating to the eye. CONCLUSION The optimized NLC-based in situ gel formulation presented better corneal retention and it was found to be stable, offering sustained release of the drug. Thus, the joined system of sol-gel was found promising for ophthalmic drug delivery.
Collapse
Affiliation(s)
- Vidya Sabale
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, 440 037, Maharashtra, India
| | - Vaishnavi Belokar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, 440 037, Maharashtra, India
| | - Manasi Jiwankar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, 440 037, Maharashtra, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Nagpur, 440 033, Maharashtra, India
| |
Collapse
|
20
|
Makhija M, Manchanda D, Sharma M. Nano-based Therapeutics for Rheumatoid Arthritis: Recent Patents and Development. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:56-75. [PMID: 37691226 DOI: 10.2174/1872210518666230905155459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease marked by inflammation of synovium and generation of autoantibodies. Bone and cartilage are frequently damaged along with weakening of tendons and ligaments resulting in disability. An effective RA treatment needs a multi-disciplinary approach which relies upon pathophysiology that is still partially understood. In RA patients, inflammation was induced by pro-inflammatory cytokines including IL-1, IL-6 & IL-10. The conventional dosage regimens for treating RA have drawbacks such as ineffectiveness, greater doses, frequent dosing, relatively expensive and serious adverse effects. To formulate an effective treatment plan for RA, research teams have recently focused on producing several nanoformulations containing anti-inflammatory APIs with an aim to target the inflamed area. Nanomedicines have recently gained popularity in the treatment of RA. Interestingly, unbelievable improvements have been observed in current years in diagnosis and management of RA utilizing nanotechnology. Various patents and clinical trial data have been reported in relevance to RA treatment.
Collapse
Affiliation(s)
- Manish Makhija
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 123401, India
| | - Deeksha Manchanda
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 123401, India
| | - Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, 304022, India
| |
Collapse
|
21
|
Waghmare S, Palekar R, Potey L, Khedekar P, Sabale P, Sabale V. Solid Lipid Nanoparticles as an Innovative Lipidic Drug Delivery System. Pharm Nanotechnol 2025; 13:22-40. [PMID: 38317470 DOI: 10.2174/0122117385271393231117063750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 02/07/2024]
Abstract
In order to overcome some of the drawbacks of traditional formulations, increasing emphasis has recently been paid to lipid-based drug delivery systems. Solid lipid nanoparticles (SLNs) are promising delivery methods, and they hold promise because of their simplicity in production, capacity to scale up, biocompatibility, and biodegradability of formulation components. Other benefits could be connected to a particular route of administration or the makeup of the ingredients being placed into these delivery systems. This article aims to review the significance of solid lipid nanocarriers, their benefits and drawbacks, as well as their types, compositions, methods of preparation, mechanisms of drug release, characterization, routes of administration, and applications in a variety of delivery systems with a focus on their efficacy.
Collapse
Affiliation(s)
- Suchita Waghmare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Rohini Palekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Lata Potey
- Shree Sainath College of Pharmacy Dawalameti, Nagpur, Maharashtra, 440023, India
| | - Pramod Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Vidya Sabale
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Maharashtra, 440037, India
| |
Collapse
|
22
|
Gupta DS, Suares D. Uncovering the Emerging Prospects of Lipid-based Nanoparticulate Vehicles in Lung Cancer Management: A Recent Perspective. Pharm Nanotechnol 2025; 13:155-170. [PMID: 38468532 DOI: 10.2174/0122117385286781240228060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Lung cancer, a leading cause of cancer-related deaths globally, is gaining research interest more than ever before. Owing to the burden of pathogenesis on the quality of life of patients and subsequently the healthcare system, research efforts focus on its management and amelioration. In an effort to improve bioavailability, enhance stability, minimize adverse effects and reduce the incidence of resistance, nanotechnological platforms have been harnessed for drug delivery and improving treatment outcomes. Lipid nanoparticles, in particular, offer an interesting clinical opportunity with respect to the delivery of a variety of agents. These include synthetic chemotherapeutic agents, immunotherapeutic molecules, as well as phytoconstituents with promising anticancer benefits. In addition to this, these systems are being studied for their usage in conjunction with other treatment strategies. However, their applications remain limited owing to a number of challenges, chiefly clinical translation. There is a need to address the scalability of such technologies, in order to improve accessibility. The authors aim to offer a comprehensive understanding of the evolution of lipid nanoparticles and their application in lung cancer, the interplay of disease pathways and their mechanism of action and the potential for delivery of a variety of agents. Additionally, a discussion with respect to results from preclinical studies has also been provided. The authors have also provided a well-rounded insight into the limitations and future perspectives. While the possibilities are endless, there is a need to undertake focused research to expedite clinical translation and offer avenues for wider applications in disease management.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Divya Suares
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
23
|
Taha IE, ElSohly MA, Radwan MM, Elkanayati RM, Wanas A, Joshi PH, Ashour EA. Enhancement of cannabidiol oral bioavailability through the development of nanostructured lipid carriers: In vitro and in vivo evaluation studies. Drug Deliv Transl Res 2024:10.1007/s13346-024-01766-9. [PMID: 39738884 DOI: 10.1007/s13346-024-01766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Cannabidiol (CBD) is a natural product isolated from the Cannabis sativa plant that was approved by the United States Food and Drug Administration (US FDA) for the treatment of resistant epilepsy. Despite its therapeutic potential, CBD's clinical application is limited by its poor aqueous solubility and low oral bioavailability. The primary aim of this research was to enhance the aqueous solubility and oral bioavailability of CBD by developing nanostructured lipid carriers (NLCs) using conventional hot homogenization method (CHH). In the current study, nine CBD NLC formulations were developed through CHH, of which, NLC5 emerged as the most promising formulation, exhibiting high CBD entrapment efficiency (99.23%), particle size of 207 nm, a polydispersity index of 0.19, and a zeta potential of -26 mV. Additionally, drug release testing for NLC5 showed a high CBD release rate of more than 90% within 15 min, indicating an enhancement of CBD dissolving rate compared to pure CBD. The in vivo pharmacokinetic study of NLC5 formulation showed 27% CBD oral bioavailability. Furthermore, Stability studies conducted at 4 °C and 25 °C on this formulation over three months, revealed consistent parameters, underscoring the robustness of the formulation. In conclusion, the successful formulation of CBD-loaded NLCs resulted in improved CBD release rate, enhanced oral bioavailability of CBD, and maintained stability, making it a promising approach for the effective delivery of CBD.
Collapse
Affiliation(s)
- Iman E Taha
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Mahmoud A ElSohly
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
- National Center for Natural Product Research, University of Mississippi, University, MS, 38677, USA
| | - Mohamed M Radwan
- National Center for Natural Product Research, University of Mississippi, University, MS, 38677, USA
| | - Rasha M Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Amira Wanas
- National Center for Natural Product Research, University of Mississippi, University, MS, 38677, USA
| | - Poorva H Joshi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
24
|
Pouyanfar N, Anvari Z, Davarikia K, Aftabi P, Tajik N, Shoara Y, Ahmadi M, Ayyoubzadeh SM, Shahbazi MA, Ghorbani-Bidkorpeh F. Machine learning-assisted rheumatoid arthritis formulations: A review on smart pharmaceutical design. MATERIALS TODAY COMMUNICATIONS 2024; 41:110208. [DOI: 10.1016/j.mtcomm.2024.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Hamdy NM, Basalious EB, El-Sisi MG, Nasr M, Kabel AM, Nossier ES, Abadi AH. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine. Curr Med Res Opin 2024; 40:1943-1961. [PMID: 39412377 DOI: 10.1080/03007995.2024.2416985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
The development of therapies followed a generalized approach for a long time, assuming that a single treatment could effectively address various patient populations. However, recent breakthroughs have revealed the limitations of this one-size-fits-all paradigm. More recently, the field of therapeutics has witnessed a shift toward other modules, including cell therapies, high molecular weight remedies, personalized medicines, and gene therapies. Such advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects. Cell therapies have gained considerable attention in regenerative medicine. Stem cell-based therapies, for instance, hold promise for tissue repair and regeneration, with ongoing research focusing on enhancing their efficacy and safety. High molecular weight drugs like peptides and proteins emerged as promising therapeutics because of their high specificity and diverse biological functions. Engineered peptides and proteins are developed for targeted drug delivery, immunotherapy, and disease-modulation. In personalized medicine, tailored treatments to individuals based on specific genetic profiling, lifestyle, biomarkers, and disease characteristics are all implemented. Clinicians have tailored treatments to optimize outcomes and minimize adverse effects, using targeted therapies based on specific mutations, yielding remarkable results. Gene therapies have revolutionized the treatment of genetic disorders by directly targeting the underlying genetic abnormalities. Innovative techniques, such as CRISPR-Cas9 have allowed precise gene editing, opening up possibilities for curing previously incurable conditions. In conclusion, advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
| | - Emad B Basalious
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
| | - Maha Nasr
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed M Kabel
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman S Nossier
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ashraf H Abadi
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| |
Collapse
|
26
|
Chavan DD, Bhosale RR, Thorat VM, Yadav AR, Patil SV, Janugade BU, Patil SJ. Current Advances in Lipid-Based Drug Delivery Systems as Nanocarriers for the Management of Female Genital Tuberculosis. Cureus 2024; 16:e74452. [PMID: 39726465 PMCID: PMC11669736 DOI: 10.7759/cureus.74452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Female genital tuberculosis (FGTB) arises from Mycobacterium tuberculosis infection and can rarely be caused by Mycobacterium bovis or atypical mycobacteria. FGTB usually arises from tuberculosis (TB) that affects the lungs or other organs. The infection can enter the vaginal tract directly from abdominal TB or by hematogenous or lymphatic pathways. Menstrual dysfunction and infertility as a result of genital organ damage result from FGTB, which affects women's fallopian tubes, uterine endometrium, and ovaries. Consequently, FGTB remains a major worldwide health risk, posing challenges in its treatment due to the limited effectiveness of existing drugs and the resilient nature of the TB pathogen. Moreover, currently available antimicrobial drugs for FGTB suffer from inadequate bioavailability. Long treatment regimens are necessary because high doses often result in patient noncompliance and the emergence of drug-resistant strains of TB. Therefore, to improve TB therapy generally, especially FGTB, novel drug delivery techniques are essential. Because targeted drug delivery systems have the benefit of delivering higher drug concentrations directly to the infection site, fewer side effects have been reported. As a result, various lipid-based drug delivery systems as nanocarriers have been identified as successful antimicrobial drug delivery options, indicating their potential for treating FGTB.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Akshay R Yadav
- Department of Pharmaceutical Chemistry, Krishna Charitable Trust's Krishna College of Pharmacy, Karad, IND
| | - Sachinkumar V Patil
- Department of Pharmaceutics, Dr. Ashok Gujar Institute of Pharmacy, Karad, IND
| | - Bhagyesh U Janugade
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
27
|
Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X, Zhang K. Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy. NANO-MICRO LETTERS 2024; 17:30. [PMID: 39347944 PMCID: PMC11442722 DOI: 10.1007/s40820-024-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Collapse
Affiliation(s)
- Yijie Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Congrui Liu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Qiuxia Peng
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
- Department of Stomatology and Central Laboratory, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, NO. 301 Yan-Chang-Zhong Road, Shanghai, 200072, People's Republic of China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, No.2, Bayi West Road, Suining, Xu Zhou, 221000, Jiangsu Province, People's Republic of China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
28
|
Baig MS, Karade SK, Ahmad A, Khan MA, Haque A, Webster TJ, Faiyazuddin M, Al-Qahtani NH. Lipid-based nanoparticles: innovations in ocular drug delivery. Front Mol Biosci 2024; 11:1421959. [PMID: 39355534 PMCID: PMC11442363 DOI: 10.3389/fmolb.2024.1421959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024] Open
Abstract
Ocular drug delivery presents significant challenges due to intricate anatomy and the various barriers (corneal, tear, conjunctival, blood-aqueous, blood-retinal, and degradative enzymes) within the eye. Lipid-based nanoparticles (LNPs) have emerged as promising carriers for ocular drug delivery due to their ability to enhance drug solubility, improve bioavailability, and provide sustained release. LNPs, particularly solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and cationic nanostructured lipid carriers (CNLCs), have emerged as promising solutions for enhancing ocular drug delivery. This review provides a comprehensive summary of lipid nanoparticle-based drug delivery systems, emphasizing their biocompatibility and efficiency in ocular applications. We evaluated research and review articles sourced from databases such as Google Scholar, TandFonline, SpringerLink, and ScienceDirect, focusing on studies published between 2013 and 2023. The review discusses the materials and methodologies employed in the preparation of SLNs, NLCs, and CNLCs, focusing on their application as proficient carriers for ocular drug delivery. CNLCs, in particular, demonstrate superior effectiveness attributed due to their electrostatic bioadhesion to ocular tissues, enhancing drug delivery. However, continued research efforts are essential to further optimize CNLC formulations and validate their clinical utility, ensuring advancements in ocular drug delivery technology for improved patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam’s Kalsekar Technical Campus School of Pharmacy, Affiliated to the University of Mumbai, New Panvel, Maharashtra, India
| | | | - Anas Ahmad
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mohd. Ashif Khan
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Anzarul Haque
- Central Laboratories Unit (CLU), Qatar University, Doha, Qatar
| | - Thomas J. Webster
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials, UFPI, Teresina, Brazil
- Division of Pre-College and Undergraduate Studies, Brown University, Providence, RI, United States
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, Bihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Noora H. Al-Qahtani
- Central Laboratories Unit (CLU), Qatar University, Doha, Qatar
- Center for Advanced Materials, Qatar University, Doha, Qatar
| |
Collapse
|
29
|
Ferraro C, Dattilo M, Patitucci F, Prete S, Scopelliti G, Parisi OI, Puoci F. Exploring Protein-Based Carriers in Drug Delivery: A Review. Pharmaceutics 2024; 16:1172. [PMID: 39339208 PMCID: PMC11435266 DOI: 10.3390/pharmaceutics16091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Drug delivery systems (DDSs) represent an emerging focus for many researchers and they are becoming progressively crucial in the development of new treatments. Great attention is given to all the challenges that a drug has to overcome during its journey across barriers and tissues and all the pharmacokinetics modulations that are needed in order to reach the targeting sites. The goal of these pathways is the delivery of drugs in a controlled way, optimizing their bioavailability and minimizing side effects. Recent innovations in DDSs include various nanotechnology-based approaches, such as nanoparticles, nanofibers and micelles, which provide effective targeted delivery and sustained release of therapeutics. In this context, protein-based drug delivery systems are gaining significant attention in the pharmaceutical field due to their potential to revolutionize targeted and efficient drug delivery. As natural biomolecules, proteins offer distinct advantages, including safety, biocompatibility and biodegradability, making them a fascinating alternative to synthetic polymers. Moreover, protein-based carriers, including those derived from gelatin, albumin, collagen, gliadin and silk proteins, demonstrate exceptional stability under physiological conditions, and they allow for controlled and sustained drug release, enhancing therapeutic efficacy. This review provides a comprehensive overview of the current trends, challenges, and future perspectives in protein-based drug delivery, focusing on the types of proteins adopted and the techniques that are being developed to enhance their functionality in terms of drug affinity and targeting capabilities, underscoring their potential to significantly impact modern therapeutics.
Collapse
Affiliation(s)
- Claudia Ferraro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
| | - Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
| | - Giuseppe Scopelliti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
30
|
Narsa AC, Suhandi C, Afidika J, Ghaliya S, Elamin KM, Wathoni N. A Comprehensive Review of the Strategies to Reduce Retinoid-Induced Skin Irritation in Topical Formulation. Dermatol Res Pract 2024; 2024:5551774. [PMID: 39184919 PMCID: PMC11344648 DOI: 10.1155/2024/5551774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/21/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Currently, retinoids are known for their abundant benefits to skin health, ranging from reducing signs of aging and decreasing hyperpigmentation to treating acne. However, it cannot be denied that there are various side effects associated with the use of retinoids on the skin, one of which is irritation. Several approaches can be employed to minimize the irritation caused by retinoids. This review article discusses topical retinoid formulation technology strategies to reduce skin irritation effects. The methodology used in this study is a literature review of 21 reference journals. The sources used in compiling this review are from PubMed, Scopus, ScienceDirect, and MEDLINE. The findings obtained indicate that the following methods can be used to lessen retinoid-induced irritation in topical formulations: developing drug delivery systems in the formulation, such as encapsulating retinoids, transforming retinoids into nanoparticles, forming complexes (e.g., with cyclodextrin), and binding retinoids with carriers (e.g., polymers, NLC, SLN), adding ingredients with anti-irritation activity, skin barrier improvement, and increased skin hydration to retinoid formulations (e.g., combinations of glucosamine, trehalose, ectoine, sucralfate, omega-9, and 4-t-butylcyclohexanol, addition of ethanolic bark extract of Alstonia scholaris R. Br).
Collapse
Affiliation(s)
- Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical TechnologyUniversitas Padjadjaran, Sumedang, Indonesia
- Department of Pharmaceutics and Pharmaceutical TechnologyFaculty of PharmacyMulawarman University, Samarinda, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical TechnologyUniversitas Padjadjaran, Sumedang, Indonesia
| | - Janifa Afidika
- Department of Pharmaceutics and Pharmaceutical TechnologyUniversitas Padjadjaran, Sumedang, Indonesia
| | - Salsabil Ghaliya
- Department of Pharmaceutics and Pharmaceutical TechnologyUniversitas Padjadjaran, Sumedang, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical SciencesKumamoto University, Kumamoto 862-0973, Japan
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical TechnologyUniversitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
31
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
32
|
Zhang J, Ali K, Wang J. Research Advances of Lipid Nanoparticles in the Treatment of Colorectal Cancer. Int J Nanomedicine 2024; 19:6693-6715. [PMID: 38979534 PMCID: PMC11229238 DOI: 10.2147/ijn.s466490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of LNPs in the treatment of CRC.
Collapse
Affiliation(s)
- Junyi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, People’s Republic of China
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
33
|
Tang J, Li Y, Hu X, Hua W, Xu H, Li L, Xu F. Enhancing Tranexamic Acid Penetration through AQP-3 Protein Triggering via ZIF-8 Encapsulation for Melasma and Rosacea Therapy. Adv Healthc Mater 2024; 13:e2304189. [PMID: 38539056 DOI: 10.1002/adhm.202304189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/15/2024] [Indexed: 04/25/2024]
Abstract
The systemic use of tranexamic acid (TA) as an oral drug can bring adverse reactions, while intradermal injection leads to pain and a risk of infection. Moreover, it is difficult for highly hydrophilic TA to penetrate the skin barrier that contains lots of hydrophobic lipid compounds, which poses enormous restrictions on its topical application. Current transdermal TA delivery strategies are suffering from low drug load rates, plus their synthesis complexity, time-consumption, etc. adding to the difficulty of TA topical application in clinical therapeutics. To increase the penetration of TA, a novel approach using TA-loaded ZIF-8 (TA@ZIF-8) is developed. The encapsulation efficiency of TA@ZIF-8 reaches ≈25% through physical adsorption and chemical bonding of TA indicates by theoretical simulation and the improved TA penetration is elevated through activating the aquaporin-3 (AQP-3) protein. Additionally, in vivo and in vitro experiments demonstrate the preponderance of TA@ZIF-8 for penetration ability and the advantages in intracellular uptake, minor cytotoxicity, and inhibition of melanogenesis and inflammatory factors. Moreover, clinical trials demonstrate the safety and efficacy of TA@ZIF-8 in the treatment of melasma and rosacea. This work presents a potential topical application of TA, free from the safety concerns associated with systemic drug administration.
Collapse
Affiliation(s)
- Jie Tang
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Sichuan University, Chengdu, 610041, China
| | - Yu Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Wei Hua
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Sichuan University, Chengdu, 610041, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haoning Xu
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610225, China
| | - Li Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Sichuan University, Chengdu, 610041, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fujian Xu
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610225, China
| |
Collapse
|
34
|
Mazahir F, Alam MI, Yadav AK. Development of nanomedicines for the treatment of Alzheimer's disease: Raison d'être, strategies, challenges and regulatory aspects. Ageing Res Rev 2024; 98:102318. [PMID: 38705362 DOI: 10.1016/j.arr.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive loss of memory. Presently, AD is challenging to treat with current drug therapy as their delivery to the brain is restricted by the presence of the blood-brain barrier. Nanomedicines, due to their size, high surface volume ratio, and ease of tailoring drug release characteristics, showed their potential to treat AD. The nanotechnology-based formulations for brain targeting are expected to enter the market in the near future. So, regulatory frameworks are required to ensure the quality, safety, and effectiveness of the nanomedicines to treat AD. In this review, we discuss different strategies, in-vitro blood-brain permeation models, in-vivo permeation assessment, and regulatory aspects for the development of nanomedicine to treat AD.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Md Imtiyaz Alam
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Awesh Kumar Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
35
|
Matarazzo AP, Rios CA, Gerônimo G, Ondei R, de Paula E, Breitkreitz MC. Development of a Versatile Nanostructured Lipid Carrier (NLC) Using Design of Experiments (DoE)-Part II: Incorporation and Stability of Butamben with Different Surfactants. Pharmaceutics 2024; 16:863. [PMID: 39065560 PMCID: PMC11280378 DOI: 10.3390/pharmaceutics16070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Nanostructured lipid carriers (NLCs) are typically composed of liquid lipids, solid lipids, and surfactants, enabling the encapsulation of lipophilic drugs. Butamben is a Class II anesthetic drug, according to the Biopharmaceutical Classification System (BCS); it has a log P of 2.87 and is considered a 'brick dust' (poorly water-soluble and poorly lipid-soluble) drug. This characteristic poses a challenge for the development of NLCs, as they are not soluble in the liquid lipid present in the NLC core. In a previous study, we developed an NLC core consisting of a solid lipid (CrodamolTM CP), a lipophilic liquid with medium polarity (SRTM Lauryl lactate), and a hydrophilic excipient (SRTM DMI) that allowed the solubilization of 'brick dust' types of drugs, including butamben. In this study, starting from the NLC core formulation previously developed we carried out an optimization of the surfactant system and evaluated their performance in aqueous medium. Three different surfactants (CrodasolTM HS HP, SynperonicTM PE/F68, and CroduretTM 40) were studied and, for each of them, a 23 factorial design was stablished, with total lipids, % surfactant, and sonication time (min) as the input variables and particle size (nm), polydispersity index (PDI), and zeta potential (mV) as the response variables. Stable NLCs were obtained using CrodasolTM HS HP and SynperonicTM PE/F68 as surfactants. Through a comparison between NLCs developed with and without SRTM DMI, it was observed that besides helping the solubilization of butamben in the NLC core, this excipient helped in stabilizing the system and decreasing particle size. NLCs containing CrodasolTM HS HP and SynperonicTM PE/F68 presented particle size values in the nanometric scale, PDI values lower than 0.3, and zeta potentials above |10|mV. Concerning NLCs' stability, SBTB-NLC with SynperonicTM PE/F68 and butamben demonstrated stability over a 3-month period in aqueous medium. The remaining NLCs showed phase separation or precipitation during the 3-month analysis. Nevertheless, these formulations could be freeze-dried after preparation, which would avoid precipitation in an aqueous medium.
Collapse
Affiliation(s)
- Ananda P. Matarazzo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil;
| | - Carlos A. Rios
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Gabriela Gerônimo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas 13083-862, SP, Brazil; (G.G.); (E.d.P.)
| | - Roberta Ondei
- Croda Brazil, R. Croda, 580—Distrito Industrial, Campinas 13054-710, SP, Brazil;
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas 13083-862, SP, Brazil; (G.G.); (E.d.P.)
| | - Márcia C. Breitkreitz
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil;
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| |
Collapse
|
36
|
Okpoghono J, Isoje EF, Igbuku UA, Ekayoda O, Omoike GO, Adonor TO, Igue UB, Okom SU, Ovowa FO, Stephen-Onojedje QO, Ejueyitsi EO, Seigha AA. Natural polyphenols: A protective approach to reduce colorectal cancer. Heliyon 2024; 10:e32390. [PMID: 38961927 PMCID: PMC11219337 DOI: 10.1016/j.heliyon.2024.e32390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background A form of cancer that affects the rectum or colon (large intestine) is called colorectal cancer (CRC). The main risk factors for CRC include dietary, lifestyle, and environmental variables. Currently natural polyphenols have demonstrated impressive anticarcinogenic capabilities. Objective The main objective was to provide an updated, thorough assessment of the defensive mechanism of natural polyphenols for the global suppression of colorectal cancer. More precisely, this study aimed to analyze a set of chosen polyphenols with demonstrated safety, effectiveness, and biochemical defense mechanism on colon cancer models in order to facilitate future research. Methods This review was carried out with purposefully attentive and often updated scientific databases, including PubMed, Scopus, Science Direct, and Web of Science. After selecting approximately 178 potentially relevant papers based just on abstracts, 145 studies were meticulously reviewed and discussed. Results The outcomes disclosed that anti-CRC mechanisms of natural polyphenols involved the control of several molecular and signaling pathways. Natural polyphenols have also been shown to have the ability to limit the growth and genesis of tumors via altering the gut microbiota and cancer stem cells. However, the biochemical uses of many natural polyphenols have remained restricted because of their truncated water solubility and low bioavailability. In order to attain synergistic properties it is recommended to combine the use of different natural polyphenols because of their low bioavailability and volatility. However, the use of lipid-based nano- and micro-carriers also may be helpful to solve these problems with efficient distribution system to target sites. Conclusion In conclusion, the use of polyphenols for CRC treatment appears promising. To ascertain their efficacy, more clinical research is anticipated.
Collapse
Affiliation(s)
- Joel Okpoghono
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Endurance F. Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ufuoma A. Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ovigueroye Ekayoda
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Godson O. Omoike
- Department of Public Health, School of Health and Society, University of Wolverhampton, United Kingdom
| | - Treasure O. Adonor
- Department of Biotechnology, Faculty of Life Science, University of Essex, United Kingdom
| | - Udoka B. Igue
- Department of Chemical Sciences, Novena University, Ogume, Delta State, Nigeria
| | - Solomon U. Okom
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Faith O. Ovowa
- Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Queen O. Stephen-Onojedje
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Ejiro O. Ejueyitsi
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Anita A. Seigha
- Department of Chemical Sciences, Novena University, Ogume, Delta State, Nigeria
| |
Collapse
|
37
|
Shalaby ES, Abdelhameed MF, Ismail SA, Ahmed YH, Aboutaleb S. Innovative Indian Propolis Loaded Carnauba Wax Based Lipid Structured Nanocarriers: Preparation, Characterization and In Vitro /In Vivo Antifungal Activities. BIONANOSCIENCE 2024; 14:1726-1743. [DOI: 10.1007/s12668-024-01361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 01/03/2025]
|
38
|
Yılmaz Usta D, Teksin ZS, Tugcu-Demiroz F. Evaluation of Emulgel and Nanostructured Lipid Carrier-Based Gel Formulations for Transdermal Administration of Ibuprofen: Characterization, Mechanical Properties, and Ex-Vivo Skin Permeation. AAPS PharmSciTech 2024; 25:124. [PMID: 38822143 DOI: 10.1208/s12249-024-02831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024] Open
Abstract
In transdermal applications of nonsteroidal anti-inflammatory drugs, the rheological and mechanical properties of the dosage form affect the performance of the drug. The aim of this study to develop emulgel and nanostructured lipid carrier NLC-based gel formulations containing ibuprofen, evaluate their mechanical properties, bioadhesive value and ex-vivo rabbit skin permeability. All formulations showed non-Newtonian pseudoplastic behavior and their viscosity values are suitable for topical application. The particle size of the nanostructured lipid carrier system was found to be 468 ± 21 nm, and the encapsulation efficiency was 95.58 ± 0.41%. According to the index of viscosity, consistency, firmness, and cohesiveness values obtained as a result of the back extrusion study, E2 formulation was found to be more suitable for transdermal application. The firmness and work of shear values of the E2 formulation, which has the highest viscosity value, were also found to be the highest and it was chosen as the most suitable formulation in terms of the spreadability test. The work of bioadhesion values of NLC-based gel and IBU-loaded NLC-based gel were found as 0.226 ± 0.028 and 0.181 ± 0.006 mJ/cm2 respectively. The percentages of IBU that penetrated through rabbit skin from the Ibuactive-Cream and the E2 were 87.4 ± 2.11% and 93.4 ± 2.72% after 24 h, respectively. When the penetration of ibuprofen through the skin was evaluated, it was found that the E2 formulation increased penetration due to its lipid and nanoparticle structure. As a result of these findings, it can be said that the NLC-based gel formulation will increase the therapeutic efficacy and will be a good alternative transdermal formulation.
Collapse
Affiliation(s)
- Duygu Yılmaz Usta
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Zeynep Safak Teksin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Fatmanur Tugcu-Demiroz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| |
Collapse
|
39
|
Adel Ali Youssef A, Hayder Abdelrahman M, Geweda MM, Varner C, Joshi PH, Ghonge M, Dudhipala N, Sulochana SP, Gadepalli RS, Majumdar S. Formulation and In Vitro-Ex vivo Evaluation of Cannabidiol and Cannabidiol-Valine-Hemisuccinate Loaded Lipid-Based Nanoformulations for Ocular Applications. Int J Pharm 2024; 657:124110. [PMID: 38604539 DOI: 10.1016/j.ijpharm.2024.124110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The goal of this investigation is to develop stable ophthalmic nanoformulations containing cannabidiol (CBD) and its analog cannabidiol-valine-hemisuccinate (CBD-VHS) for improved ocular delivery. Two nanoformulations, nanoemulsion (NE) and nanomicelles (NMC), were developed and evaluated for physicochemical characteristics, drug-excipient compatibility, sterilization, thermal analysis, surface morphology, ex-vivo transcorneal permeation, corneal deposition, and stability. The saturation solubility studies revealed that among the surfactants tested, Cremophor EL had the highest solubilizing capacity for CBD (23.3 ± 0.1 mg/mL) and CBD-VHS (11.2 ± 0.2 mg/mL). The globule size for the lead CBD formulations (NE and NMC) ranged between 205 and 270 nm while CBD-VHS-NMC formulation had a particle size of about 78 nm. The sterilized formulations, except for CBD-VHS-NMC at 40 °C, were stable for three months of storage (last time point tested). Release, in terms of CBD, in the in-vitro release/diffusion studies over 18 h, were faster from the CBD-VHS nanomicelles (38 %) compared to that from the CBD nanoemulsion (16 %) and nanomicelles (33 %). Transcorneal permeation studies revealed improvement in CBD permeability and flux with both formulations; however, a greater improvement was observed with the NMC formulation compared to the NE formulation. In conclusion, the nanoformulations prepared could serve as efficient topical ocular drug delivery platforms for CBD and its analog.
Collapse
Affiliation(s)
- Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Muna Hayder Abdelrahman
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mona M Geweda
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Corinne Varner
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Poorva H Joshi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mihir Ghonge
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Suresh P Sulochana
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Rama S Gadepalli
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
40
|
Rajoriya V, Gupta R, Vengurlekar S, Surendra Singh U. Nanostructured lipid carriers (NLCs): A promising candidate for lung cancer targeting. Int J Pharm 2024; 655:123986. [PMID: 38493842 DOI: 10.1016/j.ijpharm.2024.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer stands as the foremost health issue and the principal reason for mortality worldwide. It is projected that India will see over 1.73 million new cases and more than 880,000 deaths related to cancer, with lung cancer being a significant contributor. The efficiency of existing chemotherapy procedures is not optimal because of less soluble nature and short half-life of anticancer substances. More precipitated toxicity and non-existence of targeting propensity can lead to severe side effects, non-compliance, and inconvenience for patients. Nonetheless, the domain of nanomedicine has undergone a revolution in the past few years with the advent of novel drug delivery mechanisms that tackle the drawbacks of conventional approaches. Diverse nanoparticle-based drug delivery methods, including liposomes, nanoparticles, nanostructured lipid carrier and solid lipid nanoparticle that encapsulated chemotherapy drugs, are currently employed for efficient lung cancer therapy. NLCs, recognized as the second-generation lipid nanocarriers, are a focused drug delivery mechanism that has garnered significant interest owing to their multitude of advantages such as increased stability, minimal toxicity, prolonged shelf life, superior encapsulation capability, and biocompatible nature. This review focuses on the NLCs carrier system, discussing its preparation methods, types, characterization, applications, and future prospects in lung cancer treatment.
Collapse
Affiliation(s)
- Vaibhav Rajoriya
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India.
| | - Ravikant Gupta
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Sudha Vengurlekar
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Upama Surendra Singh
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| |
Collapse
|
41
|
Babanzadeh R, Vafaei SY, Moghadam DA, Komaki A, Mohammadi M. Quercetin-loaded nanoemulsions prevent Scopolamine-induced neurotoxicity in male rats. Physiol Behav 2024; 277:114494. [PMID: 38360390 DOI: 10.1016/j.physbeh.2024.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Quercetin (QCT) is well-known as a neuroprotective agent due to its antioxidant capacities and reinstating mitochondrial functions. Scopolamine is commonly used as a model to induce Alzheimer's disease (AD-like) symptoms. The current study develops QCT-loaded nanoemulsion (QCT-NE) accompanied by evaluating its neuro-therapeutic effectiveness against SCO-induced neurotoxicity in male rats. The QCT-NE was prepared by the spontaneous emulsification technique and characterized by using particle size, zeta potential, drug loading, in vitro drug release behavior, and stability studies. In vivo studies were done on adult Wistar rats by applying the Morris water maze (MWM) test to study spatial memory and learning. The levels of lipid peroxidation and reduced glutathione were quantitatively determined to reveal the potential mechanism of SCO-induced oxidative stress. Finally, histological studies were performed using staining techniques. The QCT-NE particle size, zeta potential, polydispersity index (PDI), and DL were obtained at 172.4 ± 16.8 nm, -29 ± 0.26 mV, 0.3 ± 0.07, and 81.42 ± 9.14 %, respectively. The QCT and more effectively QCT-NE reduced the elevation of neurobehavioral abnormalities in the MWM test in SCO-exposed rats. The results of oxidative status showed that SCO significantly could increase the LPO and decrease the GSH levels in the rat's brain. However, QCT-NE treatment was more effective than free QCT to inhibit oxidative damage and was well correlated with histopathological findings. Taken together, QCT-NE, compared to QCT, was superior in ameliorating SCO-induced AD-like symptoms due to its better neuroprotective activity and can be considered a novel supplementary therapeutic agent in AD management.
Collapse
Affiliation(s)
- Reza Babanzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Yaser Vafaei
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Davood Ahmadi Moghadam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
42
|
Mehrdadi S. Lipid-Based Nanoparticles as Oral Drug Delivery Systems: Overcoming Poor Gastrointestinal Absorption and Enhancing Bioavailability of Peptide and Protein Therapeutics. Adv Pharm Bull 2024; 14:48-66. [PMID: 38585451 PMCID: PMC10997935 DOI: 10.34172/apb.2024.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Delivery and formulation of oral peptide and protein therapeutics have always been a challenge for the pharmaceutical industry. The oral bioavailability of peptide and protein therapeutics mainly relies on their gastrointestinal solubility and permeability which are affected by their poor membrane penetration, high molecular weight and proteolytic (chemical and enzymatic) degradation resulting in limited delivery and therapeutic efficacy. The present review article highlights the challenges and limitations of oral delivery of peptide and protein therapeutics focusing on the application, potential and importance of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as lipid-based drug delivery systems (LBDDSs) and their advantages and drawbacks. LBDDSs, due to their lipid-based matrix can encapsulate both lipophilic and hydrophilic drugs, and by reducing the first-pass effect and avoiding proteolytic degradation offer improved drug stability, dissolution rate, absorption, bioavailability and controlled drug release. Furthermore, their small size, high surface area and surface modification increase their mucosal adhesion, tissue-targeted distribution, physiological function and half-life. Properties such as simple preparation, high-scale manufacturing, biodegradability, biocompatibility, prolonged half-life, lower toxicity, lower adverse effects, lipid-based structure, higher drug encapsulation rate and various drug release profile compared to other similar carrier systems makes LBDDSs a promising drug delivery system (DDS). Nevertheless, undesired physicochemical features of peptide and protein drug development and discovery such as plasma stability, membrane permeability and circulation half-life remain a serious challenge which should be addressed in future.
Collapse
Affiliation(s)
- Soheil Mehrdadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
43
|
Cooper CG, Kafetzis KN, Patabendige A, Tagalakis AD. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. Eur J Neurosci 2024; 59:1359-1385. [PMID: 38154805 DOI: 10.1111/ejn.16229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.
Collapse
Affiliation(s)
| | | | - Adjanie Patabendige
- Department of Biology, Edge Hill University, Ormskirk, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Aristides D Tagalakis
- Department of Biology, Edge Hill University, Ormskirk, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
44
|
Godase SS, Kulkarni NS, Dhole SN. A Comprehensive Review on Novel Lipid-Based Nano Drug Delivery. Adv Pharm Bull 2024; 14:34-47. [PMID: 38585464 PMCID: PMC10997939 DOI: 10.34172/apb.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 02/21/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Novel drug delivery system opens the doors towards nano/micro formulation strategies to overcome the challenges associated with the poorly soluble and permeable drugs. Lipid based nanoparticles are widely accepted that includes liposomes, niosomes and micelles which are FDA approved. Such lipid based drug delivery allows delivery for natural phytoconstituents, biopharmaceutical classification system (BCS) class II and class IV drugs are effectively delivered to improve its solubility, permeability and bioavailability. The article provides the recent advances and application of lipid based dosage form for improvement of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Nilesh Shrikant Kulkarni
- Department of Pharmaceutics, PES Modern college of Pharmacy (for ladies) Moshi, Pune. Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| | | |
Collapse
|
45
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
46
|
Zheng Y, Li Y, Ke C, Duan M, Zhu L, Zhou X, Yang M, Jiang ZX, Chen S. Jellyfish-inspired smart tetraphenylethene lipids with unique AIE fluorescence, thermal response, and cell membrane interaction. J Mater Chem B 2024; 12:2373-2383. [PMID: 38349037 DOI: 10.1039/d3tb02068a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Smart lipids with fluorescence emission, thermal response, and polyethylene glycolation (PEGylation) functions can be highly valuable for formulation, image-traceable delivery, and targeted release of payloads. Herein, a series of jellyfish-shaped amphiphiles with a tetraphenylethene (TPE) core and four symmetrical amphiphilic side chains were conveniently synthesized and systematically investigated as smart lipids. Compared with regular amphiphilic TPE lipids and phospholipids, the unprecedented jellyfish-shaped molecular geometry was found to enable a series of valuable capabilities, including sensitive and responsive aggregation-induced emission of fluorescence (AIE FL) and real-time FL monitoring of drug uptake. Furthermore, the jellyfish-shaped geometry facilitated the concentration-dependent aggregation from unimolecular micelles at low concentrations to "side-by-side" spherical aggregates at high concentrations and a unique mode of AIE. In addition, the size and the arrangement of the amphiphilic side chains were found to dominate the aggregate stability, cell uptake, and thus the cytotoxicity of the amphiphiles. This study has unprecedentedly developed versatile smart TPE lipids with precise structures, and unique physicochemical and biological properties while the peculiar structure-property relationship may shed new light on the design and application of AIE fluorophores and functional lipids in biomedicine and materials science.
Collapse
Affiliation(s)
- Yujie Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
| | - Changsheng Ke
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
| | - Lijun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
47
|
Guo Y, Awais MM, Fei S, Xia J, Sun J, Feng M. Applications and Potentials of a Silk Fibroin Nanoparticle Delivery System in Animal Husbandry. Animals (Basel) 2024; 14:655. [PMID: 38396623 PMCID: PMC10885876 DOI: 10.3390/ani14040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Silk fibroin (SF), a unique natural polymeric fibrous protein extracted from Bombyx mori cocoons, accounts for approximately 75% of the total mass of silk. It has great application prospects due to its outstanding biocompatibility, biodegradability, low immunogenicity, and mechanical stability. Additionally, it is non-toxic and environmentally friendly. Nanoparticle delivery systems constructed with SF can improve the bioavailability of the carriers, increase the loading rates, control the release behavior of the deliverables, and enhance their action efficiencies. Animal husbandry is an integral part of agriculture and plays a vital role in the development of the rural economy. However, the pillar industry experiences a lot of difficulties, like drug abuse while treating major animal diseases, and serious environmental pollution, restricting sustainable development. Interestingly, the limited use cases of silk fibroin nanoparticle (SF NP) delivery systems in animal husbandry, such as veterinary vaccines and feed additives, have shown great promise. This paper first reviews the SF NP delivery system with regard to its advantages, disadvantages, and applications. Moreover, we describe the application status and developmental prospects of SF NP delivery systems to provide theoretical references for further development in livestock production and promote the high-quality and healthy development of animal husbandry.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (M.M.A.); (S.F.); (J.X.); (J.S.)
| |
Collapse
|
48
|
Li M, Zhu J, Lv Z, Qin H, Wang X, Shi H. Recent Advances in RNA-Targeted Cancer Therapy. Chembiochem 2024; 25:e202300633. [PMID: 37961028 DOI: 10.1002/cbic.202300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Ribonucleic acid (RNA) plays a pivotal role in gene regulation and protein biosynthesis. Interfering the physiological function of key RNAs to induce cell apoptosis holds great promise for cancer treatment. Many RNA-targeted anti-cancer strategies have emerged continuously. Among them, RNA interference (RNAi) has been recognized as a promising therapeutic modality for various disease treatments. Nevertheless, the primary obstacle in siRNA delivery-escaping the endosome and crossing the plasma membrane severely impedes its therapeutic potential. Thus far, a variety of nanosystems as well as carrier-free bioconjugation for siRNA delivery have been developed and employed to enhance the drug delivery and anti-tumor efficiency. Besides, the use of small molecules to target specific RNA structures and disrupt their function, along with the covalent modification of RNA, has also drawn tremendous attention recently owing to high therapeutic efficacy. In this review, we will provide an overview of recent progress in RNA-targeted cancer therapy including various siRNA delivery strategies, RNA-targeting small molecules, and newly emerged covalent RNA modification. Finally, challenges and future perspectives faced in this research field will be discussed.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jinfeng Zhu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma, 00133, Italy
| | - Zhengzhong Lv
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Hongni Qin
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, China
| | - Xiaoyan Wang
- Department of Ultrasound, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
49
|
Rios CA, Ondei R, Breitkreitz MC. Development of a Versatile Lipid Core for Nanostructured Lipid Carriers (NLCs) Using Design of Experiments (DoE) and Raman Mapping. Pharmaceutics 2024; 16:250. [PMID: 38399304 PMCID: PMC10893334 DOI: 10.3390/pharmaceutics16020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to develop a versatile lipid core for the 'brick-dust type of drugs' (poorly water-soluble and poorly lipid-soluble drugs). In the first step, excipients of different polarities were classified according to their behavior in aqueous solutions. Subsequently, binary mixtures were prepared with cetyl palmitate (Crodamol™ CP pharma, Campinas, São Paulo, Brazil) as the solid lipid, and its miscibility with other excipients was evaluated using Raman mapping and classical least squares (CLS). Based on the results, the excipients Crodamol™ CP pharma (hydrophobic), Super Refined™ DMI (dimethyl isosorbide; hydrophilic, Mill Hall, PA, USA), and Super Refined™ Lauryl Lactate (lauryl lactate, medium polarity, Mill Hall, PA, USA) were chosen to compose the lipid core. The ideal proportion of these excipients was determined using a mixture design and the standard deviation (STD) of image histograms as the response variables. After statistical evaluation of the DoE results, the final composition was determined, and drugs with different logP (0 to 10) and physicochemical characteristics were evaluated in the optimized mixture. The drugs butamben (Sigma-Aldrich Co., Spruce Street, St. Louis, MO, USA), tacrolimus (NutriFarm, São Paulo, Brazil), atorvastatin calcium, and resveratrol (Botica da Terra, Campinas, Brazil) presented a homogeneous distribution in the optimized lipid core, indicating that this is a promising system to be used in nanostructured lipid carrier (NLC) formulations of such types of drugs.
Collapse
Affiliation(s)
- Carlos Alberto Rios
- Institute of Chemistry, University of Campinas (UNICAMP), Rua Josué de Castro, s/n, Campinas 13084-971, SP, Brazil;
| | - Roberta Ondei
- Croda Brazil, R. Croda, 580—Distrito Industrial, Campinas 13054-710, SP, Brazil;
| | - Márcia Cristina Breitkreitz
- Institute of Chemistry, University of Campinas (UNICAMP), Rua Josué de Castro, s/n, Campinas 13084-971, SP, Brazil;
| |
Collapse
|
50
|
Prodan-Bărbulescu C, Watz CG, Moacă EA, Faur AC, Dehelean CA, Faur FI, Grigoriţă LO, Maghiari AL, Tuţac P, Duţă C, Bolintineanu S, Ghenciu LA. A Preliminary Report Regarding the Morphological Changes of Nano-Enabled Pharmaceutical Formulation on Human Lung Carcinoma Monolayer and 3D Bronchial Microtissue. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:208. [PMID: 38399496 PMCID: PMC10890658 DOI: 10.3390/medicina60020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Nowadays, the development of enabled pharmaceutical nanoparticles of solid lipid type is continuously growing, because they have the potential to be used for targeted drug release leading to an increased effect of chemotherapy, being used in lung cancer nano-diagnosis and nano-therapy. The current study reports the preliminary results obtained regarding the biological effect of a new nano-enabled pharmaceutical formulation in terms of its cytotoxic and biosafety profile. Materials and Methods: The pharmaceutical formulations consist of solid lipid nanoparticles (SLN) obtained via the emulsification-diffusion method by loading green iron oxide nanoparticles (green-IONPs) with a pentacyclic triterpene (oleanolic acid-OA). Further, a complex biological assessment was performed, employing three-dimensional (3D) bronchial microtissues (EpiAirwayTM) to determine the biosafety profile of the SLN samples. The cytotoxic potential of the samples was evaluated on human lung carcinoma, using an in vitro model (A549 human lung carcinoma monolayer). Results: The data revealed that the A549 cell line was strongly affected after treatment with SLN samples, especially those that contained OA-loaded green-IONPs obtained with Ocimum basilicum extract (under 30% viability rates). The biosafety profile investigation of the 3D normal in vitro bronchial model showed that all the SLN samples negatively affected the viability of the bronchial microtissues (below 50%). As regards the morphological changes, all the samples induce major changes such as loss of the surface epithelium integrity, loss of epithelial junctions, loss of cilia, hyperkeratosis, and cell death caused by apoptosis. Conclusions: In summary, the culprit for the negative impact on viability and morphology of 3D normal bronchial microtissues could be the too-high dose (500 µg/mL) of the SLN sample used. Nevertheless, further adjustments in the SLN synthesis process and another complex in vitro evaluation will be considered for future research.
Collapse
Affiliation(s)
- Cătălin Prodan-Bărbulescu
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
| | - Claudia-Geanina Watz
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.-G.W.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.-G.W.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Alexandra-Corina Faur
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
| | - Cristina-Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.-G.W.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Flaviu Ionut Faur
- Department X—Discipline of Surgery II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (F.I.F.); (C.D.)
- 2nd Surgery Clinic, “Pius Brinzeu” Clinical Emergency County Hospital, RO-300723 Timisoara, Romania
| | - Laura Octavia Grigoriţă
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
| | - Anca Laura Maghiari
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
| | - Paul Tuţac
- Toxicology and Molecular Biology Department, “Pius Brinzeu” Clinical Emergency County Hospital, RO-300723 Timisoara, Romania;
| | - Ciprian Duţă
- Department X—Discipline of Surgery II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (F.I.F.); (C.D.)
- 2nd Surgery Clinic, “Pius Brinzeu” Clinical Emergency County Hospital, RO-300723 Timisoara, Romania
| | - Sorin Bolintineanu
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
| | - Laura Andreea Ghenciu
- Department I—Discipline of Anatomy and Embryology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (C.P.-B.); (A.-C.F.); (L.O.G.); (A.L.M.); (S.B.); (L.A.G.)
- Department III—Discipline of Physiopathology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|