1
|
Staub E. Current and potential methods to assess kidney structure and morphology in term and preterm neonates. Anat Rec (Hoboken) 2025; 308:1229-1250. [PMID: 36883787 PMCID: PMC11889481 DOI: 10.1002/ar.25195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/25/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
After birth, the kidney structure in neonates adapt to the functional demands of extrauterine life. Nephrogenesis is complete in the third trimester, but glomeruli, tubuli, and vasculature mature with the rapidly increasing renal blood flow and glomerular filtration. In preterm infants, nephrogenesis remains incomplete and maturation is slower and may be aberrant. This structural and functional deficit has life-long consequences: preterm born individuals are at higher risk for chronic kidney disease and arterial hypertension later in life. This review assembles the literature on existing and potential methods to visualize neonatal kidney structure and morphology and explore their potential to longitudinally document the developmental deviation after preterm birth. X-rays with and without contrast, fluoroscopy and computed tomography (CT) involve relevant ionizing radiation exposure and, apart from CT, do not provide sufficient structural details. Ultrasound has evolved into a safe and noninvasive high-resolution imaging method which is excellent for longitudinal observations. Doppler ultrasound modes can characterize and quantify blood flow to and through the kidneys. Microvascular flow imaging has opened new possibilities of visualizing previously unseen vascular structures. Recent advances in magnetic resonance imaging display renal structure and function in unprecedented detail, but are offset by the logistical challenges of the imaging procedure and limited experience with the new techniques in neonates. Kidney biopsies visualize structure histologically, but are too invasive and remain anecdotal in newborns. All the explored methods have predominantly been examined in term newborns and require further research on longitudinal structural observation in the kidneys of preterm infants.
Collapse
Affiliation(s)
- Eveline Staub
- Department of NeonatologyRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- University of Sydney Northern Clinical SchoolRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| |
Collapse
|
2
|
Munir I, Nazir F, Yesiloz G. Unlocking Nature's Potential: Ferritin as a Universal Nanocarrier for Amplified Cancer Therapy Testing via 3D Microtissues. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70187-70204. [PMID: 39660468 DOI: 10.1021/acsami.4c12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
In the existing development of extensive drug screening models, 3D cell cultures outshine conventional 2D monolayer cells by closely imitating the in vivo tumor microenvironment. This makes 3D culture a more physiologically relevant and convenient system in the regime of preclinical drug testing. In the nanomedicinal world, nanoconjugates as nanocarriers are largely hunted due to their capability of precisely binding to target cells and distributing essential dosages of therapeutic drugs with enhanced safety profiles. Thus, for boosted drug availability, the evolution from conventional drug treatment to combination therapies and last switching to drug carriers has gained significant progression in cancer cure. In contrast to conventional engineered nanoparticles, herein, we successfully designed biomolecule (ferritin)-based drug nanoconjugates effective both as a single drug (valproic acid-VPA) and twin-drug (valproic acid/doxorubicin-Dox) carriers, which dramatically enhance the proficiency of the tumor therapeutic modality. To question the reported adjuvant drug property of VPA, we progressed utilizing at first VPA alone as an effective yet exclusive tumor therapy when delivered via some carrier molecule, in particular protein. Subsequently, we paralleled this comprehensive investigation output to compare and test the coloading strategy of drugs and observe the synergistic and/or additive behavior of VPA in conjugation with other anticancer agents (Dox) while given via a carrier molecule. To approach this, VPA and/or Dox molecules were encapsulated into the ferritin (F) cavity using a thermosensitive synthesis method by maintaining the temperature at 60 °C. The successful encapsulation of drugs in the protein nanocage was confirmed through various characterization techniques. The F-VPA/F-VPA-Dox nanoconjugates exhibited similar morphology and structural characteristics to the hollow ferritin cage and showed significant cytotoxicity than the naked drugs when tested on physiologically relevant 3D spheroid models. Precisely, our first designed carrier nanoconjugate, i.e., F-VPA, offered more than a 3-fold increased intratumoral drug concentration than free VPA and significantly suppressed tumor growth after a single-dose treatment. However, our second modeled carrier nanoconjugate, viz. F-VPA-Dox, revealed an extended median survival period and lesser toxicity when administered at a much more effective dose (∼3-5 μM), in 3D tumor spheroid models of various cancer cell lines. All in all, importantly, ferritin nanoconjugates exhibited an enhanced tumor inhibition rate with a single-dose treatment, which further confirms the benefits of the active targeting property of these nanocarriers. Moreover, these nanocarriers also offer to deliver a significant dose of the therapeutic drug into tumor cells, alongside tremendous biocompatibility and safety profiles in numerous tumor 3D spheroid models.
Collapse
Affiliation(s)
- Iqra Munir
- National Nanotechnology Research Center (UNAM) Bilkent University, Cankaya, Ankara, 06800, Türkiye
| | - Faiqa Nazir
- National Nanotechnology Research Center (UNAM) Bilkent University, Cankaya, Ankara, 06800, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, Cankaya, Ankara, 06800, Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM) Bilkent University, Cankaya, Ankara, 06800, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, Cankaya, Ankara, 06800, Türkiye
| |
Collapse
|
3
|
Baldelomar EJ, Zhang H, Thorek D, Charlton JR, Walker PD, Wilson LD, Emoto KC, Clavijo Jordan V, Reichert DE, Shoghi K, Bennett KM. Development and Use of Human Recombinant 64Cu-rHCF as a Kidney Glomerulus-Targeted Contrast Agent for Positron Emission Tomography. ACS APPLIED BIO MATERIALS 2024; 7:6392-6397. [PMID: 39241192 DOI: 10.1021/acsabm.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
In this work, we develop recombinant human cationic ferritin (rHCF) as a contrast agent to detect glomeruli in the kidney using positron emission tomography (PET). We first expressed recombinant human ferritin (rHF) in E. coli and then functionalized and radiolabeled it with Copper-64 (64Cu) to form 64Cu-rHCF. Intravenously injected 64Cu-rHCF bound to kidney glomeruli and was detected by PET. A subchronic toxicity study after an intravenous injection of rHCF revealed no significant toxicity. The development of rHCF is an important step toward the potential clinical translation of CF to detect the nephron number in humans.
Collapse
Affiliation(s)
- Edwin J Baldelomar
- XN Biotechnologies, LLC, St. Louis, Missouri 63110, United States
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Hanwen Zhang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Daniel Thorek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Jennifer R Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Leslie D Wilson
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Kasey C Emoto
- Department of Biology, University of Hawaii at Manoa, Honolulu, Hawai'i 96822, United States
| | - Veronica Clavijo Jordan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02115, United States
| | - David E Reichert
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Kooresh Shoghi
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
4
|
Chen Y, Xu C, Sun M, Zhao G, Wang Z, Lv C. Vertasile ferritin nanocages: Applications in detection and bioimaging. Biosens Bioelectron 2024; 262:116567. [PMID: 39013360 DOI: 10.1016/j.bios.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Food safety and human health remain significant concerns in the food industry. Detecting food contaminants and diagnosing diseases are critical aspects. Ferritin, an iron storage protein widely found in nature, offers unique advantages. Its hollow protein nanocage structure, distinct interfaces, hydrophobic or hydrophilic channels, and B-C loop regions recognized by transferrin receptor 1 make ferritin versatile for detecting heavy metals, free radicals, and bioimaging both in vitro and in vivo. This review summarizes ferritin's general characteristics, its specific properties as biosensors, and its applications in food safety and in vivo imaging. It emphasizes not only ferritin's role in detecting heavy metals like mercury and chemical hazards but also its potential in early diagnosing chronic diseases such as tumors, macrophages, and kidney diseases. Further research into ferritin promises advancements in enhancing food safety and improving human health diagnostics.
Collapse
Affiliation(s)
- Yunqi Chen
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Chen Xu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, PR China.
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, PR China.
| |
Collapse
|
5
|
Zhang C, Jin JL, Zhou CH, Ruan CX, Lei PF, Cai YZ. Magnetic Seeding of SPIO-BMSCs Into a Biphasic Scaffold Can Promote Tendon-Bone Healing After Rotator Cuff Repair. Am J Sports Med 2024; 52:1707-1718. [PMID: 38702986 DOI: 10.1177/03635465241247288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
BACKGROUND The tendon-bone interface (TBI) in the rotator cuff has a poor intrinsic capacity for healing, which increases the risk of retear after rotator cuff repair (RCR). However, facilitating regeneration of the TBI still remains a great clinical challenge. Herein, the authors established a novel strategy based on magnetic seeding to enhance the TBI regeneration. HYPOTHESIS Magnetic seeding bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide (SPIO-BMSCs) into a biphasic scaffold can promote tendon-bone healing after RCR. STUDY DESIGN Controlled laboratory study. METHODS BMSCs were labeled with SPIOs. Prussian blue staining, CCK-8 tests, Western blot, and quantitative reverse transcription polymerase chain reaction (PCR) were used to determine the optimal effect concentration of SPIOs on cell bioactivities and abilities. Then SPIO-BMSCs were magnetically seeded into a biphasic scaffold under a magnetic field. The seeding efficacy was assessed by a scanning electron microscope, and the potential mechanism in chondrogenic differentiation after seeding SPIO-BMSCs into the scaffold was evaluated by Western blot and PCR. Furthermore, the effect of SPIO-BMSC/biphasic scaffold on tendon-bone healing after RCR using a rat model was examined using histological analysis, enzyme-linked immunosorbent assay, and biomechanical evaluation. RESULTS BMSCs labeled with 100 μg/mL SPIO had no effect on cell bioactivities and the ability of chondrogenic differentiation. SPIO-BMSCs were magnetically seeded into a biphasic scaffold, which offered a high seeding efficacy to enhance chondrogenic differentiation of SPIO-BMSCs via the CDR1as/miR-7/FGF2 pathway for TBI formation in vitro. Furthermore, in vivo application of the biphasic scaffold with magnetically seeded SPIO-BMSCs showed their regenerative potential, indicating that they could significantly accelerate and promote TBI healing with superior biomechanical properties after RCR in a rat rotator cuff tear model. CONCLUSION Magnetically seeding SPIO-BMSCs into a biphasic scaffold enhanced seeding efficacy to promote cell distribution and condensation. This construct enhanced the chondrogenesis process via the CDR1as/miR-7/FGF2 pathway and further promoted tendon-bone healing after RCR in a rat rotator cuff tear model. CLINICAL RELEVANCE This study provides an alternative strategy for improving TBI healing after RCR.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine of Zhejiang University, Hangzhou, China
| | - Jia-Le Jin
- Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong-Hui Zhou
- Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng-Xing Ruan
- Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng-Fei Lei
- Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Zhi Cai
- Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Sports Medicine of Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Chen C, Chen H, Wang P, Wang X, Wang X, Chen C, Pan W. Reactive Oxygen Species Activate a Ferritin-Linked TRPV4 Channel under a Static Magnetic Field. ACS Chem Biol 2024; 19:1151-1160. [PMID: 38648729 DOI: 10.1021/acschembio.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Magnetogenetics has shown great potential for cell function and neuromodulation using heat or force effects under different magnetic fields; however, there is still a contradiction between experimental effects and underlying mechanisms by theoretical computation. In this study, we aimed to investigate the role of reactive oxygen species (ROS) in mechanical force-dependent regulation from a physicochemical perspective. The transient receptor potential vanilloid 4 (TRPV4) cation channels fused to ferritin (T4F) were overexpressed in HEK293T cells and exposed to static magnetic fields (sMF, 1.4-5.0 mT; gradient: 1.62 mT/cm). An elevation of ROS levels was found under sMF in T4F-overexpressing cells, which could lead to lipid oxidation. Compared with the overexpression of TRPV4, ferritin in T4F promoted the generation of ROS under the stimulation of sMF, probably related to the release of iron ions from ferritin. Then, the resulting ROS regulated the opening of the TRPV4 channel, which was attenuated by the direct addition of ROS inhibitors or an iron ion chelator, highlighting a close relationship among iron release, ROS production, and TRPV4 channel activation. Taken together, these findings indicate that the produced ROS under sMF act on the TRPV4 channel, regulating the influx of calcium ions. The study would provide a scientific basis for the application of magnetic regulation in cellular or neural regulation and disease treatment and contribute to the development of the more sensitive regulatory technology.
Collapse
Affiliation(s)
- Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| |
Collapse
|
7
|
Yan W, Li H, Ning J, Huang S, Jiang L, Xu P, Huang M, Yuan C. Engineered protein cages with enhanced extracellular drug release for elevated antitumor efficacy. Int J Biol Macromol 2024; 267:131492. [PMID: 38604418 DOI: 10.1016/j.ijbiomac.2024.131492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Human heavy chain ferritin (HFn) protein cage has been explored as a nanocarrier for targeted anticancer drug delivery. Here, we introduced a matrix metalloproteinases (MMPs)-cleavable sequence into the DE loop of HFn, creating an MMP-responsive variant, MR-HFn, for localized and extracellular drug release. The crystal structure of MR-HFn revealed that the addition of the MMPs recognition sequence did not affect the self-assembly of HFn but presented a surface-exposed loop susceptible to MMPs cleavage. Biochemical analysis indicated that this engineered protein cage is responsive to MMPs, enabling the targeted release of encapsulated drugs. To evaluate the therapeutic potential of this engineered protein cage, monosubstituted β-carboxy phthalocyanine zinc (CPZ), a type of photosensitizer, was loaded inside this protein cage. The prepared CPZ@MR-HFn showed higher uptake and stronger phototoxicity in MMPs overexpressed tumor cells, as well as enhanced penetration into multicellular tumor spheroids compared with its counterpart CPZ@HFn in vitro. In vivo, CPZ@MR-HFn displayed a higher tumor inhibitory rate than CPZ@HFn under illumination. These results indicated that MR-HFn is a promising nanocarrier for anticancer drug delivery and the MMP-responsive strategy here can also be adapted for other stimuli.
Collapse
Affiliation(s)
- Wen Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hanlin Li
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Jiamin Ning
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuhao Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
8
|
Seo JY, Park SB, Kim SY, Seo GJ, Jang HK, Lee TJ. Acoustic and Magnetic Stimuli-Based Three-Dimensional Cell Culture Platform for Tissue Engineering. Tissue Eng Regen Med 2023; 20:563-580. [PMID: 37052782 PMCID: PMC10313605 DOI: 10.1007/s13770-023-00539-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
In a conventional two-dimensional (2D) culture method, cells are attached to the bottom of the culture dish and grow into a monolayer. These 2D culture methods are easy to handle, cost-effective, reproducible, and adaptable to growing many different types of cells. However, monolayer 2D cell culture conditions are far from those of natural tissue, indicating the need for a three-dimensional (3D) culture system. Various methods, such as hanging drop, scaffolds, hydrogels, microfluid systems, and bioreactor systems, have been utilized for 3D cell culture. Recently, external physical stimulation-based 3D cell culture platforms, such as acoustic and magnetic forces, were introduced. Acoustic waves can establish acoustic radiation force, which can induce suspended objects to gather in the pressure node region and aggregate to form clusters. Magnetic targeting consists of two components, a magnetically responsive carrier and a magnetic field gradient source. In a magnetic-based 3D cell culture platform, cells are aggregated by changing the magnetic force. Magnetic fields can manipulate cells through two different methods: positive magnetophoresis and negative magnetophoresis. Positive magnetophoresis is a way of imparting magnetic properties to cells by labeling them with magnetic nanoparticles. Negative magnetophoresis is a label-free principle-based method. 3D cell structures, such as spheroids, 3D network structures, and cell sheets, have been successfully fabricated using this acoustic and magnetic stimuli-based 3D cell culture platform. Additionally, fabricated 3D cell structures showed enhanced cell behavior, such as differentiation potential and tissue regeneration. Therefore, physical stimuli-based 3D cell culture platforms could be promising tools for tissue engineering.
Collapse
Affiliation(s)
- Ju Yeon Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Song Bin Park
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Seo Yeon Kim
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Gyeong Jin Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Tae-Jin Lee
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
9
|
Mohanty A, Parida A, Raut RK, Behera RK. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS BIO & MED CHEM AU 2022; 2:258-281. [PMID: 37101573 PMCID: PMC10114856 DOI: 10.1021/acsbiomedchemau.2c00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The essence of bionanotechnology lies in the application of nanotechnology/nanomaterials to solve the biological problems. Quantum dots and nanoparticles hold potential biomedical applications, but their inherent problems such as low solubility and associated toxicity due to their interactions at nonspecific target sites is a major concern. The self-assembled, thermostable, ferritin protein nanocages possessing natural iron scavenging ability have emerged as a potential solution to all the above-mentioned problems by acting as nanoreactor and nanocarrier. Ferritins, the cellular iron repositories, are hollow, spherical, symmetric multimeric protein nanocages, which sequester the excess of free Fe(II) and synthesize iron biominerals (Fe2O3·H2O) inside their ∼5-8 nm central cavity. The electrostatics and dynamics of the pore residues not only drives the natural substrate Fe2+ inside ferritin nanocages but also uptakes a set of other metals ions/counterions during in vitro synthesis of nanomaterial. The current review aims to report the recent developments/understanding on ferritin structure (self-assembly, surface/pores electrostatics, metal ion binding sites) and chemistry occurring inside these supramolecular protein cages (protein mediated metal ion uptake and mineralization/nanoparticle formation) along with its surface modification to exploit them for various nanobiotechnological applications. Furthermore, a better understanding of ferritin self-assembly would be highly useful for optimizing the incorporation of nanomaterials via the disassembly/reassembly approach. Several studies have reported the successful engineering of these ferritin protein nanocages in order to utilize them as potential nanoreactor for synthesizing/incorporating nanoparticles and as nanocarrier for delivering imaging agents/drugs at cell specific target sites. Therefore, the combination of nanoscience (nanomaterials) and bioscience (ferritin protein) projects several benefits for various applications ranging from electronics to medicine.
Collapse
|
10
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
11
|
Aslan TN. Relaxivity properties of magnetoferritin: The iron loading effect. J Biosci Bioeng 2022; 133:474-480. [DOI: 10.1016/j.jbiosc.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022]
|
12
|
Iron, Copper, and Zinc Homeostasis: Physiology, Physiopathology, and Nanomediated Applications. NANOMATERIALS 2021; 11:nano11112958. [PMID: 34835722 PMCID: PMC8620808 DOI: 10.3390/nano11112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Understanding of how the human organism functions has preoccupied researchers in medicine for a very long time. While most of the mechanisms are well understood and detailed thoroughly, medicine has yet much to discover. Iron (Fe), Copper (Cu), and Zinc (Zn) are elements on which organisms, ranging from simple bacteria all the way to complex ones such as mammals, rely on these divalent ions. Compounded by the continuously evolving biotechnologies, these ions are still relevant today. This review article aims at recapping the mechanisms involved in Fe, Cu, and Zn homeostasis. By applying the knowledge and expanding on future research areas, this article aims to shine new light of existing illness. Thanks to the expanding field of nanotechnology, genetic disorders such as hemochromatosis and thalassemia can be managed today. Nanoparticles (NPs) improve delivery of ions and confer targeting capabilities, with the potential for use in treatment and diagnosis. Iron deficiency, cancer, and sepsis are persisting major issues. While targeted delivery using Fe NPs can be used as food fortifiers, chemotherapeutic agents against cancer cells and microbes have been developed using both Fe and Cu NPs. A fast and accurate means of diagnosis is a major impacting factor on outcome of patients, especially when critically ill. Good quality imaging and bed side diagnostic tools are possible using NPs, which may positively impact outcome.
Collapse
|
13
|
Goel D, Sinha S. Naturally occurring protein nano compartments: basic structure, function, and genetic engineering. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac2c93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Charlton JR, Xu Y, Parvin N, Wu T, Gao F, Baldelomar EJ, Morozov D, Beeman SC, Derakhshan J, Bennett KM. Image analysis techniques to map pyramids, pyramid structure, glomerular distribution, and pathology in the intact human kidney from 3-D MRI. Am J Physiol Renal Physiol 2021; 321:F293-F304. [PMID: 34282957 PMCID: PMC8530750 DOI: 10.1152/ajprenal.00130.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Kidney pathologies are often highly heterogeneous. To comprehensively understand kidney structure and pathology, it is critical to develop tools to map tissue microstructure in the context of the whole, intact organ. Magnetic resonance imaging (MRI) can provide a unique, three-dimensional view of the kidney and allows for measurements of multiple pathological features. Here, we developed a platform to systematically render and map gross and microstructural features of the human kidney based on three-dimensional MRI. These features include pyramid number and morphology as well as the associated medulla and cortex. In a subset of these kidneys, we also mapped individual glomeruli and glomerular volumes using cationic ferritin-enhanced MRI to report intrarenal heterogeneity in glomerular density and size. Finally, we rendered and measured regions of nephron loss due to pathology and individual glomerular volumes in each pyramidal unit. This work provides new tools to comprehensively evaluate the kidney across scales, with potential applications in anatomic and physiological research, transplant allograft evaluation, biomarker development, biopsy guidance, and therapeutic monitoring. These image rendering and analysis tools could eventually impact the field of transplantation medicine to improve longevity matching of donor allografts and recipients and reduce discard rates through the direct assessment of donor kidneys.NEW & NOTEWORTHY We report the application of cutting-edge image analysis approaches to characterize the pyramidal geometry, glomerular microstructure, and heterogeneity of the whole human kidney imaged using MRI. This work establishes a framework to improve the detection of microstructural pathology to potentially facilitate disease monitoring or transplant evaluation in the individual kidney.
Collapse
Affiliation(s)
- Jennifer R Charlton
- Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Yanzhe Xu
- School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona
- Mayo Center for Innovative Imaging, Arizona State University, Tempe, Arizona
| | - Neda Parvin
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Teresa Wu
- School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona
- Mayo Center for Innovative Imaging, Arizona State University, Tempe, Arizona
| | - Fei Gao
- School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona
- Mayo Center for Innovative Imaging, Arizona State University, Tempe, Arizona
| | - Edwin J Baldelomar
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Darya Morozov
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Scott C Beeman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Jamal Derakhshan
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
15
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
16
|
Charlton JR, Baldelomar EJ, Hyatt DM, Bennett KM. Nephron number and its determinants: a 2020 update. Pediatr Nephrol 2021; 36:797-807. [PMID: 32350665 PMCID: PMC7606355 DOI: 10.1007/s00467-020-04534-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
Studies of human nephron number have been conducted for well over a century and have uncovered a large variability in nephron number. However, the mechanisms influencing nephron endowment and loss, along with the etiology for the wide range among individuals are largely unknown. Advances in imaging technology have allowed investigators to revisit the principles of renal structure and physiology and their roles in the progression of kidney disease. Here, we will review the latest data on the influences impacting nephron number, innovations made over the last 6 years to understand and integrate renal structure and function, and new developments in the tools used to count nephrons in vivo.
Collapse
Affiliation(s)
- Jennifer R. Charlton
- University of Virginia School of Medicine, Department of Pediatrics, Division of Nephrology, Charlottesville, VA, USA
| | - Edwin J. Baldelomar
- Washington University in St. Louis, Department of Radiology, St. Louis, MO, USA
| | - Dylan M. Hyatt
- University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Kevin M. Bennett
- Washington University in St. Louis, Department of Radiology, St. Louis, MO, USA
| |
Collapse
|
17
|
DeFreitas MJ, Katsoufis CP, Infante JC, Granda ML, Abitbol CL, Fornoni A. The old becomes new: advances in imaging techniques to assess nephron mass in children. Pediatr Nephrol 2021; 36:517-525. [PMID: 31953750 DOI: 10.1007/s00467-020-04477-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Renal imaging is widely used in the assessment of surrogate markers of nephron mass correlated to renal function. Autopsy studies have tested the validity of various imaging modalities in accurately estimating "true" nephron mass. However, in vivo assessment of nephron mass has been largely limited to kidney volume determination by ultrasonography (US) in pediatric populations. Practical limitations and risks create challenges in incorporating more precise 3D volumetric imaging, like magnetic resonance imaging (MRI), and computed tomography (CT) technologies, compared to US for routine kidney volume assessment in children. Additionally, accounting for structural anomalies such as hydronephrosis when estimating renal parenchymal area in congenital anomalies of the kidney and urinary tract (CAKUT) is important, as it correlates with chronic kidney disease (CKD) progression. 3D imaging using CT and MRI has been shown to be superior to US, which has traditionally relied on 2D measurements to estimate kidney volume using the ellipsoid calculation. Recent innovations using 3D and contrast-enhanced US (CEUS) provide improved accuracy with low risk. Indexing kidney volume to body surface area in children is an important standard that may allow early detection of CKD progression in high-risk populations. This review highlights current understanding of various imaging modalities in assessing nephron mass, discusses applications and limitations, and describes recent advances in the field of imaging and kidney disease. Although renal imaging has been a long-standing, essential tool in assessing kidney disease, innovation and new applications of established technologies provide important tools in the study and management of kidney disease in children.
Collapse
Affiliation(s)
- Marissa J DeFreitas
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine, P.O. Box 016960 (M714), Miami, FL, 33130, USA.
| | - Chryso P Katsoufis
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine, P.O. Box 016960 (M714), Miami, FL, 33130, USA
| | - Juan C Infante
- Section of Pediatric Radiology, Department of Diagnostic Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael L Granda
- Division of General Internal Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine, P.O. Box 016960 (M714), Miami, FL, 33130, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Baldelomar EJ, Reichert DE, Shoghi KI, Beeman SC, Charlton JR, Strong L, Fettig N, Klaas A, Bennett KM. Mapping nephron mass in vivo using positron emission tomography. Am J Physiol Renal Physiol 2021; 320:F183-F192. [PMID: 33283644 PMCID: PMC8091936 DOI: 10.1152/ajprenal.00418.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/19/2023] Open
Abstract
Nephron number varies widely in humans. A low nephron endowment at birth or a loss of functioning nephrons is strongly linked to increased susceptibility to chronic kidney disease. In this work, we developed a contrast agent, radiolabeled cationic ferritin (RadioCF), to map functioning glomeruli in vivo in the kidney using positron emission tomography (PET). PET radiotracers can be detected in trace doses (<30 nmol), making them useful for rapid clinical translation. RadioCF is formed from cationic ferritin (CF) and with a radioisotope, Cu-64, incorporated into the ferritin core. We showed that RadioCF binds specifically to kidney glomeruli after intravenous injection in mice, whereas radiolabeled noncationic ferritin (RadioNF) and free Cu-64 do not. We then showed that RadioCF-PET can distinguish kidneys in healthy wild-type (WT) mice from kidneys in mice with oligosyndactylism (Os/+), a model of congenital hypoplasia and low nephron mass. The average standardized uptake value (SUV) measured by PET 90 min after injection was 21% higher in WT mice than in Os/+ mice, consistent with the higher glomerular density in WT mice. The difference in peak SUV from SUV at 90 min correlated with glomerular density in male mice from both WT and Os/+ cohorts (R2 = 0.98). Finally, we used RadioCF-PET to map functioning glomeruli in a donated human kidney. SUV within the kidney correlated with glomerular number (R2= 0.78) measured by CF-enhanced magnetic resonance imaging in the same locations. This work suggests that RadioCF-PET appears to accurately detect nephron mass and has the potential for clinical translation.
Collapse
Affiliation(s)
- Edwin J Baldelomar
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - David E Reichert
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Scott C Beeman
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | | | - Lori Strong
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Nikki Fettig
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Amanda Klaas
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
19
|
Aslan TN, Aşık E, Güray NT, Volkan M. The potential application of gold-apoferritin nanocages conjugated with 2-amino-2-deoxy-glucose for imaging of breast cancer cells. J Biol Inorg Chem 2020; 25:1139-1152. [PMID: 33128617 DOI: 10.1007/s00775-020-01830-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022]
Abstract
Development of biocompatible and multifunctional nanoprobes for tumor targeting, imaging, and therapy still remains a great challenge. Herein, gold nanoparticles (AuNPs) were synthesized in the cavity of horse spleen apoferritin protein (HoSAF) and protein surface was labeled with 2-amino-2-deoxy-glucose (2DG) as a cell surface glucose transport protein specific targeting probe to study the feasibility of its usage as a computer tomography (CT) contrast agent with tumor targeting capability through in vitro experiments. 2DG conjugated and gold-loaded apoferritin (Au-HoSAF-2DG) nanoparticles (NPs) showed selective targeting for human breast adenocarcinoma (MCF-7) cells when compared to normal breast (MCF-10A) cells. This AuNP-based imaging agent was found to be non-cytotoxic in a given concentration range with an apoptotic effect upon longer exposure times towards MCF-7 cells, while MCF-10A cells were affected less. This selective cell death would also be useful for further cancer treatments with the ability of X-ray attenuation in in vitro X-ray and computed tomography (CT) imaging.
Collapse
Affiliation(s)
- Tuğba Nur Aslan
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, 42090, Turkey
| | - Elif Aşık
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - N Tülin Güray
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Mürvet Volkan
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey.
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
20
|
Parvin N, Charlton JR, Baldelomar EJ, Derakhshan JJ, Bennett KM. Mapping vascular and glomerular pathology in a rabbit model of neonatal acute kidney injury using MRI. Anat Rec (Hoboken) 2020; 303:2716-2728. [PMID: 32445514 PMCID: PMC7680718 DOI: 10.1002/ar.24419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
Acute kidney injury (AKI) in premature neonates is common due to the administration of life-saving therapies. The impact of AKI on renal morphology and susceptibility to further renal damage is poorly understood. Recent advances in radiological imaging have allowed integration of soft tissue morphology in the intact organ, facilitating a more complete understanding of changes in tissue microstructure associated with pathology. Here, we applied magnetic resonance imaging (MRI) to detect both glomerular and vascular changes in a rabbit model of neonatal AKI, induced by indomethacin and gentamicin. Using combined spin-echo MRI and cationic ferritin enhanced gradient-echo MRI (CFE-MRI), we observed (a) an increased cortical arterial diameter in the AKI cohort compared to healthy controls, and (b) focal loss of vascular density and glomerular loss in a circumferential band ~1 mm from the cortical surface. This combined use of vascular and glomerular imaging may give insight into the etiology of AKI and its impact on renal health later in life.
Collapse
Affiliation(s)
- Neda Parvin
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer R Charlton
- University of Virginia Children's Hospital, Department of Pediatrics, Charlottesville, Virginia, USA
| | - Edwin J Baldelomar
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jamal J Derakhshan
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin M Bennett
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Charlton JR, Xu Y, Wu T, deRonde KA, Hughes JL, Dutta S, Oxley GT, Cwiek A, Cathro HP, Charlton NP, Conaway MR, Baldelomar EJ, Parvin N, Bennett KM. Magnetic resonance imaging accurately tracks kidney pathology and heterogeneity in the transition from acute kidney injury to chronic kidney disease. Kidney Int 2020; 99:173-185. [PMID: 32916180 DOI: 10.1016/j.kint.2020.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023]
Abstract
Acute kidney injury (AKI) increases the risk for chronic kidney disease (CKD). However, there are few tools to detect microstructural changes after AKI. Here, cationic ferritin-enhanced magnetic resonance imaging (CFE-MRI) was applied to examine the heterogeneity of kidney pathology in the transition from AKI to CKD. Adult male mice received folic acid followed by cationic ferritin and were euthanized at four days (AKI), four weeks (CKD-4) or 12 weeks (CKD-12). Kidneys were examined by histologic methods and CFE-MRI. In the CKD-4 and CKD-12 groups, glomerular number was reduced and atubular cortical lesions were observed. Apparent glomerular volume was larger in the AKI, CKD-4 and CKD-12 groups compared to controls. Glomerular hypertrophy occurred with ageing. Interglomerular distance and glomerular density were combined with other MRI metrics to distinguish the AKI and CKD groups from controls. Despite significant heterogeneity, the noninvasive (MRI-based) metrics were as accurate as invasive (histological) metrics at distinguishing AKI and CKD from controls. To assess the toxicity of cationic ferritin in a CKD model, CKD-4 mice received cationic ferritin and were examined one week later. The CKD-4 groups with and without cationic ferritin were similar, except the iron content of the kidney, liver, and spleen was greater in the CKD-4 plus cationic ferritin group. Thus, our study demonstrates the accuracy and safety of CFE-MRI to detect whole kidney pathology allowing for the development of novel biomarkers of kidney disease and providing a foundation for future in vivo longitudinal studies in mouse models of AKI and CKD to track nephron fate.
Collapse
Affiliation(s)
- Jennifer R Charlton
- Department of Pediatrics, Division Nephrology, University of Virginia, Charlottesville, Virginia, USA.
| | - Yanzhe Xu
- ASU-Mayo Center for Innovative Imaging, School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Teresa Wu
- ASU-Mayo Center for Innovative Imaging, School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Kim A deRonde
- Department of Pediatrics, Division Nephrology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Shourik Dutta
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Gavin T Oxley
- University of Virginia, Charlottesville, Virginia, USA
| | | | - Helen P Cathro
- Department of Pathology University of Virginia, Charlottesville, Virginia, USA
| | - Nathan P Charlton
- Department of Toxicology, University of Virginia, Virginia, Charlottesville, USA
| | - Mark R Conaway
- Division of Translational Research and Applied Statistics Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Edwin J Baldelomar
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Neda Parvin
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin M Bennett
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Chevalier RL. Bioenergetic Evolution Explains Prevalence of Low Nephron Number at Birth: Risk Factor for CKD. KIDNEY360 2020; 1:863-879. [PMID: 35372951 PMCID: PMC8815749 DOI: 10.34067/kid.0002012020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/29/2020] [Indexed: 05/24/2023]
Abstract
There is greater than tenfold variation in nephron number of the human kidney at birth. Although low nephron number is a recognized risk factor for CKD, its determinants are poorly understood. Evolutionary medicine represents a new discipline that seeks evolutionary explanations for disease, broadening perspectives on research and public health initiatives. Evolution of the kidney, an organ rich in mitochondria, has been driven by natural selection for reproductive fitness constrained by energy availability. Over the past 2 million years, rapid growth of an energy-demanding brain in Homo sapiens enabled hominid adaptation to environmental extremes through selection for mutations in mitochondrial and nuclear DNA epigenetically regulated by allocation of energy to developing organs. Maternal undernutrition or hypoxia results in intrauterine growth restriction or preterm birth, resulting in low birth weight and low nephron number. Regulated through placental transfer, environmental oxygen and nutrients signal nephron progenitor cells to reprogram metabolism from glycolysis to oxidative phosphorylation. These processes are modulated by counterbalancing anabolic and catabolic metabolic pathways that evolved from prokaryote homologs and by hypoxia-driven and autophagy pathways that evolved in eukaryotes. Regulation of nephron differentiation by histone modifications and DNA methyltransferases provide epigenetic control of nephron number in response to energy available to the fetus. Developmental plasticity of nephrogenesis represents an evolved life history strategy that prioritizes energy to early brain growth with adequate kidney function through reproductive years, the trade-off being increasing prevalence of CKD delayed until later adulthood. The research implications of this evolutionary analysis are to identify regulatory pathways of energy allocation directing nephrogenesis while accounting for the different life history strategies of animal models such as the mouse. The clinical implications are to optimize nutrition and minimize hypoxic/toxic stressors in childbearing women and children in early postnatal development.
Collapse
|
23
|
Wei J, Li Z, Yang Y, Ma G, Su Z, Zhang S. An Apoferritin-Hemagglutinin Conjugate Vaccine with Encapsulated Nucleoprotein Antigen Peptide from Influenza Virus Confers Enhanced Cross Protection. Bioconjug Chem 2020; 31:1948-1959. [PMID: 32678574 DOI: 10.1021/acs.bioconjchem.0c00308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Naturally occurring self-assembling ferritin nanoparticles have become widely appreciated for vaccine design. In this study, an apoferritin (AFt) nanocage was used as a carrier to construct a biomimetic influenza vaccine by encapsulating a conserved internal nucleoprotein (NP) antigen peptide inside the nanocage, followed by chemically conjugating the surface antigen hemagglutinin (HA) protein on the outer surface of the AFt. Benefiting from the excellent thermal stability and thermallyassociated structural flexibility of the AFt nanocages, a novel temperature shift based encapsulation process was proposed and proved efficient for encapsulation of the NP peptides. On average, about 18 NPs were encapsulated and 1.6 HA antigens were conjugated in each of the HA-AFt+NP dual-antigen influenza vaccines. Upon immunization in mice, the HA-AFt+NP vaccine elicited both HA and NP-specific antibodies, and conferred complete protection against a lethal infection of both homologous PR8 H1N1 and heterologous A/FM/1/47 (FM1, H1N1) strains, while the HA-AFt conjugate vaccine without encapsulated NP antigen only conferred 60% protection against the FM1 H1N1 viral challenge. The potential cross-protective effect of the HA-AFt+NP vaccine was further demonstrated by significant specific hemagglutination inhibition (HAI) titers in serum of the immunized mice against heterologous A/Hong Kong/4801/2014 (H3N2) viral strain, which was about 3-fold of that induced by HA antigen and 2-fold of the HA-AFt conjugate vaccine. This biomimetic HA-AFt+NP conjugate vaccine, therefore, may represent a new strategy for developing a potential universal influenza vaccine without the need of any adjuvant, and further broaden the application of AFt nanocages in the areas of vaccine development and delivery system.
Collapse
Affiliation(s)
- Jiangxue Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yanli Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
24
|
Zhang C, Cai YZ, Lin XJ, Wang Y. Magnetically Actuated Manipulation and Its Applications for Cartilage Defects: Characteristics and Advanced Therapeutic Strategies. Front Cell Dev Biol 2020; 8:526. [PMID: 32695782 PMCID: PMC7338659 DOI: 10.3389/fcell.2020.00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
For the fact that articular cartilage is a highly organized and avascular tissue, cartilage defects are limited to spontaneously heal, which would subsequently progress to osteoarthritis. Many methods have been developed to enhance the ability for cartilage regeneration, among which magnetically actuated manipulation has attracted interests due to its biocompatibility and non-invasive manipulation. Magnetically actuated manipulation that can be achieved by introducing magnetic nanoparticles and magnetic field. This review summarizes the cutting-edge research on the chondrogenic enhancements via magnetically actuated manipulation, including cell labeling, cell targeting, cell assembly, magnetic seeding and tissue engineering strategies.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Zhi Cai
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Jin Lin
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Charlton JR, Baldelomar EJ, deRonde KA, Cathro HP, Charlton NP, Criswell SJ, Hyatt DM, Nam S, Pearl V, Bennett KM. Nephron loss detected by MRI following neonatal acute kidney injury in rabbits. Pediatr Res 2020; 87:1185-1192. [PMID: 31805577 PMCID: PMC7255918 DOI: 10.1038/s41390-019-0684-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute kidney injury affects nearly 30% of preterm neonates in the intensive care unit. We aimed to determine whether nephrotoxin-induced AKI disrupted renal development assessed by imaging (CFE-MRI). METHODS Neonatal New Zealand rabbits received indomethacin and gentamicin (AKI) or saline (control) for four days followed by cationic ferritin (CF) at six weeks. Ex vivo images were acquired using a gradient echo pulse sequence on 7 T MRI. Glomerular number (Nglom) and apparent glomerular volume (aVglom) were determined. CF toxicity was assessed at two and 28 days in healthy rabbits. RESULTS Nglom was lower in the AKI group as compared to controls (74,034 vs 198,722, p < 0.01). aVglom was not different (AKI: 7.3 × 10-4 vs control: 6.2 × 10-4 mm3, p = 0.69). AKI kidneys had a band of glomeruli distributed radially in the cortex that were undetectable by MRI. Following CF injection, there was no difference in body or organ weights except for the liver, and transient changes in serum iron, platelets and white blood cell count. CONCLUSIONS Brief nephrotoxin exposure during nephrogenesis results in fewer glomeruli and glomerular maldevelopment in a unique pattern detectable by MRI. Whole kidney evaluation by CFE-MRI may provide an important tool to understand the development of CKD following AKI.
Collapse
Affiliation(s)
- Jennifer R Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA.
| | | | - Kimberly A deRonde
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| | - Helen P Cathro
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Nathan P Charlton
- Department of Emergency Medicine, Division of Medical Toxicology, University of Virginia, Charlottesville, VA, USA
| | - Stacey J Criswell
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Dylan M Hyatt
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Sejin Nam
- Department of Physics, University of Hawaii, Honolulu, HI, USA
| | - Valeria Pearl
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
26
|
Uchida M, Maier B, Waghwani HK, Selivanovitch E, Pay SL, Avera J, Yun EJ, Sandoval RM, Molitoris BA, Zollman A, Douglas T, Hato T. The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration. J Clin Invest 2020; 129:3941-3951. [PMID: 31424427 DOI: 10.1172/jci127511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
Nature exploits cage-like proteins for a variety of biological purposes, from molecular packaging and cargo delivery to catalysis. These cage-like proteins are of immense importance in nanomedicine due to their propensity to self-assemble from simple identical building blocks to highly ordered architecture and the design flexibility afforded by protein engineering. However, delivery of protein nanocages to the renal tubules remains a major challenge because of the glomerular filtration barrier, which effectively excludes conventional size nanocages. Here, we show that DNA-binding protein from starved cells (Dps) - the extremely small archaeal antioxidant nanocage - is able to cross the glomerular filtration barrier and is endocytosed by the renal proximal tubules. Using a model of endotoxemia, we present an example of the way in which proximal tubule-selective Dps nanocages can limit the degree of endotoxin-induced kidney injury. This was accomplished by amplifying the endogenous antioxidant property of Dps with addition of a dinuclear manganese cluster. Dps is the first-in-class protein cage nanoparticle that can be targeted to renal proximal tubules through glomerular filtration. In addition to its therapeutic potential, chemical and genetic engineering of Dps will offer a nanoplatform to advance our understanding of the physiology and pathophysiology of glomerular filtration and tubular endocytosis.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Bernhard Maier
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | | | | | - S Louise Pay
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - John Avera
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - EJun Yun
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Ruben M Sandoval
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Bruce A Molitoris
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Amy Zollman
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Takashi Hato
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Baldelomar EJ, Charlton JR, deRonde KA, Bennett KM. In vivo measurements of kidney glomerular number and size in healthy and Os /+ mice using MRI. Am J Physiol Renal Physiol 2019; 317:F865-F873. [PMID: 31339774 DOI: 10.1152/ajprenal.00078.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The development of chronic kidney disease (CKD) is associated with the loss of functional nephrons. However, there are no methods to directly measure nephron number in living subjects. Thus, there are no methods to track the early stages of progressive CKD before changes in total renal function. In this work, we used cationic ferritin-enhanced magnetic resonance imaging (CFE-MRI) to enable measurements of glomerular number (Nglom) and apparent glomerular volume (aVglom) in vivo in healthy wild-type (WT) mice (n = 4) and mice with oligosyndactylism (Os/+; n = 4), a model of congenital renal hypoplasia leading to nephron reduction. We validated in vivo measurements of Nglom and aVglom by high-resolution ex vivo MRI. CFE-MRI measured a mean Nglom of 12,220 ± 2,028 and 6,848 ± 1,676 (means ± SD) for WT and Os/+ mouse kidneys in vivo, respectively. Nglom measured in all mice in vivo using CFE-MRI varied by an average 15% from Nglom measured ex vivo in the same kidney (α = 0.05, P = 0.67). To confirm that CFE-MRI can also be used to track nephron endowment longitudinally, a WT mouse was imaged three times by CFE-MRI over 2 wk. Values of Nglom measured in vivo in the same kidney varied within ~3%. Values of aVglom calculated from CFE-MRI in vivo were significantly different (~15% on average, P < 0.01) from those measured ex vivo, warranting further investigation. This is the first report of direct measurements of Nglom and aVglom in healthy and diseased mice in vivo.
Collapse
Affiliation(s)
- Edwin J Baldelomar
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri.,Department of Physics, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Jennifer R Charlton
- University of Virginia Children's Hospital, Department of Pediatrics, Charlottesville, Virginia
| | - Kimberly A deRonde
- University of Virginia Children's Hospital, Department of Pediatrics, Charlottesville, Virginia
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri.,Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawaii
| |
Collapse
|
28
|
Xue L, Deng D, Sun J. Magnetoferritin: Process, Prospects, and Their Biomedical Applications. Int J Mol Sci 2019; 20:E2426. [PMID: 31100837 PMCID: PMC6567256 DOI: 10.3390/ijms20102426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Ferritin is a spherical iron storage protein composed of 24 subunits and an iron core. Using biomimetic mineralization, magnetic iron oxide can be synthesized in the cavity of ferritin to form magnetoferritin (MFt). MFt, also known as a superparamagnetic protein, is a novel magnetic nanomaterial with good biocompatibility and flexibility for biomedical applications. Recently, it has been demonstrated that MFt had tumor targetability and a peroxidase-like catalytic activity. Thus, MFt, with its many unique properties, provides a powerful platform for tumor diagnosis and therapy. In this review, we discuss the biomimetic synthesis and biomedical applications of MFt.
Collapse
Affiliation(s)
- Le Xue
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
29
|
Monti DM, Ferraro G, Merlino A. Ferritin-based anticancer metallodrug delivery: Crystallographic, analytical and cytotoxicity studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:101997. [PMID: 31028889 DOI: 10.1016/j.nano.2019.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/28/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
Abstract
The encapsulation of anticancer metal-based drugs within a protein nanocage represents a valuable strategy to improve the efficacy and selectivity of these compounds towards cancer cells. The preparation, characterization of the in vitro cytotoxicity and X-ray structures of several ferritin-metallodrug nanocomposites (mainly containing platinum-, ruthenium- and gold-based anticancer agents) are here reviewed. The molecular mechanisms of action of these Ft-metallodrug adducts are discussed and future directions in the field are outlined.
Collapse
Affiliation(s)
- Dara Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
30
|
Shuvaev VV, Khoshnejad M, Pulsipher KW, Kiseleva RY, Arguiri E, Cheung-Lau JC, LeFort KM, Christofidou-Solomidou M, Stan RV, Dmochowski IJ, Muzykantov VR. Spatially controlled assembly of affinity ligand and enzyme cargo enables targeting ferritin nanocarriers to caveolae. Biomaterials 2018; 185:348-359. [PMID: 30273834 PMCID: PMC6487198 DOI: 10.1016/j.biomaterials.2018.09.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
One of the goals of nanomedicine is targeted delivery of therapeutic enzymes to the sub-cellular compartments where their action is needed. Endothelial caveolae-derived endosomes represent an important yet challenging destination for targeting, in part due to smaller size of the entry aperture of caveolae (ca. 30-50 nm). Here, we designed modular, multi-molecular, ferritin-based nanocarriers with uniform size (20 nm diameter) for easy drug-loading and targeted delivery of enzymatic cargo to these specific vesicles. These nanocarriers targeted to caveolar Plasmalemmal Vesicle-Associated Protein (Plvap) deliver superoxide dismutase (SOD) into endosomes in endothelial cells, the specific site of influx of superoxide mediating by such pro-inflammatory signaling as some cytokines and lipopolysaccharide (LPS). Cell studies showed efficient internalization of Plvap-targeted SOD-loaded nanocarriers followed by dissociation from caveolin-containing vesicles and intracellular transport to endosomes. The nanocarriers had a profound protective anti-inflammatory effect in an animal model of LPS-induced inflammation, in agreement with the characteristics of their endothelial uptake and intracellular transport, indicating that these novel, targeted nanocarriers provide an advantageous platform for caveolae-dependent delivery of biotherapeutics.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Makan Khoshnejad
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine W Pulsipher
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Raisa Yu Kiseleva
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Jasmina C Cheung-Lau
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen M LeFort
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Radu V Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Vladimir R Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
31
|
Dostalova S, Polanska H, Svobodova M, Balvan J, Krystofova O, Haddad Y, Krizkova S, Masarik M, Eckschlager T, Stiborova M, Heger Z, Adam V. Prostate-Specific Membrane Antigen-Targeted Site-Directed Antibody-Conjugated Apoferritin Nanovehicle Favorably Influences In Vivo Side Effects of Doxorubicin. Sci Rep 2018; 8:8867. [PMID: 29891921 PMCID: PMC5995913 DOI: 10.1038/s41598-018-26772-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/11/2018] [Indexed: 01/02/2023] Open
Abstract
Herein, we describe the in vivo effects of doxorubicin (DOX) encapsulated in ubiquitous protein apoferritin (APO) and its efficiency and safety in anti-tumor treatment. APODOX is both passively (through Enhanced Permeability and Retention effect) and actively targeted to tumors through prostate-specific membrane antigen (PSMA) via mouse antibodies conjugated to the surface of horse spleen APO. To achieve site-directed conjugation of the antibodies, a HWRGWVC heptapeptide linker was used. The prostate cancer-targeted and non-targeted nanocarriers were tested using subcutaneously implanted LNCaP cells in athymic mice models, and compared to free DOX. Prostate cancer-targeted APODOX retained the high potency of DOX in attenuation of tumors (with 55% decrease in tumor volume after 3 weeks of treatment). DOX and non-targeted APODOX treatment caused damage to liver, kidney and heart tissues. In contrast, no elevation in liver or kidney enzymes and negligible changes were revealed by histological assessment in prostate cancer-targeted APODOX-treated mice. Overall, we show that the APO nanocarrier provides an easy encapsulation protocol, reliable targeting, high therapeutic efficiency and very low off-target toxicity, and is thus a promising delivery system for translation into clinical use.
Collapse
Affiliation(s)
- Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Hana Polanska
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
| | - Marketa Svobodova
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
- TESCAN ORSAY HOLDING a.s., Libusina trida 863/21, Brno, CZ-623 00, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology and Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, CZ-625 00, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84/1, Prague 5, CZ-150 06, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 2, CZ-128 43, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic.
| |
Collapse
|
32
|
Wang Z, Gao H, Zhang Y, Liu G, Niu G, Chen X. Functional ferritin nanoparticles for biomedical applications. Front Chem Sci Eng 2017; 11:633-646. [PMID: 29503759 DOI: 10.1007/s11705-017-1620-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ferritin, a major iron storage protein with a hollow interior cavity, has been reported recently to play many important roles in biomedical and bioengineering applications. Owing to the unique architecture and surface properties, ferritin nanoparticles offer favorable characteristics and can be either genetically or chemically modified to impart functionalities to their surfaces, and therapeutics or probes can be encapsulated in their interiors by controlled and reversible assembly/disassembly. There has been an outburst of interest regarding the employment of functional ferritin nanoparticles in nanomedicine. This review will highlight the recent advances in ferritin nanoparticles for drug delivery, bioassay, and molecular imaging with a particular focus on their biomedical applications.
Collapse
Affiliation(s)
- Zhantong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.,Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Haiyan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Nandwana V, Ryoo SR, Kanthala S, Kumar A, Sharma A, Castro FC, Li Y, Hoffman B, Lim S, Dravid VP. Engineered ferritin nanocages as natural contrast agents in magnetic resonance imaging. RSC Adv 2017. [DOI: 10.1039/c7ra05681h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we report the development of a “natural” MRI contrast agent with tunable Fe loading and a magnetic core for magnetic resonance imaging.
Collapse
|