1
|
Bahabry R, Jago SS, Hauser RM, Harmon J, Sheppard LD, Oyassan B, Lubin FD. Hippocampal gene expression changes associated with sequential behavioral training in a temporal lobe epilepsy rat model. Epilepsy Behav Rep 2025; 29:100735. [PMID: 39898299 PMCID: PMC11786087 DOI: 10.1016/j.ebr.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 02/04/2025] Open
Abstract
The transcriptional mechanisms underlying impaired hippocampal-dependent memory seen in temporal lobe epilepsy (TLE) have been extensively studied in rodent models. While cognitive testing in these models often involves multiple behavioral tasks, the impact of sequential behavioral testing (SBT) on gene transcription changes in epilepsy remains poorly understood. This study utilized the Kainic Acid (KA) TLE rodent model to examine hippocampal gene expression changes influenced by SBT. Our findings indicate reduced anxiety-related behavior, along with impaired spatial and recognition memory and fear memory in epileptic animals. Quantitative PCR (qPCR) analysis revealed an increase in BDNF, dFosB, Tet2, and Tet3 expression in the epilepsy-SBT group compared to control-SBT, while there was a reduction in Npas4 and Egr4 expression. Immunohistochemistry (IHC) showed that in epileptic animals, performing SBT reversed the loss of 5-hydroxymethylcytosine (5-hmC) in the dorsal hippocampus compared to that seen in home-caged (HC) epileptic animals, and this reversal was neuron-driven. These findings highlight the complex interplay between gene transcription and epigenetic regulation during SBT enrichment in the context of epilepsy.
Collapse
Affiliation(s)
- Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Silvienne Sint Jago
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca M. Hauser
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan Harmon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah Dinah Sheppard
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bellafaith Oyassan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Farah D. Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Luo F, Liu L, Guo M, Liang J, Chen L, Shi X, Liu H, Cheng Y, Du Y. Deciphering and Targeting the ESR2-miR-10a-5p-BDNF Axis in the Prefrontal Cortex: Advancing Postpartum Depression Understanding and Therapeutics. RESEARCH (WASHINGTON, D.C.) 2024; 7:0537. [PMID: 39588356 PMCID: PMC11586475 DOI: 10.34133/research.0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
Postpartum depression (PPD) represents a important emotional disorder emerging after childbirth, characterized by its complex etiology and challenging management. Despite extensive preclinical and clinical investigations underscoring the role of estrogen fluctuations and estrogen receptor genes in PPD, the precise mechanisms underpinning this condition have remained elusive. In our present study, animal behavioral studies have elucidated a tight link between the aberrant expression of ESR2, miR-10a-5p, and BDNF in the prefrontal cortex of mice exhibiting postpartum depressive-like behavior, shedding light on the potential molecular pathways involved. Integrating bioinformatics, in vivo, and cell transfection methodologies has unraveled the intricate molecular interplay between ESR2, miR-10a-5p, and BDNF. We identified ESR2 as a negative transcription factor that down-regulates miR-10a transcription, while miR-10a-5p serves as a negative regulator that suppresses BDNF expression. This molecular triad contributes to the pathogenesis of PPD by affecting synaptic plasticity, as evidenced by alterations in synapse-related proteins (e.g., SYP, SYN, and PSD95) and glutamate receptor expression. Additionally, primary neuron culture studies have confirmed the critical roles of ESR2 and miR-10a-5p in maintaining neuronal growth and morphology. Therapeutic interventions, including stereotactic and intranasal administration of antagomir or BDNF, have demonstrated significant potential in treating PPD, highlighting the therapeutic implications of targeting the negative transcriptional and regulatory interactions between ESR2, miR-10a-5p, and BDNF. Our findings endorse the hypothesis that estrogen fluctuations and estrogen receptor gene activity are pivotal stressors and risk factors for PPD, affecting central nervous system functionality and precipitating depressive behaviors postpartum.
Collapse
Affiliation(s)
- Fan Luo
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
- Henan Key Lab of Biological Psychiatry,
Xinxiang Medical University, Xinxiang, China
| | - Liming Liu
- Institute of National Security, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Mei Guo
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Jiaquan Liang
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Lei Chen
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Xiaojie Shi
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Hua Liu
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China.
| | - Yong Cheng
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Yang Du
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry,
Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, China.
| |
Collapse
|
3
|
Li L, Wang J, Ma S, Zheng M, Wang F, Guo X, Miao S, Shi X. Pharmacological mechanism of Shaoyao Gancao Decoction in the treatment of depression based on bioinformatics and animal experiment. Heliyon 2024; 10:e34865. [PMID: 39959777 PMCID: PMC11829096 DOI: 10.1016/j.heliyon.2024.e34865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 02/18/2025] Open
Abstract
In this study, the pathogenic genes of depression were calculated and analyzed by bioinformatics method, and then the key genes of Shaoyao Gancao Decoction in the treatment of depression were deduced and predicted through the correlation study with the target of Shaoyao Gancao Decoction. Through the production of LPS depression model mice, drug treatment, behavioral test and hippocampal tissue sample detection, it was found that Shaoyao Gancao Decoction can regulate the levels of IL-10, TNF- α, BDNF, SMAD3, FGFR1 and FGFR2 to improve depression, which can provide a theoretical basis for exploring the efficacy of Shaoyao Gancao Decoction in the treatment of depression.
Collapse
Affiliation(s)
| | | | | | - Meiling Zheng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Feiyan Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xiaodi Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| |
Collapse
|
4
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
5
|
Santos VR, Tilelli CQ, Fernandes A, de Castro OW, Del-Vecchio F, Garcia-Cairasco N. Different types of Status Epilepticus may lead to similar hippocampal epileptogenesis processes. IBRO Neurosci Rep 2023; 15:68-76. [PMID: 37457787 PMCID: PMC10338355 DOI: 10.1016/j.ibneur.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
About 1-2% of people worldwide suffer from epilepsy, which is characterized by unpredictable and intermittent seizure occurrence. Despite the fact that the exact origin of temporal lobe epilepsy is frequently unknown, it is frequently linked to an early triggering insult like brain damage, tumors, or Status Epilepticus (SE). We used an experimental approach consisting of electrical stimulation of the amygdaloid complex to induce two behaviorally and structurally distinct SE states: Type I (fully convulsive), with more severe seizure behaviors and more extensive brain damage, and Type II (partial convulsive), with less severe seizure behaviors and brain damage. Our goal was to better understand how the various types of SE impact the hippocampus leading to the development of epilepsy. Despite clear variations between the two behaviors in terms of neurodegeneration, study of neurogenesis revealed a comparable rise in the number of Ki-67 + cells and an increase in Doublecortin (DCX) in both kinds of SE.
Collapse
Affiliation(s)
- Victor R. Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Cristiane Q. Tilelli
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Campus Centro-Oeste Dona Lindu, Federal University of São João Del Rey, Divinópolis, MG, Brazil
| | - Artur Fernandes
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Pharmacology and Physiology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Flávio Del-Vecchio
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Gan C, Li W, Xu J, Pang L, Tang L, Yu S, Li A, Ge H, Huang R, Cheng H. Advances in the study of the molecular biological mechanisms of radiation-induced brain injury. Am J Cancer Res 2023; 13:3275-3299. [PMID: 37693137 PMCID: PMC10492106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
Radiation therapy is one of the most commonly used treatments for head and neck cancers, but it often leads to radiation-induced brain injury. Patients with radiation-induced brain injury have a poorer quality of life, and no effective treatments are available. The pathogenesis of this condition is unknown. This review summarizes the molecular biological mechanism of radiation-induced brain injury and provides research directions for future studies. The molecular mechanisms of radiation-induced brain injury are diverse and complex. Radiation-induced chronic neuroinflammation, destruction of the blood-brain barrier, oxidative stress, neuronal damage, and physiopathological responses caused by specific exosome secretion lead to radiation-induced brain injury.
Collapse
Affiliation(s)
- Chen Gan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Jian Xu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lulian Pang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Shenzhen Hospital of Southern Medical UniversityShenzhen, Guangdong, China
| |
Collapse
|
7
|
Luo F, Zhu Z, Du Y, Chen L, Cheng Y. Risk Factors for Postpartum Depression Based on Genetic and Epigenetic Interactions. Mol Neurobiol 2023; 60:3979-4003. [PMID: 37004608 DOI: 10.1007/s12035-023-03313-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Postpartum depression (PPD) is a serious mood disorder that tends to occur after the delivery, which may bring lifelong consequences to women and their families in terms of family relationships, social relationships, and mental health. Currently, various risk factors including environmental factors and genetic factors that may induce postpartum depression have been extensively studied. In this review, we suggest that postpartum women's susceptibility to postpartum depression may be the result of the interaction between the genes associated with postpartum depression as well as the interaction between genetic and environmental factors. We reviewed the genes that have been studied in postpartum depression, including genes related to the synthesis, metabolism, and transport of monoamine neurotransmitters, key molecules of the HPA axis, and the kynurenine pathway. These studies have found more or less gene-gene and gene-environment interactions, so we will discuss these issues in more detail. However, so far, the conclusions of these risk factors, especially genetic factors, are not completely consistent in the occurrence and exacerbation of symptoms in postpartum depression, and it is not clear how these risk factors specifically participate in the pathological mechanism of the disease and play a role. We conclude that the role of genetic polymorphisms, including genetic and epigenetic processes, in the occurrence and development of postpartum depression, is complex and ambiguous. We also note that interactions between multiple candidate genes and the environment have been suggested as causes of depression, suggesting that more definitive research is needed to understand the heritability and susceptibility of PPD. Overall, our work supports the hypothesis that postpartum depression is more likely to be caused by a combination of multiple genetic and environmental factors than by a single genetic or environmental influence.
Collapse
Affiliation(s)
- Fan Luo
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Zimo Zhu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lei Chen
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
8
|
Redina OE, Babenko VN, Smagin DA, Kovalenko IL, Galyamina AG, Efimov VM, Kudryavtseva NN. Effects of Positive Fighting Experience and Its Subsequent Deprivation on the Expression Profile of Mouse Hippocampal Genes Associated with Neurogenesis. Int J Mol Sci 2023; 24:3040. [PMID: 36769363 PMCID: PMC9918130 DOI: 10.3390/ijms24033040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The hippocampus is known as the brain region implicated in visuospatial processes and processes associated with learning and short- and long-term memory. An important functional characteristic of the hippocampus is lifelong neurogenesis. A decrease or increase in adult hippocampal neurogenesis is associated with a wide range of neurological diseases. We have previously shown that in adult male mice with a chronic positive fighting experience in daily agonistic interactions, there is an increase in the proliferation of progenitor neurons and the production of young neurons in the dentate gyrus (in hippocampus), and these neurogenesis parameters remain modified during 2 weeks of deprivation of further fights. The aim of the present work was to identify hippocampal genes associated with neurogenesis and involved in the formation of behavioral features in mice with the chronic experience of wins in aggressive confrontations, as well as during the subsequent 2-week deprivation of agonistic interactions. Hippocampal gene expression profiles were compared among three groups of adult male mice: chronically winning for 20 days in the agonistic interactions, chronically victorious for 20 days followed by the 2-week deprivation of fights, and intact (control) mice. Neurogenesis-associated genes were identified whose transcription levels changed during the social confrontations and in the subsequent period of deprivation of fights. In the experimental males, some of these genes are associated with behavioral traits, including abnormal aggression-related behavior, an abnormal anxiety-related response, and others. Two genes encoding transcription factors (Nr1d1 and Fmr1) were likely to contribute the most to the between-group differences. It can be concluded that the chronic experience of wins in agonistic interactions alters hippocampal levels of transcription of multiple genes in adult male mice. The transcriptome changes get reversed only partially after the 2-week period of deprivation of fights. The identified differentially expressed genes associated with neurogenesis and involved in the control of a behavior/neurological phenotype can be used in further studies to identify targets for therapeutic correction of the neurological disturbances that develop in winners under the conditions of chronic social confrontations.
Collapse
Affiliation(s)
- Olga E. Redina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vladimir N. Babenko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry A. Smagin
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Irina L. Kovalenko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna G. Galyamina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vadim M. Efimov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalia N. Kudryavtseva
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
9
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
10
|
Sheehy RN, Quintanilla LJ, Song J. Epigenetic regulation in the neurogenic niche of the adult dentate gyrus. Neurosci Lett 2022; 766:136343. [PMID: 34774980 PMCID: PMC8691367 DOI: 10.1016/j.neulet.2021.136343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
The adult dentate gyrus (DG) of the hippocampal formation is a specialized region of the brain that creates new adult-born neurons from a pool of resident adult neural stem and progenitor cells (aNSPCs) throughout life. These aNSPCs undergo epigenetic and epitranscriptomic regulation, including 3D genome interactions, histone modifications, DNA modifications, noncoding RNA mechanisms, and RNA modifications, to precisely control the neurogenic process. Furthermore, the specialized neurogenic niche also uses epigenetic mechanisms in mature neurons and glial cells to communicate signals to direct the behavior of the aNSPCs. Here, we review recent advances of epigenetic regulation in aNSPCs and their surrounding niche cells within the adult DG.
Collapse
Affiliation(s)
- Ryan N. Sheehy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis J. Quintanilla
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Wang J, Zhong W, Su H, Xu J, Yang D, Liu X, Zhu YZ. Histone Methyltransferase Dot1L Contributes to RIPK1 Kinase-Dependent Apoptosis in Cerebral Ischemia/Reperfusion. J Am Heart Assoc 2021; 10:e022791. [PMID: 34796721 PMCID: PMC9075366 DOI: 10.1161/jaha.121.022791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Neuron apoptosis is a pivotal process for brain damage in cerebral ischemia. Dot1L (disruptor of telomeric silencing 1‐like) is only known histone H3K79 methyltransferase. It is not clear whether the role and mechanism of Dot1L on cerebral ischemia is related to regulate neuron apoptosis. Methods and Results We use a combination of mice middle cerebral artery occlusion stroke and neurons exposed to oxygen‐glucose deprivation followed by reoxygenation to investigate the role and mechanism of Dot1L on cerebral ischemia. We find knockdown or inhibition of Dot1L reversed ischemia‐induced neuronal apoptosis and attenuated the neurons injury treated by oxygen‐glucose deprivation followed by reoxygenation. Further, blockade of Dot1L prevents RIPK1 (receptor‐interacting protein kinase 1)‐dependent apoptosis through increased RIPK1 K63‐ubiquitylation and decreased formation of RIPK1/Caspase 8 complexes. In line with this, H3K79me3 enrichment in the promoter region of deubiquitin‐modifying enzyme A20 and deubiquitinase cylindromatosis gene promotes the increasing expression in oxygen‐glucose deprivation followed by reoxygenation ‐induced neuronal cells, on the contrary, oxygen‐glucose deprivation followed by reoxygenation decreases H3K79me3 level in the promoter region of ubiquitin‐modifying enzyme cIAP1 (cellular inhibitors of apoptosis proteins), and both these factors ultimately cause K63‐deubiquitination of RIPK1. Importantly, knockdown or inhibition of Dot1L in vivo attenuates apoptosis in middle cerebral artery occlusion mice and reduces the extent of middle cerebral artery occlusion ‐induced brain injury. Conclusions These data support for the first time, to our knowledge, that Dot1L regulating RIPK1 to the apoptotic death trigger contributes to cerebral ischemia injury. Therefore, targeting Dot1L serves as a new therapeutic strategy for ischemia stroke.
Collapse
Affiliation(s)
- Jinghuan Wang
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Wen Zhong
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Haibi Su
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Jie Xu
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Di Yang
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Xinhua Liu
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China
| | - Yi Zhun Zhu
- Department of Pharmacology School of PharmacyHuman Phenome InstituteFudan University Shanghai China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy Macau University of Science and Technology Macau China
| |
Collapse
|
12
|
Cozzolino M, Celia G. The psychosocial genomics paradigm of hypnosis and mind-body integrated psychotherapy: Experimental evidence. AMERICAN JOURNAL OF CLINICAL HYPNOSIS 2021; 64:123-138. [PMID: 34723776 DOI: 10.1080/00029157.2021.1947767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The psychosocial genomics paradigm first proposed by Ernest Rossi established an epistemological shift in our application of hypnosis. We present original experimental research conducted within this paradigm that highlights the mind-gene relationship and, in particular, the positive health effects associated with hypnosis and mind-body integrated psychotherapy. We document that these approaches can stimulate epigenetic modifications and the expression of genes related to anti-inflammatory processes. These strategies strengthen the immune system and reduce oxidative stress both in normal and in oncological participants.
Collapse
|
13
|
Noureddini M, Bagheri-Mohammadi S. Adult Hippocampal Neurogenesis and Alzheimer's Disease: Novel Application of Mesenchymal Stem Cells and their Role in Hippocampal Neurogenesis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:1-10. [PMID: 34268249 PMCID: PMC8256831 DOI: 10.22088/ijmcm.bums.10.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/07/2020] [Indexed: 10/31/2022]
Abstract
The neurogenesis can occur in two regions of the adult mammalian brain throughout the lifespan: the subgranular zone of the hippocampal dentate gyrus, and the subventricular zone of the lateral ventricle. The proliferation and maturation of neural progenitor cells are tightly regulated through intrinsic and extrinsic factors. The integration of maturated cells into the circuitry of the adult hippocampus emphasizes the importance of adult hippocampal neurogenesis in learning and memory. There is a large body of evidence demonstrating that alteration in the neurogenesis process in the adult hippocampus results in an early event in the course of Alzheimer's disease (AD). In AD condition, the number and maturation of neurons declines progressively in the hippocampus. Innovative therapies are required to modulate brain homeostasis. Mesenchymal stem cells (MSCs) hold an immense potential to regulate the neurogenesis process, and are currently tested in some brain-related disorders, such as AD. Therefore, the aim of this review is to discuss the use of MSCs to regulate endogenous adult neurogenesis and their significant impact on future strategies for the treatment of AD.
Collapse
Affiliation(s)
- Mahdi Noureddini
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Mancinelli S, Vitiello M, Donnini M, Mantile F, Palma G, Luciano A, Arra C, Cerchia L, Liguori GL, Fedele M. The Transcription Regulator Patz1 Is Essential for Neural Stem Cell Maintenance and Proliferation. Front Cell Dev Biol 2021; 9:657149. [PMID: 33898458 PMCID: PMC8058466 DOI: 10.3389/fcell.2021.657149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Proper regulation of neurogenesis, the process by which new neurons are generated from neural stem and progenitor cells (NS/PCs), is essential for embryonic brain development and adult brain function. The transcription regulator Patz1 is ubiquitously expressed in early mouse embryos and has a key role in embryonic stem cell maintenance. At later stages, the detection of Patz1 expression mainly in the developing brain suggests a specific involvement of Patz1 in neurogenesis. To address this point, we first got insights in Patz1 expression profile in different brain territories at both embryonic and postnatal stages, evidencing a general decreasing trend with respect to time. Then, we performed in vivo and ex vivo analysis of Patz1-knockout mice, focusing on the ventricular and subventricular zone, where we confirmed Patz1 enrichment through the analysis of public RNA-seq datasets. Both embryos and adults showed a significant reduction in the number of Patz1-null NS/PCs, as well as of their self-renewal capability, compared to controls. Consistently, molecular analysis revealed the downregulation of stemness markers in NS/PCs derived from Patz1-null mice. Overall, these data demonstrate the requirement of Patz1 for NS/PC maintenance and proliferation, suggesting new roles for this key transcription factor specifically in brain development and plasticity, with possible implications for neurodegenerative disorders and glial brain tumors.
Collapse
Affiliation(s)
- Sara Mancinelli
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Michela Vitiello
- Institute for Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Maria Donnini
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Francesca Mantile
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Giuseppe Palma
- Struttura Semplice Dipartimentale (S.S.D.) Sperimentazione Animale, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–Fondazione G. Pascale, Naples, Italy
| | - Antonio Luciano
- Struttura Semplice Dipartimentale (S.S.D.) Sperimentazione Animale, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–Fondazione G. Pascale, Naples, Italy
| | - Claudio Arra
- Struttura Semplice Dipartimentale (S.S.D.) Sperimentazione Animale, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–Fondazione G. Pascale, Naples, Italy
| | - Laura Cerchia
- Institute for Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | | | - Monica Fedele
- Institute for Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
15
|
Yu Y, Wang H, Rao X, Liu L, Zheng P, Li W, Zhou W, Chai T, Ji P, Song J, Wei H, Xie P. Proteomic Profiling of Lysine Acetylation Indicates Mitochondrial Dysfunction in the Hippocampus of Gut Microbiota-Absent Mice. Front Mol Neurosci 2021; 14:594332. [PMID: 33776647 PMCID: PMC7991600 DOI: 10.3389/fnmol.2021.594332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability around the world and contributes greatly to the global burden of disease. Mounting evidence suggests that gut microbiota dysbiosis may be involved in the pathophysiology of MDD through the microbiota–gut–brain axis. Recent research suggests that epigenetic modifications might relate to depression. However, our knowledge of the role of epigenetics in host–microbe interactions remains limited. In the present study, we used a combination of affinity enrichment and high-resolution liquid chromatography tandem mass spectrometry analysis to identify hippocampal acetylated proteins in germ-free and specific pathogen-free mice. In total, 986 lysine acetylation sites in 543 proteins were identified, of which 747 sites in 427 proteins were quantified. Motif analysis identified several conserved sequences surrounding the acetylation sites, including D∗Kac, DKac, KacY, KacD, and D∗∗Kac. Gene ontology annotations revealed that these differentially expressed acetylated proteins were involved in multiple biological functions and were mainly located in mitochondria. In addition, pathway enrichment analysis demonstrated that oxidative phosphorylation and the tricarboxylic acid cycle II (eukaryotic), both of which are exclusively localized to the mitochondria, were the primarily disturbed functions. Taken together, this study indicates that lysine acetylation alterations may play a pivotal role in mitochondrial dysfunction and may be a mechanism by which gut microbiota regulate brain function and behavioral phenotypes.
Collapse
Affiliation(s)
- Ying Yu
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuechen Rao
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Li
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhou
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingjia Chai
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Peng Xie
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Cozzolino M, Cocco S, Piezzo M, Celia G, Costantini S, Abate V, Capone F, Barberio D, Girelli L, Cavicchiolo E, Ascierto PA, Madonna G, Budillon A, De Laurentiis M. A Psychosocial Genomics Pilot Study in Oncology for Verifying Clinical, Inflammatory and Psychological Effects of Mind-Body Transformations-Therapy (MBT-T) in Breast Cancer Patients: Preliminary Results. J Clin Med 2021; 10:E136. [PMID: 33401546 PMCID: PMC7796278 DOI: 10.3390/jcm10010136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 01/12/2023] Open
Abstract
Several studies have highlighted the key role of chronic inflammation in breast cancer development, progression, metastasis, and therapeutic outcome. These processes are mediated through a variety of cytokines and hormones that exert their biological actions either locally or distantly via systemic circulation. Recent findings suggest that positive psychosocial experiences, including psychotherapeutic interventions and therapeutic mind-body protocols, can modulate the inflammatory response by reducing the expression of genes/proteins associated with inflammation and stress-related pathways. Our preliminary results indicate that a specific mind-body therapy (MBT-T) could induce a significant reduction of the release of different cytokines and chemokines, such as SCGFβ, SDF-1α, MCP3, GROα, LIF, and IL-18, in the sera of breast cancer patients compared to a control group, suggesting that MBT-T could represent a promising approach to improve the wellness and outcome of breast cancer patients.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Department of Human, Philosophical and Educational Sciences, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.); (G.C.); (L.G.); (E.C.)
| | - Stefania Cocco
- Department of Breast and Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (S.C.); (M.P.)
| | - Michela Piezzo
- Department of Breast and Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (S.C.); (M.P.)
| | - Giovanna Celia
- Department of Human, Philosophical and Educational Sciences, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.); (G.C.); (L.G.); (E.C.)
| | - Susan Costantini
- Experimental Pharmacology Unit—Mercogliano Laboratory, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (S.C.); (F.C.); (A.B.)
| | - Valentina Abate
- Psychology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (V.A.); (D.B.)
| | - Francesca Capone
- Experimental Pharmacology Unit—Mercogliano Laboratory, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (S.C.); (F.C.); (A.B.)
| | - Daniela Barberio
- Psychology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (V.A.); (D.B.)
| | - Laura Girelli
- Department of Human, Philosophical and Educational Sciences, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.); (G.C.); (L.G.); (E.C.)
| | - Elisa Cavicchiolo
- Department of Human, Philosophical and Educational Sciences, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.); (G.C.); (L.G.); (E.C.)
| | - Paolo Antonio Ascierto
- Department Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (P.A.A.); (G.M.)
| | - Gabriele Madonna
- Department Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (P.A.A.); (G.M.)
| | - Alfredo Budillon
- Experimental Pharmacology Unit—Mercogliano Laboratory, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (S.C.); (F.C.); (A.B.)
| | - Michelino De Laurentiis
- Department of Breast and Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (S.C.); (M.P.)
| |
Collapse
|
17
|
Saw G, Tang FR. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. Int J Mol Sci 2020; 21:ijms21249514. [PMID: 33327654 PMCID: PMC7765140 DOI: 10.3390/ijms21249514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.
Collapse
|
18
|
Wanner NM, Colwell M, Drown C, Faulk C. Subacute cannabidiol alters genome-wide DNA methylation in adult mouse hippocampus. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:890-900. [PMID: 32579259 PMCID: PMC7765463 DOI: 10.1002/em.22396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 05/15/2023]
Abstract
Use of cannabidiol (CBD), the most abundant non-psychoactive compound found in cannabis (Cannabis sativa), has recently increased as a result of widespread availability of CBD-containing products. CBD is FDA-approved for the treatment of epilepsy and exhibits anxiolytic, antipsychotic, prosocial, and other behavioral effects in animal studies and clinical trials, however, the underlying mechanisms governing these phenotypes are still being elucidated. The epigenome, particularly DNA methylation, is responsive to environmental input and can govern persistent patterns of gene regulation affecting phenotype across the life course. In order to understand the epigenomic activity of cannabidiol exposure in the adult brain, 12-week-old male wild-type a/a Agouti viable yellow (Avy ) mice were exposed to either 20 mg/kg CBD or vehicle daily by oral administration for 14 days. Hippocampal tissue was collected and reduced-representation bisulfite sequencing (RRBS) was performed. Analyses revealed 3,323 differentially methylated loci (DMLs) in CBD-exposed animals with a small skew toward global hypomethylation. Genes for cell adhesion and migration, dendritic spine development, and excitatory postsynaptic potential were found to be enriched in a gene ontology term analysis of DML-containing genes, and disease ontology enrichment revealed an overrepresentation of DMLs in gene sets associated with autism spectrum disorder, schizophrenia, and other phenotypes. These results suggest that the epigenome may be a key substrate for CBD's behavioral effects and provides a wealth of gene regulatory information for further study.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine
| | | | - Chelsea Drown
- Department of Animal Science, University of Minnesota
| | | |
Collapse
|
19
|
Huang L, Fang HB, Cheng HH, Mei SL, Cheng YP, Lv Y, Meng QT, Xia ZY. Epigenetic modulation of the MAPK pathway prevents isoflurane-induced neuronal apoptosis and cognitive decline in aged rats. Exp Ther Med 2020; 20:35. [PMID: 32952626 PMCID: PMC7480129 DOI: 10.3892/etm.2020.9162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Isoflurane is a broadly used inhalation anesthetic that causes cognitive impairment in rodent models as well as humans. Although previous studies suggested an association between isoflurane exposure and neuro-inflammation, apoptosis and mitochondrial dysfunction, the pathogenesis of isoflurane-induced cognitive decline remains elusive. In the present study, 22-month-old male Sprague-Dawley male rats (n=96) were divided into three groups: Control (Cont), isoflurane (ISO) and MS-275 pre-treated groups. The rats were sacrificed following exposure to isoflurane and a cognitive test. The hippocampus of each animal was harvested for quantitative PCR, TUNEL staining and western blot analysis. Histone deacetylases (HDAC)-1, -2 and -3 exhibited a significant increase at the gene and protein expression levels, whereas negligible mRNA expressions were observed for genes HDAC 4-11 (P>0.05; compared with Cont). Pre-treatment with the HDAC inhibitor MS-275 significantly inhibited the increase in TUNEL-positive cells induced by isoflurane exposure (70.72% decrease; P<0.001; compared with ISO). Furthermore, MS-275 significantly decreased caspase-3 and Bax expression levels while increasing Bcl-2 protein expression. The isoflurane-induced changes in the MAPK pathway signaling proteins ERK1/2, JNK and p38 were also reversed with MS-275 pre-treatment. Finally, in a Morris water maze test, the time to find a hidden platform was reduced in MS-275 pre-treated rats, compared with the ISO group. Therefore, the present study provided insight into the effect of isoflurane exposure on neuronal apoptosis pathways, as well as cognitive decline via epigenetic programming of MAPK signaling in aged rats.
Collapse
Affiliation(s)
- Lei Huang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hai-Bin Fang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui-Hui Cheng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng-Lan Mei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yun-Ping Cheng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yao Lv
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
20
|
Cozzolino M, Vivo DR, Girelli L, Limone P, Celia G. The Evaluation of a Mind-Body Intervention (MBT-T) for Stress Reduction in Academic Settings: A Pilot Study. Behav Sci (Basel) 2020; 10:bs10080124. [PMID: 32751650 PMCID: PMC7464367 DOI: 10.3390/bs10080124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
This study is aimed at evaluating the outcomes of mind-body transformation therapy (MBT-T), previously known as the creative psychosocial genomic healing experience© (CPGHE). The intervention was aimed at reducing the perceived level of stress in two non-clinical groups of students with different educational levels and different expertise in the domain of well-being. Whereas participants from the first group were first-year university students, participants from the second group were students attending a post-graduate program in psychotherapy. All participants (n = 159) were exposed to a single session of MBT-T, each group in a separate session. The results of two paired-samples t-tests, conducted separately on the two samples, showed that there was a statistically significant reduction in the participants' perceived level of stress between pre- and post-intervention states in both samples (t88 = 5.39, p < 0.001; t53 = 4.56, p < 0.001 respectively). The results, therefore, showed that a single session of MBT-T was beneficial in reducing the perceived level of stress in both first-year university students and students attending a post-graduate program in psychotherapy, regardless of educational level and expertise in the domain of well-being.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Department of Humanities, Philosophy and Education, University of Salerno, 84084 Fisciano, Italy; (D.R.V.); (L.G.)
- Correspondence: ; Tel.: +39-339-685-7115
| | - Deborah R. Vivo
- Department of Humanities, Philosophy and Education, University of Salerno, 84084 Fisciano, Italy; (D.R.V.); (L.G.)
| | - Laura Girelli
- Department of Humanities, Philosophy and Education, University of Salerno, 84084 Fisciano, Italy; (D.R.V.); (L.G.)
| | - Pierpaolo Limone
- Department of Humanities, Literature, Cultural Heritage, Education Sciences, University of Foggia, 71122 Foggia, Italy; (P.L.); (G.C.)
| | - Giovanna Celia
- Department of Humanities, Literature, Cultural Heritage, Education Sciences, University of Foggia, 71122 Foggia, Italy; (P.L.); (G.C.)
| |
Collapse
|
21
|
Cozzolino M, Girelli L, Vivo DR, Limone P, Celia G. A mind-body intervention for stress reduction as an adjunct to an information session on stress management in university students. Brain Behav 2020; 10:e01651. [PMID: 32383355 PMCID: PMC7303398 DOI: 10.1002/brb3.1651] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION This study describes the implementation of a mind-body intervention to reduce the perceived level of stress in a nonclinical group of university students. We used a novel approach including a single session of a mind-body technique known as the brain wave modulation (BWM) as an adjunct to a single information session on stress management. METHODS Three hundred and six students participated in the study. A quasi-experimental design was adopted: Students in the experimental group were exposed to an information session on stress management followed by a single session of the BWM, while the other students were exposed to the information session alone. RESULTS A 2 × 2 mixed factor analysis of variance demonstrated that the single session of the BWM was effective in reducing the perceived level of stress in the experimental group as compared to the control group. CONCLUSION The BWM is a very easy-to-learn technique that presents certain advantages over traditional mind-body methods.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Department of Humanities, Philosophy and Education, University of Salerno, Fisciano, Italy
| | - Laura Girelli
- Department of Humanities, Philosophy and Education, University of Salerno, Fisciano, Italy
| | - Deborah R Vivo
- Department of Humanities, Philosophy and Education, University of Salerno, Fisciano, Italy
| | - Pierpaolo Limone
- Department of Humanities, Literature, Cultural Heritage, Education Sciences, University of Foggia, Foggia, Italy
| | - Giovanna Celia
- Department of Humanities, Literature, Cultural Heritage, Education Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
22
|
Mallei A, Ieraci A, Corna S, Tardito D, Lee FS, Popoli M. Global epigenetic analysis of BDNF Val66Met mice hippocampus reveals changes in dendrite and spine remodeling genes. Hippocampus 2019; 28:783-795. [PMID: 30067287 DOI: 10.1002/hipo.22991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 12/28/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin highly expressed in the hippocampus, plays crucial roles in cognition, neuroplasticity, synaptic function, and dendritic remodeling. The common human Val66Met polymorphism of BDNF has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders, and in the outcome of pro-adaptive and therapeutic treatments. Altered gene-expression profile has been previously shown in BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNF Met allele. The aim of this study was to investigate the impact of the BDNF Val66Met polymorphism in the knock-in mouse model on two hippocampal epigenetic marks for transcriptional repression and activation, respectively: trimethylation of lysine 27 on histone H3 (H3K27me3) and acetylation of histone H3 (AcH3), using a genome-wide approach. Chromatin immunoprecipitation followed by deep sequencing of immunoprecipitated DNA (ChIP-Seq) was carried out with specific antibodies for H3K27me3 and AcH3. Our results revealed broad alteration of H3K27me3 and AcH3 marks association profiles in BDNFMet/Met , compared to BDNFVal/Val mice. Bioinformatics analysis showed changes in several biological functions and related pathways, affected by the presence of the polymorphism. In particular, a number of networks of functional interaction contained BDNF as central node. Quantitative PCR analysis confirmed epigenetically related significant changes in the expression of five genes: Dvl1, Nos3, Reln, Lypd6, and Sh3gl2. The first three are involved in dendrite and spine remodeling, morphological features altered in BDNFMet/Met mice. This work in homozygous knock-in mice shows that the human BDNF Val66Met polymorphism induces an array of histone H3 epigenetic modifications, in turn altering the expression of select genes crucial for structural and functional neuronal features.
Collapse
Affiliation(s)
- Alessandra Mallei
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Stefano Corna
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Daniela Tardito
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Iacono G, Dubos A, Méziane H, Benevento M, Habibi E, Mandoli A, Riet F, Selloum M, Feil R, Zhou H, Kleefstra T, Kasri NN, van Bokhoven H, Herault Y, Stunnenberg HG. Increased H3K9 methylation and impaired expression of Protocadherins are associated with the cognitive dysfunctions of the Kleefstra syndrome. Nucleic Acids Res 2019; 46:4950-4965. [PMID: 29554304 PMCID: PMC6007260 DOI: 10.1093/nar/gky196] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Kleefstra syndrome, a disease with intellectual disability, autism spectrum disorders and other developmental defects is caused in humans by haploinsufficiency of EHMT1. Although EHMT1 and its paralog EHMT2 were shown to be histone methyltransferases responsible for deposition of the di-methylated H3K9 (H3K9me2), the exact nature of epigenetic dysfunctions in Kleefstra syndrome remains unknown. Here, we found that the epigenome of Ehmt1+/- adult mouse brain displays a marked increase of H3K9me2/3 which correlates with impaired expression of protocadherins, master regulators of neuronal diversity. Increased H3K9me3 was present already at birth, indicating that aberrant methylation patterns are established during embryogenesis. Interestingly, we found that Ehmt2+/- mice do not present neither the marked increase of H3K9me2/3 nor the cognitive deficits found in Ehmt1+/- mice, indicating an evolutionary diversification of functions. Our finding of increased H3K9me3 in Ehmt1+/- mice is the first one supporting the notion that EHMT1 can quench the deposition of tri-methylation by other Histone methyltransferases, ultimately leading to impaired neurocognitive functioning. Our insights into the epigenetic pathophysiology of Kleefstra syndrome may offer guidance for future developments of therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Giovanni Iacono
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
- To whom correspondence should be addressed. Tel: +31 24 3610524; . Correspondence may also be addressed to Giovanni Iacono.
| | - Aline Dubos
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Hamid Méziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Marco Benevento
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Ehsan Habibi
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
| | - Amit Mandoli
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
| | - Fabrice Riet
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mohammed Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), UMR5535, Centre National de Recherche Scientifique (CNRS), 1919 Route de Mende, 34293 Montpellier, France
- The University of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Huiqing Zhou
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Yann Herault
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Hendrik G Stunnenberg
- Radboud University, Department of Molecular Biology, Faculty of Science, 6500 HB Nijmegen, the Netherlands
- To whom correspondence should be addressed. Tel: +31 24 3610524; . Correspondence may also be addressed to Giovanni Iacono.
| |
Collapse
|
24
|
Villasana LE, Peters A, McCallum R, Liu C, Schnell E. Diazepam Inhibits Post-Traumatic Neurogenesis and Blocks Aberrant Dendritic Development. J Neurotrauma 2019; 36:2454-2467. [PMID: 30794026 DOI: 10.1089/neu.2018.6162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) triggers a robust increase in neurogenesis within the dentate gyrus of the hippocampus, but these new neurons undergo aberrant maturation and dendritic outgrowth. Because gamma-aminobutyric acid (GABA)A receptors (GABAARs) modulate dendritic outgrowth during constitutive neurogenesis and GABAAR-modulating sedatives are often administered to human patients after TBI, we investigated whether the benzodiazepine, diazepam (DZP), alters post-injury hippocampal neurogenesis. We used a controlled cortical impact (CCI) model of TBI in adult mice, and administered DZP or vehicle continuously for 1 week after injury via osmotic pump. Although DZP did not affect the neurogenesis rate in control mice, it almost completely prevented the TBI-induced increase in hippocampal neurogenesis as well as the aberrant dendritic growth of neurons born after TBI. DZP did not reduce cortical injury, reactive gliosis, or cell proliferation early after injury, but decreased c-Fos activation in the dentate gyrus at both early and late time-points after TBI, suggesting an association between neuronal activity and post-injury neurogenesis. Because DZP blocks post-injury neurogenesis, further studies are warranted to assess whether benzodiazepines alter cognitive recovery or the development of complications after TBI.
Collapse
Affiliation(s)
- Laura E Villasana
- 1Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Austin Peters
- 1Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Raluca McCallum
- 2Operative Care Division, VA Portland Health Care System, Portland, Oregon
| | - Chang Liu
- 1Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Eric Schnell
- 1Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon.,2Operative Care Division, VA Portland Health Care System, Portland, Oregon
| |
Collapse
|
25
|
Liester MB, Sullivan EE. A review of epigenetics in human consciousness. COGENT PSYCHOLOGY 2019. [DOI: 10.1080/23311908.2019.1668222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Mitchell B. Liester
- Department of Psychiatry, University of Colorado School of Medicine, P.O. Box 302 153 N. Washington Street, Suite 103, Monument, CO 80132, USA
| | - Erin E. Sullivan
- Computer Science, University of Oklahoma, P.O. Box 302, Monument, CO 80132, USA
| |
Collapse
|
26
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
27
|
Cozzolino M, Guarino F, Castiglione S, Cicatelli A, Celia G. Pilot Study on Epigenetic Response to A Mind-Body Treatment. Transl Med UniSa 2018; 17:40-44. [PMID: 30083522 PMCID: PMC6067070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In the last years, epigenetics and functional genomics methods to evaluate the genomic effects and mechanisms of mind-body therapies have increasingly grown. DNA microarray technology has been used to show the involvement of the stress response pathways both in the case of disease and stress and as an effect of mind-body therapies. In the present research, the DNA samples obtained from 20 individuals who experienced a mind-body therapeutic protocol (MBT-T), were analysed from the bio-molecular point of view by means of an epigenetic marker (MSAP molecular tool), in order to estimate the different status of methylation. The subjects were compared at 3 different times: prior to, 1 hour after, and 24 hours after the treatment. The molecular data were processed through different biostatistics approaches: the Bayesian statistics approach, in order to estimate the clustering membership of the subjects (Structure), and the statistical estimation of the DNA methylation level (MSAP statistical tool). The structure analysis revealed that the clusters and their membership changed among the three time points moving from higher heterogeneous distribution to higher homogeneous clusters. Before the treatment, the subjects' epigenetic profiles were heterogeneous; after the mind-body treatment we found that epigenetic profiles converged to homogeneous DNA methylation status. DNA epigenetic status of the subjects was affected by the MBT-T treatment.
Collapse
Affiliation(s)
- M. Cozzolino
- Department of Human, Philosophical and Educational Sciences, University of Salerno, Italy
| | - F. Guarino
- Department of Chemistry and Biology, University of Salerno, Italy
| | - S. Castiglione
- Department of Chemistry and Biology, University of Salerno, Italy
| | - A. Cicatelli
- Department of Chemistry and Biology, University of Salerno, Italy
| | - G. Celia
- International Centre of Psychology and Strategic Psychotherapy CIPPS, Salerno, Italy
| |
Collapse
|
28
|
Cozzolino M, Guarino F, Castiglione S, Cicatelli A, Celia G. Pilot Study on Epigenetic Response to A Mind-Body Treatment. Transl Med UniSa 2018; 17:37-41. [PMID: 30050879 PMCID: PMC6056253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the last years, epigenetics and functional genomics methods to evaluate the genomic effects and mechanisms of mind-body therapies have increasingly grown. DNA microarray technology has been used to show the involvement of the stress response pathways both in the case of disease and stress and as an effect of mind-body therapies. In the present research, the DNA samples obtained from 20 individuals who experienced a mind-body therapeutic protocol (MBT-T), were analysed from the bio-molecular point of view by means of an epigenetic marker (MSAP molecular tool), in order to estimate the different status of methylation. The subjects were compared at 3 different times: prior to, 1 hour after, and 24 hours after the treatment. The molecular data were processed through different biostatistics approaches: the Bayesian statistics approach, in order to estimate the clustering membership of the subjects (Structure), and the statistical estimation of the DNA methylation level (MSAP statistical tool). The structure analysis revealed that the clusters and their membership changed among the three time points moving from higher heterogeneous distribution to higher homogeneous clusters. Before the treatment, the subjects' epigenetic profiles were heterogeneous; after the mind-body treatment we found that epigenetic profiles converged to homogeneous DNA methylation status. DNA epigenetic status of the subjects was affected by the MBT-T treatment.
Collapse
Affiliation(s)
- M. Cozzolino
- Department of Human, Philosophical and Educational Sciences, University of Salerno, Italy
| | - F. Guarino
- Department of Chemistry and Biology, University of Salerno, Italy
| | - S. Castiglione
- Department of Chemistry and Biology, University of Salerno, Italy
| | - A. Cicatelli
- Department of Chemistry and Biology, University of Salerno, Italy
| | - G. Celia
- International Centre of Psychology and Strategic Psychotherapy CIPPS, Salerno, Italy
| |
Collapse
|
29
|
Wang SE, Ko SY, Kim YS, Jo S, Lee SH, Jung SJ, Son H. Capsaicin upregulates HDAC2 via TRPV1 and impairs neuronal maturation in mice. Exp Mol Med 2018. [PMID: 29520110 PMCID: PMC5898893 DOI: 10.1038/emm.2017.289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) affects mood and neuroplasticity in the brain, where its role is poorly understood. In the present study we investigated whether capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide), an agonist of TRPV1, induced chromatin remodeling and thereby altered gene expression related to synaptic plasticity. We found that capsaicin treatment resulted in upregulation of histone deacetylase 2 (HDAC2) in the mouse hippocampus and HDAC2 was enriched at Psd95, synaptophysin, GLUR1, GLUR2 promoters. Viral-mediated hippocampal knockdown of HDAC2 induced expression of Synapsin I and prevented the detrimental effects of capsaicin on Synapsin I expression in mice, supporting the role of HDAC2 in regulation of capsaicin-induced Synapsin I expression. Taken together, our findings implicate HDAC2 in capsaicin-induced transcriptional regulation of synaptic molecules and support the view that HDAC2 is a molecular link between TRPV1 activity and synaptic plasticity.
Collapse
Affiliation(s)
- Sung Eun Wang
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Seung Yeon Ko
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Yong-Seok Kim
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Sungsin Jo
- Hanyang University Hospital for Rheumatic Disease, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Sung Jun Jung
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea.,Department of Physiology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Hyeon Son
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
30
|
Akers KG, Chérasse Y, Fujita Y, Srinivasan S, Sakurai T, Sakaguchi M. Concise Review: Regulatory Influence of Sleep and Epigenetics on Adult Hippocampal Neurogenesis and Cognitive and Emotional Function. Stem Cells 2018; 36:969-976. [DOI: 10.1002/stem.2815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/02/2018] [Accepted: 02/17/2018] [Indexed: 12/20/2022]
Affiliation(s)
| | - Yoan Chérasse
- International Institute for Integrative Sleep Medicine, University of Tsukuba; Tsukuba Ibaraki Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine; Osaka University; Suita Osaka Japan
| | - Sakthivel Srinivasan
- International Institute for Integrative Sleep Medicine, University of Tsukuba; Tsukuba Ibaraki Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine, University of Tsukuba; Tsukuba Ibaraki Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba; Tsukuba Ibaraki Japan
| |
Collapse
|
31
|
Integrated transcriptional analysis unveils the dynamics of cellular differentiation in the developing mouse hippocampus. Sci Rep 2017; 7:18073. [PMID: 29273784 PMCID: PMC5741714 DOI: 10.1038/s41598-017-18287-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/30/2017] [Indexed: 01/17/2023] Open
Abstract
The ability to assign expression patterns to the individual cell types that constitute a tissue is a major challenge. This especially applies to brain, given its plethora of different, functionally interconnected cell types. Here, we derived cell type-specific transcriptome signatures from existing single cell RNA data and integrated these signatures with a newly generated dataset of expression (bulk RNA-Seq) of the postnatal developing mouse hippocampus. This integrated analysis allowed us to provide a comprehensive and unbiased prediction of the differentiation drivers for 11 different hippocampal cell types and describe how the different cell types interact to support crucial developmental stages. Our results provide a reliable resource of predicted differentiation drivers and insights into the multifaceted aspects of the cells in hippocampus during development.
Collapse
|
32
|
Sild M, Ruthazer ES, Booij L. Major depressive disorder and anxiety disorders from the glial perspective: Etiological mechanisms, intervention and monitoring. Neurosci Biobehav Rev 2017; 83:474-488. [DOI: 10.1016/j.neubiorev.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
|
33
|
Abstract
The role of DNA methylation in brain development is an intense area of research because the brain has particularly high levels of CpG and mutations in many of the proteins involved in the establishment, maintenance, interpretation, and removal of DNA methylation impact brain development and/or function. These include DNA methyltransferase (DNMT), Ten-Eleven Translocation (TET), and Methyl-CpG binding proteins (MBPs). Recent advances in sequencing breadth and depth as well the detection of different forms of methylation have greatly expanded our understanding of the diversity of DNA methylation in the brain. The contributions of DNA methylation and associated proteins to embryonic and adult neurogenesis will be examined. Particular attention will be given to the impact on adult hippocampal neurogenesis (AHN), which is a key mechanism contributing to brain plasticity, learning, memory and mood regulation. DNA methylation influences multiple aspects of neurogenesis from stem cell maintenance and proliferation, fate specification, neuronal differentiation and maturation, and synaptogenesis. In addition, DNA methylation during neurogenesis has been shown to be responsive to many extrinsic signals, both under normal conditions and during disease and injury. Finally, crosstalk between DNA methylation, Methyl-DNA binding domain (MBD) proteins such as MeCP2 and MBD1 and histone modifying complexes is used as an example to illustrate the extensive interconnection between these epigenetic regulatory systems.
Collapse
Affiliation(s)
- Emily M Jobe
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
34
|
Cross-talk between the epigenome and neural circuits in drug addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:19-63. [PMID: 29054289 DOI: 10.1016/bs.pbr.2017.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a behavioral disorder characterized by dysregulated learning about drugs and associated cues that result in compulsive drug seeking and relapse. Learning about drug rewards and predictive cues is a complex process controlled by a computational network of neural connections interacting with transcriptional and molecular mechanisms within each cell to precisely guide behavior. The interplay between rapid, temporally specific neuronal activation, and longer-term changes in transcription is of critical importance in the expression of appropriate, or in the case of drug addiction, inappropriate behaviors. Thus, these factors and their interactions must be considered together, especially in the context of treatment. Understanding the complex interplay between epigenetic gene regulation and circuit connectivity will allow us to formulate novel therapies to normalize maladaptive reward behaviors, with a goal of modulating addictive behaviors, while leaving natural reward-associated behavior unaffected.
Collapse
|
35
|
Methyl-CpG-Binding Protein MBD1 Regulates Neuronal Lineage Commitment through Maintaining Adult Neural Stem Cell Identity. J Neurosci 2017; 37:523-536. [PMID: 28100736 DOI: 10.1523/jneurosci.1075-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 01/09/2023] Open
Abstract
Methyl-CpG-binding domain 1 (MBD1) belongs to a family of methyl-CpG-binding proteins that are epigenetic "readers" linking DNA methylation to transcriptional regulation. MBD1 is expressed in neural stem cells residing in the dentate gyrus of the adult hippocampus (aNSCs) and MBD1 deficiency leads to reduced neuronal differentiation, impaired neurogenesis, learning deficits, and autism-like behaviors in mice; however, the precise function of MBD1 in aNSCs remains unexplored. Here, we show that MBD1 is important for maintaining the integrity and stemness of NSCs, which is critical for their ability to generate neurons. MBD1 deficiency leads to the accumulation of undifferentiated NSCs and impaired transition into the neuronal lineage. Transcriptome analysis of neural stem and progenitor cells isolated directly from the dentate gyrus of MBD1 mutant (KO) and WT mice showed that gene sets related to cell differentiation, particularly astrocyte lineage genes, were upregulated in KO cells. We further demonstrated that, in NSCs, MBD1 binds and represses directly specific genes associated with differentiation. Our results suggest that MBD1 maintains the multipotency of NSCs by restraining the onset of differentiation genes and that untimely expression of these genes in MBD1-deficient stem cells may interfere with normal cell lineage commitment and cause the accumulation of undifferentiated cells. Our data reveal a novel role for MBD1 in stem cell maintenance and provide insight into how epigenetic regulation contributes to adult neurogenesis and the potential impact of its dysregulation. SIGNIFICANCE STATEMENT Adult neural stem cells (aNSCs) in the hippocampus self-renew and generate neurons throughout life. We show that methyl-CpG-binding domain 1 (MBD1), a DNA methylation "reader," is important for maintaining the integrity of NSCs, which is critical for their neurogenic potency. Our data reveal a novel role for MBD1 in stem cell maintenance and provide insight into how epigenetic regulation preserves the multipotency of stem cells for subsequent differentiation.
Collapse
|
36
|
Pino A, Fumagalli G, Bifari F, Decimo I. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 2017; 141:4-22. [PMID: 28690140 DOI: 10.1016/j.bcp.2017.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
"Are new neurons added in the adult mammalian brain?" "Do neural stem cells activate following CNS diseases?" "How can we modulate their activation to promote recovery?" Recent findings in the field provide novel insights for addressing these questions from a new perspective. In this review, we will summarize the current knowledge about adult neurogenesis and neural stem cell niches in healthy and pathological conditions. We will first overview the milestones that have led to the discovery of the classical ventricular and hippocampal neural stem cell niches. In adult brain, new neurons originate from proliferating neural precursors located in the subventricular zone of the lateral ventricles and in the subgranular zone of the hippocampus. However, recent findings suggest that new neuronal cells can be added to the adult brain by direct differentiation (e.g., without cell proliferation) from either quiescent neural precursors or non-neuronal cells undergoing conversion or reprogramming to neuronal fate. Accordingly, in this review we will also address critical aspects of the newly described mechanisms of quiescence and direct conversion as well as the more canonical activation of the neurogenic niches and neuroblast reservoirs in pathological conditions. Finally, we will outline the critical elements involved in neural progenitor proliferation, neuroblast migration and differentiation and discuss their potential as targets for the development of novel therapeutic drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
37
|
Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 2017; 174:93-112. [PMID: 26879907 PMCID: PMC4987273 DOI: 10.1002/ajmg.b.32429] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022]
Abstract
New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emrin Horgusluoglu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kelly Nudelman
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
38
|
Lisovska N, Daribayev Z, Lisovskyy Y, Kussainova K, Austin L, Bulekbayeva S. Pathogenesis of cerebral palsy through the prism of immune regulation of nervous tissue homeostasis: literature review. Childs Nerv Syst 2016; 32:2111-2117. [PMID: 27638717 DOI: 10.1007/s00381-016-3245-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The cerebral palsy is highly actual issue of pediatrics, causing significant neurological disability. Though the great progress in the neuroscience has been recently achieved, the pathogenesis of cerebral palsy is still poorly understood. METHODS In this work, we reviewed available experimental and clinical data concerning the role of immune cells in pathogenesis of cerebral palsy. Maintaining of homeostasis in nervous tissue and its transformation in case of periventricular leukomalacia were analyzed. RESULTS The reviewed data demonstrate involvement of immune regulatory cells in the formation of nervous tissue imbalance and chronicity of inborn brain damage. The supported opinion, that periventricular leukomalacia is not a static phenomenon, but developing process, encourages our optimism about the possibility of its correction. CONCLUSIONS The further studies of changes of the nervous and immune systems in cerebral palsy are needed to create fundamentally new directions of the specific therapy and individual schemes of rehabilitation.
Collapse
Affiliation(s)
- Natalya Lisovska
- Republican Children's Rehabilitation Center, Turan str., 36, Astana, Kazakhstan, 010000.
| | - Zholtay Daribayev
- Republican Children's Rehabilitation Center, Turan str., 36, Astana, Kazakhstan, 010000
| | - Yevgeny Lisovskyy
- Republican Children's Rehabilitation Center, Turan str., 36, Astana, Kazakhstan, 010000
| | - Kenzhe Kussainova
- Republican Children's Rehabilitation Center, Turan str., 36, Astana, Kazakhstan, 010000
| | - Lana Austin
- Department of Pediatrics, Parirenyatwa Group of hospitals, Harare, Zimbabwe
| | - Sholpan Bulekbayeva
- Republican Children's Rehabilitation Center, Turan str., 36, Astana, Kazakhstan, 010000
| |
Collapse
|
39
|
Bakulski KM, Halladay A, Hu VW, Mill J, Fallin MD. Epigenetic Research in Neuropsychiatric Disorders: the "Tissue Issue". Curr Behav Neurosci Rep 2016; 3:264-274. [PMID: 28093577 PMCID: PMC5235359 DOI: 10.1007/s40473-016-0083-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Evidence has linked neuropsychiatric disorders with epigenetic marks as either a biomarker of disease, biomarker of exposure, or mechanism of disease processes. Neuropsychiatric epidemiologic studies using either target brain tissue or surrogate blood tissue each have methodological challenges and distinct advantages. RECENT FINDINGS Brain tissue studies are challenged by small sample sizes of cases and controls, incomplete phenotyping, post-mortem timing, and cellular heterogeneity, but the use of a primary disease relevant tissue is critical. Blood-based studies have access to much larger sample sizes and more replication opportunities, as well as the potential for longitudinal measurements, both prior to onset and during the course of treatments. Yet, blood studies also are challenged by cell-type heterogeneity, and many question the validity of using peripheral tissues as a brain biomarker. Emerging evidence suggests that these limitations to blood-based epigenetic studies are surmountable, but confirmation in target tissue remains important. SUMMARY Epigenetic mechanisms have the potential to help elucidate biology connecting experiential risk factors with neuropsychiatric disease manifestation. Cross-tissue studies as well as advanced epidemiologic methods should be employed to more effectively conduct neuropsychiatric epigenetic research.
Collapse
Affiliation(s)
- Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Alycia Halladay
- Autism Science Foundation, New York City, New York, USA; Department of Pharmacology and Toxicology, Rutgers University, New Brunswick, New Jersey, USA
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK; Institute for Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Subbanna S, Nagre NN, Shivakumar M, Basavarajappa BS. A single day of 5-azacytidine exposure during development induces neurodegeneration in neonatal mice and neurobehavioral deficits in adult mice. Physiol Behav 2016; 167:16-27. [PMID: 27594097 DOI: 10.1016/j.physbeh.2016.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
The present study was undertaken to evaluate the immediate and long-term effects of a single-day exposure to 5-Azacytidine (5-AzaC), a DNA methyltransferase inhibitor, on neurobehavioral abnormalities in mice. Our findings suggest that the 5-AzaC treatment significantly inhibited DNA methylation, impaired extracellular signal-regulated kinase (ERK1/2) activation and reduced expression of the activity-regulated cytoskeleton-associated protein (Arc). These events lead to the activation of caspase-3 (a marker for neurodegeneration) in several brain regions, including the hippocampus and cortex, two brain areas that are essential for memory formation and memory storage, respectively. 5-AzaC treatment of P7 mice induced significant deficits in spatial memory, social recognition, and object memory in adult mice and deficits in long-term potentiation (LTP) in adult hippocampal slices. Together, these data demonstrate that the inhibition of DNA methylation by 5-AzaC treatment in P7 mice causes neurodegeneration and impairs ERK1/2 activation and Arc protein expression in neonatal mice and induces behavioral abnormalities in adult mice. DNA methylation-mediated mechanisms appear to be necessary for the proper maturation of synaptic circuits during development, and disruption of this process by 5-AzaC could lead to abnormal cognitive function.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Nagaraja N Nagre
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
41
|
Yao B, Christian KM, He C, Jin P, Ming GL, Song H. Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 2016; 17:537-49. [PMID: 27334043 DOI: 10.1038/nrn.2016.70] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the embryonic and adult brain, neural stem cells proliferate and give rise to neurons and glia through highly regulated processes. Epigenetic mechanisms - including DNA and histone modifications, as well as regulation by non-coding RNAs - have pivotal roles in different stages of neurogenesis. Aberrant epigenetic regulation also contributes to the pathogenesis of various brain disorders. Here, we review recent advances in our understanding of epigenetic regulation in neurogenesis and its dysregulation in brain disorders, including discussion of newly identified DNA cytosine modifications. We also briefly cover the emerging field of epitranscriptomics, which involves modifications of mRNAs and long non-coding RNAs.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| |
Collapse
|
42
|
Taborda Zapata E, Montoya Gonzalez LE, Gómez Sierra NM, Arteaga Morales LM, Correa Rico OA. [Integrated management of patients with schizophrenia: beyond psychotropic drugs]. REVISTA COLOMBIANA DE PSIQUIATRIA 2016; 45:118-123. [PMID: 27132761 DOI: 10.1016/j.rcp.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Schizophrenia is a complex disease with severe functional repercussions; therefore it merits treatment which goes beyond drugs. THEME DEVELOPMENT It requires an approach that considers a diathesis-stress process that includes rehabilitation, psychotherapeutic strategies for persistent cognitive, negative and psychotic symptoms, psychoeducation of patient and communities, community adaptation strategies, such as the introduction to the work force, and the community model, such as a change in the asylum paradigm. DISCUSSION It is necessary to establish private and public initiatives for the integrated care of schizophrenia in the country, advocating the well-being of those with the disease. CONCLUSIONS The integrated management of schizophrenic patients requires a global view of the patient and his/her disease, and its development is essential.
Collapse
|
43
|
|
44
|
Role of Epigenetics in Stem Cell Proliferation and Differentiation: Implications for Treating Neurodegenerative Diseases. Int J Mol Sci 2016; 17:ijms17020199. [PMID: 26848657 PMCID: PMC4783933 DOI: 10.3390/ijms17020199] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/17/2016] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
The main objectives of this review are to survey the current literature on the role of epigenetics in determining the fate of stem cells and to assess how this information can be used to enhance the treatment strategies for some neurodegenerative disorders, like Huntington’s disease, Parkinson’s disease and Alzheimer’s disease. Some of these epigenetic mechanisms include DNA methylation and histone modifications, which have a direct impact on the way that genes are expressed in stem cells and how they drive these cells into a mature lineage. Understanding how the stem cells are behaving and giving rise to mature cells can be used to inform researchers on effective ways to design stem cell-based treatments. In this review article, the way in which the basic understanding of how manipulating this process can be utilized to treat certain neurological diseases will be presented. Different genetic factors and their epigenetic changes during reprogramming of stem cells into induced pluripotent stem cells (iPSCs) have significant potential for enhancing the efficacy of cell replacement therapies.
Collapse
|
45
|
Petrik D, Latchney SE, Masiulis I, Yun S, Zhang Z, Wu JI, Eisch AJ. Chromatin Remodeling Factor Brg1 Supports the Early Maintenance and Late Responsiveness of Nestin-Lineage Adult Neural Stem and Progenitor Cells. Stem Cells 2015; 33:3655-65. [PMID: 26418130 DOI: 10.1002/stem.2215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/14/2015] [Indexed: 12/25/2022]
Abstract
Insights from embryonic development suggest chromatin remodeling is important in adult neural stem cells (aNSCs) maintenance and self-renewal, but this concept has not been fully explored in the adult brain. To assess the role of chromatin remodeling in adult neurogenesis, we inducibly deleted Brg1--the core subunit of SWI/SNF-like Brg1/Brm-associated factor chromatin remodeling complexes--in nestin-expressing aNSCs and their progeny in vivo and in culture. This resulted in abnormal adult neurogenesis in the hippocampus, which initially reduced hippocampal aNSCs and progenitor maintenance, and later reduced its responsiveness to physiological stimulation. Mechanistically, deletion of Brg1 appeared to impair cell cycle progression, which is partially due to elevated p53 pathway and p21 expression. Knockdown of p53 rescued the neurosphere growth defects caused by Brg1 deletion. Our results show that epigenetic chromatin remodeling (via a Brg1 and p53/p21-dependent process) determines the aNSCs and progenitor maintenance and responsiveness of neurogenesis.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah E Latchney
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Irene Masiulis
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sanghee Yun
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zilai Zhang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jiang I Wu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amelia J Eisch
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
46
|
Tyler CR, Weber JA, Labrecque M, Hessinger JM, Edwards JS, Allan AM. ChIP-Seq analysis of the adult male mouse brain after developmental exposure to arsenic. Data Brief 2015; 5:248-54. [PMID: 26543888 PMCID: PMC4589800 DOI: 10.1016/j.dib.2015.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/12/2023] Open
Abstract
Exposure to the common environmental contaminant arsenic impacts the epigenetic landscape, including DNA methylation and histone modifications, of several cell types. Developmental arsenic exposure (DAE) increases acetylation and methylation of histone proteins and the protein expression of several chromatin-modifying enzymes in the dentate gyrus (DG) subregion of the adult male mouse brain [26]. To complement and support these data, ChIP-Seq analysis of DNA associated with trimethylation of histone 3 lysine 4 (H3K4me3) derived from the adult male DG after DAE was performed. DAE induced differential H3K4me3 enrichment on genes in pathways associated with cellular development and growth, cell death and survival, and neurological disorders, particularly as they relate to cancer, in the adult male brain. Comparison of H3K4me3 enrichment in controls revealed mechanisms that are potentially lacking in arsenic-exposed animals, including neurotransmission, neuronal growth and development, hormonal regulation, protein synthesis, and cellular homeostasis. New pathways impacted by arsenic include cytoskeleton organization, cell signaling, and potential disruption of immune function and warrant further investigation using this DAE paradigm in the mouse brain.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jessica A Weber
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Matthew Labrecque
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Justin M Hessinger
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jeremy S Edwards
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA ; Department of Chemical & Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA ; Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA ; Cancer Research & Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
47
|
Xie W, Wang JQ, Wang QC, Wang Y, Yao S, Tang TS. Adult neural progenitor cells from Huntington's disease mouse brain exhibit increased proliferation and migration due to enhanced calcium and ROS signals. Cell Prolif 2015; 48:517-31. [PMID: 26269226 DOI: 10.1111/cpr.12205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Huntington's disease (HD) is an inherited human neurodegenerative disorder characterized by uncontrollable movement, psychiatric disturbance and cognitive decline. Impaired proliferative/differentiational potentials of adult neural progenitor cells (ANPCs) have been thought to be a pathogenic mechanism involved in it. In this study, we aimed to elucidate intrinsic properties of ANPCs subjected to neurodegenerative condition in YAC128 HD mice. MATERIALS AND METHODS ANPCs were isolated from the SVZ regions of 4-month-old WT and YAC128 mice. Cell proliferation, migration and neuronal differentiation in vitro were compared between these two genotypes with/without Ca(2+) inhibitors or ROS scavenger treatments. Differences in ANPC proliferation and differentiation capabilities in vivo between the two genotypes were evaluated using Ki-67 and Doublecortin (DCX) immunofluorescence respectively. RESULTS Compared to WT ANPCs, YAC128 ANPCs had significantly enhanced cell proliferation, migration and neuronal differentiation in vitro, accompanied by increased Ca(2+) and ROS signals. Raised proliferation and migration in YAC128 ANPCs were abolished by Ca(2+) signalling antagonists and ROS scavenging. However, in vivo, HD ANPCs failed to show any elevated proliferation or differentiation. CONCLUSIONS Increased Ca(2+) signalling and higher level of ROS conferred HD ANPC enhancement of proliferation and migration potentials. However, the in vivo micro-environment did not support endogenous ANPCs to respond appropriately to neuronal loss in these YAC128 mouse brains.
Collapse
Affiliation(s)
- Wenjuan Xie
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiu-Qiang Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiao-Chu Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sheng Yao
- Department of Neurology, Navy General Hospital, Beijing, 100048, China
| | - Tie-Shan Tang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
48
|
Wu MV, Sahay A, Duman RS, Hen R. Functional differentiation of adult-born neurons along the septotemporal axis of the dentate gyrus. Cold Spring Harb Perspect Biol 2015; 7:a018978. [PMID: 26238355 DOI: 10.1101/cshperspect.a018978] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the past several decades, the proliferation and integration of adult-born neurons into existing hippocampal circuitry has been implicated in a wide range of behaviors, including novelty recognition, pattern separation, spatial learning, anxiety behaviors, and antidepressant response. In this review, we suggest that the diversity in behavioral requirements for new neurons may be partly caused by separate functional roles of individual neurogenic niches. Growing evidence shows that the hippocampal formation can be compartmentalized not only along the classic trisynaptic circuit, but also along a longitudinal septotemporal axis. We suggest that subpopulations of hippocampal adult-born neurons may be specialized for distinct mnemonic- or mood-related behavioral tasks. We will examine the literature supporting a functional and anatomical dissociation of the hippocampus along the longitudinal axis and discuss techniques to functionally dissect the roles of adult-born hippocampal neurons in these distinct subregions.
Collapse
Affiliation(s)
- Melody V Wu
- Department of Psychiatry, Columbia University, New York, New York 10027 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032
| | - Amar Sahay
- Center for Regenerative Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114 Harvard Stem Cell Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Ronald S Duman
- Department of Psychiatry, Yale University, New Haven, Connecticut 06520 Department of Neurobiology, Yale University, New Haven, Connecticut 06520
| | - René Hen
- Department of Psychiatry, Columbia University, New York, New York 10027 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 Department of Neuroscience, Columbia University, New York, New York 10027 Department of Pharmacology, Columbia University, New York, New York 10027
| |
Collapse
|
49
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
50
|
Tyler CR, Hafez AK, Solomon ER, Allan AM. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain. Toxicol Appl Pharmacol 2015; 288:40-51. [PMID: 26193056 DOI: 10.1016/j.taap.2015.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 01/07/2023]
Abstract
Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult brain due to aberrant expression of epigenetic machinery based on region and sex.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Alexander K Hafez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Elizabeth R Solomon
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|