1
|
Yang Y, Li Y, Chen Y. Changes in transcriptional regulation in the temporal lobe in patients with Alzheimer's disease. J Alzheimers Dis 2025; 104:1075-1091. [PMID: 40095520 DOI: 10.1177/13872877251322536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundAlzheimer's disease (AD) is a complex neurodegenerative disorder with intricate pathophysiological mechanisms. Transcriptome analysis has been used to investigate the pathogenesis of AD from the perspectives of mRNA expression, alternative splicing, and alternative polyadenylation. However, these 3 transcriptomic regulatory layers have not been comprehensively explored, limiting our understanding of the transcriptomic landscapes of AD pathogenesis.ObjectiveWe aimed to describe the transcriptomic landscapes of AD pathogenesis, detect the contributions of different regulatory layers to the total transcriptional variance, and identify diagnostic candidates for AD prediction.MethodsWe collected RNA sequencing data derived from the temporal lobes of 257 patients with AD and 97 controls, performed joint transcriptional analysis with multi-omics factor analysis (MOFA2) and weighted gene co-expression network analysis (WGCNA), and evaluated the signals with regression models.ResultsWe found that increasing Braak stage is associated with progressive downregulation of SYT1, CHN1, SNAP25, VSNL1, and ENC1 as well as upregulation of TNS1, SGK1, CPM, PPFIBP, and CLMN. Subsequent MOFA2 revealed that alternative splicing contributes most (R2 = 0.558) to the transcriptional variance between patients with AD and controls followed by alternative polyadenylation (R2 = 0.449) and mRNA expression (R2 = 0.438). In addition, the regression model constructed with SNAP25, VSNL1, and ENC1 expression could distinguish between patients with AD and controls (AUC = 0.752).ConclusionsWe systematically detailed the transcriptional landscapes in patients with AD and report mRNA signals associated with AD, offering novel insights into AD pathogenesis and therapeutic development.
Collapse
Affiliation(s)
- Yujie Yang
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
| | - Yinhu Li
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Aguzzoli Heberle B, Fox KL, Lobraico Libermann L, Ronchetti Martins Xavier S, Tarnowski Dallarosa G, Carolina Santos R, Fardo DW, Wendt Viola T, Ebbert MTW. Systematic review and meta-analysis of bulk RNAseq studies in human Alzheimer's disease brain tissue. Alzheimers Dement 2025; 21:e70025. [PMID: 40042520 PMCID: PMC11881636 DOI: 10.1002/alz.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
We systematically reviewed and meta-analyzed bulk RNA sequencing (RNAseq) studies comparing Alzheimer's disease (AD) patients to controls in human brain tissue. We searched PubMed, Web of Science, and Scopus for human brain bulk RNAseq studies, excluding re-analyses and studies limited to small RNAs or gene panels. We developed 10 criteria for quality assessment and performed a meta-analysis on three high-quality datasets. Of 3266 records, 24 qualified for the systematic review, and one study with three datasets qualified for the meta-analysis. The meta-analysis identified 571 differentially expressed genes (DEGs) in the temporal lobe and 189 in the frontal lobe, including CLU and GFAP. Pathway analysis suggested reactivation of developmental processes in the adult AD brain. Limited data availability constrained the meta-analysis. These findings underscore the need for rigorous methods in AD transcriptomic research to better identify transcriptomic changes and advance biomarker and therapeutic development. This review is registered in PROSPERO (CRD42023466522). HIGHLIGHTS Comprehensive review: Conducted the first systematic review and meta-analysis of bulk RNA sequencing (RNAseq) studies comparing Alzheimer's disease (AD) patients with non-demented controls using primary human brain tissue. KEY FINDINGS Identified 571 differentially expressed genes (DEGs) in the temporal lobe and 189 in the frontal lobe of patients with AD, revealing potential therapeutic targets. Pathway discovery: Highlighted key overlapping pathways such as "tube morphogenesis" and "neuroactive ligand-receptor interaction" that may play critical roles in AD. QUALITY ASSESSMENT Emphasized the importance of methodological rigor in transcriptomic studies, including quality assessment tools to guide future research in AD. STUDY LIMITATION Acknowledged limited access to complete data tables and lack of diversity in existing datasets, which constrained some of the analysis.
Collapse
Affiliation(s)
- Bernardo Aguzzoli Heberle
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Kristin L. Fox
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Division of Laboratory Animal ResourcesUniversity of KentuckyLexingtonKentuckyUSA
| | - Lucas Lobraico Libermann
- School of MedicineBrain Institute of Rio Grande do SulPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreRio Grande do SulBrazil
| | | | - Guilherme Tarnowski Dallarosa
- School of MedicineBrain Institute of Rio Grande do SulPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreRio Grande do SulBrazil
| | - Rhaná Carolina Santos
- School of MedicineUniversity of the Sinos Valley (UNISINOS)São LeopoldoRio Grande do SulBrazil
| | - David W. Fardo
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
| | - Thiago Wendt Viola
- School of MedicineBrain Institute of Rio Grande do SulPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreRio Grande do SulBrazil
| | - Mark T. W. Ebbert
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Division of Biomedical Informatics, Internal Medicine, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
3
|
İş Ö, Min Y, Wang X, Oatman SR, Abraham Daniel A, Ertekin‐Taner N. Multi Layered Omics Approaches Reveal Glia Specific Alterations in Alzheimer's Disease: A Systematic Review and Future Prospects. Glia 2025; 73:539-573. [PMID: 39652363 PMCID: PMC11784841 DOI: 10.1002/glia.24652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia with multi-layered complexity in its molecular etiology. Multiple omics-based approaches, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and lipidomics are enabling researchers to dissect this molecular complexity, and to uncover a plethora of alterations yielding insights into the pathophysiology of this disease. These approaches reveal multi-omics alterations essentially in all cell types of the brain, including glia. In this systematic review, we screen the literature for human studies implementing any omics approach within the last 10 years, to discover AD-associated molecular perturbations in brain glial cells. The findings from over 200 AD-related studies are reviewed under four different glial cell categories: microglia, oligodendrocytes, astrocytes and brain vascular cells. Under each category, we summarize the shared and unique molecular alterations identified in glial cells through complementary omics approaches. We discuss the implications of these findings for the development, progression and ultimately treatment of this complex disease as well as directions for future omics studies in glia cells.
Collapse
Affiliation(s)
- Özkan İş
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
4
|
Zhao F, Wang J, Wu M, Fan J, Liu S, Deng F, Wang S, Cheng Y, Wang Y. Investigating the mechanism of Qifu Yin in ameliorating memory disorders through pseudo-targeted lipidomics. Mol Omics 2025; 21:69-86. [PMID: 39612167 DOI: 10.1039/d4mo00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Memory disorder (MD) is a neurodegenerative disease with an increasing incidence rate that adversely affects the quality of life of patients. Qifu Yin (QFY), a classic traditional Chinese medicine formula used for treating dementia, is known for its neuroprotective properties, although its mechanism of action requires further exploration. In this study, D-galactose combined with aluminum chloride was used to establish an MD rat model, and behavior, histopathology, and related indicators were used to evaluate the pharmacodynamics of the formula in the rats. Furthermore, brain tissues were examined using pseudo-targeted lipidomics analysis, and candidate ion pairs were screened through mass spectrometry using UPLC-Q/Orbitrap HRMS. An sMRM detection method for candidate ion pairs was developed using UHPLC-Q-TRAP-MS/MS and validated. This approach was applied to the lipidomics study of QFY in improving MD. Differential metabolites screened through pseudo-targeted lipidomics were analyzed by employing network pharmacology, and the pathway was verified to explore their mechanism of action. Results demonstrated that QFY could improve memory impairment. A total of 1052 ion pairs were constructed in the pseudo-targeted lipidomics analysis, identifying 33 differential metabolites and 5 metabolic pathways. Furthermore, 31 differential metabolites in MD rats treated with QFY were significantly reversed. Immunohistochemical analysis showed that QFY could inhibit the expression of inflammatory factors. Network pharmacological analysis showed that the calcium signaling pathway was the main signaling pathway, and QFY could significantly reverse the expression levels of mRNA and protein. Thus, QFY can improve memory impairment in rats, which may be related to the regulation of oxidative stress, lipid metabolism disorder and the calcium signaling pathway.
Collapse
Affiliation(s)
- Fuxia Zhao
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Jing Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Minjun Wu
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Jiaqi Fan
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Shiqi Liu
- Schools of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Fanying Deng
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Shihui Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Yangang Cheng
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| | - Yan Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong, 030619, China.
| |
Collapse
|
5
|
Takayama K, Suzuki T, Sato K, Saito Y, Inoue S. Cooperative nuclear action of RNA-binding proteins PSF and G3BP2 to sustain neuronal cell viability is decreased in aging and dementia. Aging Cell 2024; 23:e14316. [PMID: 39155453 PMCID: PMC11634737 DOI: 10.1111/acel.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Dysfunctional RNA-binding proteins (RBPs) have been implicated in several geriatric diseases, including Alzheimer's disease (AD). However, little is known about the nuclear molecular actions and cooperative functions mediated by RBPs that affect gene regulation in sporadic AD or aging. In the present study, we investigated aging- and AD-associated changes in the expression of PSF and G3BP2, which are representative RBPs associated with sex hormone activity. We determined that both PSF and G3BP2 levels were decreased in aged brains compared to young brains of mice. RNA sequencing (RNA-seq) analysis of human neuronal cells has shown that PSF is responsible for neuron-specific functions and sustains cell viability. In addition, we showed that PSF interacted with G3BP2 in the nucleus and stress granules (SGs) at the protein level. Moreover, PSF-mediated gene regulation at the RNA level correlated with G3BP2. Interestingly, PSF and G3BP2 target genes are associated with AD development. Mechanistically, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis demonstrated that the interaction of RBPs with the pre-mRNA of target genes enhanced post-transcriptional mRNA stability, suggesting a possible role for these RBPs in preserving neuronal cell viability. Notably, in the brains of patients with sporadic AD, decreased expression of PSF and G3BP2 in neurons was observed compared to non-AD patients. Overall, our findings suggest that the cooperative action of PSF and G3BP2 in the nucleus is important for preventing aging and AD development.
Collapse
Affiliation(s)
- Ken‐ichi Takayama
- Department of Systems Aging Science and MedicineTokyo Metropolitan Institute for Geriatrics and GerontologyItabashiTokyoJapan
| | - Takashi Suzuki
- Department of Anatomic PathologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Department of PathologyTohoku University HospitalSendaiMiyagiJapan
| | - Kaoru Sato
- Department of Systems Aging Science and MedicineTokyo Metropolitan Institute for Geriatrics and GerontologyItabashiTokyoJapan
- Integrated Research Initiative for Living Well with DementiaTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research)Tokyo Metropolitan Institute for Geriatrics and GerontologyItabashiTokyoJapan
| | - Satoshi Inoue
- Department of Systems Aging Science and MedicineTokyo Metropolitan Institute for Geriatrics and GerontologyItabashiTokyoJapan
- Division of Systems Medicine and Gene TherapySaitama Medical UniversitySaitamaJapan
| |
Collapse
|
6
|
Heberle BA, Fox KL, Libermann LL, Xavier SRM, Dallarosa GT, Santos RC, Fardo DW, Viola TW, Ebbert MTW. Systematic review and meta-analysis of bulk RNAseq studies in human Alzheimer's disease brain tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622520. [PMID: 39574617 PMCID: PMC11580990 DOI: 10.1101/2024.11.07.622520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Objective To systematically review and meta-analyze bulk RNA sequencing studies comparing Alzheimer's disease (AD) patients with controls in human brain tissue, assessing study quality and identifying key genes and pathways. Methods We searched PubMed, Web of Science, and Scopus on September 23, 2023, for studies using bulk RNAseq on primary human brain tissue from AD patients and controls. Excluded were non-primary tissue, re-analyses without new data, limited RNA types and gene panels. Quality was assessed with a 10-category tool. Meta-analysis used high-quality datasets. Results From 3,266 records, 24 studies met criteria. Meta-analysis found 571 differentially expressed genes (DEGs) in temporal lobe and 189 in frontal lobe; overlapping pathways included "Tube morphogenesis" and "Neuroactive ligand-receptor interaction." Limitations Study heterogeneity and limited data tables constrained the review. Conclusions Rigorous methods are vital in AD transcriptomic studies. Findings enhance understanding of transcriptomic changes, aiding biomarker and therapeutic development. Registration PROSPERO (CRD42023466522).
Collapse
Affiliation(s)
- Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Kristin L Fox
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
- Division of Laboratory Animal Resources, University of Kentucky, Lexington, KY
| | - Lucas Lobraico Libermann
- School of Medicine, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | - Guilherme Tarnowski Dallarosa
- School of Medicine, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rhaná Carolina Santos
- School of Medicine, University of the Sinos Valley (UNISINOS), Porto Alegre, RS, Brazil
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Thiago Wendt Viola
- School of Medicine, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Mark T W Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
7
|
Wu K, Liu Q, Long K, Duan X, Chen X, Zhang J, Li L, Li B. Deciphering the role of lipid metabolism-related genes in Alzheimer's disease: a machine learning approach integrating Traditional Chinese Medicine. Front Endocrinol (Lausanne) 2024; 15:1448119. [PMID: 39507054 PMCID: PMC11538058 DOI: 10.3389/fendo.2024.1448119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Background Alzheimer's disease (AD) represents a progressive neurodegenerative disorder characterized by the accumulation of misfolded amyloid beta protein, leading to the formation of amyloid plaques and the aggregation of tau protein into neurofibrillary tangles within the cerebral cortex. The role of carbohydrates, particularly apolipoprotein E (ApoE), is pivotal in AD pathogenesis due to its involvement in lipid and cholesterol metabolism, and its status as a genetic predisposition factor for the disease. Despite its significance, the mechanistic contributions of Lipid Metabolism-related Genes (LMGs) to AD remain inadequately elucidated. This research endeavor seeks to bridge this gap by pinpointing biomarkers indicative of early-stage AD, with an emphasis on those linked to immune cell infiltration. To this end, advanced machine-learning algorithms and data derived from the Gene Expression Omnibus (GEO) database have been employed to facilitate the identification of these biomarkers. Methods Differentially expressed genes (DEGs) were identified by comparing gene expression profiles between healthy individuals and Alzheimer's disease (AD) patients, using data from two Gene Expression Omnibus (GEO) datasets: GSE5281 and GSE138260. Functional enrichment analysis was conducted to elucidate the biological relevance of the DEGs. To ensure the reliability of the results, samples were randomly divided into training and validation sets. The analysis focused on lipid metabolism-related DEGs (LMDEGs) to explore potential biomarkers for AD. Machine learning algorithms, including Support Vector Machine-Recursive Feature Elimination (SVM-RFE) and the Least Absolute Shrinkage and Selection Operator (LASSO) regression model, were applied to identify a key gene biomarker. Additionally, immune cell infiltration and its relationship with the gene biomarker were assessed using the CIBERSORT algorithm. The Integrated Traditional Chinese Medicine (ITCM) database was also referenced to identify Chinese medicines related to lipid metabolism and their possible connection to AD. This comprehensive strategy aims to integrate modern computational methods with traditional medicine to deepen our understanding of AD and its underlying mechanisms. Results The study identified 137 genes from a pool of 751 lipid metabolism-related genes (LMGs) significantly associated with autophagy and immune response mechanisms. Through the application of LASSO and SVM-RFE machine-learning techniques, four genes-choline acetyl transferase (CHAT), member RAS oncogene family (RAB4A), acyl-CoA binding domain-containing protein 6 (ACBD6), and alpha-galactosidase A (GLA)-emerged as potential biomarkers for Alzheimer's disease (AD). These genes demonstrated strong therapeutic potential due to their involvement in critical biological pathways. Notably, nine Chinese medicine compounds were identified to target these marker genes, offering a novel treatment approach for AD. Further, ceRNA network analysis revealed complex regulatory interactions involving these genes, underscoring their importance in AD pathology. CIBERSORT analysis highlighted a potential link between changes in the immune microenvironment and CHAT expression levels in AD patients, providing new insights into the immunological dimensions of the disease. Conclusion The discovery of these gene markers offers substantial promise for the diagnosis and understanding of Alzheimer's disease (AD). However, further investigation is necessary to validate their clinical utility. This study illuminates the role of Lipid Metabolism-related Genes (LMGs) in AD pathogenesis, offering potential targets for therapeutic intervention. It enhances our grasp of AD's complex mechanisms and paves the way for future research aimed at refining diagnostic and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Li
- *Correspondence: Li Li, ; Bin Li,
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese
Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Pérez-González AP, García-Kroepfly AL, Pérez-Fuentes KA, García-Reyes RI, Solis-Roldan FF, Alba-González JA, Hernández-Lemus E, de Anda-Jáuregui G. The ROSMAP project: aging and neurodegenerative diseases through omic sciences. Front Neuroinform 2024; 18:1443865. [PMID: 39351424 PMCID: PMC11439699 DOI: 10.3389/fninf.2024.1443865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
The Religious Order Study and Memory and Aging Project (ROSMAP) is an initiative that integrates two longitudinal cohort studies, which have been collecting clinicopathological and molecular data since the early 1990s. This extensive dataset includes a wide array of omic data, revealing the complex interactions between molecular levels in neurodegenerative diseases (ND) and aging. Neurodegenerative diseases (ND) are frequently associated with morbidity and cognitive decline in older adults. Omics research, in conjunction with clinical variables, is crucial for advancing our understanding of the diagnosis and treatment of neurodegenerative diseases. This summary reviews the extensive omics research-encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and multiomics-conducted through the ROSMAP study. It highlights the significant advancements in understanding the mechanisms underlying neurodegenerative diseases, with a particular focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Alejandra P Pérez-González
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomedicas, Unidad de Posgrado Edificio B Primer Piso, Ciudad Universitaria, Mexico City, Mexico
- Facultad de Estudios Superiores Iztacala UNAM, Mexico City, Mexico
| | | | | | | | | | | | - Enrique Hernández-Lemus
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- División de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Investigadoras e Investigadores por México Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| |
Collapse
|
9
|
Gurdon B, Yates SC, Csucs G, Groeneboom NE, Hadad N, Telpoukhovskaia M, Ouellette A, Ouellette T, O'Connell KMS, Singh S, Murdy TJ, Merchant E, Bjerke I, Kleven H, Schlegel U, Leergaard TB, Puchades MA, Bjaalie JG, Kaczorowski CC. Detecting the effect of genetic diversity on brain composition in an Alzheimer's disease mouse model. Commun Biol 2024; 7:605. [PMID: 38769398 PMCID: PMC11106287 DOI: 10.1038/s42003-024-06242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD) is broadly characterized by neurodegeneration, pathology accumulation, and cognitive decline. There is considerable variation in the progression of clinical symptoms and pathology in humans, highlighting the importance of genetic diversity in the study of AD. To address this, we analyze cell composition and amyloid-beta deposition of 6- and 14-month-old AD-BXD mouse brains. We utilize the analytical QUINT workflow- a suite of software designed to support atlas-based quantification, which we expand to deliver a highly effective method for registering and quantifying cell and pathology changes in diverse disease models. In applying the expanded QUINT workflow, we quantify near-global age-related increases in microglia, astrocytes, and amyloid-beta, and we identify strain-specific regional variation in neuron load. To understand how individual differences in cell composition affect the interpretation of bulk gene expression in AD, we combine hippocampal immunohistochemistry analyses with bulk RNA-sequencing data. This approach allows us to categorize genes whose expression changes in response to AD in a cell and/or pathology load-dependent manner. Ultimately, our study demonstrates the use of the QUINT workflow to standardize the quantification of immunohistochemistry data in diverse mice, - providing valuable insights into regional variation in cellular load and amyloid deposition in the AD-BXD model.
Collapse
Affiliation(s)
- Brianna Gurdon
- The Jackson Laboratory, Bar Harbor, ME, USA
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA
| | - Sharon C Yates
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gergely Csucs
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nicolaas E Groeneboom
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niran Hadad
- The Jackson Laboratory, Bar Harbor, ME, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Andrew Ouellette
- The Jackson Laboratory, Bar Harbor, ME, USA
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA
| | - Tionna Ouellette
- The Jackson Laboratory, Bar Harbor, ME, USA
- Tufts University Graduate School of Biomedical Sciences, Medford, MA, USA
| | - Kristen M S O'Connell
- The Jackson Laboratory, Bar Harbor, ME, USA
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA
- Tufts University Graduate School of Biomedical Sciences, Medford, MA, USA
| | - Surjeet Singh
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Ingvild Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ulrike Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Catherine C Kaczorowski
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA.
- Tufts University Graduate School of Biomedical Sciences, Medford, MA, USA.
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Uranbileg B, Isago H, Sakai E, Kubota M, Saito Y, Kurano M. Alzheimer's disease manifests abnormal sphingolipid metabolism. Front Aging Neurosci 2024; 16:1368839. [PMID: 38774265 PMCID: PMC11106446 DOI: 10.3389/fnagi.2024.1368839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/10/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is associated with disturbed metabolism, prompting investigations into specific metabolic pathways that may contribute to its pathogenesis and pathology. Sphingolipids have garnered attention due to their known physiological impact on various diseases. Methods We conducted comprehensive profiling of sphingolipids to understand their possible role in AD. Sphingolipid levels were measured in AD brains, Cerad score B brains, and controls, as well as in induced pluripotent stem (iPS) cells (AD, PS, and control), using liquid chromatography mass spectrometry. Results AD brains exhibited higher levels of sphingosine (Sph), total ceramide 1-phosphate (Cer1P), and total ceramide (Cer) compared to control and Cerad-B brains. Deoxy-ceramide (Deoxy-Cer) was elevated in Cerad-B and AD brains compared to controls, with increased sphingomyelin (SM) levels exclusively in Cerad-B brains. Analysis of cell lysates revealed elevated dihydroceramide (dhSph), total Cer1P, and total SM in AD and PS cells versus controls. Multivariate analysis highlighted the relevance of Sph, Cer, Cer1P, and SM in AD pathology. Machine learning identified Sph, Cer, and Cer1P as key contributors to AD. Discussion Our findings suggest the potential importance of Sph, Cer1P, Cer, and SM in the context of AD pathology. This underscores the significance of sphingolipid metabolism in understanding and potentially targeting mechanisms underlying AD.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Kovarik Z, Moshitzky G, Maček Hrvat N, Soreq H. Recent advances in cholinergic mechanisms as reactions to toxicity, stress, and neuroimmune insults. J Neurochem 2024; 168:355-369. [PMID: 37429600 DOI: 10.1111/jnc.15887] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
This review presents recent studies of the chemical and molecular regulators of acetylcholine (ACh) signaling and the complexity of the small molecule and RNA regulators of those mechanisms that control cholinergic functioning in health and disease. The underlying structural, neurochemical, and transcriptomic concepts, including basic and translational research and clinical studies, shed new light on how these processes inter-change under acute states, age, sex, and COVID-19 infection; all of which modulate ACh-mediated processes and inflammation in women and men and under diverse stresses. The aspect of organophosphorus (OP) compound toxicity is discussed based on the view that despite numerous studies, acetylcholinesterase (AChE) is still a vulnerable target in OP poisoning because of a lack of efficient treatment and the limitations of oxime-assisted reactivation of inhibited AChE. The over-arching purpose of this review is thus to discuss mechanisms of cholinergic signaling dysfunction caused by OP pesticides, OP nerve agents, and anti-cholinergic medications; and to highlight new therapeutic strategies to combat both the acute and chronic effects of these chemicals on the cholinergic and neuroimmune systems. Furthermore, OP toxicity was examined in view of cholinesterase inhibition and beyond in order to highlight improved small molecules and RNA therapeutic strategies and assess their predicted pitfalls to reverse the acute toxicity and long-term deleterious effects of OPs.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Gilli Moshitzky
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Soreq H. MicroRNA guardians of the posterior cingulate cortex delay cognitive deterioration in elders. Brain Commun 2024; 6:fcae099. [PMID: 38572269 PMCID: PMC10988635 DOI: 10.1093/braincomms/fcae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
This scientific commentary refers to 'MicroRNA profiles of pathology and resilience in posterior cingulate cortex of cognitively intact elders', by Kelley et al. (https://doi.org/10.1093/braincomms/fcae082).
Collapse
Affiliation(s)
- Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
13
|
Cooper O, Hallett P, Isacson O. Upstream lipid and metabolic systems are potential causes of Alzheimer's disease, Parkinson's disease and dementias. FEBS J 2024; 291:632-645. [PMID: 36165619 PMCID: PMC10040476 DOI: 10.1111/febs.16638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Brain health requires circuits, cells and molecular pathways to adapt when challenged and to promptly reset once the challenge has resolved. Neurodegeneration occurs when adaptability becomes confined, causing challenges to overwhelm neural circuitry. Studies of rare and common neurodegenerative diseases suggest that the accumulation of lipids can compromise circuit adaptability. Using microglia as an example, we review data that suggest increased lipid concentrations cause dysfunctional inflammatory responses to immune challenges, leading to Alzheimer's disease, Parkinson's disease and dementia. We highlight current approaches to treat lipid metabolic and clearance pathways and identify knowledge gaps towards restoring adaptive homeostasis in individuals who are at-risk of losing cognition.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Penny Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
14
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
15
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
16
|
Wei BZ, Li L, Dong CW, Tan CC, Xu W. The Relationship of Omega-3 Fatty Acids with Dementia and Cognitive Decline: Evidence from Prospective Cohort Studies of Supplementation, Dietary Intake, and Blood Markers. Am J Clin Nutr 2023; 117:1096-1109. [PMID: 37028557 PMCID: PMC10447496 DOI: 10.1016/j.ajcnut.2023.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Previous data have linked omega-3 fatty acids with risk of dementia. We aimed to assess the longitudinal relationships of omega-3 polyunsaturated fatty acid intake as well as blood biomarkers with risk of Alzheimer's disease (AD), dementia, or cognitive decline. Longitudinal data were derived from 1135 participants without dementia (mean age = 73 y) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to evaluate the associations of omega-3 fatty acid supplementation and blood biomarkers with incident AD during the 6-y follow-up. A meta-analysis of published cohort studies was further conducted to test the longitudinal relationships of dietary intake of omega-3 and its peripheral markers with all-cause dementia or cognitive decline. Causal dose-response analyses were conducted using the robust error meta-regression model. In the ADNI cohort, long-term users of omega-3 fatty acid supplements exhibited a 64% reduced risk of AD (hazard ratio: 0.36, 95% confidence interval: 0.18, 0.72; P = 0.004). After incorporating 48 longitudinal studies involving 103,651 participants, a moderate-to-high level of evidence suggested that dietary intake of omega-3 fatty acids could lower risk of all-cause dementia or cognitive decline by ∼20%, especially for docosahexaenoic acid (DHA) intake (relative risk [RR]: 0.82, I2 = 63.6%, P = 0.001) and for studies that were adjusted for apolipoprotein APOE ε4 status (RR: 0.83, I2 = 65%, P = 0.006). Each increment of 0.1 g/d of DHA or eicosapentaenoic acid (EPA) intake was associated with an 8% ∼ 9.9% (Plinear < 0.0005) lower risk of cognitive decline. Moderate-to-high levels of evidence indicated that elevated levels of plasma EPA (RR: 0.88, I2 = 38.1%) and erythrocyte membrane DHA (RR: 0.94, I2 = 0.4%) were associated with a lower risk of cognitive decline. Dietary intake or long-term supplementation of omega-3 fatty acids may help reduce risk of AD or cognitive decline.
Collapse
Affiliation(s)
- Bao-Zhen Wei
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Li
- Department of Neurology, Linyi People's Hospital, Qingdao University, Qingdao, China
| | - Cheng-Wen Dong
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
17
|
LaForce GR, Philippidou P, Schaffer AE. mRNA isoform balance in neuronal development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1762. [PMID: 36123820 PMCID: PMC10024649 DOI: 10.1002/wrna.1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Balanced mRNA isoform diversity and abundance are spatially and temporally regulated throughout cellular differentiation. The proportion of expressed isoforms contributes to cell type specification and determines key properties of the differentiated cells. Neurons are unique cell types with intricate developmental programs, characteristic cellular morphologies, and electrophysiological potential. Neuron-specific gene expression programs establish these distinctive cellular characteristics and drive diversity among neuronal subtypes. Genes with neuron-specific alternative processing are enriched in key neuronal functions, including synaptic proteins, adhesion molecules, and scaffold proteins. Despite the similarity of neuronal gene expression programs, each neuronal subclass can be distinguished by unique alternative mRNA processing events. Alternative processing of developmentally important transcripts alters coding and regulatory information, including interaction domains, transcript stability, subcellular localization, and targeting by RNA binding proteins. Fine-tuning of mRNA processing is essential for neuronal activity and maintenance. Thus, the focus of neuronal RNA biology research is to dissect the transcriptomic mechanisms that underlie neuronal homeostasis, and consequently, predispose neuronal subtypes to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Gurdon B, Yates SC, Csucs G, Groeneboom NE, Hadad N, Telpoukhovskaia M, Ouellette A, Ouellette T, O'Connell K, Singh S, Murdy T, Merchant E, Bjerke I, Kleven H, Schlegel U, Leergaard TB, Puchades MA, Bjaalie JG, Kaczorowski CC. Detecting the effect of genetic diversity on brain composition in an Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530226. [PMID: 36909528 PMCID: PMC10002670 DOI: 10.1101/2023.02.27.530226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Alzheimer's disease (AD) is characterized by neurodegeneration, pathology accumulation, and progressive cognitive decline. There is significant variation in age at onset and severity of symptoms highlighting the importance of genetic diversity in the study of AD. To address this, we analyzed cell and pathology composition of 6- and 14-month-old AD-BXD mouse brains using the semi-automated workflow (QUINT); which we expanded to allow for nonlinear refinement of brain atlas-registration, and quality control assessment of atlas-registration and brain section integrity. Near global age-related increases in microglia, astrocyte, and amyloid-beta accumulation were measured, while regional variation in neuron load existed among strains. Furthermore, hippocampal immunohistochemistry analyses were combined with bulk RNA-sequencing results to demonstrate the relationship between cell composition and gene expression. Overall, the additional functionality of the QUINT workflow delivers a highly effective method for registering and quantifying cell and pathology changes in diverse disease models.
Collapse
Affiliation(s)
- Brianna Gurdon
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
| | - Sharon C Yates
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gergely Csucs
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nicolaas E Groeneboom
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | - Andrew Ouellette
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
| | - Tionna Ouellette
- The Jackson Laboratory, Bar Harbor, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| | - Kristen O'Connell
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| | | | - Tom Murdy
- The Jackson Laboratory, Bar Harbor, ME
| | | | - Ingvild Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ulrike Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Catherine C Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| |
Collapse
|
19
|
MANF/EWSR1/ANXA6 pathway might as the bridge between hypolipidemia and major depressive disorder. Transl Psychiatry 2022; 12:527. [PMID: 36585419 PMCID: PMC9803680 DOI: 10.1038/s41398-022-02287-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Major depressive disorder (MDD) involves changes in lipid metabolism, but previous findings are contradictory. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is considered to be a regulator of lipid metabolism. To date, the function of MANF has been studied in many brain disorders, but not in MDD. Therefore, to better understand the role of lipids in MDD, this study was conducted to examine lipid levels in the serum of MDD patients and to investigate the potential function of MANF in MDD. First, the data on total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) in serum from 354 MDD patients and 360 healthy controls (HCs) were collected and analyzed. The results showed that there were significantly lower concentrations of TC and LDL-C in MDD patients compared with HCs, and TC levels were positively correlated with LDL-C levels. Bioinformatics analysis indicated that MANF/EWSR1/ANXA6 pathway might serve as the connecting bridge through which hypolipidemia played a functional role in MDD. Second, to verify this hypothesis, serum samples were collected from 143 MDD patients, and 67 HCs to measure the levels of MANF, EWSR1, and ANXA6 using ELISA kits. The results showed that compared to HCs, MDD patients had a significantly lower level of MANF and higher levels of ANXA6 and EWSR1, and these molecules were significantly correlated with both TC level and Hamilton Depression Rating Scales (HDRS) score. In addition, a discriminative model consisting of MANF, EWSR1, and ANXA6 was identified. This model was capable of distinguishing MDD subjects from HCs, yielded an area under curve of 0.9994 in the training set and 0.9569 in the testing set. Taken together, our results suggested that MANF/EWSR1/ANXA6 pathway might act as the bridge between hypolipidemia and MDD, and these molecules held promise as potential biomarkers for MDD.
Collapse
|
20
|
Kurano M, Saito Y, Uranbileg B, Saigusa D, Kano K, Aoki J, Yatomi Y. Modulations of bioactive lipids and their receptors in postmortem Alzheimer's disease brains. Front Aging Neurosci 2022; 14:1066578. [PMID: 36570536 PMCID: PMC9780287 DOI: 10.3389/fnagi.2022.1066578] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Analyses of brain samples from Alzheimer's disease (AD) patients may be expected to help us improve our understanding of the pathogenesis of AD. Bioactive lipids, including sphingolipids, glycerophospholipids, and eicosanoids/related mediators have been demonstrated to exert potent physiological actions and to be involved in the pathogenesis of various human diseases. In this cross-sectional study, we attempted to elucidate the associations of these bioactive lipids with the pathogenesis/pathology of AD through postmortem studies of human brains. Methods We measured the levels of glycerophospholipids, sphingolipids, and eicosanoids/related mediators in the brains of patients with AD (AD brains), patients with Cerad score B (Cerad-b brains), and control subjects (control brains), using a liquid chromatography-mass spectrometry method; we also measured the mRNA levels of specific receptors for these bioactive lipids in the same brain specimens. Results The levels of several species of sphingomyelins and ceramides were higher in the Cerad-b and AD brains. Levels of several species of lysophosphatidic acids (LPAs), lysophosphatidylcholine, lysophosphatidylserine, lysophosphatidylethanolamine (LPE), lysophosphatidylinositol, phosphatidylcholine, phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol, and phosphatidylglycerol were especially high in the Cerad-b brains, while those of lysophosphatidylglycerol (LPG) were especially high in the AD brains. Several eicosanoids, including metabolites of prostaglandin E2, oxylipins, metabolites of epoxide, and metabolites of DHA and EPA, such as resolvins, were also modulated in the AD brains. Among the lipid mediators, the levels of S1P2, S1P5, LPA1, LPA2, LPA6, P2Y10, GPR174, EP1, DP1, DP2, IP, FP, and TXA2r were lower in the AD and/or Cerad-b brains. The brain levels of ceramides, LPC, LPI, PE, and PS showed strong positive correlations with the Aβ contents, while those of LPG showed rather strong positive correlations with the presence of senile plaques and neurofibrillary tangles. A discriminant analysis revealed that LPG is especially important for AD and the LPE/PE axis is important for Cerad-b. Conclusions Comprehensive lipidomics, together with the measurement of lipid receptor expression levels provided novel evidence for the associations of bioactive lipids with AD, which is expected to facilitate future translational research and reverse translational research.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,*Correspondence: Makoto Kurano,
| | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital, Institute of Gerontology, Tokyo, Japan
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Clark C, Rabl M, Dayon L, Popp J. The promise of multi-omics approaches to discover biological alterations with clinical relevance in Alzheimer's disease. Front Aging Neurosci 2022; 14:1065904. [PMID: 36570537 PMCID: PMC9768448 DOI: 10.3389/fnagi.2022.1065904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Beyond the core features of Alzheimer's disease (AD) pathology, i.e. amyloid pathology, tau-related neurodegeneration and microglia response, multiple other molecular alterations and pathway dysregulations have been observed in AD. Their inter-individual variations, complex interactions and relevance for clinical manifestation and disease progression remain poorly understood, however. Heterogeneity at both pathophysiological and clinical levels complicates diagnosis, prognosis, treatment and drug design and testing. High-throughput "omics" comprise unbiased and untargeted data-driven methods which allow the exploration of a wide spectrum of disease-related changes at different endophenotype levels without focussing a priori on specific molecular pathways or molecules. Crucially, new methodological and statistical advances now allow for the integrative analysis of data resulting from multiple and different omics methods. These multi-omics approaches offer the unique advantage of providing a more comprehensive characterisation of the AD endophenotype and to capture molecular signatures and interactions spanning various biological levels. These new insights can then help decipher disease mechanisms more deeply. In this review, we describe the different multi-omics tools and approaches currently available and how they have been applied in AD research so far. We discuss how multi-omics can be used to explore molecular alterations related to core features of the AD pathologies and how they interact with comorbid pathological alterations. We further discuss whether the identified pathophysiological changes are relevant for the clinical manifestation of AD, in terms of both cognitive impairment and neuropsychiatric symptoms, and for clinical disease progression over time. Finally, we address the opportunities for multi-omics approaches to help discover novel biomarkers for diagnosis and monitoring of relevant pathophysiological processes, along with personalised intervention strategies in AD.
Collapse
Affiliation(s)
- Christopher Clark
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland,Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,*Correspondence: Christopher Clark,
| | - Miriam Rabl
- Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,University of Lausanne, Lausanne, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julius Popp
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland,Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
22
|
Pozzi FE, Conti E, Appollonio I, Ferrarese C, Tremolizzo L. Predictors of response to acetylcholinesterase inhibitors in dementia: A systematic review. Front Neurosci 2022; 16:998224. [PMID: 36203811 PMCID: PMC9530658 DOI: 10.3389/fnins.2022.998224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background The mainstay of therapy for many neurodegenerative dementias still relies on acetylcholinesterase inhibitors (AChEI); however, there is debate on various aspects of such treatment. A huge body of literature exists on possible predictors of response, but a comprehensive review is lacking. Therefore, our aim is to perform a systematic review of the predictors of response to AChEI in neurodegenerative dementias, providing a categorization and interpretation of the results. Methods We conducted a systematic review of the literature up to December 31st, 2021, searching five different databases and registers, including studies on rivastigmine, donepezil, and galantamine, with clearly defined criteria for the diagnosis of dementia and the response to AChEI therapy. Records were identified through the string: predict * AND respon * AND (acetylcholinesterase inhibitors OR donepezil OR rivastigmine OR galantamine). The results were presented narratively. Results We identified 1,994 records in five different databases; after exclusion of duplicates, title and abstract screening, and full-text retrieval, 122 studies were finally included. Discussion The studies show high heterogeneity in duration, response definition, drug dosage, and diagnostic criteria. Response to AChEI seems associated with correlates of cholinergic deficit (hallucinations, fluctuating cognition, substantia innominate atrophy) and preserved cholinergic neurons (faster alpha on REM sleep EEG, increased anterior frontal and parietal lobe perfusion after donepezil); white matter hyperintensities in the cholinergic pathways have shown inconsistent results. The K-variant of butyrylcholinesterase may correlate with better response in late stages of disease, while the role of polymorphisms in other genes involved in the cholinergic system is controversial. Factors related to drug availability may influence response; in particular, low serum albumin (for donepezil), CYP2D6 variants associated with reduced enzymatic activity and higher drug doses are the most consistent predictors, while AChEI concentration influence on clinical outcomes is debatable. Other predictors of response include faster disease progression, lower serum cholesterol, preserved medial temporal lobes, apathy, absence of concomitant diseases, and absence of antipsychotics. Short-term response may predict subsequent cognitive response, while higher education might correlate with short-term good response (months), and long-term poor response (years). Age, gender, baseline cognitive and functional levels, and APOE relationship with treatment outcome is controversial.
Collapse
Affiliation(s)
| | - Elisa Conti
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Ildebrando Appollonio
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Carlo Ferrarese
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
23
|
Gok M, Madrer N, Zorbaz T, Bennett ER, Greenberg D, Bennett DA, Soreq H. Altered levels of variant cholinesterase transcripts contribute to the imbalanced cholinergic signaling in Alzheimer's and Parkinson's disease. Front Mol Neurosci 2022; 15:941467. [PMID: 36117917 PMCID: PMC9479005 DOI: 10.3389/fnmol.2022.941467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Acetylcholinesterase and butyrylcholinesterase (AChE and BChE) are involved in modulating cholinergic signaling, but their roles in Alzheimer's and Parkinson's diseases (AD and PD) remain unclear. We identified a higher frequency of the functionally impaired BCHE-K variant (rs1803274) in AD and PD compared to controls and lower than in the GTEx dataset of healthy individuals (n = 651); in comparison, the prevalence of the 5'-UTR (rs1126680) and intron 2 (rs55781031) single-nucleotide polymorphisms (SNPs) of BCHE and ACHE's 3'-UTR (rs17228616) which disrupt AChE mRNA targeting by miR-608 remained unchanged. qPCR validations confirmed lower levels of the dominant splice variant encoding the "synaptic" membrane-bound ACHE-S in human post-mortem superior temporal gyrus samples from AD and in substantia nigra (but not amygdala) samples from PD patients (n = 79, n = 67) compared to controls, potentially reflecting region-specific loss of cholinergic neurons. In contradistinction, the non-dominant "readthrough" AChE-R mRNA variant encoding for soluble AChE was elevated (p < 0.05) in the AD superior temporal gyrus and the PD amygdala, but not in the neuron-deprived substantia nigra. Elevated levels of BChE (p < 0.001) were seen in AD superior temporal gyrus. Finally, all three ACHE splice variants, AChE-S, AChE-R, and N-extended AChE, were elevated in cholinergic-differentiated human neuroblastoma cells, with exposure to the oxidative stress agent paraquat strongly downregulating AChE-S and BChE, inverse to their upregulation under exposure to the antioxidant simvastatin. The multi-leveled changes in cholinesterase balance highlight the role of post-transcriptional regulation in neurodegeneration. (235).
Collapse
Affiliation(s)
- Muslum Gok
- Department of Biochemistry, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nimrod Madrer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamara Zorbaz
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Estelle R. Bennett
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Greenberg
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David A. Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Hermona Soreq
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Lipidomics of Bioactive Lipids in Alzheimer's and Parkinson's Diseases: Where Are We? Int J Mol Sci 2022; 23:ijms23116235. [PMID: 35682914 PMCID: PMC9181703 DOI: 10.3390/ijms23116235] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Lipids are not only constituents of cellular membranes, but they are also key signaling mediators, thus acting as “bioactive lipids”. Among the prominent roles exerted by bioactive lipids are immune regulation, inflammation, and maintenance of homeostasis. Accumulated evidence indicates the existence of a bidirectional relationship between the immune and nervous systems, and lipids can interact particularly with the aggregation and propagation of many pathogenic proteins that are well-renowned hallmarks of several neurodegenerative disorders, including Alzheimer’s (AD) and Parkinson’s (PD) diseases. In this review, we summarize the current knowledge about the presence and quantification of the main classes of endogenous bioactive lipids, namely glycerophospholipids/sphingolipids, classical eicosanoids, pro-resolving lipid mediators, and endocannabinoids, in AD and PD patients, as well as their most-used animal models, by means of lipidomic analyses, advocating for these lipid mediators as powerful biomarkers of pathology, diagnosis, and progression, as well as predictors of response or activity to different current therapies for these neurodegenerative diseases.
Collapse
|
25
|
Rybak-Wolf A, Plass M. RNA Dynamics in Alzheimer's Disease. Molecules 2021; 26:5113. [PMID: 34500547 PMCID: PMC8433936 DOI: 10.3390/molecules26175113] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder that heavily burdens healthcare systems worldwide. There is a significant requirement to understand the still unknown molecular mechanisms underlying AD. Current evidence shows that two of the major features of AD are transcriptome dysregulation and altered function of RNA binding proteins (RBPs), both of which lead to changes in the expression of different RNA species, including microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs). In this review, we will conduct a comprehensive overview of how RNA dynamics are altered in AD and how this leads to the differential expression of both short and long RNA species. We will describe how RBP expression and function are altered in AD and how this impacts the expression of different RNA species. Furthermore, we will also show how changes in the abundance of specific RNA species are linked to the pathology of AD.
Collapse
Affiliation(s)
- Agnieszka Rybak-Wolf
- Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Mireya Plass
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
26
|
Mohammadnejad A, Li W, Lund JB, Li S, Larsen MJ, Mengel-From J, Michel TM, Christiansen L, Christensen K, Hjelmborg J, Baumbach J, Tan Q. Global Gene Expression Profiling and Transcription Factor Network Analysis of Cognitive Aging in Monozygotic Twins. Front Genet 2021; 12:675587. [PMID: 34194475 PMCID: PMC8236849 DOI: 10.3389/fgene.2021.675587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Cognitive aging is one of the major problems worldwide, especially as people get older. This study aimed to perform global gene expression profiling of cognitive function to identify associated genes and pathways and a novel transcriptional regulatory network analysis to identify important regulons. We performed single transcript analysis on 400 monozygotic twins using an assumption-free generalized correlation coefficient (GCC), linear mixed-effect model (LME) and kinship model and identified six probes (one significant at the standard FDR < 0.05 while the other results were suggestive with 0.18 ≤ FDR ≤ 0.28). We combined the GCC and linear model results to cover diverse patterns of relationships, and meaningful and novel genes like APOBEC3G, H6PD, SLC45A1, GRIN3B, and PDE4D were detected. Our exploratory study showed the downregulation of all these genes with increasing cognitive function or vice versa except the SLC45A1 gene, which was upregulated with increasing cognitive function. Linear models found only H6PD and SLC45A1, the other genes were captured by GCC. Significant functional pathways (FDR < 3.95e-10) such as focal adhesion, ribosome, cysteine and methionine metabolism, Huntington's disease, eukaryotic translation elongation, nervous system development, influenza infection, metabolism of RNA, and cell cycle were identified. A total of five regulons (FDR< 1.3e-4) were enriched in a transcriptional regulatory analysis in which CTCF and REST were activated and SP3, SRF, and XBP1 were repressed regulons. The genome-wide transcription analysis using both assumption-free GCC and linear models identified important genes and biological pathways implicated in cognitive performance, cognitive aging, and neurological diseases. Also, the regulatory network analysis revealed significant activated and repressed regulons on cognitive function.
Collapse
Affiliation(s)
- Afsaneh Mohammadnejad
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Weilong Li
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Jesper Beltoft Lund
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Digital Health & Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany
| | - Shuxia Li
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Martin J Larsen
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Tanja Maria Michel
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark.,Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lene Christiansen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Computational Biomedicine, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Gillentine MA, Wang T, Hoekzema K, Rosenfeld J, Liu P, Guo H, Kim CN, De Vries BBA, Vissers LELM, Nordenskjold M, Kvarnung M, Lindstrand A, Nordgren A, Gecz J, Iascone M, Cereda A, Scatigno A, Maitz S, Zanni G, Bertini E, Zweier C, Schuhmann S, Wiesener A, Pepper M, Panjwani H, Torti E, Abid F, Anselm I, Srivastava S, Atwal P, Bacino CA, Bhat G, Cobian K, Bird LM, Friedman J, Wright MS, Callewaert B, Petit F, Mathieu S, Afenjar A, Christensen CK, White KM, Elpeleg O, Berger I, Espineli EJ, Fagerberg C, Brasch-Andersen C, Hansen LK, Feyma T, Hughes S, Thiffault I, Sullivan B, Yan S, Keller K, Keren B, Mignot C, Kooy F, Meuwissen M, Basinger A, Kukolich M, Philips M, Ortega L, Drummond-Borg M, Lauridsen M, Sorensen K, Lehman A, Lopez-Rangel E, Levy P, Lessel D, Lotze T, Madan-Khetarpal S, Sebastian J, Vento J, Vats D, Benman LM, Mckee S, Mirzaa GM, Muss C, Pappas J, Peeters H, Romano C, Elia M, Galesi O, Simon MEH, van Gassen KLI, Simpson K, Stratton R, Syed S, Thevenon J, Palafoll IV, Vitobello A, Bournez M, Faivre L, Xia K, Earl RK, Nowakowski T, Bernier RA, Eichler EE. Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders. Genome Med 2021; 13:63. [PMID: 33874999 PMCID: PMC8056596 DOI: 10.1186/s13073-021-00870-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. CONCLUSIONS Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.
Collapse
Affiliation(s)
- Madelyn A Gillentine
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Jill Rosenfeld
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Hui Guo
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Bert B A De Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magnus Nordenskjold
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and the Robinson Research Institute, the University of Adelaide at the Women's and Children's Hospital, Adelaide, South Australia, Australia.,Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Maria Iascone
- Laboratorio di Genetica Medica - ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Agnese Scatigno
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Silvia Maitz
- Genetic Unit, Department of Pediatrics, Fondazione MBBM S. Gerardo Hospital, Monza, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sarah Schuhmann
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Micah Pepper
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA
| | - Heena Panjwani
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA
| | | | - Farida Abid
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paldeep Atwal
- The Atwal Clinic: Genomic & Personalized Medicine, Jacksonville, FL, USA
| | - Carlos A Bacino
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gifty Bhat
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Katherine Cobian
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Jennifer Friedman
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.,Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Meredith S Wright
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Florence Petit
- Clinique de Génétique, Hôpital Jeanne de Flandre, Bâtiment Modulaire, CHU, 59037, Lille Cedex, France
| | - Sophie Mathieu
- Sorbonne Universités, Centre de Référence déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Alexandra Afenjar
- Sorbonne Universités, Centre de Référence déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Celenie K Christensen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kerry M White
- Department of Medical and Molecular Genetics, IU Health, Indianapolis, IN, USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Itai Berger
- Pediatric Neurology, Assuta-Ashdod University Hospital, Ashdod, Israel.,Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Edward J Espineli
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Timothy Feyma
- Gillette Children's Specialty Healthcare, Saint Paul, MN, USA
| | - Susan Hughes
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA.,The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA.,Children's Mercy Kansas City, Center for Pediatric Genomic Medicine, Kansas City, MO, USA
| | - Bonnie Sullivan
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Shuang Yan
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Kory Keller
- Oregon Health & Science University, Corvallis, OR, USA
| | - Boris Keren
- Department of Genetics, Hópital Pitié-Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Genetics, Hópital Pitié-Salpêtrière, Paris, France
| | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Alice Basinger
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Mary Kukolich
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Meredith Philips
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Lucia Ortega
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | | | - Mathilde Lauridsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kristina Sorensen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,BC Children's Hospital and BC Women's Hospital, Vancouver, BC, Canada
| | | | - Elena Lopez-Rangel
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Division of Developmental Pediatrics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.,Sunny Hill Health Centre for Children, Vancouver, BC, Canada
| | - Paul Levy
- Department of Pediatrics, The Children's Hospital at Montefiore, Bronx, NY, USA
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timothy Lotze
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Suneeta Madan-Khetarpal
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Sebastian
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jodie Vento
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Divya Vats
- Kaiser Permanente Southern California, Los Angeles, CA, USA
| | | | - Shane Mckee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Candace Muss
- Al Dupont Hospital for Children, Wilmington, DE, USA
| | - John Pappas
- NYU Grossman School of Medicine, Department of Pediatrics, Clinical Genetic Services, New York, NY, USA
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | | | | | | | - Marleen E H Simon
- Department of Genetics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Kara Simpson
- Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Robert Stratton
- Department of Genetics, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Sabeen Syed
- Department of Pediatric Gastroenterology, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Julien Thevenon
- Àrea de Genètica Clínica i Molecular, Hospital Vall d'Hebrón, Barcelona, Spain
| | | | - Antonio Vitobello
- UF Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne and INSERM UMR1231 GAD, Université de Bourgogne Franche-Comté, F-21000, Dijon, France.,INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie Bournez
- Centre de Référence Maladies Rares « déficience intellectuelle », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes malformatifs » Université Bourgogne Franche-Comté, Dijon, France
| | - Laurence Faivre
- INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes malformatifs » Université Bourgogne Franche-Comté, Dijon, France
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | | | - Rachel K Earl
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Tomasz Nowakowski
- Department of Anatomy, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Raphael A Bernier
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
28
|
Wu W, Lee I, Spratt H, Fang X, Bao X. tRNA-Derived Fragments in Alzheimer's Disease: Implications for New Disease Biomarkers and Neuropathological Mechanisms. J Alzheimers Dis 2021; 79:793-806. [PMID: 33337366 DOI: 10.3233/jad-200917] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia caused by irreversible neurodegeneration, with the onset mechanisms elusive. tRNA-derived RNA fragments (tRFs), a recently discovered family of small non-coding RNAs (sncRNAs), have been found to associate with many human diseases, including infectious, metabolic, and neurological diseases. However, whether tRFs play a role in human AD development is not known. OBJECTIVE This study aimed to explore whether tRFs are involved in human AD. METHODS Thirty-four postmortem human hippocampus samples were used. The expression of Drosha, Dicer, and angiogenin (ANG), three ribonucleases responsible for the biogenesis of sncRNAs, was determined by qRT-PCR and western blot. The tRFs in the hippocampus was detected by qRT-PCR or northern blot. We also used qRT-PCR to quantify NOP2/Sun RNA methyltransferase 2 (NSun2) and polyadenylation factor I subunit 1 (CLP1), two tRNA modification enzymes. RESULTS tRFs derived from a subset of tRNAs are significantly altered in the hippocampus of AD patients. The expression change of some tRFs showed age- and disease stage-dependent. ANG is significantly enhanced in AD, suggesting its role in inducing tRFs in AD. The expression of NSun2 in AD patients younger than 65 was significantly decreased. According to a previous report supporting NSun2-mediated tRNA methylation modification making tRNA less susceptible to ANG-mediated cleavage, our results suggested that the decrease in NSun2 may make tRNAs less methylated and subsequently enhanced tRF production from ANG-mediated tRNA cleavage. CONCLUSION Our studies demonstrated for the first time the involvement of tRFs in human AD.
Collapse
Affiliation(s)
- Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Heidi Spratt
- Department of Preventive Medicine and Population Health, The University of Texas Medical Branch, Galveston, TX, USA.,The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX, USA
| | - Xiang Fang
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA.,The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Molecular Medicine, and The University of Texas Medical Branch, Galveston, TX, USA.,The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
29
|
Jiang S, Zhang CY, Tang L, Zhao LX, Chen HZ, Qiu Y. Integrated Genomic Analysis Revealed Associated Genes for Alzheimer's Disease in APOE4 Non-Carriers. Curr Alzheimer Res 2020; 16:753-763. [PMID: 31441725 DOI: 10.2174/1567205016666190823124724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND APOE4 is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). LOAD patients carrying or not carrying APOE4 manifest distinct clinico-pathological characteristics. APOE4 has been shown to play a critical role in the pathogenesis of AD by affecting various aspects of pathological processes. However, the pathogenesis involved in LOAD not-carrying APOE4 remains elusive. OBJECTIVE We aimed to identify the associated genes involved in LOAD not-carrying APOE4. METHODS An integrated genomic analysis of datasets of genome-wide association study, genome-wide expression profiling and genome-wide linkage scan and protein-protein interaction network construction were applied to identify associated gene clusters in APOE4 non-carriers. The role of one of hub gene of an APOE4 non-carrier-associated gene cluster in tau phosphorylation was studied by knockdown and western blot. RESULTS We identified 12 gene clusters associated with AD APOE4 non-carriers. The hub genes associated with AD in these clusters were MAPK8, POU2F1, XRCC1, PRKCG, EXOC6, VAMP4, SIRT1, MME, NOS1, ABCA1 and LDLR. The associated genes for APOE4 non-carriers were enriched in hereditary disorder, neurological disease and psychological disorders. Moreover, knockdown of PRKCG to reduce the expression of protein kinase Cγ isoform enhanced tau phosphorylation at Thr181 and Thr231 and the expression of glycogen synthase kinase 3β and cyclin-dependent kinase 5 in the presence of APOE3 but not APOE4. CONCLUSION The study provides new insight into the mechanism of distinct pathogenesis of LOAD not carrying APOE4 and prompts the functional exploration of identified genes based on APOE genotypes.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Chun-Yun Zhang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ling Tang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lan-Xue Zhao
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
30
|
The effects of melatonin, serotonin, tryptophan and NAS on the biophysical properties of DPPC monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183363. [DOI: 10.1016/j.bbamem.2020.183363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
|
31
|
Hosseini M, Poljak A, Braidy N, Crawford J, Sachdev P. Blood fatty acids in Alzheimer's disease and mild cognitive impairment: A meta-analysis and systematic review. Ageing Res Rev 2020; 60:101043. [PMID: 32194194 DOI: 10.1016/j.arr.2020.101043] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/23/2019] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
Plasma fatty acids have been reported to be dysregulated in mild cognitive impairment (MCI) and Alzheimer's disease (AD), though outcomes are not always consistent, and subject numbers often small. Our aim was to use a meta-analysis and systematic review approach to identify if plasma fatty acid dysregulation would be observed in case control studies of AD and MCI. Six databases were searched for studies reporting quantified levels of fatty acids in MCI and/or AD individuals, relative to cognitively normal controls. Docosahexaenoic (DHA) and vaccenic acids were significantly lower and higher respectively in MCI relative to controls. Total fatty acids were 27.2% lower in AD relative to controls, and this was reflected almost uniformly in all specific fatty acids in AD. Changes to plasma/serum fatty acids were identified in both MCI and AD relative to age and gender matched controls. Differences were greatest in AD, in both total number of fatty acids significantly altered, and the degree of change. Docosahexaenoic acid was lower in both MCI and AD, suggesting that it may be a driver of pathology.
Collapse
Affiliation(s)
- Mahboobeh Hosseini
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Anne Poljak
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - John Crawford
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia.
| |
Collapse
|
32
|
Parras A, de Diego-Garcia L, Alves M, Beamer E, Conte G, Jimenez-Mateos EM, Morgan J, Ollà I, Hernandez-Santana Y, Delanty N, Farrell MA, O'Brien DF, Ocampo A, Henshall DC, Méndez R, Lucas JJ, Engel T. Polyadenylation of mRNA as a novel regulatory mechanism of gene expression in temporal lobe epilepsy. Brain 2020; 143:2139-2153. [PMID: 32594159 DOI: 10.1093/brain/awaa168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
Temporal lobe epilepsy is the most common and refractory form of epilepsy in adults. Gene expression within affected structures such as the hippocampus displays extensive dysregulation and is implicated as a central pathomechanism. Post-transcriptional mechanisms are increasingly recognized as determinants of the gene expression landscape, but key mechanisms remain unexplored. Here we show, for first time, that cytoplasmic mRNA polyadenylation, one of the post-transcriptional mechanisms regulating gene expression, undergoes widespread reorganization in temporal lobe epilepsy. In the hippocampus of mice subjected to status epilepticus and epilepsy, we report >25% of the transcriptome displays changes in their poly(A) tail length, with deadenylation disproportionately affecting genes previously associated with epilepsy. Suggesting cytoplasmic polyadenylation element binding proteins (CPEBs) being one of the main contributors to mRNA polyadenylation changes, transcripts targeted by CPEBs were particularly enriched among the gene pool undergoing poly(A) tail alterations during epilepsy. Transcripts bound by CPEB4 were over-represented among transcripts with poly(A) tail alterations and epilepsy-related genes and CPEB4 expression was found to be increased in mouse models of seizures and resected hippocampi from patients with drug-refractory temporal lobe epilepsy. Finally, supporting an adaptive function for CPEB4, deletion of Cpeb4 exacerbated seizure severity and neurodegeneration during status epilepticus and the development of epilepsy in mice. Together, these findings reveal an additional layer of gene expression regulation during epilepsy and point to novel targets for seizure control and disease-modification in epilepsy.
Collapse
Affiliation(s)
- Alberto Parras
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, 28049 Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Giorgia Conte
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Eva M Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin D02 R590, Ireland
| | - James Morgan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Ivana Ollà
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, 28049 Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Yasmina Hernandez-Santana
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Norman Delanty
- Beaumont Hospital, Beaumont, Dublin 9, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, Dublin D02 YN77, Ireland
| | | | | | - Alejandro Ocampo
- Department of Biomedical Sciences, Faculté de Biologie et Médecine, Université de Lausanne, Lausanne, Switzerland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, Dublin D02 YN77, Ireland
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - José J Lucas
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, 28049 Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland.,FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, Dublin D02 YN77, Ireland
| |
Collapse
|
33
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
34
|
Zhang X, Liu W, Cao Y, Tan W. Hippocampus Proteomics and Brain Lipidomics Reveal Network Dysfunction and Lipid Molecular Abnormalities in APP/PS1 Mouse Model of Alzheimer’s Disease. J Proteome Res 2020; 19:3427-3437. [DOI: 10.1021/acs.jproteome.0c00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xueju Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Postdoctoral Innovation Base, Zhuhai Yuanzhi Health Technology Co. Ltd., Hengqin New Area, Zhuhai, Guangdong 519000, China
| | - Weiwei Liu
- College of Biomedicine, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| | - Yan Cao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Postdoctoral Innovation Base, Zhuhai Yuanzhi Health Technology Co. Ltd., Hengqin New Area, Zhuhai, Guangdong 519000, China
| | - Wen Tan
- Postdoctoral Innovation Base, Zhuhai Yuanzhi Health Technology Co. Ltd., Hengqin New Area, Zhuhai, Guangdong 519000, China
- College of Biomedicine, Guangdong University of Technology, Higher Education Mega Center, Guangzhou, Guangdong 510006, China
| |
Collapse
|
35
|
Meldolesi J. Alternative Splicing by NOVA Factors: From Gene Expression to Cell Physiology and Pathology. Int J Mol Sci 2020; 21:ijms21113941. [PMID: 32486302 PMCID: PMC7312376 DOI: 10.3390/ijms21113941] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
NOVA1 and NOVA2, the two members of the NOVA family of alternative splicing factors, bind YCAY clusters of pre-mRNAs and assemble spliceosomes to induce the maintenance/removal of introns and exons, thus governing the development of mRNAs. Members of other splicing families operate analogously. Activity of NOVAs accounts for up to 700 alternative splicing events per cell, taking place both in the nucleus (co-transcription of mRNAs) and in the cytoplasm. Brain neurons express high levels of NOVAs, with NOVA1 predominant in cerebellum and spinal cord, NOVA2 in the cortex. Among brain physiological processes NOVAs play critical roles in axon pathfinding and spreading, structure and function of synapses, as well as the regulation of surface receptors and voltage-gated channels. In pathology, NOVAs contribute to neurodegenerative diseases and epilepsy. In vessel endothelial cells, NOVA2 is essential for angiogenesis, while in adipocytes, NOVA1 contributes to regulation of thermogenesis and obesity. In many cancers NOVA1 and also NOVA2, by interacting with specific miRNAs and by additional mechanisms, activate oncogenic roles promoting cell proliferation, colony formation, migration, and invasion. In conclusion, NOVAs regulate cell functions of physiological and pathological nature. Single cell identification and distinction, and new therapies addressed to NOVA targets might be developed in the near future.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Department of Neuroscience, San Raffaele Institute and San Raffaele University, via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
36
|
Yan Z, Zhou Z, Wu Q, Chen ZB, Koo EH, Zhong S. Presymptomatic Increase of an Extracellular RNA in Blood Plasma Associates with the Development of Alzheimer’s Disease. Curr Biol 2020; 30:1771-1782.e3. [DOI: 10.1016/j.cub.2020.02.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/18/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
|
37
|
Klein HU, Schäfer M, Bennett DA, Schwender H, De Jager PL. Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks. PLoS Comput Biol 2020; 16:e1007771. [PMID: 32255787 PMCID: PMC7138305 DOI: 10.1371/journal.pcbi.1007771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
Biomedical research studies have generated large multi-omic datasets to study complex diseases like Alzheimer’s disease (AD). An important aim of these studies is the identification of candidate genes that demonstrate congruent disease-related alterations across the different data types measured by the study. We developed a new method to detect such candidate genes in large multi-omic case-control studies that measure multiple data types in the same set of samples. The method is based on a gene-centric integrative coefficient quantifying to what degree consistent differences are observed in the different data types. For statistical inference, a Bayesian hierarchical model is used to study the distribution of the integrative coefficient. The model employs a conditional autoregressive prior to integrate a functional gene network and to share information between genes known to be functionally related. We applied the method to an AD dataset consisting of histone acetylation, DNA methylation, and RNA transcription data from human cortical tissue samples of 233 subjects, and we detected 816 genes with consistent differences between persons with AD and controls. The findings were validated in protein data and in RNA transcription data from two independent AD studies. Finally, we found three subnetworks of jointly dysregulated genes within the functional gene network which capture three distinct biological processes: myeloid cell differentiation, protein phosphorylation and synaptic signaling. Further investigation of the myeloid network indicated an upregulation of this network in early stages of AD prior to accumulation of hyperphosphorylated tau and suggested that increased CSF1 transcription in astrocytes may contribute to microglial activation in AD. Thus, we developed a method that integrates multiple data types and external knowledge of gene function to detect candidate genes, applied the method to an AD dataset, and identified several disease-related genes and processes demonstrating the usefulness of the integrative approach. Recent technological advances have led to a new generation of studies that interrogate multiple molecular levels in the same target tissue of a set of subjects, generating complex multi-omic datasets with which to study disease mechanism. These datasets of genetic, epigenomic, transcriptomic, and other data have the potential to reveal novel biological insights; however, integrative analyses remain challenging and require new computational methods. We developed an integrative Bayesian approach to detect genes with consistent differences between case and control samples across multiple data types. The method further integrates prior knowledge about gene function in the form of a gene functional similarity network to improve statistical inference by sharing information between related genes. We applied our method to an Alzheimer’s disease dataset of epigenomic and transcriptomic data and detected and then validated several novel and known candidate genes as well as three major disease-related biological processes. One of these processes reflected microglial activation and included the cytokine CSF1. Single-nucleus data revealed that CSF1 was primarily upregulated in astrocytes, implicating the involvement of this cell type in microglial activation. Hence, we demonstrated that integrative analysis approaches to multi-omic datasets can improve candidate gene detection and thereby generate new insights into complex diseases.
Collapse
Affiliation(s)
- Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
- * E-mail:
| | - Martin Schäfer
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
38
|
Simchovitz A, Hanan M, Yayon N, Lee S, Bennett ER, Greenberg DS, Kadener S, Soreq H. A lncRNA survey finds increases in neuroprotective LINC-PINT in Parkinson's disease substantia nigra. Aging Cell 2020; 19:e13115. [PMID: 32080970 PMCID: PMC7059180 DOI: 10.1111/acel.13115] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/10/2019] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
Recent reports highlight regulatory functions of long noncoding RNAs (lncRNAs) in neurodegeneration and aging, but biomedical implications remain limited. Here, we report an rRNA‐depletion‐based long RNA‐Sequencing Resource of 65 substantia nigra, amygdala, and medial temporal gyrus samples from Parkinson's disease (PD) and matched control brains. Using a lncRNA‐focused analysis approach to identify functionally important transcripts, we discovered and prioritized many lncRNAs dysregulated in PD. Those included pronounced elevation of the P53‐induced noncoding transcript LINC‐PINT in the substantia nigra of PD patients, as well as in additional models of oxidative stress and PD. Intriguingly, we found that LINC‐PINT is a primarily neuronal transcript which showed conspicuous increases in maturing primary culture neurons. LINC‐PINT also accumulated in several brain regions of Alzheimer's and Huntington's disease patients and decreased with healthy brain aging, suggesting a general role in aging and neurodegeneration for this lncRNA. RNAi‐mediated depletion of LINC‐PINT exacerbated the death of cultured N2A and SH‐SY5Y cells exposed to oxidative stress, highlighting a previously undiscovered neuroprotective role for this tumor‐inducible lncRNA in the brains of patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Alon Simchovitz
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Mor Hanan
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Nadav Yayon
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Songhua Lee
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Estelle R. Bennett
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - David S. Greenberg
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | | | - Hermona Soreq
- The Department of Biological Chemistry and The Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
39
|
Longitudinal Basal Forebrain Degeneration Interacts with TREM2/C3 Biomarkers of Inflammation in Presymptomatic Alzheimer's Disease. J Neurosci 2020; 40:1931-1942. [PMID: 31915256 DOI: 10.1523/jneurosci.1184-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Cholinergic inputs originating from the peripheral nervous system regulate the inflammatory immune responses of macrophages during clearance of blood-based pathogens. Because microglia are involved in clearing amyloid and tau pathology from the central nervous system, we hypothesized that cholinergic input originating from the basal forebrain might similarly regulate inflammatory immune responses to these pathologies in the aging brain. To explore this hypothesis, we leveraged the Alzheimer's Disease Neuroimaging Initiative dataset. Cognitively normal older male and female human adults were differentiated according to the relative concentration of phosphorylated tau and amyloid in their cerebrospinal fluid, yielding neurotypical and preclinical, cognitively healthy, subgroups. We then tracked these two groups longitudinally with structural MRI and biomarkers of inflammation, including soluble sTREM2 levels in the CSF and complement C3 expression in the blood transcriptome. Longitudinal loss of basal forebrain volume was larger in the preclinical compared with the neurotypical subgroup. Across preclinical adults, loss of basal forebrain volume was associated with greater longitudinal accumulation of sTREM2 and higher peripheral blood C3 expression. None of these relationships were attributable to degeneration in the whole-brain gray matter volume. Preclinical APOE e4 carriers exhibited the largest loss of basal forebrain volume and highest C3 expression. Consistent with the known anti-inflammatory influence of the peripheral cholinergic pathways on macrophages, our findings indicate that a loss of central cholinergic input originating from the basal forebrain might remove a key check on microglial inflammation induced by amyloid and tau accumulation.SIGNIFICANCE STATEMENT In the peripheral nervous system, cholinergic modulation holds the reactivity of macrophages to blood-based pathogens in check, promoting clearance while preventing runaway inflammation and immune-triggered cell death. Microglia are the brain's resident macrophages and play an important role in clearing accumulated amyloid and tau from neurons. Here, we demonstrate that a loss of cholinergic integrity in the CNS, indexed by longitudinal decreases of basal forebrain volume, interacts with multiple biomarkers of inflammation in cognitively normal older adults with abnormal amyloid and tau pathology. These interactions were not detected in cognitively normal older adults with "neurotypical" levels of amyloid and tau. An age-related loss of cholinergic neuromodulation may remove key checks on microglial reactivity to amyloid and tau.
Collapse
|
40
|
Apicco DJ, Zhang C, Maziuk B, Jiang L, Ballance HI, Boudeau S, Ung C, Li H, Wolozin B. Dysregulation of RNA Splicing in Tauopathies. Cell Rep 2019; 29:4377-4388.e4. [PMID: 31875547 PMCID: PMC6941411 DOI: 10.1016/j.celrep.2019.11.093] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/28/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Pathological aggregation of RNA binding proteins (RBPs) is associated with dysregulation of RNA splicing in PS19 P301S tau transgenic mice and in Alzheimer's disease brain tissues. The dysregulated splicing particularly affects genes involved in synaptic transmission. The effects of neuroprotective TIA1 reduction on PS19 mice are also examined. TIA1 reduction reduces disease-linked alternative splicing events for the major synaptic mRNA transcripts examined, suggesting that normalization of RBP functions is associated with the neuroprotection. Use of the NetDecoder informatics algorithm identifies key upstream biological targets, including MYC and EGFR, underlying the transcriptional and splicing changes in the protected compared to tauopathy mice. Pharmacological inhibition of MYC and EGFR activity in neuronal cultures tau recapitulates the neuroprotective effects of TIA1 reduction. These results demonstrate that dysfunction of RBPs and RNA splicing processes are major elements of the pathophysiology of tauopathies, as well as potential therapeutic targets for tauopathies.
Collapse
Affiliation(s)
- Daniel J Apicco
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | | | - Brandon Maziuk
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Lulu Jiang
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Heather I Ballance
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Samantha Boudeau
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | | | - Hu Li
- Mayo Clinic, Rochester, MN, USA.
| | - Benjamin Wolozin
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA; Boston University School of Medicine, Department of Neurology, Boston, MA, USA.
| |
Collapse
|
41
|
Mirisis AA, Carew TJ. The ELAV family of RNA-binding proteins in synaptic plasticity and long-term memory. Neurobiol Learn Mem 2019; 161:143-148. [PMID: 30998973 DOI: 10.1016/j.nlm.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 04/13/2019] [Indexed: 12/26/2022]
Abstract
The mechanisms of de novo gene expression and translation of specific gene transcripts have long been known to support long-lasting changes in synaptic plasticity and behavioral long-term memory. In recent years, it has become increasingly apparent that gene expression is heavily regulated not only on the level of transcription, but also through post-transcriptional gene regulation, which governs the subcellular localization, stability, and likelihood of translation of mRNAs. Specific families of RNA-binding proteins (RBPs) bind transcripts which contain AU-rich elements (AREs) within their 3' UTR and thereby govern their downstream fate. These post-transcriptional gene regulatory mechanisms are coordinated through the same cell signaling pathways that play critical roles in long-term memory formation. In this review, we discuss recent results that demonstrate the roles that these ARE-binding proteins play in LTM formation.
Collapse
Affiliation(s)
| | - Thomas J Carew
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
42
|
Jasiecki J, Limon-Sztencel A, Żuk M, Chmara M, Cysewski D, Limon J, Wasąg B. Synergy between the alteration in the N-terminal region of butyrylcholinesterase K variant and apolipoprotein E4 in late-onset Alzheimer's disease. Sci Rep 2019; 9:5223. [PMID: 30914707 PMCID: PMC6435664 DOI: 10.1038/s41598-019-41578-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/12/2019] [Indexed: 11/09/2022] Open
Abstract
While the life expectancy of the population has increased, Alzheimer’s disease (AD) has emerged as one of the greatest health problems of old age. AD is characterized by neuronal loss and cognitive decline. In the AD brain, there is a decrease in levels of acetylcholinesterase (AChE) and an increase in the levels of the related enzyme butyrylcholinesterase (BChE), that accumulate in plaques and tangles. Apolipoprotein E (ApoE) is a major cholesterol carrier and plays an important role in maintaining lipid homeostasis. APOE-ε4 constitutes the most important known genetic risk factor for late-onset AD. It has been proposed that the BCHE-K allele (Ala539Thr) acts in synergy with the APOE-ε4 allele to promote risk for AD. However, there is insufficient evidence to support a correlation. Most studies focused only on the coding regions of the genes. In this study, we analyzed sequence regions beyond the BCHE coding sequence. We found synergy between APOE-ε4 and SNPs localized in 5′UTR (rs1126680) and in intron 2 (rs55781031) of the BCHE-K allele (rs1803274) in 18% of patients with late-onset AD (n = 55). The results show that the coexistence of the APOE-ε4 allele and 3 SNPs in the BCHE gene is associated with a highly elevated risk of late-onset AD. SNP (rs1126680) in 5′UTR of the BCHE gene is located 32 nucleotides upstream of the 28 amino acid signal peptide. Mass spectrometry analysis of the BChE protein produced by SNP (rs1126680) showed that the mutation caused an in frame N-terminal extension of 41 amino acids of the BChE signal peptide. The resultant variant with a 69 amino acid signal peptide, designated N-BChE, may play a role in development of AD.
Collapse
Affiliation(s)
- Jacek Jasiecki
- Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Anna Limon-Sztencel
- Consultant Psychiatry, St. Adalbert Hospital, Copernicus Gdańsk, Gdańsk, Poland
| | - Monika Żuk
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| | - Magdalena Chmara
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Limon
- Polish Academy of Sciences, Gdańsk Branch, Gdańsk, Poland
| | - Bartosz Wasąg
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland. .,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland.
| |
Collapse
|
43
|
He H, Dai J, Dong G, Shi H, Wang F, Qiu Y, Liao R, Zhou C, Guo Y, Xiao D. Self-Replication-Assisted Rapid Preparation of DNA Nanowires at Room Temperature and Its Biosensing Application. Anal Chem 2019; 91:3043-3047. [PMID: 30667217 DOI: 10.1021/acs.analchem.8b05431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A rapid room-temperature DNA nanowires preparation strategy on the basis of self-replicating catalyzed hairpin assembly (SRCHA) was reported. In this system, three hairpin probes (P1, P2, and P3) were well-designed and partially hybridize to each other, and two split trigger DNA sequences were integrated into P1 and P3, respectively. When the SRCHA was initiated by the trigger DNA, a series of DNA assembly steps based on the toehold-mediated DNA strand displacement were activated, and the Y shaped DNA (P1-P2-P3) was formed. In that case, the two split trigger DNA sequences will come into close-enough proximity to form the trigger DNA replicas, which can initiate the additional SRCHA reaction cycles for DNA nanowire preparation, and eventually a rapid room-temperature DNA nanowires preparation strategy without need of fuel strands was successfully developed. Furthermore, the prepared DNA nanowires have been used to develop a rapid and signal amplified sensing platform for sensitive adenosine triphosphate (ATP) detection.
Collapse
Affiliation(s)
- Hongfei He
- College of Chemistry , Sichuan University , Chengdu 610064 , China.,College of Life Sciences , Sichuan University , Chengdu 610065 , China
| | - Jianyuan Dai
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Guixiu Dong
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Hongli Shi
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Fang Wang
- College of Chemical Engineering , Sichuan University , Chengdu 610065 , China
| | - Yunran Qiu
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Ruoxing Liao
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Cuisong Zhou
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Yong Guo
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Dan Xiao
- College of Chemistry , Sichuan University , Chengdu 610064 , China.,College of Chemical Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
44
|
Cruz A, Verma M, Wolozin B. The Pathophysiology of Tau and Stress Granules in Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:359-372. [PMID: 32096049 DOI: 10.1007/978-981-32-9358-8_26] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter discusses the relationship between tau, RNA binding proteins and stress granules, which exhibit an intimate bidirectional relationship affecting the functions of both tau and the translational stress response. We describe how tau becomes hyperphosphorylated and oligomerized as part of an endogenous mechanism to promote the translational stress response through interaction with RNA binding proteins. Prior studies demonstrate that dysfunction of RNA binding proteins biology is sufficient to cause neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal dementia. Emerging evidence indicates that tau-mediated neurodegeneration also occurs through a mechanism that is mediated by RNA binding proteins and the translational stress response. Discovery of the role of RNA metabolism in tauopathy opens a wide variety of novel therapeutic approaches. Multiple studies have already shown that approaches reducing the levels of selected RNA binding proteins or inhibiting the translational stress response can intervene in the pathophysiology of motoneuron diseases. Emerging studies show that reducing the levels of selected RNA binding proteins or inhibiting the translational stress response also reduces neurodegeneration in models of tauopathy and Aβ mediated degeneration. The combined impact of these studies indicate that RNA binding proteins and RNA metabolism represent a valuable new frontier for the investigation and treatment tauopathies.
Collapse
Affiliation(s)
- Anna Cruz
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Mamta Verma
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA. .,Department of Neurology, Boston University School of Medicine, Boston, MA, USA. .,Program in Neuroscience, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
45
|
Glycerophosphatidylcholine PC(36:1) absence and 3'-phosphoadenylate (pAp) accumulation are hallmarks of the human glioma metabolome. Sci Rep 2018; 8:14783. [PMID: 30283018 PMCID: PMC6170378 DOI: 10.1038/s41598-018-32847-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Glioma is the most prevalent malignant brain tumor. A comprehensive analysis of the glioma metabolome is still lacking. This study aims to explore new special metabolites in glioma tissues. A non-targeted human glioma metabolomics was performed by UPLC-Q-TOF/MS. The gene expressions of 18 enzymes associated with 3’-phosphoadenylate (pAp) metabolism was examined by qRT-PCR. Those enzymes cover the primary metabolic pathway of pAp. We identified 15 new metabolites (13 lipids and 2 nucleotides) that were significantly different between the glioma and control tissues. Glycerophosphatidylcholine [PC(36:1)] content was high and pAp content was significantly low in the control brain (p < 0.01). In glioma tissues, PC(36:1) was not detected and pAp content was significantly increased. The gene expressions of 3′-nucleotidases (Inositol monophosphatase (IMPAD-1) and 3′(2′),5′-bisphosphate nucleotidase 1(BPNT-1)) were dramatically down-regulated. Meanwhile, the gene expression of 8 sulfotransferases (SULT), 2 phosphoadenosine phosphosulfate synthases (PAPSS-1 and PAPSS-2) and L-aminoadipate-semialdehyde dehydrogenase-phosphopante-theinyl transferase (AASDHPPT) were up-regulated. PC(36:1) absence and pAp accumulation are the most noticeable metabolic aberration in glioma. The dramatic down-regulation of IMPAD-1 and BPNT-1 are the primary cause for pAp dramatic accumulation. Our findings suggest that differential metabolites discovered in glioma could be used as potentially novel therapeutic targets or diagnostic biomarkers and that abnormal metabolism of lipids and nucleotides play roles in the pathogenesis of glioma.
Collapse
|
46
|
Isoprostanoids in Clinical and Experimental Neurological Disease Models. Antioxidants (Basel) 2018; 7:antiox7070088. [PMID: 29997375 PMCID: PMC6071265 DOI: 10.3390/antiox7070088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/28/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Isoprostanoids are a large family of compounds derived from non-enzymatic oxidation of polyunsaturated fatty acids (PUFAs). Unlike other oxidative stress biomarkers, they provide unique information on the precursor of the targeted PUFA. Although they were discovered about a quarter of century ago, the knowledge on the role of key isoprostanoids in the pathogenesis of experimental and human disease models remains limited. This is mainly due to the limited availability of highly purified molecules to be used as a reference standard in the identification of biological samples. The accurate knowledge on their biological relevance is the critical step that could be translated from some mere technical/industrial advances into a reliable biological disease marker which is helpful in deciphering the oxidative stress puzzle related to neurological disorders. Recent research indicates the value of isoprostanoids in predicting the clinical presentation and evolution of the neurological diseases. This review focuses on the relevance of isoprostanoids as mediators and potential biomarkers in neurological diseases, a heterogeneous family ranging from rare brain diseases to major health conditions that could have worldwide socioeconomic impact in the health sector. The current challenge is to identify the preferential biochemical pathways that actually follow the oxidative reactions in the neurological diseases and the consequence of the specific isoprostanes in the underlying pathogenic mechanisms.
Collapse
|
47
|
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 2018; 64:S161-S189. [PMID: 29865057 PMCID: PMC6380522 DOI: 10.3233/jad-179939] [Citation(s) in RCA: 805] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). OBJECTIVES To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. METHODS Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. RESULTS We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. CONCLUSION Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.
Collapse
Affiliation(s)
- David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL., USA
| |
Collapse
|
48
|
Wood PL, Cebak JE, Woltjer RL. Diacylglycerols as biomarkers of sustained immune activation in Proteinopathies associated with dementia. Clin Chim Acta 2018; 476:107-110. [DOI: 10.1016/j.cca.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022]
|
49
|
Llorens F, Thüne K, Andrés-Benito P, Tahir W, Ansoleaga B, Hernández-Ortega K, Martí E, Zerr I, Ferrer I. MicroRNA Expression in the Locus Coeruleus, Entorhinal Cortex, and Hippocampus at Early and Middle Stages of Braak Neurofibrillary Tangle Pathology. J Mol Neurosci 2017; 63:206-215. [PMID: 28871468 DOI: 10.1007/s12031-017-0971-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023]
Abstract
The present study analyzes by RT-qPCR the expression of microRNA (miRNA)-27a-3p, miRNA-124-3p, miRNA-132-3p, and miRNA-143-3p in the locus coeruleus (LC), entorhinal cortex (EC), CA1 region of the hippocampus (CA1), and dentate gyrus (DG) of middle-aged (MA) individuals with no brain lesions and of cases at Braak and Braak stages I-II and II-IV of neurofibrillary tangle (NFT) pathology. The most affected region is the LC in which miRNA-27a-3p, miRNA-124-3p, and miRNA-143-3p show a trend to increase at stages I-II and are significantly up-regulated at stages III-IV when compared with MA. Only miRNA-143-3p is up-regulated in the EC at stages III-IV when compared with MA and with stages I-II. No modifications in the expression levels of miRNA-27a-3p, miRNA-124-3p, miRNA-132-3p, and miRNA-143-3p are found in CA1 at any stage, whereas miRNA-124-3p is significantly down-regulated in DG at stages I-II. Accompanying in situ hybridization reveals miRNA-27a-3p, miRNA-124-3p, and miRNA-143-3 localization in neurons, indicating that changes in miRNA expression are not a direct effect of changes in the numbers of neurons and glial cells. Present observations show for the first time important miRNA de-regulation in the LC at the first stages of NFT. Since the LC is the main noradrenergic input to the cerebral cortex, key regulator of mood and depression, and one of the first nuclei affected in aging and Alzheimer's disease (AD), these findings provide insights for additional study of the LC in aging and AD.
Collapse
Affiliation(s)
- Franc Llorens
- CIBERNED (Network Centre for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Madrid, Spain
| | - Katrin Thüne
- Department of Neurology, University Medical School, Göttingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Pol Andrés-Benito
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, Hospitalet de Llobregat, Spain
| | - Waqas Tahir
- CIBERNED (Network Centre for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Madrid, Spain
| | - Belén Ansoleaga
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, Hospitalet de Llobregat, Spain
| | - Karina Hernández-Ortega
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, Hospitalet de Llobregat, Spain
| | | | - Inga Zerr
- CIBERNED (Network Centre for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Madrid, Spain.,German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Isidro Ferrer
- CIBERNED (Network Centre for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Madrid, Spain. .,Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, Hospitalet de Llobregat, Spain. .,Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, c/Feixa Llarga sn, 08907, Hospitalet de Llobregat, Spain. .,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|