1
|
Ma XC, Clardy J. Spontaneous Generation of an Endogenous RORγt Agonist. J Am Chem Soc 2025; 147:11688-11692. [PMID: 40145418 PMCID: PMC11987011 DOI: 10.1021/jacs.5c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 03/28/2025]
Abstract
The transcription factor RORγt regulates the development of Th17 cells and their inflammatory cytokine IL-17─a pathway that can both clear bacterial pathogens and drive autoimmune diseases. An endogenous RORγt agonist with a noncanonical structure, a lysophosphatidylethanolamine (1-18:1-LPE or 1), was recently identified, and its identity both increases our understanding of immune regulation and creates options for therapeutic intervention. Compound 1 could be formed directly through enzymatic cleavage of a suitable phosphatidylethanolamine (PE) by a phospholipase A2 (PLA2) or by "triggering" of a suitable plasmalogen with accompanying 1,2-acyl migration from the sn-2 to sn-1 positions of glycerol. This study illustrates the plausibility of a plasmalogen-based pathway through synthesis of the plasmalogen precursor (2) and triggering the plasmalogen's electron-rich vinyl ether with small electrophiles characteristic of inflammatory and tumor environments to create 1-18:1-LPE (1). The plasmalogen-based pathway is consistent with previous studies on the formation of 1, and it also conforms to Lands rules for acyl chain distribution and provides a mechanism for immune signaling with both spatial and temporal control.
Collapse
Affiliation(s)
- Xiao Corey Ma
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
- Laboratory
of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jon Clardy
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Al‐kuraishy HM, Sulaiman GM, Mohammed HA, Dawood RA, Albuhadily AK, Al‐Gareeb AI, Abomughaid MM, Klionsky DJ. Alterations in the Processing of Platelet APP (Amyloid Beta Precursor Protein) in Alzheimer Disease: The Possible Nexus. Neuropsychopharmacol Rep 2025; 45:e12525. [PMID: 39757022 PMCID: PMC11702489 DOI: 10.1002/npr2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease associated with the development of dementia. The hallmarks of AD neuropathology are accumulations of amyloid peptide (Aβ) and neurofibrillary tangles (NFTs). Aβ is derived from the processing of APP (amyloid beta precursor protein) by BACE1 (beta-secretase 1) and γ-secretase through an amyloidogenic pathway. However, processing of APP by ADAM10/α-secretase (ADAM metallopeptidase domain 10) enzymes through a non-amyloidogenic pathway produces soluble APP alpha (sAPPα), which has a neuroprotective effect. It has been shown that activated platelets are implicated in the pathogenesis of AD, which also increases platelet activation. Under physiological conditions, platelets regulate synaptic plasticity and increase neuronal differentiation by regulation of the inflammatory response. However, overactivated platelets contribute to the pathogenesis of AD. Activated platelets represent the main source of circulating APP and Aβ that may be involved in AD neuropathology. Therefore, there is a close relationship between AD neuropathology and activated platelets. This review discusses the potential role of platelets in the pathogenesis of AD, and how targeting of activated platelets may reduce AD neuropathology.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied SciencesUniversity of TechnologyBaghdadIraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of PharmacyQassim UniversityBuraydahQassimSaudi Arabia
| | - Retaj A. Dawood
- Department of Biology, College of ScienceAl‐Mustaqbal UniversityHillahIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesUniversity of BishaBishaSaudi Arabia
| | | |
Collapse
|
3
|
Sodders M, Das A, Bai H. Glial peroxisome dysfunction induces axonal swelling and neuroinflammation in Drosophila. G3 (BETHESDA, MD.) 2025; 15:jkae243. [PMID: 39385706 PMCID: PMC11708211 DOI: 10.1093/g3journal/jkae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Glial cells are known to influence neuronal functions through glia-neuron communication. The present study aims to elucidate the mechanism behind peroxisome-mediated glia-neuron communication using Drosophila neuromuscular junction (NMJ) as a model system. We observe a high abundance of peroxisomes in the abdominal NMJ of adult Drosophila. Interestingly, glia-specific knockdown of peroxisome import receptor protein, Pex5, significantly increases axonal area and volume and leads to axon swelling. The enlarged axonal structure is likely deleterious, as the flies with glia-specific knockdown of Pex5 exhibit age-dependent locomotion defects. In addition, impaired peroxisomal ether lipid biosynthesis in glial cells also induces axon swelling. Consistent with our previous work, defective peroxisomal import function upregulates pro-inflammatory cytokine upd3 in glial cells, while glia-specific overexpression of upd3 induces axonal swelling. Furthermore, motor neuron-specific activation of the JAK-STAT pathway through hop overexpression results in axon swelling. Our findings demonstrated that impairment of glial peroxisomes alters axonal morphology, neuroinflammation, and motor neuron function.
Collapse
Affiliation(s)
- Maggie Sodders
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Anurag Das
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Zhang X, Chen Q, Wu L, Zhang W, Zhao X. Radical-directed dissociation mass spectrometry for differentiation and relative quantitation of isomeric ether-linked phosphatidylcholines. Anal Chim Acta 2024; 1331:343337. [PMID: 39532421 DOI: 10.1016/j.aca.2024.343337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ether-linked phosphatidylcholines (PCs) include both plasmanyl and plasmenyl PCs, which contain an ether or a vinyl ether bond at the sn-1 linkage position, respectively. Profiling and quantifying ether PCs with accurate structural information is challenging because of the common presence of isomeric and isobaric species in a lipidome. RESULTS In the present study, radical directed dissociation (RDD) from collision-induced dissociation (CID) of the bicarbonate anion adduct of ether PCs has been investigated to differentiate and relatively quantify ether PCs. Alkyl- and alkenyl- PCs give diagnostic characteristic fragment patterns that enable their confident identification and isomer differentiation. Additionally, the sn-position specific product ions have proven effective for relative quantitation among isomers in ether PCs and their isobaric PC species. Using this methodology, we successfully identified a total of 30 PC-O species, 21 PC-P species at the chain composition level, and 22 species of isobaric PC at the sn-position level in the human plasma lipid extract. The quantitative analysis revealed that ether PCs with a 20:4 fatty acyl chain are relatively more abundant in human plasma. Finally, the profile of ether PCs in type 2 diabetic (T2D) groups compared to normal control groups revealed a significant decrease in PC-O 18:1/20:5. We also found it is the PC species containing a 17-carbon fatty acyl chain, rather than their isobaric ether PCs, that shows a decreasing trend in the T2D groups. SIGNIFICANCE ether-linked PCs are firstly investigated by RDD mass spectrometry.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021, Hohhot, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, 442008, Shiyan, China
| | - Wenpeng Zhang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, 100084, Beijing, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021, Hohhot, China.
| |
Collapse
|
5
|
Balsinde J, Balboa MA. Plasmalogens in Innate Immune Cells: From Arachidonate Signaling to Ferroptosis. Biomolecules 2024; 14:1461. [PMID: 39595637 PMCID: PMC11592020 DOI: 10.3390/biom14111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Polyunsaturated fatty acids such as arachidonic acid are indispensable components of innate immune signaling. Plasmalogens are glycerophospholipids with a vinyl ether bond in the sn-1 position of the glycerol backbone instead of the more common sn-1 ester bond present in "classical" glycerophospholipids. This kind of phospholipid is particularly rich in polyunsaturated fatty acids, especially arachidonic acid. In addition to or independently of the role of plasmalogens as major providers of free arachidonic acid for eicosanoid synthesis, plasmalogens also perform a varied number of functions. Membrane plasmalogen levels may determine parameters of the plasma membrane, such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages. Also, plasmalogens may be instrumental for the execution of ferroptosis. This is a nonapoptotic form of cell death that is associated with oxidative stress. This review discusses recent data suggesting that, beyond their involvement in the cellular metabolism of arachidonic acid, the cells maintain stable pools of plasmalogens rich in polyunsaturated fatty acids for executing specific responses.
Collapse
Affiliation(s)
- Jesús Balsinde
- Instituto de Biología y Geneética Molecular, Consejo Superior de Investigaciones Científicas Uva, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María A. Balboa
- Instituto de Biología y Geneética Molecular, Consejo Superior de Investigaciones Científicas Uva, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Fan L, Li Q, Shi Y, Li X, Liu Y, Chen J, Sun Y, Chen A, Yang Y, Zhang X, Wang J, Wu L. Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder. BMC Med 2024; 22:504. [PMID: 39497100 PMCID: PMC11533282 DOI: 10.1186/s12916-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Abnormal sensory perception, particularly pain insensitivity (PAI), is a typical symptom of autism spectrum disorder (ASD). Despite the role of myelin metabolism in the regulation of pain perception, the mechanisms underlying ASD-related PAI remain unclear. METHODS The pain-associated gene sphingosine-1-phosphate receptor 1 (S1PR1) was identified in ASD samples through bioinformatics analysis. Its expression in the dorsal root ganglion (DRG) tissues of BTBR ASD model mice was validated using RNA-seq, western blot, RT-qPCR, and immunofluorescence. Pain thresholds were assessed using the von Frey and Hargreaves tests. Patch-clamp techniques measured KCNQ/M channel activity and neuronal action potentials. The expression of S1PR1, KCNQ/M, mitogen-activated protein kinase (MAPK), and cyclic AMP/protein kinase A (cAMP/PKA) signaling proteins was analyzed before and after inhibiting the S1P-S1PR1-KCNQ/M pathway via western blot and RT-qPCR. RESULTS Through integrated transcriptomic analysis of ASD samples, we identified the upregulated gene S1PR1, which is associated with sphingolipid metabolism and linked to pain perception, and confirmed its role in the BTBR mouse model of ASD. This mechanism involves the regulation of KCNQ/M channels in DRG neurons. The enhanced activity of KCNQ/M channels and the decreased action potentials in small and medium DRG neurons were correlated with PAI in a BTBR mouse model of ASD. Inhibition of the S1P/S1PR1 pathway rescued baseline insensitivity to pain by suppressing KCNQ/M channels in DRG neurons, mediated through the MAPK and cAMP/PKA pathways. Investigating the modulation and underlying mechanisms of the non-opioid pathway involving S1PR1 will provide new insights into clinical targeted interventions for PAI in ASD. CONCLUSIONS S1PR1 may contribute to PAI in the PNS in ASD. The mechanism involves KCNQ/M channels and the MAPK and cAMP/PKA signaling pathways. Targeting S1PR1 in the PNS could offer novel therapeutic strategies for the intervention of pain dysesthesias in individuals with ASD.
Collapse
Affiliation(s)
- Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xiang Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jiaqi Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yaqi Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Anjie Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
- Department of Developmental Behavioral Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150023, China.
| |
Collapse
|
7
|
Dahlin M, Wheelock CE, Prast-Nielsen S. Association between seizure reduction during ketogenic diet treatment of epilepsy and changes in circulatory metabolites and gut microbiota composition. EBioMedicine 2024; 109:105400. [PMID: 39500011 PMCID: PMC11570732 DOI: 10.1016/j.ebiom.2024.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD) is a high fat, sufficient protein, and low carbohydrate dietary therapy for drug-resistant epilepsy. The underlying mechanisms of action of the KD remain unclear. In mice, the microbiota is necessary for the anti-seizure effect and specific microbes influence circulatory levels of metabolites that are linked to seizure reduction. However, it remains unclear which changes are linked to seizure reduction in patients with epilepsy. METHODS We analysed the serum metabolome of children with drug-resistant epilepsy (n = 14) before and after three months on KD. Metabolomic changes were correlated to the gut microbiome and treatment outcome, i.e., seizure reduction. FINDINGS In this prospective observational study, we uncovered associations between microbial species and serum metabolites that correlated with seizure reduction. Plasmalogens were most strongly linked to seizure reduction and had significant positive correlations with several gut microbes (e.g., Faecalibacterium prausnitzii, Alistipes communis, Alistipes shahii, and Christensenella minuta) while significant negative correlations were found for five strains of Escherichia coli. Infant-type Bifidobacteria correlated negatively with other metabolites associated with seizure reduction. INTERPRETATION The microbes and metabolites identified here may contribute to the therapeutic effect of the KD in children with drug-resistant epilepsy. Several of these metabolites (e.g., plasmalogens) play important roles in neurobiology and may influence seizures. Based on our findings, anti-seizure therapeutic strategies could be developed involving the targeted manipulation of the gut microbiota and/or its metabolites. FUNDING This study was supported by the Swedish Brain Foundation, Margarethahemmet Society, Sunnerdahls Handikappfond, Stockholm County Council Research Funds, and Linnea & Josef Carlssons Foundation.
Collapse
Affiliation(s)
- Maria Dahlin
- Neuropediatric Department, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Craig Edward Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 77, Stockholm, Sweden
| | - Stefanie Prast-Nielsen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Sun S, Xun K, Li D, Bao R. Metabolomics revealed pharmacodynamic effects of aspirin and indobufen in patients after percutaneous transluminal angioplasty surgery. Front Cardiovasc Med 2024; 11:1433643. [PMID: 39534497 PMCID: PMC11554490 DOI: 10.3389/fcvm.2024.1433643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Aspirin and indobufen are commonly used therapeutic drugs for the prevention of vascular restenosis (VR) after percutaneous transluminal angioplasty surgery. They both exhibited antiplatelet effects but molecular mechanisms underlying metabolic changes induced by them remain unclear. Methods In this study, we collected plasma samples from patients on aspirin medication (n = 5), patients on indobufen medication, patients with no medication after PTA, and healthy controls (CKs) (n = 5). Our investigation aimed to reveal the metabolic processes in patients during vascular restenosis and its amelioration through drug therapy using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results Our data showed significant alterations in amino acid and choline metabolism in patients without medication after PTA. Aspirin and indobufen were able to regulate these metabolic pathways to alleviate VR symptoms. We identified several characteristic amino acids, including pro-leu, L-citrulline, his-glu, and L-glutamate, as important biomarkers for VR assessment in patients without medication after PTA. A total of 17 and 4 metabolites involved in arginine and phenylalanine metabolism were specifically induced by aspirin and indobufen, respectively. Their expression levels were significantly regulated by aspirin or indobufen, nearly reaching normal levels. Discussion Taken together, our identification of metabolites involved in metabolic changes affected by aspirin and indobufen medication enhances the understanding of VR pathology after PTA. This may help identify early diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Renjie Bao
- Department of Nephrology, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Hossain MS, Mawatari S, Honsho M, Okauchi T, Fujino T. KIT-13, a novel plasmalogen derivative, attenuates neuroinflammation and amplifies cognition. Front Cell Dev Biol 2024; 12:1443536. [PMID: 39286482 PMCID: PMC11402709 DOI: 10.3389/fcell.2024.1443536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Plasmalogens (Pls) are specialized phospholipids integral to brain health, whose decline due to aging and stress contributes to cognitive impairment and neuroinflammation. This study explores the potential of a novel Pls derivative, KIT-13 (1-O-octadecyl-2-arachidonoyl-sn-glycerol-3-phosphoethanolamine), in mitigating neuroinflammation and enhancing cognition. When administered to mice, KIT-13 exhibited potent memory enhancement attributed to upregulated brain-derived neurotrophic factor (BDNF), a key player in cognitive processes. In vitro experiments with neuronal cells revealed KIT-13's ability to induce robust cellular signaling, surpassing natural plasmalogens. KIT-13 also promoted neurogenesis and inhibited apoptosis of neuronal-like cells, highlighting its potential in fostering neuronal growth and plasticity. Additionally, KIT-13 treatments reduced pro-inflammatory cytokine expression and attenuated glial activation in the brain. KIT-13's superior efficacy over natural Pls positions it as a promising therapeutic candidate for neurodegenerative conditions such as Alzheimer's disease, characterized by cognitive decline and neuroinflammation. This study presents KIT-13 as an innovative approach for addressing cognitive impairment and neuroinflammatory pathologies.
Collapse
Affiliation(s)
- Md Shamim Hossain
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Shiro Mawatari
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, Japan
| | - Takehiko Fujino
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| |
Collapse
|
10
|
Arroyo AB, Tyrkalska SD, Bastida-Martínez E, Monera-Girona AJ, Cantón-Sandoval J, Bernal-Carrión M, García-Moreno D, Elías-Arnanz M, Mulero V. Peds1 deficiency in zebrafish results in myeloid cell apoptosis and exacerbated inflammation. Cell Death Discov 2024; 10:388. [PMID: 39209813 PMCID: PMC11362147 DOI: 10.1038/s41420-024-02141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether bond that confers unique properties. Recent identification of the gene encoding PEDS1, the desaturase generating the vinyl ether bond, enables evaluation of the role of plasmalogens in health and disease. Here, we report that Peds1-deficient zebrafish larvae display delayed development, increased basal inflammation, normal hematopoietic stem and progenitor cell emergence, and cell-autonomous myeloid cell apoptosis. In a sterile acute inflammation model, Peds1-deficient larvae exhibited impaired inflammation resolution and tissue regeneration, increased interleukin-1β and NF-κB expression, and elevated ROS levels at the wound site. Abnormal immune cell recruitment, neutrophil persistence, and fewer but predominantly pro-inflammatory macrophages were observed. Chronic skin inflammation worsened in Peds1-deficient larvae but was mitigated by exogenous plasmalogen, which also alleviated hyper-susceptibility to bacterial infection, as did pharmacological inhibition of caspase-3 and colony-stimulating factor 3-induced myelopoiesis. Overall, our results highlight an important role for plasmalogens in myeloid cell biology and inflammation.
Collapse
Affiliation(s)
- Ana B Arroyo
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Sylwia D Tyrkalska
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Antonio J Monera-Girona
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Joaquín Cantón-Sandoval
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Martín Bernal-Carrión
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain
| | - Diana García-Moreno
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
| | - Victoriano Mulero
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
11
|
Granger DL, Ansong D, Agbenyega T, Liddle MS, Brinton BA, Hale DC, Lopansri BK, Reithinger R, Bisanzio D. Longitudinal associations of plasma amino acid levels with recovery from malarial coma. Malar J 2024; 23:253. [PMID: 39180112 PMCID: PMC11342642 DOI: 10.1186/s12936-024-05077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Disordered amino acid metabolism is observed in cerebral malaria (CM). This study sought to determine whether abnormal amino acid concentrations were associated with level of consciousness in children recovering from coma. Twenty-one amino acids and coma scores were quantified longitudinally and the data were analysed for associations. METHODS In a prospective observational study, 42 children with CM were enrolled. Amino acid levels were measured at entry and at frequent intervals thereafter and consciousness was assessed by Blantyre Coma Scores (BCS). Thirty-six healthy children served as controls for in-country normal amino acid ranges. Logistic regression was employed using a generalized linear mixed-effects model to assess associations between out-of-range amino acid levels and BCS. RESULTS At entry 16/21 amino acid levels were out-of-range. Longitudinal analysis revealed 10/21 out-of-range amino acids were significantly associated with BCS. Elevated phenylalanine levels showed the highest association with low BCS. This finding held when out-of-normal-range data were analysed at each sampling time. CONCLUSION Longitudinal data is provided for associations between abnormal amino acid levels and recovery from CM. Of 10 amino acids significantly associated with BCS, elevated phenylalanine may be a surrogate for impaired clearance of ether lipid mediators of inflammation and may contribute to CM pathogenesis.
Collapse
Affiliation(s)
- Donald L Granger
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, 2761 E. Swasont Way, Holladay, Salt Lake City, UT, 84117, USA.
- George H. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Daniel Ansong
- Department of Pediatrics, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Tsiri Agbenyega
- Department of Pediatrics, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | | | - Benjamin A Brinton
- Department of Psychiatry, North Shore University Hospital, Glen Oaks, NY, USA
| | - Devon C Hale
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, 2761 E. Swasont Way, Holladay, Salt Lake City, UT, 84117, USA
| | | | | | - Donal Bisanzio
- Research Triangle Institute International, Washington, DC, USA
| |
Collapse
|
12
|
Mishra S, Kell P, Scherrer D, Dietzen DJ, Vite CH, Berry-Kravis E, Davidson C, Cologna SM, Porter FD, Ory DS, Jiang X. Accumulation of alkyl-lysophosphatidylcholines in Niemann-Pick disease type C1. J Lipid Res 2024; 65:100600. [PMID: 39048052 PMCID: PMC11367646 DOI: 10.1016/j.jlr.2024.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Lysosomal function is impaired in Niemann-Pick disease type C1 (NPC1), a rare and inherited neurodegenerative disorder, resulting in late endosomal/lysosomal accumulation of unesterified cholesterol. The precise pathogenic mechanism of NPC1 remains incompletely understood. In this study, we employed metabolomics to uncover secondary accumulated substances in NPC1. Our findings unveiled a substantial elevation in the levels of three alkyl-lysophosphatidylcholine [alkyl-LPC, also known as lyso-platelet activating factor (PAF)] species in NPC1 compared to controls across various tissues, including brain tissue from individuals with NPC1, liver, spleen, cerebrum, cerebellum, and brain stem from NPC1 mice, as well as in both brain and liver tissue from NPC1 cats. The three elevated alkyl-LPC species were as follows: LPC O-16:0, LPC O-18:1, and LPC O-18:0. However, the levels of PAF 16:0, PAF 18:1, and PAF 18:0 were not altered in NPC1. In the NPC1 feline model, the brain and liver alkyl-LPC levels were reduced following 2-hydroxypropyl-β-cyclodextrin (HPβCD) treatment, suggesting that alkyl-LPCs are secondary storage metabolites in NPC1 disease. Unexpectedly, cerebrospinal fluid (CSF) levels of LPC O-16:0 and LPC O-18:1 were decreased in individuals with NPC1 compared to age-appropriate comparison samples, and their levels were increased in 80% of participants 2 years after intrathecal HPβCD treatment. The fold increases in CSF LPC O-16:0 and LPC O-18:1 levels were more pronounced in responders compared to nonresponders. This study identified alkyl-LPC species as secondary storage metabolites in NPC1 and indicates that LPC O-16:0 and LPC O-18:1, in particular, could serve as potential biomarkers for tracking treatment response in NPC1 patients.
Collapse
Affiliation(s)
- Sonali Mishra
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David Scherrer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis J Dietzen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles H Vite
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, PA, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences and Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Cristin Davidson
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD, USA
| | | | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD, USA
| | | | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Galper J, Mori G, McDonald G, Ahmadi Rastegar D, Pickford R, Lewis SJG, Halliday GM, Kim WS, Dzamko N. Prediction of motor and non-motor Parkinson's disease symptoms using serum lipidomics and machine learning: a 2-year study. NPJ Parkinsons Dis 2024; 10:123. [PMID: 38918434 PMCID: PMC11199659 DOI: 10.1038/s41531-024-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Identifying biological factors which contribute to the clinical progression of heterogeneous motor and non-motor phenotypes in Parkinson's disease may help to better understand the disease process. Several lipid-related genetic risk factors for Parkinson's disease have been identified, and the serum lipid signature of Parkinson's disease patients is significantly distinguishable from controls. However, the extent to which lipid profiles are associated with clinical outcomes remains unclear. Untargeted high-performance liquid chromatography-tandem mass spectrometry identified >900 serum lipids in Parkinson's disease subjects at baseline (n = 122), and the potential for machine learning models using these lipids to predict motor and non-motor clinical scores after 2 years (n = 67) was assessed. Machine learning models performed best when baseline serum lipids were used to predict the 2-year future Unified Parkinson's disease rating scale part three (UPDRS III) and Geriatric Depression Scale scores (both normalised root mean square error = 0.7). Feature analysis of machine learning models indicated that species of lysophosphatidylethanolamine, phosphatidylcholine, platelet-activating factor, sphingomyelin, diacylglycerol and triacylglycerol were top predictors of both motor and non-motor scores. Serum lipids were overall more important predictors of clinical outcomes than subject sex, age and mutation status of the Parkinson's disease risk gene LRRK2. Furthermore, lipids were found to better predict clinical scales than a panel of 27 serum cytokines previously measured in this cohort (The Michael J. Fox Foundation LRRK2 Clinical Cohort Consortium). These results suggest that lipid changes may be associated with clinical phenotypes in Parkinson's disease.
Collapse
Affiliation(s)
- Jasmin Galper
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Giorgia Mori
- Sydney Informatics Hub, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Gordon McDonald
- Sydney Informatics Hub, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Diba Ahmadi Rastegar
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Simon J G Lewis
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Glenda M Halliday
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Nicolas Dzamko
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
14
|
Navolokin N, Adushkina V, Zlatogorskaya D, Telnova V, Evsiukova A, Vodovozova E, Eroshova A, Dosadina E, Diduk S, Semyachkina-Glushkovskaya O. Promising Strategies to Reduce the SARS-CoV-2 Amyloid Deposition in the Brain and Prevent COVID-19-Exacerbated Dementia and Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:788. [PMID: 38931455 PMCID: PMC11206883 DOI: 10.3390/ph17060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic, caused by infection with the SARS-CoV-2 virus, is associated with cognitive impairment and Alzheimer's disease (AD) progression. Once it enters the brain, the SARS-CoV-2 virus stimulates accumulation of amyloids in the brain that are highly toxic to neural cells. These amyloids may trigger neurological symptoms in COVID-19. The meningeal lymphatic vessels (MLVs) play an important role in removal of toxins and mediate viral drainage from the brain. MLVs are considered a promising target to prevent COVID-19-exacerbated dementia. However, there are limited methods for augmentation of MLV function. This review highlights new discoveries in the field of COVID-19-mediated amyloid accumulation in the brain associated with the neurological symptoms and the development of promising strategies to stimulate clearance of amyloids from the brain through lymphatic and other pathways. These strategies are based on innovative methods of treating brain dysfunction induced by COVID-19 infection, including the use of photobiomodulation, plasmalogens, and medicinal herbs, which offer hope for addressing the challenges posed by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nikita Navolokin
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Arina Evsiukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Anna Eroshova
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Elina Dosadina
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Sergey Diduk
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
- Research Institute of Carcinogenesis of the N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe Shosse 24, 115522 Moscow, Russia
| | | |
Collapse
|
15
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
16
|
Granger DL, Ansong D, Agbenyega T, Liddle MS, Brinton BA, Hale DC, Lopansri BK, Reithinger R, Bisanzio D. Longitudinal associations of plasma amino acid levels with recovery from malarial coma. RESEARCH SQUARE 2024:rs.3.rs-4421190. [PMID: 38826416 PMCID: PMC11142354 DOI: 10.21203/rs.3.rs-4421190/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Disordered amino acid metabolism is observed in cerebral malaria (CM). We sought to determine whether abnormal amino acid concentrations were associated with level of consciousness in children recovering from coma. We quantified 21 amino acids and coma scores longitudinally and analyzed data for associations. Methods In a prospective observational study, we enrolled 42 children with CM. We measured amino acid levels at entry and at frequent intervals thereafter and assessed consciousness by Blantyre Coma Scores (BCS). Thirty-six healthy children served as controls for in-country normal amino acid ranges. We employed logistic regression using a generalized linear mixed-effects model to assess associations between out-of-range amino acid levels and BCS. Results At entry 16/21 amino acid levels were out-of-range. Longitudinal analysis revealed 10/21 out-of-range amino acids were significantly associated with BCS. Elevated phenylalanine levels showed the highest association with low BCS. This finding held when out-of-normal-range data were analyzed at each sampling time. Discussion We provide longitudinal data for associations between abnormal amino acid levels and recovery from CM. Of 10 amino acids significantly associated with BCS, we propose that elevated phenylalanine may be a surrogate for impaired clearance of ether lipid mediators of inflammation contributing to CM pathogenesis.
Collapse
Affiliation(s)
- Donald L. Granger
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT USA
- George H. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT USA
| | - Daniel Ansong
- Department of Pediatrics, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Tsiri Agbenyega
- Department of Pediatrics, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | | | - Benjamin A. Brinton
- Department of Psychiatry, North Shore University Hospital, Glen Oaks, NY USA
| | - Devon C. Hale
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT USA
| | | | - Richard Reithinger
- International Development Group, Research Triangle Institute International, Washington, DC USA
| | - Donal Bisanzio
- International Development Group, Research Triangle Institute International, Washington, DC USA
| |
Collapse
|
17
|
Papin M, Fontaine D, Goupille C, Figiel S, Domingo I, Pinault M, Guimaraes C, Guyon N, Cartron PF, Emond P, Lefevre A, Gueguinou M, Crottès D, Jaffrès PA, Ouldamer L, Maheo K, Fromont G, Potier-Cartereau M, Bougnoux P, Chantôme A, Vandier C. Endogenous ether lipids differentially promote tumor aggressiveness by regulating the SK3 channel. J Lipid Res 2024; 65:100544. [PMID: 38642894 PMCID: PMC11127165 DOI: 10.1016/j.jlr.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024] Open
Abstract
SK3 channels are potassium channels found to promote tumor aggressiveness. We have previously demonstrated that SK3 is regulated by synthetic ether lipids, but the role of endogenous ether lipids is unknown. Here, we have studied the role of endogenous alkyl- and alkenyl-ether lipids on SK3 channels and on the biology of cancer cells. Experiments revealed that the suppression of alkylglycerone phosphate synthase or plasmanylethanolamine desaturase 1, which are key enzymes for alkyl- and alkenyl-ether-lipid synthesis, respectively, decreased SK3 expression by increasing micro RNA (miR)-499 and miR-208 expression, leading to a decrease in SK3-dependent calcium entry, cell migration, and matrix metalloproteinase 9-dependent cell adhesion and invasion. We identified several ether lipids that promoted SK3 expression and found a differential role of alkyl- and alkenyl-ether lipids on SK3 activity. The expressions of alkylglycerone phosphate synthase, SK3, and miR were associated in clinical samples emphasizing the clinical consistency of our observations. To our knowledge, this is the first report showing that ether lipids differentially control tumor aggressiveness by regulating an ion channel. This insight provides new possibilities for therapeutic interventions, offering clinicians an opportunity to manipulate ion channel dysfunction by adjusting the composition of ether lipids.
Collapse
Affiliation(s)
- Marion Papin
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Delphine Fontaine
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Caroline Goupille
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France; Department of Gynecology, CHRU Bretonneau, Tours, France
| | - Sandy Figiel
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Isabelle Domingo
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Michelle Pinault
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Cyrille Guimaraes
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Nina Guyon
- CRCINA-INSERM 1232, Equipe « Apoptose et Progression tumorale », Nantes, France
| | | | - Patrick Emond
- iBrain, UMR 1253, INSERM, Université de Tours, Tours, France; Nuclear medicine in vitro department, CHRU Bretonneau, Tours, France
| | - Antoine Lefevre
- iBrain, UMR 1253, INSERM, Université de Tours, Tours, France
| | - Maxime Gueguinou
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - David Crottès
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Paul-Alain Jaffrès
- Laboratoire Chimie Electrochimie Moléculaires et Chimie Analytique (CEMCA), UMR 6521, CNRS, University of Brest, Brest, France
| | - Lobna Ouldamer
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France; Department of Gynecology, CHRU Bretonneau, Tours, France
| | - Karine Maheo
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Gaëlle Fromont
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France; Department of Pathology, CHRU Bretonneau, Tours, France
| | - Marie Potier-Cartereau
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Philippe Bougnoux
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Aurélie Chantôme
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Christophe Vandier
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France.
| |
Collapse
|
18
|
Mu R, Momeni S, Krieger M, Xie B, Cao X, Merritt J, Wu H. Plasmalogen, a glycerophospholipid crucial for Streptococcus mutans acid tolerance and colonization. Appl Environ Microbiol 2024; 90:e0150023. [PMID: 38456674 PMCID: PMC11022534 DOI: 10.1128/aem.01500-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
Plasmalogen is a specific glycerophospholipid present in both animal and bacterial organisms. It plays a crucial function in eukaryotic cellular processes and is closely related to several human diseases, including neurological disorders and cancers. Nonetheless, the precise biological role of plasmalogen in bacteria is not well understood. In this study, we identified SMU_438c as the enzyme responsible for plasmalogen production in Streptococcus mutans under anaerobic conditions. The heterologous expression of SMU_438c in a plasmalogen-negative strain, Streptococcus sanguinis, resulted in the production of plasmalogen, indicating that this enzyme is sufficient for plasmalogen production. Additionally, the plasmalogen-deficient S. mutans exhibited significantly lower acid tolerance and diminished its colonization in Drosophila flies compared to the wild-type strain and complemented strain. In summary, our data suggest that plasmalogen plays a vital role in bacterial stress tolerance and in vivo colonization. IMPORTANCE This study sheds light on the biological role of plasmalogen, a specific glycerophospholipid, in bacteria, particularly in Streptococcus mutans. Plasmalogens are known for their significant roles in eukaryotic cells and have been linked to human diseases like neurological disorders and cancers. The enzyme SMU_438c, identified as essential for plasmalogen production under anaerobic conditions, was crucial for acid tolerance and in vivo colonization in Drosophila by S. mutans, underscoring its importance in bacterial stress response and colonization. These findings bridge the knowledge gap in bacterial physiology, highlighting plasmalogen's role in microbial survival and offering potential insights into microbial pathogenesis and host-microbe interactions.
Collapse
Affiliation(s)
- Rong Mu
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Stephanie Momeni
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Baotong Xie
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Xixi Cao
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Hui Wu
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
19
|
Liang C, Murray S, Li Y, Lee R, Low A, Sasaki S, Chiang AWT, Lin WJ, Mathews J, Barnes W, Lewis NE. LipidSIM: Inferring mechanistic lipid biosynthesis perturbations from lipidomics with a flexible, low-parameter, Markov modeling framework. Metab Eng 2024; 82:110-122. [PMID: 38311182 PMCID: PMC11163374 DOI: 10.1016/j.ymben.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Lipid metabolism is a complex and dynamic system involving numerous enzymes at the junction of multiple metabolic pathways. Disruption of these pathways leads to systematic dyslipidemia, a hallmark of many pathological developments, such as nonalcoholic steatohepatitis and diabetes. Recent advances in computational tools can provide insights into the dysregulation of lipid biosynthesis, but limitations remain due to the complexity of lipidomic data, limited knowledge of interactions among involved enzymes, and technical challenges in standardizing across different lipid types. Here, we present a low-parameter, biologically interpretable framework named Lipid Synthesis Investigative Markov model (LipidSIM), which models and predicts the source of perturbations in lipid biosynthesis from lipidomic data. LipidSIM achieves this by accounting for the interdependency between the lipid species via the lipid biosynthesis network and generates testable hypotheses regarding changes in lipid biosynthetic reactions. This feature allows the integration of lipidomics with other omics types, such as transcriptomics, to elucidate the direct driving mechanisms of altered lipidomes due to treatments or disease progression. To demonstrate the value of LipidSIM, we first applied it to hepatic lipidomics following Keap1 knockdown and found that changes in mRNA expression of the lipid pathways were consistent with the LipidSIM-predicted fluxes. Second, we used it to study lipidomic changes following intraperitoneal injection of CCl4 to induce fast NAFLD/NASH development and the progression of fibrosis and hepatic cancer. Finally, to show the power of LipidSIM for classifying samples with dyslipidemia, we used a Dgat2-knockdown study dataset. Thus, we show that as it demands no a priori knowledge of enzyme kinetics, LipidSIM is a valuable and intuitive framework for extracting biological insights from complex lipidomic data.
Collapse
Affiliation(s)
- Chenguang Liang
- Department of Bioengineering, University of California, La Jolla, CA, 92093, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Yang Li
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Richard Lee
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Audrey Low
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Shruti Sasaki
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, La Jolla, CA, 92093, USA
| | - Wen-Jen Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan
| | - Joel Mathews
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Will Barnes
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, CA, 92093, USA; Department of Pediatrics, University of California, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Lattau SSJ, Borsch LM, Auf dem Brinke K, Klose C, Vinhoven L, Nietert M, Fitzner D. Plasma Lipidomic Profiling Using Mass Spectrometry for Multiple Sclerosis Diagnosis and Disease Activity Stratification (LipidMS). Int J Mol Sci 2024; 25:2483. [PMID: 38473733 DOI: 10.3390/ijms25052483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
This investigation explores the potential of plasma lipidomic signatures for aiding in the diagnosis of Multiple Sclerosis (MS) and evaluating the clinical course and disease activity of diseased patients. Plasma samples from 60 patients with MS (PwMS) were clinically stratified to either a relapsing-remitting (RRMS) or a chronic progressive MS course and 60 age-matched controls were analyzed using state-of-the-art direct infusion quantitative shotgun lipidomics. To account for potential confounders, data were filtered for age and BMI correlations. The statistical analysis employed supervised and unsupervised multivariate data analysis techniques, including a principal component analysis (PCA), a partial least squares discriminant analysis (oPLS-DA) and a random forest (RF). To determine whether the significant absolute differences in the lipid subspecies have a relevant effect on the overall composition of the respective lipid classes, we introduce a class composition visualization (CCV). We identified 670 lipids across 16 classes. PwMS showed a significant increase in diacylglycerols (DAG), with DAG 16:0;0_18:1;0 being proven to be the lipid with the highest predictive ability for MS as determined by RF. The alterations in the phosphatidylethanolamines (PE) were mainly linked to RRMS while the alterations in the ether-bound PEs (PE O-) were found in chronic progressive MS. The amount of CE species was reduced in the CPMS cohort whereas TAG species were reduced in the RRMS patients, both lipid classes being relevant in lipid storage. Combining the above mentioned data analyses, distinct lipidomic signatures were isolated and shown to be correlated with clinical phenotypes. Our study suggests that specific plasma lipid profiles are not merely associated with the diagnosis of MS but instead point toward distinct clinical features in the individual patient paving the way for personalized therapy and an enhanced understanding of MS pathology.
Collapse
Affiliation(s)
| | - Lisa-Marie Borsch
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | | | | | - Liza Vinhoven
- Department of Medical Bioinformatics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Manuel Nietert
- Department of Medical Bioinformatics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Dirk Fitzner
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
21
|
Wang J, Kunze M, Villoria-González A, Weinhofer I, Berger J. Peroxisomal Localization of a Truncated HMG-CoA Reductase under Low Cholesterol Conditions. Biomolecules 2024; 14:244. [PMID: 38397481 PMCID: PMC10886633 DOI: 10.3390/biom14020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase, HMGCR) is one of the rate-limiting enzymes in the mevalonate pathway required for cholesterol biosynthesis. It is an integral membrane protein of the endoplasmic reticulum (ER) but has occasionally been described in peroxisomes. By co-immunofluorescence microscopy using different HMGCR antibodies, we present evidence for a dual localization of HMGCR in the ER and peroxisomes in differentiated human monocytic THP-1 cells, primary human monocyte-derived macrophages and human primary skin fibroblasts under conditions of low cholesterol and statin treatment. Using density gradient centrifugation and Western blot analysis, we observed a truncated HMGCR variant of 76 kDa in the peroxisomal fractions, while a full-length HMGCR of 96 kDa was contained in fractions of the ER. In contrast to primary human control fibroblasts, peroxisomal HMGCR was not found in fibroblasts from patients suffering from type-1 rhizomelic chondrodysplasia punctata, who lack functional PEX7 and, thus, cannot import peroxisomal matrix proteins harboring a type-2 peroxisomal targeting signal (PTS2). Moreover, in the N-terminal region of the soluble 76 kDa C-terminal catalytic domain, we identified a PTS2-like motif, which was functional in a reporter context. We propose that under sterol-depleted conditions, part of the soluble HMGCR domain, which is released from the ER by proteolytic processing for further turnover, remains sufficiently long in the cytosol for peroxisomal import via a PTS2/PEX7-dependent mechanism. Altogether, our findings describe a dual localization of HMGCR under combined lipid depletion and statin treatment, adding another puzzle piece to the complex regulation of HMGCR.
Collapse
Affiliation(s)
| | | | | | | | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
22
|
Plessner M, Thiele L, Hofhuis J, Thoms S. Tissue-specific roles of peroxisomes revealed by expression meta-analysis. Biol Direct 2024; 19:14. [PMID: 38365851 PMCID: PMC10873952 DOI: 10.1186/s13062-024-00458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Peroxisomes are primarily studied in the brain, kidney, and liver due to the conspicuous tissue-specific pathology of peroxisomal biogenesis disorders. In contrast, little is known about the role of peroxisomes in other tissues such as the heart. In this meta-analysis, we explore mitochondrial and peroxisomal gene expression on RNA and protein levels in the brain, heart, kidney, and liver, focusing on lipid metabolism. Further, we evaluate a potential developmental and heart region-dependent specificity of our gene set. We find marginal expression of the enzymes for peroxisomal fatty acid oxidation in cardiac tissue in comparison to the liver or cardiac mitochondrial β-oxidation. However, the expression of peroxisome biogenesis proteins in the heart is similar to other tissues despite low levels of peroxisomal fatty acid oxidation. Strikingly, peroxisomal targeting signal type 2-containing factors and plasmalogen biosynthesis appear to play a fundamental role in explaining the essential protective and supporting functions of cardiac peroxisomes.
Collapse
Affiliation(s)
- Matthias Plessner
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Leonie Thiele
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Julia Hofhuis
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Sven Thoms
- Department of Biochemistry and Molecular Medicine, Medical School OWL, Bielefeld University, Bielefeld, Germany.
- Department of Child and Adolescent Health, University Medical Center, Göttingen, Germany.
| |
Collapse
|
23
|
Landowski M, Gogoi P, Ikeda S, Ikeda A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1355379. [PMID: 38576540 PMCID: PMC10993500 DOI: 10.3389/fopht.2024.1355379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Purnima Gogoi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Papin M, Bouchet AM, Chantôme A, Vandier C. Ether-lipids and cellular signaling: A differential role of alkyl- and alkenyl-ether-lipids? Biochimie 2023; 215:50-59. [PMID: 37678745 DOI: 10.1016/j.biochi.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Ether-lipids (EL) are specific lipids bearing a characteristic sn-1 ether bond. Depending on the ether or vinyl-ether nature of this bond, they are present as alkyl- or alkenyl-EL, respectively. Among EL, alkenyl-EL, also referred as plasmalogens in the literature, attract most of the scientific interest as they are the predominant EL species in eukaryotic cells, thus less is known about alkyl-EL. EL have been implicated in various signaling pathways and alterations in their quantity are frequently observed in pathologies such as neurodegenerative and cardiovascular diseases or cancer. However, it remains unknown whether both alkyl- and alkenyl-EL play the same roles in these processes. This review summarizes the roles and mechanisms of action of EL in cellular signaling and tries to discriminate between alkyl- and alkenyl-EL. We also focus on the involvement of EL-mediated alterations of cellular signaling in diseases and discuss the potential interest for EL in therapy.
Collapse
Affiliation(s)
- Marion Papin
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000, Tours, France.
| | | | - Aurélie Chantôme
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000, Tours, France
| | - Christophe Vandier
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000, Tours, France; Lifesome Therapeutics, López de Hoyos 42, 28006, Madrid, Spain
| |
Collapse
|
25
|
Lei P, Lü J, Yao T, Zhang P, Chai X, Wang Y, Jiang M. Verbascoside exerts an anti-atherosclerotic effect by regulating liver glycerophospholipid metabolism. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
26
|
Rus CM, Polla DL, Di Bucchianico S, Fischer S, Hartkamp J, Hartmann G, Alpagu Y, Cozma C, Zimmermann R, Bauer P. Neuronal progenitor cells-based metabolomics study reveals dysregulated lipid metabolism and identifies putative biomarkers for CLN6 disease. Sci Rep 2023; 13:18550. [PMID: 37899458 PMCID: PMC10613621 DOI: 10.1038/s41598-023-45789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
Neuronal ceroid lipofuscinosis 6 (CLN6) is a rare and fatal autosomal recessive disease primarily affecting the nervous system in children. It is caused by a pathogenic mutation in the CLN6 gene for which no therapy is available. Employing an untargeted metabolomics approach, we analyzed the metabolic changes in CLN6 subjects to see if this system could potentially yield biomarkers for diagnosis and monitoring disease progression. Neuronal-like cells were derived from human fibroblast lines from CLN6-affected subjects (n = 3) and controls (wild type, n = 3). These were used to assess the potential of a neuronal-like cell-based metabolomics approach to identify CLN6 distinctive and specific biomarkers. The most impacted metabolic profile is associated with sphingolipids, glycerophospholipids metabolism, and calcium signaling. Over 2700 spectral features were screened, and fifteen metabolites were identified that differed significantly between both groups, including the sphingolipids C16 GlcCer, C24 GlcCer, C24:1 GlcCer and glycerophospholipids PG 40:6 and PG 40:7. Of note, these fifteen metabolites were downregulated in the CLN6 disease group. This study is the first to analyze the metabolome of neuronal-like cells with a pathogenic mutation in the CLN6 gene and to provide insights into their metabolomic alterations. This could allow for the development of novel biomarkers for monitoring CLN6 disease.
Collapse
Affiliation(s)
- Corina-Marcela Rus
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany.
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany.
| | | | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein Straße 25, 18059, Rostock, Germany
| | | | - Jörg Hartkamp
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | | | - Yunus Alpagu
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Claudia Cozma
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein Straße 25, 18059, Rostock, Germany
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| |
Collapse
|
27
|
Ding Y, Zhang C, Zhou M, Xiang Y, Tong A. Hetero-Diels-Alder Cycloaddition Reaction of Vinyl Ethers Enables Selective Fluorescent Labeling of Plasmalogens in Human Plasma Lipids. J Org Chem 2023; 88:13741-13748. [PMID: 37710996 DOI: 10.1021/acs.joc.3c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Plasmalogens (Pls) are vinyl ether-containing glycerophospholipids of broad biological interest. Their abnormal levels are associated with neurological disorders and cardiovascular diseases. The intricacy of analyzing Pls in lipid samples arises from the wide variety of other coexisting lipid species, which underscores the urgent need for a Pls-specific labeling reaction. To address this challenge, we report an efficient hetero-Diels-Alder cycloaddition reaction between nonterminal vinyl ethers of Pls and o-quinolinone quinone methide probes under mild conditions. On the basis of this mechanism, a selective fluorescent labeling method for Pls is developed. The application of this method permits the exclusive derivatization of Pls over other human plasma lipids. The process also imparts labeled Pls with distinct fluorescence emission and chromatographic retention properties. By integrating this method with high-performance liquid chromatography, we are able to identify individual chromatographic signatures of Pls from 10 different human plasma samples. This Pls signature analytical technique, empowered by the Pls-specific labeling reaction, is cost-effective and simple in terms of instrumentation, suggesting its promising potential for the early screening and diagnosis of diseases linked to Pls abnormalities.
Collapse
Affiliation(s)
- Yiwen Ding
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Chu Zhang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Min Zhou
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
28
|
Powell TL, Uhlson C, Madi L, Berry KZ, Chassen SS, Jansson T, Ferchaud-Roucher V. Fetal sex differences in placental LCPUFA ether and plasmalogen phosphatidylethanolamine and phosphatidylcholine contents in pregnancies complicated by obesity. Biol Sex Differ 2023; 14:66. [PMID: 37770949 PMCID: PMC10540428 DOI: 10.1186/s13293-023-00548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND We have previously reported that maternal obesity reduces placental transport capacity for lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA), a preferred form for transfer of DHA (omega 3) to the fetal brain, but only in male fetuses. Phosphatidylethanolamine (PE) and phosphatidylcholine (PC), have either sn-1 ester, ether or vinyl ether (plasmalogen) linkages to primarily unsaturated and monounsaturated fatty acids and DHA or arachidonic acid (ARA, omega 6) in the sn-2 position. Whether ether and plasmalogen PC and PE metabolism in placenta impacts transfer to the fetus is unexplored. We hypothesized that ether and plasmalogen PC and PE containing DHA and ARA are reduced in maternal-fetal unit in pregnancies complicated by obesity and these differences are dependent on fetal sex. METHODS In maternal, umbilical cord plasma and placentas from obese women (11 female/5 male infants) and normal weight women (9 female/7 male infants), all PC and PE species containing DHA and ARA were analyzed by LC-MS/MS. Placental protein expression of enzymes involved in phospholipid synthesis, were determined by immunoblotting. All variables were compared between control vs obese groups and separated by fetal sex, in each sample using the Benjamini-Hochberg false discovery rate adjustment to account for multiple testing. RESULTS Levels of ester PC containing DHA and ARA were profoundly reduced by 60-92% in male placentas of obese mothers, while levels of ether and plasmalogen PE containing DHA and ARA were decreased by 51-84% in female placentas. PLA2G4C abundance was lower in male placentas and LPCAT4 abundance was lower solely in females in obesity. In umbilical cord, levels of ester, ether and plasmalogen PC and PE with DHA were reduced by 43-61% in male, but not female, fetuses of obese mothers. CONCLUSIONS We found a fetal sex effect in placental PE and PC ester, ether and plasmalogen PE and PC containing DHA in response to maternal obesity which appears to reflect an ability of female placentas to adapt to maintain optimal fetal DHA transfer in maternal obesity.
Collapse
Affiliation(s)
- Theresa L Powell
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charis Uhlson
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lana Madi
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karin Zemski Berry
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie S Chassen
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Veronique Ferchaud-Roucher
- Nantes Université, CHU Nantes, INRAE UMR 1280 PhAN, CRNH Ouest, 44000, Nantes, France.
- Nantes Université, INRAE, UMR 1280 PhAN, CHU Hôtel Dieu, HNB1, 1 place Alexis Ricordeau, 44093, Nantes, France.
| |
Collapse
|
29
|
Pałgan K, Tretyn A. Platelet-activating factor as an endogenous cofactor of food anaphylaxis. Biofactors 2023; 49:976-983. [PMID: 37203358 DOI: 10.1002/biof.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/02/2023] [Indexed: 05/20/2023]
Abstract
Anaphylaxis is a severe, acute, life-threatening generalized or systemic hypersensitivity reaction. The incidence of anaphylaxis is increasing worldwide, with medications and food contributing to most cases. Physical exercise, acute infections, drugs, alcohol, and menstruation are the external cofactors associated with more severe systemic reaction. The aim of this review is to show that platelet-activating factor contributes to the development of severe anaphylactic reaction, and even to anaphylactic shock.
Collapse
Affiliation(s)
- Krzysztof Pałgan
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
30
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
31
|
Denisenko Y, Novgorodtseva T, Antonyuk M, Yurenko A, Gvozdenko T, Kasyanov S, Ermolenko E, Sultanov R. 1- O-alkyl-glycerols from Squid Berryteuthis magister Reduce Inflammation and Modify Fatty Acid and Plasmalogen Metabolism in Asthma Associated with Obesity. Mar Drugs 2023; 21:351. [PMID: 37367676 DOI: 10.3390/md21060351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Asthma associated with obesity is considered the most severe phenotype and can be challenging to manage with standard medications. Marine-derived 1-O-alkyl-glycerols (AGs), as precursors for plasmalogen synthesis, have high biological activity, making them a promising substance for pharmacology. This study aimed to investigate the effect of AGs from squid Berryteuthis magister on lung function, fatty acid and plasmalogen levels, and cytokine and adipokine production in obese patients with asthma. The investigational trial included 19 patients with mild asthma associated with obesity who received 0.4 g of AGs daily for three months in addition to their standard treatment. The effects of AGs were evaluated at one and three months of treatment. The results of the study demonstrated that intake of AGs increased the FEV1 and FEV1/VC ratios, and significantly decreased the ACQ score in 17 of the 19 patients after three months of treatment. The intake of AGs increased concentration of plasmalogen and n-3 PUFA in plasma, and modified leptin/adiponectin production by adipose tissue. The supplementation of AGs decreased the plasma levels of inflammatory cytokines (TNF-α, IL-4, and IL-17a), and oxylipins (TXB2 and LTB4), suggesting an anti-inflammatory property of AGs. In conclusion, 1-O-alkyl-glycerols could be a promising dietary supplement for improving pulmonary function and reducing inflammation in obese asthma patients, and a natural source for plasmalogen synthesis. The study highlighted that the beneficial effects of AG consumption can be observed after one month of treatment, with gradual improvement after three months of supplementation.
Collapse
Affiliation(s)
- Yulia Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Tatyana Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Marina Antonyuk
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Alla Yurenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Tatyana Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Sergey Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology (Far Eastern Branch), Russian Academy of Sciences, 17 Palchevskogo Str., 690041 Vladivostok, Russia
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology (Far Eastern Branch), Russian Academy of Sciences, 17 Palchevskogo Str., 690041 Vladivostok, Russia
| | - Ruslan Sultanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology (Far Eastern Branch), Russian Academy of Sciences, 17 Palchevskogo Str., 690041 Vladivostok, Russia
| |
Collapse
|
32
|
Ou X, Wang H, Tie H, Liao J, Luo Y, Huang W, Yu R, Song L, Zhu J. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: preparation, characterization, and immunostimulatory effect via TNF-α/NF-κB/PU.1 axis. J Nanobiotechnology 2023; 21:160. [PMID: 37210530 DOI: 10.1186/s12951-023-01919-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Plant-derived exosomes-like nanovesicles (PDENs) have been found to be advantageous in disease treatment and drug delivery, but research on their biogenesis, compositional analysis, and key marker proteins is still in its infancy, which limits the standardized production of PDENs. Efficient preparation of PDENs continues to be a major challenge. RESULTS Novel PDENs-based chemotherapeutic immune modulators, Catharanthus roseus (L.) Don leaves-derived exosome-like nanovesicles (CLDENs) were isolated from apoplastic fluid. CLDENs were membrane structured vesicles with a particle size of 75.51 ± 10.19 nm and a surface charge of -21.8 mV. CLDENs exhibited excellent stability, tolerating multiple enzymatic digestions, resisting extreme pH environments, and remaining stable in the gastrointestinal simulating fluid. Biodistribution experiments showed that CLDENs could be internalized by immune cells, and targeted at immune organs after intraperitoneal injection. The lipidomic analysis revealed CLDENs' special lipid composition, which contained 36.5% ether-phospholipids. Differential proteomics supported the origin of CLDENs in multivesicular bodies, and six marker proteins of CLDENs were identified for the first time. 60 ~ 240 μg/ml of CLDENs promoted the polarization and phagocytosis of macrophages as well as lymphocyte proliferation in vitro. Administration of 20 mg/kg and 60 mg/kg of CLDENs alleviated white blood cell reduction and bone marrow cell cycle arrest in immunosuppressive mice induced by cyclophosphamide. CLDENs strongly stimulated the secretion of TNF-α, activated NF-κB signal pathway and increased the expression of the hematopoietic function-related transcription factor PU.1 both in vitro and in vivo. To ensure a steady supply of CLDENs, plant cell culture systems of C. roseus were established to provide CLDENs-like nanovesicles which had similar physical properties and biological activities. Gram-level nanovesicles were successfully obtained from the culture medium, and the yield was three times as high as the original. CONCLUSIONS Our research supports the use of CLDENs as a nano-biomaterial with excellent stability and biocompatibility, and for post-chemotherapy immune adjuvant therapy applications.
Collapse
Affiliation(s)
- Xiaozheng Ou
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
- Department of Pharmacology, Jinan University, Guangzhou, 511443, China
| | - Haoran Wang
- Weihai Neoland Biosciences Co., Ltd, Weihai, 264209, China
| | - Huilin Tie
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - Jiapei Liao
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China
| | - Yuanyuan Luo
- Department of Pharmacology, Jinan University, Guangzhou, 511443, China
| | - Weijuan Huang
- Department of Pharmacology, Jinan University, Guangzhou, 511443, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China.
- Weihai Neoland Biosciences Co., Ltd, Weihai, 264209, China.
| | - Liyan Song
- Department of Pharmacology, Jinan University, Guangzhou, 511443, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
33
|
Lackner K, Ebner S, Watschinger K, Maglione M. Multiple Shades of Gray-Macrophages in Acute Allograft Rejection. Int J Mol Sci 2023; 24:8257. [PMID: 37175964 PMCID: PMC10179242 DOI: 10.3390/ijms24098257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term results following solid organ transplantation do not mirror the excellent short-term results achieved in recent decades. It is therefore clear that current immunosuppressive maintenance protocols primarily addressing the adaptive immune system no longer meet the required clinical need. Identification of novel targets addressing this shortcoming is urgently needed. There is a growing interest in better understanding the role of the innate immune system in this context. In this review, we focus on macrophages, which are known to prominently infiltrate allografts and, during allograft rejection, to be involved in the surge of the adaptive immune response by expression of pro-inflammatory cytokines and direct cytotoxicity. However, this active participation is janus-faced and unspecific targeting of macrophages may not consider the different subtypes involved. Under this premise, we give an overview on macrophages, including their origins, plasticity, and important markers. We then briefly describe their role in acute allograft rejection, which ranges from sustaining injury to promoting tolerance, as well as the impact of maintenance immunosuppressants on macrophages. Finally, we discuss the observed immunosuppressive role of the vitamin-like compound tetrahydrobiopterin and the recent findings that suggest the innate immune system, particularly macrophages, as its target.
Collapse
Affiliation(s)
- Katharina Lackner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Manuel Maglione
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
- Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Pan B, Yuan S, Mayernik L, Yap YT, Moin K, Chung CS, Maddipati K, Krawetz SA, Zhang Z, Hess RA, Chen X. Disrupted intercellular bridges and spermatogenesis in fatty acyl-CoA reductase 1 knockout mice: A new model of ether lipid deficiency. FASEB J 2023; 37:e22908. [PMID: 37039784 PMCID: PMC10150578 DOI: 10.1096/fj.202201848r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Peroxisomal fatty acyl-CoA reductase 1 (FAR1) is a rate-limiting enzyme for ether lipid (EL) synthesis. Gene mutations in FAR1 cause a rare human disease. Furthermore, altered EL homeostasis has also been associated with various prevalent human diseases. Despite their importance in human health, the exact cellular functions of FAR1 and EL are not well-understood. Here, we report the generation and initial characterization of the first Far1 knockout (KO) mouse model. Far1 KO mice were subviable and displayed growth retardation. The adult KO male mice had smaller testes and were infertile. H&E and immunofluorescent staining showed fewer germ cells in seminiferous tubules. Round spermatids were present but no elongated spermatids or spermatozoa were observed, suggesting a spermatogenesis arrest at this stage. Large multi-nucleated giant cells (MGC) were found lining the lumen of seminiferous tubules with many of them undergoing apoptosis. The immunofluorescent signal of TEX14, an essential component of intercellular bridges (ICB) between developing germ cells, was greatly reduced and mislocalized in KO testis, suggesting the disrupted ICBs as an underlying cause of MGC formation. Integrative analysis of our total testis RNA-sequencing results and published single-cell RNA-sequencing data unveiled cell type-specific molecular alterations underlying the spermatogenesis arrest. Many genes essential for late germ cell development showed dramatic downregulation, whereas genes essential for extracellular matrix dynamics and cell-cell interactions were among the most upregulated genes. Together, this work identified the cell type-specific requirement of ELs in spermatogenesis and suggested a critical role of Far1/ELs in the formation/maintenance of ICB during meiosis.
Collapse
Affiliation(s)
- Bo Pan
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Shuo Yuan
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Linda Mayernik
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Charles S. Chung
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Krishnarao Maddipati
- Department of Pathology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Stephen A. Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Rex A. Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
35
|
Ferreri C, Ferocino A, Batani G, Chatgilialoglu C, Randi V, Riontino MV, Vetica F, Sansone A. Plasmalogens: Free Radical Reactivity and Identification of Trans Isomers Relevant to Biological Membranes. Biomolecules 2023; 13:biom13050730. [PMID: 37238600 DOI: 10.3390/biom13050730] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Plasmalogens are membrane phospholipids with two fatty acid hydrocarbon chains linked to L-glycerol, one containing a characteristic cis-vinyl ether function and the other one being a polyunsaturated fatty acid (PUFA) residue linked through an acyl function. All double bonds in these structures display the cis geometrical configuration due to desaturase enzymatic activity and they are known to be involved in the peroxidation process, whereas the reactivity through cis-trans double bond isomerization has not yet been identified. Using 1-(1Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphocholine (C18 plasm-20:4 PC) as a representative molecule, we showed that the cis-trans isomerization can occur at both plasmalogen unsaturated moieties, and the product has characteristic analytical signatures useful for omics applications. Using plasmalogen-containing liposomes and red blood cell (RBC) ghosts under biomimetic Fenton-like conditions, in the presence or absence of thiols, peroxidation, and isomerization processes were found to occur with different reaction outcomes due to the particular liposome compositions. These results allow gaining a full scenario of plasmalogen reactivity under free radical conditions. Moreover, clarification of the plasmalogen reactivity under acidic and alkaline conditions was carried out, identifying the best protocol for RBC membrane fatty acid analysis due to their plasmalogen content of 15-20%. These results are important for lipidomic applications and for achieving a full scenario of radical stress in living organisms.
Collapse
Affiliation(s)
- Carla Ferreri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Alessandra Ferocino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Gessica Batani
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Vanda Randi
- Centro Regionale Sangue Regione Emilia Romagna (CRS-RER), Casa dei Donatori di Sangue, Via dell'Ospedale, 20, 40133 Bologna, Italy
| | - Maria Vittoria Riontino
- Centro Regionale Sangue Regione Emilia Romagna (CRS-RER), Casa dei Donatori di Sangue, Via dell'Ospedale, 20, 40133 Bologna, Italy
| | - Fabrizio Vetica
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Anna Sansone
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| |
Collapse
|
36
|
Lackner K, Sailer S, van Klinken JB, Wever E, Pras-Raves ML, Dane AD, Honsho M, Abe Y, Keller MA, Golderer G, Werner-Felmayer G, Fujiki Y, Vaz FM, Werner ER, Watschinger K. Alterations in ether lipid metabolism and the consequences for the mouse lipidome. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159285. [PMID: 36690320 DOI: 10.1016/j.bbalip.2023.159285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/18/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Alkylglycerol monooxygenase (AGMO) and plasmanylethanolamine desaturase (PEDS1) are enzymes involved in ether lipid metabolism. While AGMO degrades plasmanyl lipids by oxidative cleavage of the ether bond, PEDS1 exclusively synthesizes a specific subclass of ether lipids, the plasmalogens, by introducing a vinyl ether double bond into plasmanylethanolamine phospholipids. Ether lipids are characterized by an ether linkage at the sn-1 position of the glycerol backbone and they are found in membranes of different cell types. Decreased plasmalogen levels have been associated with neurological diseases like Alzheimer's disease. Agmo-deficient mice do not present an obvious phenotype under unchallenged conditions. In contrast, Peds1 knockout mice display a growth phenotype. To investigate the molecular consequences of Agmo and Peds1 deficiency on the mouse lipidome, five tissues from each mouse model were isolated and subjected to high resolution mass spectrometry allowing the characterization of up to 2013 lipid species from 42 lipid subclasses. Agmo knockout mice moderately accumulated plasmanyl and plasmenyl lipid species. Peds1-deficient mice manifested striking changes characterized by a strong reduction of plasmenyl lipids and a concomitant massive accumulation of plasmanyl lipids resulting in increased total ether lipid levels in the analyzed tissues except for the class of phosphatidylethanolamines where total levels remained remarkably constant also in Peds1 knockout mice. The rate-limiting enzyme in ether lipid metabolism, FAR1, was not upregulated in Peds1-deficient mice, indicating that the selective loss of plasmalogens is not sufficient to activate the feedback mechanism observed in total ether lipid deficiency.
Collapse
Affiliation(s)
- Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria.
| | - Jan-Bert van Klinken
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Department of Human Genetics, Leiden University Medical Center (LUMC), Einthovenweg 20, Leiden, 2333, ZC, the Netherlands.
| | - Eric Wever
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
| | - Mia L Pras-Raves
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
| | - Adrie D Dane
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
| | - Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria.
| | - Georg Golderer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Gabriele Werner-Felmayer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Yukio Fujiki
- Institute of Rheological Functions of Food, Kyushu University Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Graduate School of Science, University of Hyogo, Hyogo, Japan.
| | - Frédéric M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam 1105, AZ, The Netherlands.
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| |
Collapse
|
37
|
Sultanov RM, Poleshchuk TS, Ermolenko EV, Kasyanov SP. Protective Properties of Marine Alkyl Glycerol Ethers in Chronic Stress. Mar Drugs 2023; 21:md21040202. [PMID: 37103343 PMCID: PMC10145234 DOI: 10.3390/md21040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
In this paper we discuss the effect of alkyl glycerol ethers (AGs) from the squid Berryteuthis magister on a chronic stress model in rats. The study was performed on 32 male Wistar rats. Animals received AGs at a dose of 200 mg/kg through a gavage for six weeks (1.5 months), and were divided into four groups: group 1 (control), group 2 (animals received AGs), group 3 (stress control), group 4 (animals received AGs and were subjected to stress). Chronic immobilization stress was induced by placing each rat into an individual plexiglass cages for 2 h daily for 15 days. The serum lipid spectrum was evaluated by the content of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low lipoprotein cholesterol and very low-density lipoprotein cholesterol. The atherogenic coefficient was calculated. The hematological parameters of peripheral blood were evaluated. The neutrophil-lymphocyte ratio was counted. The levels of cortisol and testosterone in blood plasma were determined. AGs at the selected dose did not have a significant effect on the body weight of rats in the preliminary period of the experiment. Under stress, the body weight gain, the concentrations of very low-density lipoprotein cholesterol and blood triglycerides decreased significantly. The neutrophil-lymphocyte ratio in animals treated with AGs shifted towards lymphocytes. A favorable increase in the percentage of lymphocytes was found in the stressed group of animals treated with AGs. So, for the first time, it was found that AGs prevent stress-induced suppression of the immune system. This confirms the benefit of AGs for the immune system under chronic stress. Our results prove the efficiency of the use of AGs for treating chronic stress, a serious social problem in modern society.
Collapse
Affiliation(s)
- Ruslan M Sultanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok 690041, Russia
| | - Tatiana S Poleshchuk
- Faculty of Pediatrics and Pharmacy, Pacific State Medical University, 2 Ostryakova Ave., Vladivostok 690002, Russia
| | - Ekaterina V Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok 690041, Russia
| | - Sergey P Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 17 Palchevskogo Str., Vladivostok 690041, Russia
| |
Collapse
|
38
|
Vítor ACM, Correia JJ, Alves SP, Bessa RJB. Enrichment of Brain n-3 Docosapentaenoic Acid (DPA) and Retinal n-3 Eicosapentaenoic Acid (EPA) in Lambs Fed Nannochloropsis oceanica Microalga. Animals (Basel) 2023; 13:828. [PMID: 36899687 PMCID: PMC10000189 DOI: 10.3390/ani13050828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have special physiological functions in both brain and retinal tissues that are related to the modulation of inflammatory processes and direct effects on neuronal membrane fluidity, impacting mental and visual health. Among them, the long-chain (LC) n-3 PUFAs, as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are of special importance. Scarce data are available about the fatty acid (FA) composition of the ruminant brain in response to dietary intervention. However, we decided to examine the brain and retina FA composition of lambs supplemented with an EPA-rich microalga feed for 21 days, as it is known that despite the extensive biohydrogenation of dietary PUFAs in the rumen, ruminants can selectively accumulate some n-3 LC-PUFAs in their brain and retinal tissues. Twenty-eight male lambs were fed a control diet, or the same diet further supplemented with Nannochloropsis sp. microalga. Their brains and retina were collected for FA characterization. Overall, the brain FA profile remained unchanged, with little alteration in omega-3 docosapentaenoic acid (DPA) enhancement in both the hippocampus and prefrontal cortex. Retinal tissues were particularly responsive to the dietary intervention, with a 4.5-fold enhancement of EPA in the freeze-dried-fed lambs compared with the control lambs. We conclude that retinal tissues are sensitive to short-term n-3 PUFA supplementation in lambs.
Collapse
Affiliation(s)
- Ana C. M. Vítor
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Jorge J. Correia
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Susana P. Alves
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui J. B. Bessa
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
39
|
van Wouw SAE, van den Berg M, El Ouraoui M, Meurs A, Kingma J, Ottenhoff R, Loix M, Hoeksema MA, Prange K, Pasterkamp G, Hendriks JJA, Bogie JFJ, van Klinken JB, Vaz FM, Jongejan A, de Winther MPJ, Zelcer N. Sterol-regulated transmembrane protein TMEM86a couples LXR signaling to regulation of lysoplasmalogens in macrophages. J Lipid Res 2023; 64:100325. [PMID: 36592658 PMCID: PMC9926310 DOI: 10.1016/j.jlr.2022.100325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
Lysoplasmalogens are a class of vinyl ether bioactive lipids that have a central role in plasmalogen metabolism and membrane fluidity. The liver X receptor (LXR) transcription factors are important determinants of cellular lipid homeostasis owing to their ability to regulate cholesterol and fatty acid metabolism. However, their role in governing the composition of lipid species such as lysoplasmalogens in cellular membranes is less well studied. Here, we mapped the lipidome of bone marrow-derived macrophages (BMDMs) following LXR activation. We found a marked reduction in the levels of lysoplasmalogen species in the absence of changes in the levels of plasmalogens themselves. Transcriptional profiling of LXR-activated macrophages identified the gene encoding transmembrane protein 86a (TMEM86a), an integral endoplasmic reticulum protein, as a previously uncharacterized sterol-regulated gene. We demonstrate that TMEM86a is a direct transcriptional target of LXR in macrophages and microglia and that it is highly expressed in TREM2+/lipid-associated macrophages in human atherosclerotic plaques, where its expression positively correlates with other LXR-regulated genes. We further show that both murine and human TMEM86a display active lysoplasmalogenase activity that can be abrogated by inactivating mutations in the predicted catalytic site. Consequently, we demonstrate that overexpression of Tmem86a in BMDM markedly reduces lysoplasmalogen abundance and membrane fluidity, while reciprocally, silencing of Tmem86a increases basal lysoplasmalogen levels and abrogates the LXR-dependent reduction of this lipid species. Collectively, our findings implicate TMEM86a as a sterol-regulated lysoplasmalogenase in macrophages that contributes to sterol-dependent membrane remodeling.
Collapse
Affiliation(s)
- Suzanne A E van Wouw
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Marlene van den Berg
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Maroua El Ouraoui
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Amber Meurs
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Jenina Kingma
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Marten A Hoeksema
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Koen Prange
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Gerard Pasterkamp
- Department of Experimental Cardiology, Utrecht UMC, Utrecht, the Netherlands
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jan B van Klinken
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Frederic M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, of Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Sigurjónsson S, Lúthersson E, Albertsdóttir AD, Rögnvaldsdóttir EK, Haraldsson GG. Asymmetric synthesis of methoxylated ether lipids: Total synthesis of two monounsaturated C18:1 and a saturated C18:0 methoxylated ether lipid derivatives. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
41
|
Jové M, Mota-Martorell N, Obis È, Sol J, Martín-Garí M, Ferrer I, Portero-Otin M, Pamplona R. Ether Lipid-Mediated Antioxidant Defense in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:293. [PMID: 36829852 PMCID: PMC9952080 DOI: 10.3390/antiox12020293] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
One of the richest tissues in lipid content and diversity of the human body is the brain. The human brain is constitutively highly vulnerable to oxidative stress. This oxidative stress is a determinant in brain aging, as well as in the onset and progression of sporadic (late-onset) Alzheimer's disease (sAD). Glycerophospholipids are the main lipid category widely distributed in neural cell membranes, with a very significant presence for the ether lipid subclass. Ether lipids have played a key role in the evolution of the human brain compositional specificity and functionality. Ether lipids determine the neural membrane structural and functional properties, membrane trafficking, cell signaling and antioxidant defense mechanisms. Here, we explore the idea that ether lipids actively participate in the pathogenesis of sAD. Firstly, we evaluate the quantitative relevance of ether lipids in the human brain composition, as well as their role in the human brain evolution. Then, we analyze the implications of ether lipids in neural cell physiology, highlighting their inherent antioxidant properties. Finally, we discuss changes in ether lipid content associated with sAD and their physiopathological implications, and propose a mechanism that, as a vicious cycle, explains the potential significance of ether lipids in sAD.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Èlia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
- Research Support Unit (USR), Catalan Institute of Health (ICS), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), E-25007 Lleida, Spain
| | - Meritxell Martín-Garí
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), E-08907 Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research of Bellvitge (IDIBELL), E-08907 Barcelona, Spain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, E-08907 Barcelona, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| |
Collapse
|
42
|
Dorninger F, Kiss A, Rothauer P, Stiglbauer-Tscholakoff A, Kummer S, Fallatah W, Perera-Gonzalez M, Hamza O, König T, Bober MB, Cavallé-Garrido T, Braverman NE, Forss-Petter S, Pifl C, Bauer J, Bittner RE, Helbich TH, Podesser BK, Todt H, Berger J. Overlapping and Distinct Features of Cardiac Pathology in Inherited Human and Murine Ether Lipid Deficiency. Int J Mol Sci 2023; 24:1884. [PMID: 36768204 PMCID: PMC9914995 DOI: 10.3390/ijms24031884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Inherited deficiency in ether lipids, a subgroup of glycerophospholipids with unique biochemical and biophysical properties, evokes severe symptoms in humans resulting in a multi-organ syndrome. Mouse models with defects in ether lipid biosynthesis have widely been used to understand the pathophysiology of human disease and to study the roles of ether lipids in various cell types and tissues. However, little is known about the function of these lipids in cardiac tissue. Previous studies included case reports of cardiac defects in ether-lipid-deficient patients, but a systematic analysis of the impact of ether lipid deficiency on the mammalian heart is still missing. Here, we utilize a mouse model of complete ether lipid deficiency (Gnpat KO) to accomplish this task. Similar to a subgroup of human patients with rhizomelic chondrodysplasia punctata (RCDP), a fraction of Gnpat KO fetuses present with defects in ventricular septation, presumably evoked by a developmental delay. We did not detect any signs of cardiomyopathy but identified increased left ventricular end-systolic and end-diastolic pressure in middle-aged ether-lipid-deficient mice. By comprehensive electrocardiographic characterization, we consistently found reduced ventricular conduction velocity, as indicated by a prolonged QRS complex, as well as increased QRS and QT dispersion in the Gnpat KO group. Furthermore, a shift of the Wenckebach point to longer cycle lengths indicated depressed atrioventricular nodal function. To complement our findings in mice, we analyzed medical records and performed electrocardiography in ether-lipid-deficient human patients, which, in contrast to the murine phenotype, indicated a trend towards shortened QT intervals. Taken together, our findings demonstrate that the cardiac phenotype upon ether lipid deficiency is highly heterogeneous, and although the manifestations in the mouse model only partially match the abnormalities in human patients, the results add to our understanding of the physiological role of ether lipids and emphasize their importance for proper cardiac development and function.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Attila Kiss
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Peter Rothauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | - Alexander Stiglbauer-Tscholakoff
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Stefan Kummer
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Wedad Fallatah
- Department of Genetic Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Department of Human Genetics and Pediatrics, Montreal Children’s Hospital, McGill University, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Mireia Perera-Gonzalez
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Ouafa Hamza
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Theresa König
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Michael B. Bober
- Skeletal Dysplasia Program, Nemours Children’s Hospital, 1600 Rockland Road, Wilmington, DE 19803, USA
| | - Tiscar Cavallé-Garrido
- Department of Pediatrics, Division of Cardiology, Montreal Children’s Hospital, McGill University, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Nancy E. Braverman
- Department of Human Genetics and Pediatrics, Montreal Children’s Hospital, McGill University, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Reginald E. Bittner
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Bruno K. Podesser
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
43
|
Dorninger F, Berger J, Honsho M. Editorial: Solving the plasmalogen puzzle-From basic science to clinical application. Front Cell Dev Biol 2023; 11:1137868. [PMID: 36727111 PMCID: PMC9885182 DOI: 10.3389/fcell.2023.1137868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, Fukuoka, Japan
| |
Collapse
|
44
|
St Germain M, Iraji R, Bakovic M. Phosphatidylethanolamine homeostasis under conditions of impaired CDP-ethanolamine pathway or phosphatidylserine decarboxylation. Front Nutr 2023; 9:1094273. [PMID: 36687696 PMCID: PMC9849821 DOI: 10.3389/fnut.2022.1094273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Phosphatidylethanolamine is the major inner-membrane lipid in the plasma and mitochondrial membranes. It is synthesized in the endoplasmic reticulum from ethanolamine and diacylglycerol (DAG) by the CDP-ethanolamine pathway and from phosphatidylserine by decarboxylation in the mitochondria. Recently, multiple genetic disorders that impact these pathways have been identified, including hereditary spastic paraplegia 81 and 82, Liberfarb syndrome, and a new type of childhood-onset neurodegeneration-CONATOC. Individuals with these diseases suffer from multisystem disorders mainly affecting neuronal function. This indicates the importance of maintaining proper phospholipid homeostasis when major biosynthetic pathways are impaired. This study summarizes the current knowledge of phosphatidylethanolamine metabolism in order to identify areas of future research that might lead to the development of treatment options.
Collapse
|
45
|
Oh S, Jo S, Bajzikova M, Kim HS, Dao TTP, Rohlena J, Kim JM, Neuzil J, Park S. Non-bioenergetic roles of mitochondrial GPD2 promote tumor progression. Theranostics 2023; 13:438-457. [PMID: 36632231 PMCID: PMC9830446 DOI: 10.7150/thno.75973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Despite growing evidence for mitochondria's involvement in cancer, the roles of specific metabolic components outside the respiratory complex have been little explored. We conducted metabolomic studies on mitochondrial DNA (mtDNA)-deficient (ρ0) cancer cells with lower proliferation rates to clarify the undefined roles of mitochondria in cancer growth. Methods and results: Despite extensive metabolic downregulation, ρ0 cells exhibited high glycerol-3-phosphate (G3P) level, due to low activity of mitochondrial glycerol-3-phosphate dehydrogenase (GPD2). Knockout (KO) of GPD2 resulted in cell growth suppression as well as inhibition of tumor progression in vivo. Surprisingly, this was unrelated to the conventional bioenergetic function of GPD2. Instead, multi-omics results suggested major changes in ether lipid metabolism, for which GPD2 provides dihydroxyacetone phosphate (DHAP) in ether lipid biosynthesis. GPD2 KO cells exhibited significantly lower ether lipid level, and their slower growth was rescued by supplementation of a DHAP precursor or ether lipids. Mechanistically, ether lipid metabolism was associated with Akt pathway, and the downregulation of Akt/mTORC1 pathway due to GPD2 KO was rescued by DHAP supplementation. Conclusion: Overall, the GPD2-ether lipid-Akt axis is newly described for the control of cancer growth. DHAP supply, a non-bioenergetic process, may constitute an important role of mitochondria in cancer.
Collapse
Affiliation(s)
- Sehyun Oh
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Sihyang Jo
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Martina Bajzikova
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld, Australia
| | - Han Sun Kim
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Thien T. P. Dao
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Jakub Rohlena
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jin-Mo Kim
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic.,✉ Corresponding authors: Sunghyouk Park, Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul 08826, Republic of Korea, Tel: +82-2-880-7831; Fax: +82-2-880-7831; E-mail: ; Jiri Neuzil, School of Pharmacy and Medical Science, Griffith University, 1 Parklands Dr, Southport, Qld 4215, Australia, Tel: +61-(0)7-5552-9109; Fax: +61-(0)7-5552-9109; E-mail: or
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea.,✉ Corresponding authors: Sunghyouk Park, Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul 08826, Republic of Korea, Tel: +82-2-880-7831; Fax: +82-2-880-7831; E-mail: ; Jiri Neuzil, School of Pharmacy and Medical Science, Griffith University, 1 Parklands Dr, Southport, Qld 4215, Australia, Tel: +61-(0)7-5552-9109; Fax: +61-(0)7-5552-9109; E-mail: or
| |
Collapse
|
46
|
Huo T, Zhang W, Yang J, Li J, Zhang Y, Guo H, Wu X, Li A, Feng C, Jiang H. Effects of chronic realgar exposure on liver lipidome in mice and identification sensitive lipid biomarker model for realgar-induced liver damage. Toxicol Lett 2023; 372:1-13. [DOI: 10.1016/j.toxlet.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022]
|
47
|
Hossain MS, Mawatari S, Fujino T. Plasmalogens inhibit neuroinflammation and promote cognitive function. Brain Res Bull 2023; 192:56-61. [PMID: 36347405 DOI: 10.1016/j.brainresbull.2022.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Neuroinflammation (NF) is defined as the activation of brain glial cells that are found in neurodegenerative diseases including Alzheimer's disease (AD). It has been known that an increase in NF could reduce the memory process in the brain but the key factors, associated with NF, behind the dysregulation of memory remained elusive. We previously reported that the NF and aging processes reduced the special phospholipids, plasmalogens (Pls), in the murine brain by a mechanism dependent on the activation of transcription factors, NF-kB and c-MYC. A similar mechanism has also been found in postmortem human brain tissues with AD pathologies and in the AD model mice. Recent evidence showed that these phospholipids enhanced memory and reduced neuro-inflammation in the murine brain. Pls can stimulate the cellular signaling molecules, ERK and Akt, by activating the membrane-bound G protein-coupled receptors (GPCRs). Therefore, recent findings suggest that plasmalogens could be one of the key phospholipids in the brain to enhance memory and inhibit NF.
Collapse
Affiliation(s)
- Md Shamim Hossain
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-machi, Kasuya-gun, Fukuoka 811-2501, Japan.
| | - Shiro Mawatari
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-machi, Kasuya-gun, Fukuoka 811-2501, Japan
| | - Takehiko Fujino
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-machi, Kasuya-gun, Fukuoka 811-2501, Japan
| |
Collapse
|
48
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Alkyl Glycerol Ethers as Adaptogens. Mar Drugs 2022; 21:md21010004. [PMID: 36662177 PMCID: PMC9862039 DOI: 10.3390/md21010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Τhis mini-review summarizes the hematopoietic and immunostimulating properties of alkyl glycerol ethers (AGs) reported earlier in the literature available to us. The role of AGs in the nervous system and aging of the body are also briefly described. We made an attempt to consider the data in terms of adaptation. The hematopoietic, immunostimulating and antioxidant properties of AGs in a variety of experimental situations, including stress, as well as the protective action of AGs against some adaptation diseases, allow us to consider them as substances that prevent some negative effects of stress and promote adaptation. The new approach to AGs as adaptogens seems promising and opens good opportunities for their new application.
Collapse
|
50
|
Li Q, Shi Y, Li X, Yang Y, Zhang X, Xu L, Ma Z, Wang J, Fan L, Wu L. Proteomic-Based Approach Reveals the Involvement of Apolipoprotein A-I in Related Phenotypes of Autism Spectrum Disorder in the BTBR Mouse Model. Int J Mol Sci 2022; 23:ijms232315290. [PMID: 36499620 PMCID: PMC9737945 DOI: 10.3390/ijms232315290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Abnormal lipid metabolism has been suggested to contribute to its pathogenesis. Further exploration of its underlying biochemical mechanisms is needed. In a search for reliable biomarkers for the pathophysiology of ASD, hippocampal tissues from the ASD model BTBR T+ Itpr3tf/J (BTBR) mice and C57BL/6J mice were analyzed, using four-dimensional (4D) label-free proteomic analysis and bioinformatics analysis. Differentially expressed proteins were significantly enriched in lipid metabolic pathways. Among them, apolipoprotein A-I (ApoA-I) is a hub protein and its expression was significantly higher in the BTBR mice. The investigation of protein levels (using Western blotting) also confirmed this observation. Furthermore, expressions of SphK2 and S1P in the ApoA-I pathway both increased. Using the SphK inhibitor (SKI-II), ASD core phenotype and phenotype-related protein levels of P-CREB, P-CaMKII, and GAD1 were improved, as shown via behavioral and molecular biology experiments. Moreover, by using SKI-II, we found proteins related to the development and function of neuron synapses, including ERK, caspase-3, Bax, Bcl-2, CDK5 and KCNQ2 in BTBR mice, whose levels were restored to protein levels comparable to those in the controls. Elucidating the possible mechanism of ApoA-I in ASD-associated phenotypes will provide new ideas for studies on the etiology of ASD.
Collapse
|