1
|
Maslivetc VA, Nabiul Hasan M, Boari A, Zejnelovski A, Evidente A, Sun D, Kornienko A. Ophiobolin A derivatives with enhanced activities under tumor-relevant acidic conditions. Bioorg Med Chem Lett 2024; 110:129863. [PMID: 38942129 PMCID: PMC11646455 DOI: 10.1016/j.bmcl.2024.129863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Glioblastoma (GBM) is the most common form of malignant primary brain tumor and is one of the most lethal cancers. The difficulty in treating GBM stems from its highly developed mechanisms of drug resistance. Our research team has recently identified the fungal secondary metabolite ophiobolin A (OpA) as an agent with significant activity against drug-resistant GBM cells. However, the OpA's mode of action is likely based on covalent modification of its intracellular target(s) and thus possible off-target reactivity needs to be addressed. This work involves the investigation of an acid-sensitive OpA analogue approach that exploits the elevated acidity of the GBM microenvironment to enhance the selectivity for tumor targeting. This project identified analogues that showed selectivity at killing GBM cells grown in cultures at reduced pH compared to those maintained under normal neutral conditions. These studies are expected to facilitate the development of OpA as an anti-GBM agent by investigating its potential use in an acid-sensitive analogue form with enhanced selectivity for tumor targeting.
Collapse
Affiliation(s)
- Vladimir A Maslivetc
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Angela Boari
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| | - Arben Zejnelovski
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, PA 15260, USA; Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX 78666, USA.
| |
Collapse
|
2
|
Sarkovich S, Issa PP, Longanecker A, Martin D, Redondo K, McTernan P, Simkin J, Marrero L. Minoxidil weakens newly synthesized collagen in fibrotic synoviocytes from osteoarthritis patients. J Exp Orthop 2023; 10:84. [PMID: 37605092 PMCID: PMC10441905 DOI: 10.1186/s40634-023-00650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
PURPOSE Synovial fibrosis (SFb) formation and turnover attributable to knee osteoarthritis (KOA) can impart painful stiffness and persist following arthroplasty. To supplement joint conditioning aimed at maximizing peri-operative function, we evaluated the antifibrotic effect of Minoxidil (MXD) on formation of pyridinoline (Pyd) cross-links catalyzed by Plod2-encoded lysyl hydroxylase (LH)2b that strengthen newly synthesized type-I collagen (COL1) in fibroblastic synovial cells (FSCs) from KOA patients. MXD was predicted to decrease Pyd without significant alterations to Col1a1 transcription by FSCs stimulated with transforming growth factor (TGF)β1. METHODS Synovium from 10 KOA patients grouped by SFb severity was preserved for picrosirius and LH2b histology or culture. Protein and RNA were purified from fibrotic FSCs after 8 days with or without 0.5 µM MXD and/or 4 ng/mL of TGFβ1. COL1 and Pyd protein concentrations from ELISA and expression of Col1a1, Acta2, and Plod2 genes by qPCR were compared by parametric tests with α = 0.05. RESULTS Histological LH2b expression corresponded to SFb severity. MXD attenuated COL1 output in KOA FSCs but only in the absence of TGFβ1 and consistently decreased Pyd under all conditions with significant downregulation of Plod2 but minimal alterations to Col1a1 and Acta2 transcripts. CONCLUSIONS MXD is an attractive candidate for local antifibrotic pharmacotherapy for SFb by compromising the integrity of newly formed fibrous deposits by FSCs during KOA and following arthroplasty. Targeted antifibrotic supplementation could improve physical therapy and arthroscopic lysis strategies aimed at breaking down joint scarring. However, the effect of MXD on other joint-specific TGFβ1-mediated processes or non-fibrotic components requires further investigation.
Collapse
Affiliation(s)
- Stefan Sarkovich
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, 2021 Perdido St., Center for Advanced Learning and Simulation, 7th floor, New Orleans, LA, 70112, USA
| | - Peter P Issa
- School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier St., Lions Building, 5th floor, New Orleans, LA, 70112, USA
| | - Andrew Longanecker
- School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier St., Lions Building, 5th floor, New Orleans, LA, 70112, USA
| | - Davis Martin
- School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier St., Lions Building, 5th floor, New Orleans, LA, 70112, USA
| | - Kaitlyn Redondo
- Morphology and Imaging Core, Louisiana State University Health Sciences Center, 533 Bolivar St., Clinical Sciences Research Building, 5th floor, New Orleans, LA, 70112, USA
| | - Patrick McTernan
- Department of Physiology, Louisiana State University Health Sciences Center, 533 Bolivar St., Clinical Sciences Research Building, 4th floor, New Orleans, LA, 70112, USA
| | - Jennifer Simkin
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, 2021 Perdido St., Center for Advanced Learning and Simulation, 7th floor, New Orleans, LA, 70112, USA
| | - Luis Marrero
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, 2021 Perdido St., Center for Advanced Learning and Simulation, 7th floor, New Orleans, LA, 70112, USA.
- School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier St., Lions Building, 5th floor, New Orleans, LA, 70112, USA.
- Morphology and Imaging Core, Louisiana State University Health Sciences Center, 533 Bolivar St., Clinical Sciences Research Building, 5th floor, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Honc O, Novotny J. Methadone Potentiates the Cytotoxicity of Temozolomide by Impairing Calcium Homeostasis and Dysregulation of PARP in Glioblastoma Cells. Cancers (Basel) 2023; 15:3567. [PMID: 37509230 PMCID: PMC10377588 DOI: 10.3390/cancers15143567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Methadone is commonly used as an alternative to morphine in patients with pain associated with glioblastoma and other cancers. Although concomitant administration of methadone and cytostatics is relatively common, the effect of methadone on the efficacy of cytostatic drugs has not been well studied until recently. Moreover, the mechanism behind the effect of methadone on temozolomide efficacy has not been investigated in previous studies, or this effect has been automatically attributed to opioid receptors. Our findings indicate that methadone potentiates the effect of temozolomide on rat C6 glioblastoma cells and on human U251 and T98G glioblastoma cells and increases cell mortality by approximately 50% via a mechanism of action independent of opioid receptors. Our data suggest that methadone acts by affecting mitochondrial potential, the level of oxidative stress, intracellular Ca2+ concentration and possibly intracellular ATP levels. Significant effects were also observed on DNA integrity and on cleavage and expression of the DNA repair protein PARP-1. None of these effects were attributed to the activation of opioid receptors and Toll-like receptor 4. Our results provide an alternative perspective on the mechanism of action of methadone in combination with temozolomide and a potential strategy for the treatment of glioblastoma cell resistance to temozolomide.
Collapse
Affiliation(s)
- Ondrej Honc
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
4
|
Zhang H, Du Y, Qi L, Xiao S, Braun FK, Kogiso M, Huang Y, Huang F, Abdallah A, Suarez M, Karthick S, Ahmed NM, Salsman VS, Baxter PA, Su JM, Brat DJ, Hellenbeck PL, Teo WY, Patel AJ, Li XN. Targeting GBM with an Oncolytic Picornavirus SVV-001 alone and in combination with fractionated Radiation in a Novel Panel of Orthotopic PDX models. J Transl Med 2023; 21:444. [PMID: 37415222 PMCID: PMC10324131 DOI: 10.1186/s12967-023-04237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Animal models representing different molecular subtypes of glioblastoma multiforme (GBM) is desired for developing new therapies. SVV-001 is an oncolytic virus selectively targeting cancer cells. It's capacity of passing through the blood brain barrier makes is an attractive novel approach for GBM. MATERIALS AND METHODS 23 patient tumor samples were implanted into the brains of NOD/SCID mice (1 × 105 cells/mouse). Tumor histology, gene expression (RNAseq), and growth rate of the developed patient-derived orthotopic xenograft (PDOX) models were compared with the originating patient tumors during serial subtransplantations. Anti-tumor activities of SVV-001 were examined in vivo; and therapeutic efficacy validated in vivo via single i.v. injection (1 × 1011 viral particle) with or without fractionated (2 Gy/day x 5 days) radiation followed by analysis of animal survival times, viral infection, and DNA damage. RESULTS PDOX formation was confirmed in 17/23 (73.9%) GBMs while maintaining key histopathological features and diffuse invasion of the patient tumors. Using differentially expressed genes, we subclassified PDOX models into proneural, classic and mesenchymal groups. Animal survival times were inversely correlated with the implanted tumor cells. SVV-001 was active in vitro by killing primary monolayer culture (4/13 models), 3D neurospheres (7/13 models) and glioma stem cells. In 2/2 models, SVV-001 infected PDOX cells in vivo without harming normal brain cells and significantly prolonged survival times in 2/2 models. When combined with radiation, SVV-001 enhanced DNA damages and further prolonged animal survival times. CONCLUSION A panel of 17 clinically relevant and molecularly annotated PDOX modes of GBM is developed, and SVV-001 exhibited strong anti-tumor activities in vitro and in vivo.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Lin Qi
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Sophie Xiao
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mari Kogiso
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery, Dushou Lake Hospital, Soochow University Medical School, Suzhou, Jiangsu, China
| | - Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Aalaa Abdallah
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Sekar Karthick
- Pediatric Brain Tumor Research Office, Cancer and Stem Cell Biology Program, SingHealth Duke-NUS Academic Medical Center, Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Duke-NUS Medical School, 169610, Singapore, Singapore
| | | | | | - Patricia A Baxter
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack M Su
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Wan-Yee Teo
- Texas Children's Cancer Center, Houston, TX, USA
- Pediatric Brain Tumor Research Office, Cancer and Stem Cell Biology Program, SingHealth Duke-NUS Academic Medical Center, Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Duke-NUS Medical School, 169610, Singapore, Singapore
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA.
- Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Xiao-Nan Li
- Texas Children's Cancer Center, Houston, TX, USA.
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Dahis D, Azagury DM, Obeid F, Dion MZ, Cryer AM, Riquelme MA, Dosta P, Abraham AW, Gavish M, Artzi N, Shamay Y, Azhari H. Focused Ultrasound Enhances Brain Delivery of Sorafenib Nanoparticles. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Daniel Dahis
- Department of Biomedical Engineering Technion Institute of Technology Haifa 3200003 Israel
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Dana Meron Azagury
- Department of Biomedical Engineering Technion Institute of Technology Haifa 3200003 Israel
| | - Fadi Obeid
- The Ruth and Bruce Rappaport Faculty of Medicine Technion Institute of Technology Haifa 31096 Israel
| | - Michelle Z. Dion
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
- Institute for Medical Engineering & Science MIT Cambridge 02139 MA USA
| | - Alexander M. Cryer
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
- Institute for Medical Engineering & Science MIT Cambridge 02139 MA USA
| | - Mariana Alonso Riquelme
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
| | - Pere Dosta
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
- Institute for Medical Engineering & Science MIT Cambridge 02139 MA USA
| | - Ariel William Abraham
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
| | - Moshe Gavish
- The Ruth and Bruce Rappaport Faculty of Medicine Technion Institute of Technology Haifa 31096 Israel
| | - Natalie Artzi
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
- Broad Institute of Harvard and MIT Cambridge MA USA
| | - Yosi Shamay
- Department of Biomedical Engineering Technion Institute of Technology Haifa 3200003 Israel
| | - Haim Azhari
- Department of Biomedical Engineering Technion Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
6
|
Mendez-Gonzalez D, Lifante J, Zabala Gutierrez I, Marin R, Ximendes E, Sanz-de Diego E, Iglesias-de la Cruz MC, Teran FJ, Rubio-Retama J, Jaque D. Optomagnetic nanofluids for controlled brain hyperthermia: a critical study. NANOSCALE 2022; 14:16208-16219. [PMID: 36281691 DOI: 10.1039/d2nr03413a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Optomagnetic nanofluids (OMNFs) are colloidal dispersions of nanoparticles (NPs) with combined magnetic and optical properties. They are especially appealing in biomedicine since they can be used as minimally invasive platforms for controlled hyperthermia treatment of otherwise difficultly accessible tumors such as intracranial ones. On the one hand, magnetic NPs act as heating mediators when subjected to alternating magnetic fields or light irradiation. On the other hand, suitably tailored luminescent NPs can provide a precise and remote thermal readout in real time. The combination of heating and thermometric properties allows, in principle, to precisely monitor the increase in the temperature of brain tumors up to the therapeutic level, without causing undesired collateral damage. In this work we demonstrate that this view is an oversimplification since it ignores the presence of relevant interactions between magnetic (γ-Fe2O3 nanoflowers) and luminescent nanoparticles (Ag2S NPs) that result in a detrimental alteration of their physicochemical properties. The magnitude of such interactions depends on the interparticle distance and on the surface properties of nanoparticles. Experiments performed in mouse brains (phantoms and ex vivo) revealed that OMNFs cannot induce relevant heating under alternating magnetic fields and fail to provide reliable temperature reading. In contrast, we demonstrate that the use of luminescent nanofluids (containing only Ag2S NPs acting as both photothermal agents and nanothermometers) stands out as a better alternative for thermally monitored hyperthermia treatment of brain tumors in small animal models.
Collapse
Affiliation(s)
- Diego Mendez-Gonzalez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal 2, Madrid, 28040, Spain.
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
| | - José Lifante
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Irene Zabala Gutierrez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal 2, Madrid, 28040, Spain.
| | - Riccardo Marin
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
- NanoBIG, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - Erving Ximendes
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
- NanoBIG, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - Elena Sanz-de Diego
- IMDEA Nanociencia, Campus Universitario de Cantoblanco, Calle Faraday 9, 28049 Madrid, Spain
| | - M Carmen Iglesias-de la Cruz
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Francisco J Teran
- IMDEA Nanociencia, Campus Universitario de Cantoblanco, Calle Faraday 9, 28049 Madrid, Spain
- Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Jorge Rubio-Retama
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramon y Cajal 2, Madrid, 28040, Spain.
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
| | - Daniel Jaque
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, Km. 9100, Madrid, 28034, Spain.
- NanoBIG, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| |
Collapse
|
7
|
Kuo YH, Hung HS, Tsai CW, Chiu SC, Liu SP, Chiang YT, Shyu WC, Lin SZ, Fu RH. A Novel Splice Variant of BCAS1 Inhibits β-Arrestin 2 to Promote the Proliferation and Migration of Glioblastoma Cells, and This Effect Was Blocked by Maackiain. Cancers (Basel) 2022; 14:cancers14163890. [PMID: 36010884 PMCID: PMC9405932 DOI: 10.3390/cancers14163890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-enriched myelin-associated protein 1 (BCAS1) is frequently highly expressed in human cancer, but its detailed function is unclear. Here, we identified a novel splice variant of the BCAS1 gene in glioblastoma multiforme (GBM) named BCAS1-SV1. The expression of BCAS1-SV1 was weak in heathy brain cells but high in GBM cell lines. The overexpression of BCAS1-SV1 significantly increased the proliferation and migration of GBM cells, whereas the RNA-interference-mediated knockdown of BCAS1-SV1 reduced proliferation and migration. Moreover, using a yeast-two hybrid assay, immunoprecipitation, and immunofluorescence staining, we confirmed that β-arrestin 2 is an interaction partner of BCAS1-SV1 but not BCAS1. The downregulation of β-arrestin 2 directly enhanced the malignancy of GBM and abrogated the effects of BCAS1-SV1 on GBM cells. Finally, we used a yeast two-hybrid-based growth assay to identify that maackiain (MK) is a potential inhibitor of the interaction between BCAS1-SV1 and β-arrestin 2. MK treatment lessened the proliferation and migration of GBM cells and prolonged the lifespan of tumor-bearing mice in subcutaneous xenograft and intracranial U87-luc xenograft models. This study provides the first evidence that the gain-of-function BCAS1-SV1 splice variant promotes the development of GBM by suppressing the β-arrestin 2 pathway and opens up a new therapeutic perspective in GBM.
Collapse
Affiliation(s)
- Yun-Hua Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-422052121-7826
| |
Collapse
|
8
|
Delle Donne R, Iannucci R, Rinaldi L, Roberto L, Oliva MA, Senatore E, Borzacchiello D, Lignitto L, Giurato G, Rizzo F, Sellitto A, Chiuso F, Castaldo S, Scala G, Campani V, Nele V, De Rosa G, D'Ambrosio C, Garbi C, Scaloni A, Weisz A, Ambrosino C, Arcella A, Feliciello A. Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth. Commun Biol 2022; 5:780. [PMID: 35918402 PMCID: PMC9345969 DOI: 10.1038/s42003-022-03639-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and aggressive form of primary brain tumor in the adult population; its high recurrence rate and resistance to current therapeutics urgently demand a better therapy. Regulation of protein stability by the ubiquitin proteasome system (UPS) represents an important control mechanism of cell growth. UPS deregulation is mechanistically linked to the development and progression of a variety of human cancers, including GBM. Thus, the UPS represents a potentially valuable target for GBM treatment. Using an integrated approach that includes proteomics, transcriptomics and metabolic profiling, we identify praja2, a RING E3 ubiquitin ligase, as the key component of a signaling network that regulates GBM cell growth and metabolism. Praja2 is preferentially expressed in primary GBM lesions expressing the wild-type isocitrate dehydrogenase 1 gene (IDH1). Mechanistically, we found that praja2 ubiquitylates and degrades the kinase suppressor of Ras 2 (KSR2). As a consequence, praja2 restrains the activity of downstream AMP-dependent protein kinase in GBM cells and attenuates the oxidative metabolism. Delivery in the brain of siRNA targeting praja2 by transferrin-targeted self-assembling nanoparticles (SANPs) prevented KSR2 degradation and inhibited GBM growth, reducing the size of the tumor and prolonging the survival rate of treated mice. These data identify praja2 as an essential regulator of cancer cell metabolism, and as a potential therapeutic target to suppress GBM growth.
Collapse
Affiliation(s)
- Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Rosa Iannucci
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | | | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Luca Lignitto
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | - Giovanni Scala
- Department of Biology, University Federico II, Naples, Italy
| | | | - Valeria Nele
- Department of Pharmacy, University Federico II, Naples, Italy
| | | | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
- Genome Research Center for Health, Campus of Medicine, University of Salerno, Salerno, Italy
| | - Concetta Ambrosino
- Biogem, Ariano Irpino, Avellino, Italy
- Department of Science and Technology University of Sannio, Benevento, Italy
| | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.
| |
Collapse
|
9
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Van Renterghem B, Wozniak A, Tarantola L, Casazza A, Wellens J, Nysen M, Vanleeuw U, Lee CJ, Reyns G, Sciot R, Kindt N, Schöffski P. Enhanced Antitumor Efficacy of PhAc-ALGP-Dox, an Enzyme-Activated Doxorubicin Prodrug, in a Panel of THOP1-Expressing Patient-Derived Xenografts of Soft Tissue Sarcoma. Biomedicines 2022; 10:biomedicines10040862. [PMID: 35453612 PMCID: PMC9025547 DOI: 10.3390/biomedicines10040862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Despite poor response rates and dose-limiting cardiotoxicity, doxorubicin (doxo) remains the standard-of-care for patients with advanced soft tissue sarcoma. We evaluated the efficacy of two tetrapeptidic doxo prodrugs (PhAc-ALGP-Dox or CBR-049 and CBR-050) that are locally activated by enzymes expressed in the tumor environment, in ten sarcoma patient-derived xenografts. Xenograft models were selected based on expression of the main activating enzyme, i.e., thimet oligopeptidase (THOP1). Mice were either randomized to vehicle, doxo, CBR-049 and CBR-050 or control, doxo, aldoxorubicin (aldoxo) and CBR-049. Treatment efficacy was assessed by tumor volume measurement and histological assessment of ex-mouse tumors. CBR-049 showed significant tumor growth delay compared to control in all xenografts investigated and was superior compared to doxo in all but one. At the same time, CBR-049 showed comparable efficacy to aldoxo but the latter was found to have a complex safety profile in mice. CBR-050 demonstrated tumor growth delay compared to control in one xenograft but was not superior to doxo. For both experimental prodrugs, strong immunostaining for THOP1 was found to predict better antitumor efficacy. The prodrugs were well tolerated without any adverse events, even though molar doses were 17-fold higher than those administered and tolerated for doxo.
Collapse
Affiliation(s)
- Britt Van Renterghem
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.); (L.T.); (J.W.); (M.N.); (U.V.); (C.-J.L.)
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.); (L.T.); (J.W.); (M.N.); (U.V.); (C.-J.L.)
| | - Ludovica Tarantola
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.); (L.T.); (J.W.); (M.N.); (U.V.); (C.-J.L.)
| | - Andrea Casazza
- CoBioRes, Campus Gasthuisberg, Catholic University of Leuven, 3000 Leuven, Belgium; (A.C.); (G.R.); (N.K.)
| | - Jasmien Wellens
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.); (L.T.); (J.W.); (M.N.); (U.V.); (C.-J.L.)
| | - Madita Nysen
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.); (L.T.); (J.W.); (M.N.); (U.V.); (C.-J.L.)
| | - Ulla Vanleeuw
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.); (L.T.); (J.W.); (M.N.); (U.V.); (C.-J.L.)
| | - Che-Jui Lee
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.); (L.T.); (J.W.); (M.N.); (U.V.); (C.-J.L.)
| | - Geert Reyns
- CoBioRes, Campus Gasthuisberg, Catholic University of Leuven, 3000 Leuven, Belgium; (A.C.); (G.R.); (N.K.)
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Nele Kindt
- CoBioRes, Campus Gasthuisberg, Catholic University of Leuven, 3000 Leuven, Belgium; (A.C.); (G.R.); (N.K.)
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Catholic University of Leuven, 3000 Leuven, Belgium; (B.V.R.); (A.W.); (L.T.); (J.W.); (M.N.); (U.V.); (C.-J.L.)
- Department of General Medical Oncology, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
11
|
Altered Elemental Distribution in Male Rat Brain Tissue as a Predictor of Glioblastoma Multiforme Growth-Studies Using SR-XRF Microscopy. Int J Mol Sci 2022; 23:ijms23020703. [PMID: 35054889 PMCID: PMC8775692 DOI: 10.3390/ijms23020703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal's brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat's brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression.
Collapse
|
12
|
Cruz Flores VA, Menghani H, Mukherjee PK, Marrero L, Obenaus A, Dang Q, Khoutorova L, Reid MM, Belayev L, Bazan NG. Combined Therapy With Avastin, a PAF Receptor Antagonist and a Lipid Mediator Inhibited Glioblastoma Tumor Growth. Front Pharmacol 2021; 12:746470. [PMID: 34630114 PMCID: PMC8498947 DOI: 10.3389/fphar.2021.746470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive, highly proliferative, invasive brain tumor with a poor prognosis and low survival rate. The current standard of care for GBM is chemotherapy combined with radiation following surgical intervention, altogether with limited efficacy, since survival averages 18 months. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the dysregulation of numerous signaling pathways. Recently emerging therapies to precisely modulate tumor angiogenesis, inflammation, and oxidative stress are gaining attention as potential options to combat GBM. Using a mouse model of GBM, this study aims to investigate Avastin (suppressor of vascular endothelial growth factor and anti-angiogenetic treatment), LAU-0901 (a platelet-activating factor receptor antagonist that blocks pro-inflammatory signaling), Elovanoid; ELV, a novel pro-homeostatic lipid mediator that protects neural cell integrity and their combination as an alternative treatment for GBM. Female athymic nude mice were anesthetized with ketamine/xylazine, and luciferase-modified U87MG tumor cells were stereotactically injected into the right striatum. On post-implantation day 13, mice received one of the following: LAU-0901, ELV, Avastin, and all three compounds in combination. Bioluminescent imaging (BLI) was performed on days 13, 20, and 30 post-implantation. Mice were perfused for ex vivo MRI on day 30. Bioluminescent intracranial tumor growth percentage was reduced by treatments with LAU-0901 (43%), Avastin (77%), or ELV (86%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 72, 92, and 96%, respectively. Additionally, tumor reduction was confirmed by MRI on day 30, which shows a decrease in tumor volume by treatments with LAU-0901 (37%), Avastin (67%), or ELV (81.5%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 69, 78.7, and 88.6%, respectively. We concluded that LAU-0901 and ELV combined with Avastin exert a better inhibitive effect in GBM progression than monotherapy. To our knowledge, this is the first study that demonstrates the efficacy of these novel therapeutic regimens in a model of GBM and may provide the basis for future therapeutics in GBM patients.
Collapse
Affiliation(s)
- Valerie A Cruz Flores
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Pediatrics, Hematology-Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Hemant Menghani
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Pediatrics, Hematology-Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Luis Marrero
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvin, Irvine, CA, United States
| | - Quan Dang
- Department of Pediatrics, School of Medicine, University of California Irvin, Irvine, CA, United States
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Madigan M Reid
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ludmila Belayev
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
13
|
Gabay M, Weizman A, Zeineh N, Kahana M, Obeid F, Allon N, Gavish M. Liposomal Carrier Conjugated to APP-Derived Peptide for Brain Cancer Treatment. Cell Mol Neurobiol 2021; 41:1019-1029. [PMID: 33025416 PMCID: PMC11448598 DOI: 10.1007/s10571-020-00969-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
Brain tumors are hard to treat with the currently available therapy. The major obstacle in the treatment of brain tumors is the lack of therapeutic strategies capable to penetrate the blood-brain barrier (BBB). The BBB is an endothelial interface that separates the brain from the circulatory blood system and prevents the exposure of the central nervous system (CNS) to circulating toxins and potentially harmful compounds. Unfortunately, the BBB prevents also the penetration of therapeutic compounds into the brain. We present here a drug-delivery liposomal carrier, conjugated to a peptide inserted in the liposomal membrane, which is putatively recognized by BBB transporters. The peptide is a short sequence of 5 amino acids (RERMS) present in the amyloid precursor protein (APP). This APP-targeted liposomal system was designed specifically for transporting compounds with anti-cancer activity via the BBB into the brain in an effective manner. This drug-delivery liposomal carrier loaded with the anti-cancer compounds temozolomide (TMZ), curcumin, and doxorubicin crossed the BBB in an in vitro model as well as in vivo (mice model). In the in vitro model, the targeted liposomes crossed the BBB model fourfold higher than the non-targeted liposomes. Labeled targeted liposomes penetrated the brain in vivo 35% more than non-targeted liposomes. Treatment of mice that underwent intracranial injection of human U87 glioblastoma, with the targeted liposomes loaded with the three tested anti-cancer agents, delayed the tumor growth and prolonged the mice survival in a range of 45% -70%. It appears that the targeted liposomal drug-delivery system enables better therapeutic efficacy in a SCID mouse model of glioblastoma compared to the corresponding non-targeted liposomes and the free compounds.
Collapse
Affiliation(s)
- Martin Gabay
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, 31096, Haifa, Israel
| | - Abraham Weizman
- Research Unit, Geha Mental Health Center and the Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, 4910002, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Nidal Zeineh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, 31096, Haifa, Israel
| | - Meygal Kahana
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, 31096, Haifa, Israel
| | - Fadi Obeid
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, 31096, Haifa, Israel
| | - Nahum Allon
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, 31096, Haifa, Israel
| | - Moshe Gavish
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, 31096, Haifa, Israel.
| |
Collapse
|
14
|
McCrorie P, Vasey CE, Smith SJ, Marlow M, Alexander C, Rahman R. Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma. J Control Release 2020; 328:917-931. [DOI: 10.1016/j.jconrel.2020.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022]
|
15
|
Buzun K, Bielawska A, Bielawski K, Gornowicz A. DNA topoisomerases as molecular targets for anticancer drugs. J Enzyme Inhib Med Chem 2020; 35:1781-1799. [PMID: 32975138 PMCID: PMC7534307 DOI: 10.1080/14756366.2020.1821676] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The significant role of topoisomerases in the control of DNA chain topology has been confirmed in numerous research conducted worldwide. The prevalence of these enzymes, as well as the key importance of topoisomerase in the proper functioning of cells, have made them the target of many scientific studies conducted all over the world. This article is a comprehensive review of knowledge about topoisomerases and their inhibitors collected over the years. Studies on the structure-activity relationship and molecular docking are one of the key elements driving drug development. In addition to information on molecular targets, this article contains details on the structure-activity relationship of described classes of compounds. Moreover, the work also includes details about the structure of the compounds that drive the mode of action of topoisomerase inhibitors. Finally, selected topoisomerases inhibitors at the stage of clinical trials and their potential application in the chemotherapy of various cancers are described.
Collapse
Affiliation(s)
- Kamila Buzun
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
Viale M, Vecchio G, Maric I, Cilli M, Aprile A, Ponzoni M, Fontana V, Priori EC, Bertone V, Rocco M. Fibrin gels entrapment of a doxorubicin-containing targeted polycyclodextrin: Evaluation of in vivo antitumor activity in orthotopic models of human neuroblastoma. Toxicol Appl Pharmacol 2019; 385:114811. [PMID: 31705944 DOI: 10.1016/j.taap.2019.114811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023]
Abstract
In vivo local antitumor activity of fibrin gels (FBGs) loaded with the poly-cyclodextrin oCD-NH2/Dox, compared to free Dox, was evaluated in two mouse orthotopic neuroblastoma (NB) models, after positioning of the releasing devices in the visceral space. FBGs were prepared at the fibrinogen (FG) concentrations of 22 and 40 mg/ml clotted in the presence of 0.81 mM/mg FG Ca2+ and 1.32 U/mg FG thrombin. Our results indicate that FBGs loaded with oCD-NH2/Dox and applied as neoadjuvant loco-regional treatment, show an antitumor activity significantly greater than that displayed by the same FBGs loaded with identical dose of Dox or after free Dox administered intra venous (iv). In particular, FBGs prepared at 40 mg/ml showed a slightly lower antitumor activity, although after their positioning we observed a significant initial reduction of tumor burden lasting for several days after gel implantation. FBGs at 22 mg/ml loaded with oCD-NH2/Dox and applied after tumor removal (adjuvant treatment model) showed a significantly better antitumor activity than the iv administration of free Dox, with 90% tumor regrowth reduction compared to untreated controls. In all cases the weight loss post-treatment was limited after gel application, although in the adjuvant treatment the loss of body weight lasted longer than in the other treatment modality. In accordance with our recent published data on the low local toxic effects of FBGs, the present findings also underline an increase of the therapeutic index of Dox when locally administered through FBGs loaded with the oCD-NH2/Dox complex.
Collapse
Affiliation(s)
- Maurizio Viale
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy.
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Irena Maric
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Michele Cilli
- UOS Animal Facility, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Anna Aprile
- UOS Biopolimeri e Proteomica, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Mirco Ponzoni
- Laboratorio di Terapie Sperimentali in Oncologia, Istituto G. Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Vincenzo Fontana
- UOC Epidemiologia Clinica, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Erica C Priori
- Lab. di Biologia Cellulare e Neurobiologia, Dipartimento di Biologia e Biotecnologie, Università di Pavia "L. Spallanzani", Via Ferrata 9, 27100 Pavia, Italy
| | - Vittorio Bertone
- Lab. di Anatomia Comparata e Citologia, Dipartimento di Biologia e Biotecnologie, Università di Pavia "L. Spallanzani", Via Ferrata 9, 27100 Pavia, Italy
| | - Mattia Rocco
- UOS Biopolimeri e Proteomica, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| |
Collapse
|
17
|
Cranmer LD. Spotlight on aldoxorubicin (INNO-206) and its potential in the treatment of soft tissue sarcomas: evidence to date. Onco Targets Ther 2019; 12:2047-2062. [PMID: 30936721 PMCID: PMC6430065 DOI: 10.2147/ott.s145539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anthracyclines, and doxorubicin in particular, remain a mainstay of sarcoma therapy. Despite modest activity and significant toxicities, no cytotoxic monotherapy has yet yielded superior overall survival over doxorubicin for therapy of advanced soft tissue sarcomas in a randomized trial. Similarly, combination regimens have also been unable to overcome doxorubicin in terms of overall survival. Strategies to ameliorate the most prominent side effect of doxorubicin, cardiotoxicity, are available, but their use in sarcoma patients has been limited. Aldoxorubicin is a prodrug consisting of doxorubicin with a covalent linker. It binds rapidly after intravenous infusion to cysteine-34 of human serum albumin. The drug-albumin conjugate is preferentially retained in tumor tissue, with uptake into tumoral cells. At physiologic pH, the complex is stable. Hydrolysis can occur under the acidic conditions of the endocytic lysosome, releasing doxorubicin. Doxorubicin then distributes to various cellular compartments, including Golgi, mitochondrion, and nucleus, with subsequent cytotoxic effects. Aldoxorubicin has demonstrated in vitro and in vivo activities in both cancer model systems and human xenografts. Preclinical models also support its decreased cardiac effects vs doxorubicin, although such promising results require formal comparison at efficacy equivalent doses of the two drugs. Phase I studies confirmed the tolerability of aldoxorubicin in humans. Clinical cardiotoxicity was not observed, but molecular and subclinical cardiac effects could be demonstrated. A Phase II study in treatment-naïve, advanced sarcoma patients demonstrated improved progression-free survival and response rate over doxorubicin, although no survival benefit was evident. A Phase III study of aldoxorubicin vs investigator's choice from a panel of chemotherapy regimens in the salvage setting was unable to demonstrate a benefit in progression-free or overall survival in the entire population. Progression-free survival in L-sarcomas (leiomyosarcomas and liposarcomas) was documented. While evidence of subclinical cardiac effects was seen in a small proportion of aldoxorubicin-treated patients, data from both the Phase II and III studies indicated a favorable cardiotoxicity profile vs doxorubicin. Despite the negative results from this Phase III study, the importance of anthracycline therapy in sarcoma management merits further investigation of the potential role of aldoxorubicin in this indication. Other avenues for progress include identification of sensitive histologies and biomarkers of activity, exploration of clinical niches without proven standard therapies, and exploration of alternate dosing strategies.
Collapse
Affiliation(s)
- Lee D Cranmer
- Division of Medical Oncology, University of Washington, Seattle, WA, USA,
| |
Collapse
|
18
|
Abstract
AbstractA high throughput histology (microTMA) platform was applied for testing drugs against tumors in a novel 3D heterotypic glioblastoma brain sphere (gBS) model consisting of glioblastoma tumor cells, iPSC-derived neurons, glial cells and astrocytes grown in a spheroid. The differential responses of gBS tumors and normal neuronal cells to sustained treatments with anti-cancer drugs temozolomide (TMZ) and doxorubicin (DOX) were investigated. gBS were exposed to TMZ or DOX over a 7-day period. Untreated gBS tumors increased in size over a 4-week culture period, however, there was no increase in the number of normal neuronal cells. TMZ (100 uM) and DOX (0.3 uM) treatments caused ~30% (P~0.07) and ~80% (P < 0.001) decreases in the size of the tumors, respectively. Neither treatment altered the number of normal neuronal cells in the model. The anti-tumor effects of TMZ and DOX were mediated in part by selective induction of apoptosis. This platform provides a novel approach for screening new anti-glioblastoma agents and evaluating different treatment options for a given patient.
Collapse
|
19
|
Abstract
AbstractA high throughput histology (microTMA) platform was applied for testing drugs against tumors in a novel 3D heterotypic glioblastoma brain sphere (gBS) model consisting of glioblastoma tumor cells, iPSC-derived neurons, glial cells and astrocytes grown in a spheroid. The differential responses of gBS tumors and normal neuronal cells to sustained treatments with anti-cancer drugs temozolomide (TMZ) and doxorubicin (DOX) were investigated. gBS were exposed to TMZ or DOX over a 7-day period. Untreated gBS tumors increased in size over a 4-week culture period, however, there was no increase in the number of normal neuronal cells. TMZ (100 uM) and DOX (0.3 uM) treatments caused ~30% (P~0.07) and ~80% (P < 0.001) decreases in the size of the tumors, respectively. Neither treatment altered the number of normal neuronal cells in the model. The anti-tumor effects of TMZ and DOX were mediated in part by selective induction of apoptosis. This platform provides a novel approach for screening new anti-glioblastoma agents and evaluating different treatment options for a given patient.
Collapse
|
20
|
Plummer S, Wallace S, Ball G, Lloyd R, Schiapparelli P, Quiñones-Hinojosa A, Hartung T, Pamies D. A Human iPSC-derived 3D platform using primary brain cancer cells to study drug development and personalized medicine. Sci Rep 2019; 9:1407. [PMID: 30723234 PMCID: PMC6363784 DOI: 10.1038/s41598-018-38130-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
A high throughput histology (microTMA) platform was applied for testing drugs against tumors in a novel 3D heterotypic glioblastoma brain sphere (gBS) model consisting of glioblastoma tumor cells, iPSC-derived neurons, glial cells and astrocytes grown in a spheroid. The differential responses of gBS tumors and normal neuronal cells to sustained treatments with anti-cancer drugs temozolomide (TMZ) and doxorubicin (DOX) were investigated. gBS were exposed to TMZ or DOX over a 7-day period. Untreated gBS tumors increased in size over a 4-week culture period, however, there was no increase in the number of normal neuronal cells. TMZ (100 uM) and DOX (0.3 uM) treatments caused ~30% (P~0.07) and ~80% (P < 0.001) decreases in the size of the tumors, respectively. Neither treatment altered the number of normal neuronal cells in the model. The anti-tumor effects of TMZ and DOX were mediated in part by selective induction of apoptosis. This platform provides a novel approach for screening new anti-glioblastoma agents and evaluating different treatment options for a given patient.
Collapse
Affiliation(s)
- Simon Plummer
- MicroMatrices Associates Ltd, Dundee, DD15JJ, Scotland.
| | | | - Graeme Ball
- Dundee University Imaging Facility, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland
| | - Roslyn Lloyd
- PerkinElmer, 68 Elm Street, Hopkinton, Massachusetts, 01748, USA
| | - Paula Schiapparelli
- Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | | | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205, USA
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, 21205, USA
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Raucher D, Dragojevic S, Ryu J. Macromolecular Drug Carriers for Targeted Glioblastoma Therapy: Preclinical Studies, Challenges, and Future Perspectives. Front Oncol 2018; 8:624. [PMID: 30619758 PMCID: PMC6304427 DOI: 10.3389/fonc.2018.00624] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma, the most common, aggressive brain tumor, ranks among the least curable cancers-owing to its strong tendency for intracranial dissemination, high proliferation potential, and inherent tumor resistance to radiation and chemotherapy. Current glioblastoma treatment strategies are further hampered by a critical challenge: adverse, non-specific treatment effects in normal tissue combined with the inability of drugs to penetrate the blood brain barrier and reach the tumor microenvironment. Thus, the creation of effective therapies for glioblastoma requires development of targeted drug-delivery systems that increase accumulation of the drug in the tumor tissue while minimizing systemic toxicity in healthy tissues. As demonstrated in various preclinical glioblastoma models, macromolecular drug carriers have the potential to improve delivery of small molecule drugs, therapeutic peptides, proteins, and genes to brain tumors. Currently used macromolecular drug delivery systems, such as liposomes and polymers, passively target solid tumors, including glioblastoma, by capitalizing on abnormalities of the tumor vasculature, its lack of lymphatic drainage, and the enhanced permeation and retention (EPR) effect. In addition to passive targeting, active targeting approaches include the incorporation of various ligands on the surface of macromolecules that bind to cell surface receptors expressed on specific cancer cells. Active targeting approaches also utilize stimulus responsive macromolecules which further improve tumor accumulation by triggering changes in the physical properties of the macromolecular carrier. The stimulus can be an intrinsic property of the tumor tissue, such as low pH, or extrinsic, such as local application of ultrasound or heat. This review article explores current preclinical studies and future perspectives of targeted drug delivery to glioblastoma by macromolecular carrier systems, including polymeric micelles, nanoparticles, and biopolymers. We highlight key aspects of the design of diverse macromolecular drug delivery systems through a review of their preclinical applications in various glioblastoma animal models. We also review the principles and advantages of passive and active targeting based on various macromolecular carriers. Additionally, we discuss the potential disadvantages that may prevent clinical application of these carriers in targeting glioblastoma, as well as approaches to overcoming these obstacles.
Collapse
Affiliation(s)
- Drazen Raucher
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| | - Sonja Dragojevic
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| | - Jungsu Ryu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| |
Collapse
|
22
|
Da Ros M, Iorio AL, De Gregorio V, Fantappiè O, Laffi G, de Martino M, Pisano C, Genitori L, Sardi I. Aldoxorubicin and Temozolomide combination in a xenograft mice model of human glioblastoma. Oncotarget 2018; 9:34935-34944. [PMID: 30405885 PMCID: PMC6201851 DOI: 10.18632/oncotarget.26183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/15/2018] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is still an incurable disease. The front-line Temozolomide (TMZ)-based therapy suffers from poor efficacy, underlining the need of new therapies. Preclinically, Aldoxorubicin (Aldox), a novel prodrug of Doxorubicin (Dox), has been successfully tested against GBM, encouraging the study of its association with other agents. For the first time, we evaluated the effectiveness of Aldox combined to TMZ in preclinical models of GBM. Our in vitro results demonstrated that the anti–glioma effect of Aldox was more marked than TMZ and their combination increased the killing effect of the anthracycline in TMZ-resistant GBM cells. Moreover, unlike Dox, Aldox was able to accumulate in P-glycoprotein (P-gp)-overexpressed cells due to a negative regulation of the P-gp function. We also compared efficacy and safety of weekly administrations of Aldox (16 mg/kg), with or without TMZ (0.9 mg/kg, daily injections), in the U87 xenograft mouse model. Aldox therapy induced a moderate tumor volume inhibition (TVI) and an increased survival rate (+12.5% vs vehicle). On the other hand, when combined to TMZ, Aldox caused a significant TVI (P=0.0175 vs vehicle) and delayed the mortality during the experimental period, although TVI and endpoint survival percentage (+37.5% vs vehicle) were not significantly different from TMZ alone. Our preliminary data showed that Aldox exerts anti–glioma effects in vitro and in vivo. It also enhances its antitumor activity when combined with TMZ, resulting in a superior efficacy compared to the single agents, without adverse side effects.
Collapse
Affiliation(s)
- Martina Da Ros
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, Italy
| | - Anna Lisa Iorio
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, Italy
| | - Veronica De Gregorio
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, Italy
| | - Ornella Fantappiè
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giacomo Laffi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maurizio de Martino
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, Italy
| | | | - Lorenzo Genitori
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, Italy
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
23
|
Alphandéry E. Glioblastoma Treatments: An Account of Recent Industrial Developments. Front Pharmacol 2018; 9:879. [PMID: 30271342 PMCID: PMC6147115 DOI: 10.3389/fphar.2018.00879] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/20/2018] [Indexed: 12/28/2022] Open
Abstract
The different drugs and medical devices, which are commercialized or under industrial development for glioblastoma treatment, are reviewed. Their different modes of action are analyzed with a distinction being made between the effects of radiation, the targeting of specific parts of glioma cells, and immunotherapy. Most of them are still at a too early stage of development to firmly conclude about their efficacy. Optune, which triggers antitumor activity by blocking the mitosis of glioma cells under the application of an alternating electric field, seems to be the only recently developed therapy with some efficacy reported on a large number of GBM patients. The need for early GBM diagnosis is emphasized since it could enable the treatment of GBM tumors of small sizes, possibly easier to eradicate than larger tumors. Ways to improve clinical protocols by strengthening preclinical studies using of a broader range of different animal and tumor models are also underlined. Issues related with efficient drug delivery and crossing of blood brain barrier are discussed. Finally societal and economic aspects are described with a presentation of the orphan drug status that can accelerate the development of GBM therapies, patents protecting various GBM treatments, the different actors tackling GBM disease, the cost of GBM treatments, GBM market figures, and a financial analysis of the different companies involved in the development of GBM therapies.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Paris, France.,Nanobacterie SARL, Paris, France
| |
Collapse
|
24
|
Molecular and Structural Traits of Insulin Receptor Substrate 1/LC3 Nuclear Structures and Their Role in Autophagy Control and Tumor Cell Survival. Mol Cell Biol 2018; 38:MCB.00608-17. [PMID: 29483302 DOI: 10.1128/mcb.00608-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/21/2018] [Indexed: 11/20/2022] Open
Abstract
Insulin receptor substrate 1 (IRS-1) is a common cytosolic adaptor molecule involved in signal transduction from insulin and insulin-like growth factor I (IGF-I) receptors. IRS-1 can also be found in the nucleus. We report here a new finding of unique IRS-1 nuclear structures, which we observed initially in glioblastoma biopsy specimens and glioblastoma xenografts. These nuclear structures can be reproduced in vitro by the ectopic expression of IRS-1 cDNA cloned in frame with the nuclear localization signal (NLS-IRS-1). In these structures, IRS-1 localizes at the periphery, while the center harbors a key autophagy protein, LC3. These new nuclear structures are highly dynamic, rapidly exchange IRS-1 molecules with the surrounding nucleoplasm, disassemble during mitosis, and require a growth stimulus for their reassembly and maintenance. In tumor cells engineered to express NLS-IRS-1, the IRS-1/LC3 nuclear structures repress autophagy induced by either amino acid starvation or rapamycin treatment. In this process, IRS-1 nuclear structures sequester LC3 inside the nucleus, possibly preventing its cytosolic translocation and the formation of new autophagosomes. This novel mechanism provides a quick and reversible way of inhibiting autophagy, which could counteract autophagy-induced cancer cell death under severe stress, including anticancer therapies.
Collapse
|
25
|
Albumin-Encapsulated Liposomes: A Novel Drug Delivery Carrier With Hydrophobic Drugs Encapsulated in the Inner Aqueous Core. J Pharm Sci 2018; 107:436-445. [DOI: 10.1016/j.xphs.2017.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
|
26
|
Metabolomics of Therapy Response in Preclinical Glioblastoma: A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of Temozolomide Treatment. Metabolites 2017; 7:metabo7020020. [PMID: 28524099 PMCID: PMC5487991 DOI: 10.3390/metabo7020020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common aggressive primary brain tumor in adults, with a short survival time even after aggressive therapy. Non-invasive surrogate biomarkers of therapy response may be relevant for improving patient survival. Previous work produced such biomarkers in preclinical GBM using semi-supervised source extraction and single-slice Magnetic Resonance Spectroscopic Imaging (MRSI). Nevertheless, GBMs are heterogeneous and single-slice studies could prevent obtaining relevant information. The purpose of this work was to evaluate whether a multi-slice MRSI approach, acquiring consecutive grids across the tumor, is feasible for preclinical models and may produce additional insight into therapy response. Nosological images were analyzed pixel-by-pixel and a relative responding volume, the Tumor Responding Index (TRI), was defined to quantify response. Heterogeneous response levels were observed and treated animals were ascribed to three arbitrary predefined groups: high response (HR, n = 2), TRI = 68.2 ± 2.8%, intermediate response (IR, n = 6), TRI = 41.1 ± 4.2% and low response (LR, n = 2), TRI = 13.4 ± 14.3%, producing therapy response categorization which had not been fully registered in single-slice studies. Results agreed with the multi-slice approach being feasible and producing an inverse correlation between TRI and Ki67 immunostaining. Additionally, ca. 7-day oscillations of TRI were observed, suggesting that host immune system activation in response to treatment could contribute to the responding patterns detected.
Collapse
|
27
|
Kim KM, Shim JK, Chang JH, Lee JH, Kim SH, Choi J, Park J, Kim EH, Kim SH, Huh YM, Lee SJ, Cheong JH, Kang SG. Failure of a patient-derived xenograft for brain tumor model prepared by implantation of tissue fragments. Cancer Cell Int 2016; 16:43. [PMID: 27293382 PMCID: PMC4901492 DOI: 10.1186/s12935-016-0319-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/31/2016] [Indexed: 12/28/2022] Open
Abstract
Background With the continuing development of new anti-cancer drugs comes a need for preclinical experimental models capable of predicting the clinical activity of these novel agents in cancer patients. However existing models have a limited ability to recapitulate the clinical characteristics and associated drug sensitivity of tumors. Among the more promising approaches for improving preclinical models is direct implantation of patient-derived tumor tissue into immunocompromised mice, such as athymic nude or non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. In the current study, we attempted to develop patient-derived xenograft (PDX) models using tissue fragments from surgical samples of brain tumors. Methods In this approach, tiny tissue fragments of tumors were biopsied from eight brain tumor patients—seven glioblastoma patients and one primitive neuroectodermal tumor patient. Two administration methods—a cut-down syringe and a pipette—were used to implant tissue fragments from each patient into the brains of athymic nude mice. Results In contrast to previous reports, and contrary to our expectations, we found that none of these fragments from brain tumor biopsies resulted in the successful establishment of xenograft tumors. Conclusions These results suggest that fragments of surgical specimens from brain tumor patients are unsuitable for implementation of brain tumor PDX models, and instead recommend other in vivo testing platforms for brain tumors, such as cell-based brain tumor models. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0319-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung-Min Kim
- Department of Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Severance Hospital, Brain Tumor Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Brain Tumor Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Ji-Hyun Lee
- Department of Neurosurgery, Severance Hospital, Brain Tumor Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Se-Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Junjeong Choi
- Department of Pharmacy, Yonsei University College of Pharmacy, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983 Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Severance Hospital, Brain Tumor Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Severance Hospital, Brain Tumor Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Sun Ho Kim
- Department of Neurosurgery, Severance Hospital, Brain Tumor Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Yong-Min Huh
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Brain Tumor Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
28
|
Delgado-Goñi T, Ortega-Martorell S, Ciezka M, Olier I, Candiota AP, Julià-Sapé M, Fernández F, Pumarola M, Lisboa PJ, Arús C. MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis. NMR IN BIOMEDICINE 2016; 29:732-743. [PMID: 27061401 DOI: 10.1002/nbm.3521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Characterization of glioblastoma (GB) response to treatment is a key factor for improving patients' survival and prognosis. MRI and magnetic resonance spectroscopic imaging (MRSI) provide morphologic and metabolic profiles of GB but usually fail to produce unequivocal biomarkers of response. The purpose of this work is to provide proof of concept of the ability of a semi-supervised signal source extraction methodology to produce images with robust recognition of response to temozolomide (TMZ) in a preclinical GB model. A total of 38 female C57BL/6 mice were used in this study. The semi-supervised methodology extracted the required sources from a training set consisting of MRSI grids from eight GL261 GBs treated with TMZ, and six control untreated GBs. Three different sources (normal brain parenchyma, actively proliferating GB and GB responding to treatment) were extracted and used for calculating nosologic maps representing the spatial response to treatment. These results were validated with an independent test set (7 control and 17 treated cases) and correlated with histopathology. Major differences between the responder and non-responder sources were mainly related to the resonances of mobile lipids (MLs) and polyunsaturated fatty acids in MLs (0.9, 1.3 and 2.8 ppm). Responding tumors showed significantly lower mitotic (3.3 ± 2.9 versus 14.1 ± 4.2 mitoses/field) and proliferation rates (29.8 ± 10.3 versus 57.8 ± 5.4%) than control untreated cases. The methodology described in this work is able to produce nosological images of response to TMZ in GL261 preclinical GBs and suitably correlates with the histopathological analysis of tumors. A similar strategy could be devised for monitoring response to treatment in patients. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- T Delgado-Goñi
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - S Ortega-Martorell
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Mathematics and Statistics, Liverpool John Moores University, Liverpool, UK
| | - M Ciezka
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - I Olier
- Institute for Science and Technology in Medicine, Keele University, Stoke-On-Trent, UK
- Centre for Health Informatics, Institute of Population Health University of Manchester, Manchester, UK
| | - A P Candiota
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - M Julià-Sapé
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - F Fernández
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - M Pumarola
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - P J Lisboa
- Department of Mathematics and Statistics, Liverpool John Moores University, Liverpool, UK
| | - C Arús
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
29
|
Xu J, Chen A, Xiao J, Jiang Z, Tian Y, Tang Q, Cao P, Dai Y, Krainik A, Shen J. Evaluation of tumour vascular distribution and function using immunohistochemistry and BOLD fMRI with carbogen inhalation. Clin Radiol 2016; 71:1255-1262. [PMID: 27170218 DOI: 10.1016/j.crad.2016.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/18/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
AIM To evaluate oxygenation changes in rat subcutaneous C6 gliomas using blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) combined with non-haemodynamic response function (non-HRF) analysis. MATERIALS AND METHODS BOLD fMRI were performed during carbogen inhalation in 20 Wistar rats bearing gliomas. Statistical maps of spatial oxygenation changes were computed by a dedicated non-HRF analysis algorithm. Three types of regions of interest (ROIs) were defined: (1) maximum re-oxygenation zone (ROImax), (2) re-oxygenation zones that were less than the maximum re-oxygenation (ROInon-max), and (3) zones without significant re-oxygenation (ROInone). The values of percent BOLD signal change (PSC), percent enhancement (ΔSI), and significant re-oxygenation (T) were extracted from each ROI. Tumours were sectioned for histology using the fMRI scan orientation and were stained with haematoxylin and eosin and CD105. The number of microvessels (MVN) in each ROI was counted. Differences and correlations among the values for T, PSC, ΔSI, and MVN were determined. RESULTS After carbogen inhalation, the PSC significantly increased in the ROImax areas (p<0.01) located in the tumour parenchyma. No changes occurred in any of the ROInone areas (20/20). Some changes occurred in a minority of the ROInon-max areas (3/60) corresponding to tumour necrosis. MVN and PSC (R=0.59, p=0.01) were significantly correlated in the ROImax areas. In the ROInon-max areas, MVN was significantly correlated with PSC (R=0.55, p=0.00) and ΔSI (R=0.37, p=0.00). CONCLUSIONS Statistical maps obtained via BOLD fMRI with non-HRF analysis can assess the re-oxygenation of gliomas.
Collapse
Affiliation(s)
- J Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - A Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - J Xiao
- Department of Radiology, The Central Hospital of Wuhan, Wuhan, China
| | - Z Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
| | - Y Tian
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China; Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Q Tang
- Department of Radiology, Wuxi People's Hospital, Wuxi, China
| | - P Cao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Y Dai
- Magnetic Resonance Imaging Institute for Biomedical Research, Wayne State University, Detroit, MI, USA
| | - A Krainik
- Department of Neuroradiology and MRI, CHU Grenoble-IFR1, Grenoble, France
| | - J Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Interstitial 5-ALA photodynamic therapy and glioblastoma: Preclinical model development and preliminary results. Photodiagnosis Photodyn Ther 2016. [DOI: 10.1016/j.pdpdt.2015.07.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
da Ros M, Iorio AL, Consolante D, Cardile F, Muratori M, Fantappiè O, Lucchesi M, Guidi M, Pisano C, Sardi I. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma. Am J Cancer Res 2016; 6:639-648. [PMID: 27152241 PMCID: PMC4851843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023] Open
Abstract
Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model.
Collapse
Affiliation(s)
- Martina da Ros
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s HospitalFlorence, Italy
| | - Anna Lisa Iorio
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s HospitalFlorence, Italy
| | | | | | - Monica Muratori
- Department of Experimental, Clinical and Biomedical Sciences, Center of Excellence, DeNothe, University of FlorenceFlorence, Italy
| | - Ornella Fantappiè
- Department of Experimental and Clinical Medicine, University of FlorenceFlorence, Italy
| | - Maurizio Lucchesi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s HospitalFlorence, Italy
| | - Milena Guidi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s HospitalFlorence, Italy
| | | | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s HospitalFlorence, Italy
| |
Collapse
|
32
|
Tagami T, Taki M, Ozeki T. Nanoparticulate Drug Delivery Systems to Overcome the Blood–Brain Barrier. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Alibolandi M, Sadeghi F, Abnous K, Atyabi F, Ramezani M, Hadizadeh F. The chemotherapeutic potential of doxorubicin-loaded PEG-b-PLGA nanopolymersomes in mouse breast cancer model. Eur J Pharm Biopharm 2015; 94:521-31. [PMID: 26170161 DOI: 10.1016/j.ejpb.2015.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
Abstract
Vesicles of mPEG-PLGA block copolymer were developed to deliver a therapeutic quantity of doxorubicin (DOX) for breast cancer treatment. The DOX-loaded nanoparticles (NPs) were prepared by the pH-gradient method and then evaluated in terms of morphology, size, DOX encapsulation efficiency and in vitro drug release mechanism. The PEG-PLGA nanopolymersomes were 134±1.2nm spherical NPs with a narrow size distribution (PDI=0.121). DOX was entrapped in mPEG-PLGA nanopolymersomes with an encapsulation efficiency and a loading content of 91.25±4.27% and 7.3±0.34%, respectively. The DOX-loaded nanopolymersomes were found to be stable, demonstrating no significant change in particle size and encapsulation efficiency (EE%) during the 6-month storage period of the lyophilized powder at 4°C. The nanopolymersomes sustained the release of DOX. In cytotoxicity studies of 4T1 cell line samples, free DOX showed a higher cytotoxicity (IC50=1.76μg/mL) than did DOX-loaded nanopolymersomes (15.82μg/mL) in vitro. In order to evaluate the antitumor efficacy and biodistribution of DOX-loaded nanopolymersomes, murine breast tumors were established on the BALB/c mice, and in vivo studies were performed. The obtained results demonstrated that the prepared drug delivery system was highly effective against a murine breast cancer tumor model and successfully accumulated in the tumor site through an enhanced permeation and retention mechanism. In vivo studies also proved that DOX-loaded nanopolymersomes are stable in blood circulation and could be considered a promising and effective DOX delivery system for breast cancer treatment.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/therapeutic use
- Antibiotics, Antineoplastic/toxicity
- Cell Line, Tumor
- Cell Survival/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacokinetics
- Doxorubicin/therapeutic use
- Doxorubicin/toxicity
- Drug Carriers/chemical synthesis
- Drug Carriers/chemistry
- Drug Compounding
- Drug Stability
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred BALB C
- Microscopy, Electron, Transmission
- Nanoparticles/chemistry
- Particle Size
- Polyesters/chemical synthesis
- Polyesters/chemistry
- Polyethylene Glycols/chemical synthesis
- Polyethylene Glycols/chemistry
- Surface Properties
Collapse
Affiliation(s)
- Mona Alibolandi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Atyabi
- Nanothechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanothechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Jeansonne D, DeLuca M, Marrero L, Lassak A, Pacifici M, Wyczechowska D, Wilk A, Reiss K, Peruzzi F. Anti-tumoral effects of miR-3189-3p in glioblastoma. J Biol Chem 2015; 290:8067-80. [PMID: 25645911 DOI: 10.1074/jbc.m114.633081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors. We have previously found up-regulation of growth differentiation factor 15 (GDF15) in glioblastoma cells treated with the anticancer agent fenofibrate. Sequence analysis of GDF15 revealed the presence of a microRNA, miR-3189, in the single intron. We then asked whether miR-3189 was expressed in clinical samples and whether it was functional in glioblastoma cells. We found that expression of miR-3189-3p was down-regulated in astrocytoma and glioblastoma clinical samples compared with control brain tissue. In vitro, the functionality of miR-3189-3p was tested by RNA-binding protein immunoprecipitation, and miR-3189-3p coimmunoprecipitated with Argonaute 2 together with two of its major predicted gene targets, the SF3B2 splicing factor and the guanine nucleotide exchange factor p63RhoGEF. Overexpression of miR-3189-3p resulted in a significant inhibition of cell proliferation and migration through direct targeting of SF3B2 and p63RhoGEF, respectively. Interestingly, miR-3189-3p levels were increased by treatment of glioblastoma cells with fenofibrate, a lipid-lowering drug with multiple anticancer activities. The attenuated expression of miR-3189-3p in clinical samples paralleled the elevated expression of SF3B2, which could contribute to the activation of SF3B2 growth-promoting pathways in these tumors. Finally, miR-3189-3p-mediated inhibition of tumor growth in vivo further supported the function of this microRNA as a tumor suppressor.
Collapse
Affiliation(s)
- Duane Jeansonne
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Mariacristina DeLuca
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | | | - Adam Lassak
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Marco Pacifici
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Dorota Wyczechowska
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Anna Wilk
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Krzysztof Reiss
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Francesca Peruzzi
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|