1
|
Caban M, Fronik P, Terenzi A, Federa A, Bormio Nunes JH, Pitek R, Kirchhofer D, Schueffl HH, Berger W, Keppler BK, Kowol CR, Heffeter P. A new fluorescent oxaliplatin(iv) complex with EGFR-inhibiting properties for the treatment of drug-resistant cancer cells. Inorg Chem Front 2025; 12:1538-1552. [PMID: 39801772 PMCID: PMC11715172 DOI: 10.1039/d4qi03025g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Platinum chemotherapy is part of every second anticancer treatment regimen. However, its application is limited by severe side effects and drug resistance. The combination of platinum-based chemotherapeutics with EGFR inhibitors has shown remarkable synergism in clinical treatment. To enhance the tolerability of this combination, we designed a novel multi-action oxaliplatin-based platinum(iv) complex with an EGFR-inhibiting moiety (KP2749). KP2749 releases two independent cytotoxic agents upon reduction: oxaliplatin and the EGFR inhibitor KP2187, which was selected for its strong intrinsic fluorescence that became quenched upon complexation to metal ions. In particular, KP2749 demonstrated high stability and specific KP2187 release, with quenched fluorescent properties in its intact form, facilitating the investigation of its intracellular reduction. Notably, by exploiting its fluorescence, we demonstrated that intact KP2749 itself exhibited EGFR-inhibitory properties. Furthermore, subsequent experiments indicated that our complex was able to overcome resistance to oxaliplatin and EGFR inhibitors in vitro and in xenograft models in vivo. These effects were not only based on EGFR inhibition and DNA damage, but also improved cellular drug uptake. Finally, in silico docking analysis confirmed that the intact KP2749 complex had EGFR-binding properties, which were different from free KP2187. Consequently, these data suggested that the coordination of EGFR inhibitors to metal cores (like platinum) allow the fine-tuning of their EGFR-targeting properties. In conclusion, this study not only presents a new potential anticancer drug but also offers a novel fluorescent tool to study the intracellular drug release kinetics of platinum(iv) complexes.
Collapse
Affiliation(s)
- Monika Caban
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Philipp Fronik
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze Ed. 17 90128 Palermo Italy
| | - Anja Federa
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Vienna Doctoral School in Chemistry, University of Vienna Waehringer Strasse 42 1090 Vienna Austria
| | - Julia H Bormio Nunes
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
| | - Rastislav Pitek
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Dominik Kirchhofer
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Hemma H Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer strasse 42 1090 Vienna Austria +43-4277-52680 +43-1-4277-52609
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557
- Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of, Vienna Austria
| |
Collapse
|
2
|
Jiang H, Feng S, Zhang P, Wang J, Jiang Y, Zhang H, Song X, Huang W, Xie Y, Deng C. Petroleum ether extract of Schisandra sphenanthera prevents hyperglycemia and insulin resistance in association with modulation of sweet taste receptors and gut microbiota in T2DM rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118300. [PMID: 38718889 DOI: 10.1016/j.jep.2024.118300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra sphenanthera (Schisandra sphenanthera Rehd. et Wils.) is the dried mature fruit of Schisandra sphenanthera, a plant in the Magnoliaceae family. It was used in the treatment of diabetes mellitus in the Jade Fluid Decoction and the Xiaoke pills, which were recorded in ancient books. However, its mechanism of action in the treatment of type 2 diabetes mellitus (T2DM) was unclear and needs further study. AIM OF THE STUDY This research aimed to investigate the chemical composition and lignan content of Schisandra sphenanthera petroleum ether parts (SPEP) and to evaluate the effects of SPEP on sweet taste receptors (STRs) and intestinal flora in rats on a high-fat diet (HFD). Additionally, the relationships between SPEP and hyperglycemia and insulin resistance were examined. MATERIALS AND METHODS GC-MS was used to determine the chemical composition of SPEP, and HPLC was used to determine the lignin content. A combination of the HFD and the administration of streptozotocin (STZ) was employed to generate a rat model of T2DM. Petroleum ether extracts from Schisandra sphenanthera were used as the focus of the research to evaluate the effects of these extracts on the glucolipid metabolism of T2DM rats, as well as the underlying mechanisms. RESULTS Analysis of the GC-MS spectrum of SESP revealed a total of 58 compounds. HPLC analysis revealed that SPEP had the highest concentration of Schisandrin A and the lowest concentration of Schisandrol A. The drug administration intervention resulted in a significant decrease in body weight and pancreatic weight of diabetic rats compared to the Normal group. When compared to the Model group, the body weight of rats in the drug administration group and the Metformin group had a more moderate decrease, while the pancreatic weight and pancreatic-to-body ratio increased. The Model group shown significant increases in FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, and NEFA, as well as significant decreases in HDL-C and SOD, when compared to the Normal group (P < 0.05). The administration of each group was found to be significantly effective in decreasing FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, NEFA, while increasing HDL-C and SOD when compared to the Model group. The application of SPEP had a positive impact on hepatocyte swelling, hepatocyte degeneration, and necrosis, as well as the morphological structure of pancreatic islet cells. Furthermore, the protein expression levels of T1R2, TRPM5 and GLP-1 in the small intestine of the Model group were reduced. After a period of six weeks, the protein expression levels began to align more closely with those of the Normal group of rats. Analysis of 16S rRNA sequencing revealed that the intestinal microbiota of diabetic rats was significantly disrupted, with a decrease in the abundance of the Firmicutes phylum and an increase in the abundance of the Bacteroidetes phylum. Furthermore, the composition of the dominant genus was distinct from that of the control group. After the drug intervention, the microbiota of diabetic rats was significantly altered, exhibiting a higher abundance and diversity, as well as a significant enrichment of the community. The SPEP treatment resulted in a significant increase in acetic acid, propionic acid, and butyric acid. CONCLUSIONS The findings of this research indicated that SPEP could be effective in treating T2DM through the regulation of STRs, the adjustment of disturbed metabolite levels, and the alteration of intestinal flora.
Collapse
Affiliation(s)
- Haihui Jiang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Shibo Feng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Panpan Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jiaojiao Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yi Jiang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Huawei Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Chong Deng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Provincial Administration of Traditional Chinese Medicine Key Laboratory of Mechanical and Material Basis of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China.
| |
Collapse
|
3
|
Onda N, Nakamichi S, Hirao M, Matsuda K, Matsumoto M, Miyanaga A, Noro R, Gemma A, Seike M. Afatinib plus PEM and CBDCA overcome osimertinib resistance in EGFR-mutated NSCLC with high thrombospondin-1 expression. Cancer Sci 2024; 115:2718-2728. [PMID: 38941131 PMCID: PMC11309943 DOI: 10.1111/cas.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 06/29/2024] Open
Abstract
Osimertinib induces a marked response in non-small-cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) gene mutations. However, acquired resistance to osimertinib remains an inevitable problem. In this study, we aimed to investigate osimertinib-resistant mechanisms and evaluate the combination therapy of afatinib and chemotherapy. We established osimertinib-resistant cell lines (PC-9-OR and H1975-OR) from EGFR-mutant lung adenocarcinoma cell lines PC-9 and H1975 by high exposure and stepwise method. Combination therapy of afatinib plus carboplatin (CBDCA) and pemetrexed (PEM) was effective in both parental and osimertinib-resistant cells. We found that expression of thrombospondin-1 (TSP-1) was upregulated in resistant cells using cDNA microarray analysis. We demonstrated that TSP-1 increases the expression of matrix metalloproteinases through integrin signaling and promotes tumor invasion in both PC-9-OR and H1975-OR, and that epithelial-to-mesenchymal transition (EMT) was involved in H1975-OR. Afatinib plus CBDCA and PEM reversed TSP-1-induced invasion ability and EMT changes in resistant cells. In PC-9-OR xenograft mouse models (five female Balb/c-Nude mice in each group), combination therapy strongly inhibited tumor growth compared with afatinib monotherapy (5 mg/kg, orally, five times per week) or CBDCA (75 mg/kg, intraperitoneally, one time per week) + PEM (100 mg/kg, intraperitoneally, one time per week) over a 28-day period. These results suggest that the combination of afatinib plus CBDCA and PEM, which effectively suppresses TSP-1 expression, may be a promising option in EGFR-mutated NSCLC patients after the acquisition of osimertinib resistance.
Collapse
Affiliation(s)
- Naomi Onda
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Mariko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| |
Collapse
|
4
|
Alsharoh H, Chiroi P, Isachesku E, Tanasa RA, Pop OL, Pirlog R, Berindan-Neagoe I. Personalizing Therapy Outcomes through Mitogen-Activated Protein Kinase Pathway Inhibition in Non-Small Cell Lung Cancer. Biomedicines 2024; 12:1489. [PMID: 39062063 PMCID: PMC11275062 DOI: 10.3390/biomedicines12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer (LC) is a highly invasive malignancy and the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) as its most prevalent histological subtype. Despite all breakthroughs achieved in drug development, the prognosis of NSCLC remains poor. The mitogen-activated protein kinase signaling cascade (MAPKC) is a complex network of interacting molecules that can drive oncogenesis, cancer progression, and drug resistance when dysregulated. Over the past decades, MAPKC components have been used to design MAPKC inhibitors (MAPKCIs), which have shown varying efficacy in treating NSCLC. Thus, recent studies support the potential clinical use of MAPKCIs, especially in combination with other therapeutic approaches. This article provides an overview of the MAPKC and its inhibitors in the clinical management of NSCLC. It addresses the gaps in the current literature on different combinations of selective inhibitors while suggesting two particular therapy approaches to be researched in NSCLC: parallel and aggregate targeting of the MAPKC. This work also provides suggestions that could serve as a potential guideline to aid future research in MAPKCIs to optimize clinical outcomes in NSCLC.
Collapse
Affiliation(s)
- Hasan Alsharoh
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | | | - Ovidiu-Laurean Pop
- Department of Morphology Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| |
Collapse
|
5
|
Xu X, Dai F, Mao Y, Zhang K, Qin Y, Zheng J. Metallodrugs in the battle against non-small cell lung cancer: unlocking the potential for improved therapeutic outcomes. Front Pharmacol 2023; 14:1242488. [PMID: 37727388 PMCID: PMC10506097 DOI: 10.3389/fphar.2023.1242488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality worldwide. Platinum-based chemotherapy is standard-of-care but has limitations including toxicity and resistance. Metal complexes of gold, ruthenium, and other metals have emerged as promising alternatives. This review provides a comprehensive analysis of metallodrugs for NSCLC. Bibliometric analysis reveals growing interest in elucidating mechanisms, developing targeted therapies, and synergistic combinations. Classification of metallodrugs highlights platinum, gold, and ruthenium compounds, as well as emerging metals. Diverse mechanisms include DNA damage, redox modulation, and immunomodulation. Preclinical studies demonstrate cytotoxicity and antitumor effects in vitro and in vivo, providing proof-of-concept. Clinical trials indicate platinums have utility but resistance remains problematic. Non-platinum metallodrugs exhibit favorable safety but modest single agent efficacy to date. Drug delivery approaches like nanoparticles show potential to enhance therapeutic index. Future directions include optimization of metal-based complexes, elucidation of resistance mechanisms, biomarker development, and combination therapies to fully realize the promise of metallodrugs for NSCLC.
Collapse
Affiliation(s)
- Xianzhi Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Feng Dai
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yiting Mao
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Kai Zhang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Ying Qin
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Jiwei Zheng
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Gorachinov F, Mraiche F, Moustafa DA, Hishari O, Ismail Y, Joseph J, Crcarevska MS, Dodov MG, Geskovski N, Goracinova K. Nanotechnology - a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:240-261. [PMID: 36865093 PMCID: PMC9972888 DOI: 10.3762/bjnano.14.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Genomic and proteomic mutation analysis is the standard of care for selecting candidates for therapies with tyrosine kinase inhibitors against the human epidermal growth factor receptor (EGFR TKI therapies) and further monitoring cancer treatment efficacy and cancer development. Acquired resistance due to various genetic aberrations is an unavoidable problem during EGFR TKI therapy, leading to the rapid exhaustion of standard molecularly targeted therapeutic options against mutant variants. Attacking multiple molecular targets within one or several signaling pathways by co-delivery of multiple agents is a viable strategy for overcoming and preventing resistance to EGFR TKIs. However, because of the difference in pharmacokinetics among agents, combined therapies may not effectively reach their targets. The obstacles regarding the simultaneous co-delivery of therapeutic agents at the site of action can be overcome using nanomedicine as a platform and nanotools as delivery agents. Precision oncology research to identify targetable biomarkers and optimize tumor homing agents, hand in hand with designing multifunctional and multistage nanocarriers that respond to the inherent heterogeneity of the tumors, may resolve the challenges of inadequate tumor localization, improve intracellular internalization, and bring advantages over conventional nanocarriers.
Collapse
Affiliation(s)
- Filip Gorachinov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2R3 Edmonton, Canada
| | | | - Ola Hishari
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Yomna Ismail
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Jensa Joseph
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
7
|
Jiang L, Zhu J, Chen X, Wang Y, Wu L, Wan G, Han Y, Leng X, Peng L, Wang Q. Safety and efficacy of paclitaxel plus carboplatin versus paclitaxel plus cisplatin in neoadjuvant chemoradiotherapy for patients with locally advanced esophageal carcinoma: a retrospective study. Radiat Oncol 2022; 17:218. [PMID: 36585731 PMCID: PMC9801619 DOI: 10.1186/s13014-022-02190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE We evaluated and compared the efficacy and safety of chemotherapy with paclitaxel plus cisplatin (TP) or carboplatin (TC) in patients with locally advanced esophageal squamous cell carcinoma (LA-ESCC) who underwent neoadjuvant chemoradiotherapy (NCRT). MATERIALS AND METHODS This single-center retrospective study assessed patients with LA-ESCC (cT2N + M0, cT3-4aNanyM0) receiving NCRT plus curative-intent esophagectomy with TP or TC regimen. The primary endpoints were grade ≥ 3 adverse events (AEs) and overall survival (OS). AEs were compared using a t-test according to CTCAE 4.0. The Kaplan-Meier survival curves were compared using the log-rank test; the treatment effect was measured using hazard ratios and 95% confidence intervals. RESULTS We included 151 and 50 patients in the TC and TP groups, respectively. Baseline demographic and clinical characteristics were well balanced between groups. The TP group exhibited significantly higher hematologic and non-hematologic AEs than the TC group, and the noticeable difference was the incidence of febrile neutropenia of grade 3 or higher (P = 0.011). No significant intergroup differences were noted considering postoperative complications, resection margins, or pathological complete remission rate (all P > 0.05). OS and progression-free survival (PFS) did not significantly differ between groups. The estimated 3-year OS and PFS rates were 65.1% versus 69.4% and 58.4% versus 53.5% for TP and TC groups, respectively. CONCLUSION In patients with LA-ESCC, we recommend TC, not TP, as an optimal chemotherapy regimen for NCRT, given its superiorsafety profile and comparable efficacy.
Collapse
Affiliation(s)
- Li Jiang
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China ,grid.54549.390000 0004 0369 4060Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 South Renmin Ave, Fourth Section, Chengdu, 610041 Sichuan China
| | - Jie Zhu
- grid.54549.390000 0004 0369 4060Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 South Renmin Ave, Fourth Section, Chengdu, 610041 Sichuan China
| | - Xue Chen
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China ,grid.54549.390000 0004 0369 4060Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 South Renmin Ave, Fourth Section, Chengdu, 610041 Sichuan China
| | - Yi Wang
- grid.54549.390000 0004 0369 4060Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 South Renmin Ave, Fourth Section, Chengdu, 610041 Sichuan China
| | - Lei Wu
- grid.54549.390000 0004 0369 4060Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 South Renmin Ave, Fourth Section, Chengdu, 610041 Sichuan China
| | - Gang Wan
- grid.54549.390000 0004 0369 4060Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 South Renmin Ave, Fourth Section, Chengdu, 610041 Sichuan China
| | - Yongtao Han
- grid.54549.390000 0004 0369 4060Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuefeng Leng
- grid.54549.390000 0004 0369 4060Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Peng
- grid.54549.390000 0004 0369 4060Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qifeng Wang
- grid.54549.390000 0004 0369 4060Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 55 South Renmin Ave, Fourth Section, Chengdu, 610041 Sichuan China
| |
Collapse
|
8
|
Nishihara S, Yamaoka T, Ishikawa F, Higuchi K, Hasebe Y, Manabe R, Kishino Y, Kusumoto S, Ando K, Kuroda Y, Ohmori T, Sagara H, Yoshida H, Tsurutani J. Mechanisms of EGFR-TKI-Induced Apoptosis and Strategies Targeting Apoptosis in EGFR-Mutated Non-Small Cell Lung Cancer. Genes (Basel) 2022; 13:genes13122183. [PMID: 36553449 PMCID: PMC9778480 DOI: 10.3390/genes13122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Homeostasis is achieved by balancing cell survival and death. In cancer cells, especially those carrying driver mutations, the processes and signals that promote apoptosis are inhibited, facilitating the survival and proliferation of these dysregulated cells. Apoptosis induction is an important mechanism underlying the therapeutic efficacy of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) for EGFR-mutated non-small cell lung cancer (NSCLC). However, the mechanisms by which EGFR-TKIs induce apoptosis have not been fully elucidated. A deeper understanding of the apoptotic pathways induced by EGFR-TKIs is essential for the developing novel strategies to overcome resistance to EGFR-TKIs or to enhance the initial efficacy through therapeutic synergistic combinations. Recently, therapeutic strategies targeting apoptosis have been developed for cancer. Here, we review the state of knowledge on EGFR-TKI-induced apoptotic pathways and discuss the therapeutic strategies for enhancing EGFR-TKI efficiency. We highlight the great progress achieved with third-generation EGFR-TKIs. In particular, combination therapies of EGFR-TKIs with anti-vascular endothelial growth factor/receptor inhibitors or chemotherapy have emerged as promising therapeutic strategies for patients with EGFR-mutated NSCLC. Nevertheless, further breakthroughs are needed to yield an appropriate standard care for patients with EGFR-mutated NSCLC, which requires gaining a deeper understanding of cancer cell dynamics in response to EGFR-TKIs.
Collapse
Affiliation(s)
- Shigetoshi Nishihara
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Toshimitsu Yamaoka
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Correspondence: ; Tel.: +81-3-3784-8146
| | | | - Kensuke Higuchi
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yuki Hasebe
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
| | - Ryo Manabe
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yasunari Kishino
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Sojiro Kusumoto
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Koichi Ando
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yusuke Kuroda
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Tohru Ohmori
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Hitoshi Yoshida
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
9
|
Lin Y, Liao X, Zhang Y, Wu G, Ye J, Luo S, He X, Luo M, Xie M, Zhang J, Li Q, Huang Y, Liao S, Li Y, Liang R. Homologous Recombination Pathway Alternation Predicts Prognosis of Colorectal Cancer With Chemotherapy. Front Pharmacol 2022; 13:920939. [PMID: 35734400 PMCID: PMC9207269 DOI: 10.3389/fphar.2022.920939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Chemotherapy is the basic treatment for colorectal cancer (CRC). However, colorectal cancer cells often develop resistance to chemotherapy drugs, leading to recurrence and poor prognosis. More and more studies have shown that the Homologous recombination (HR) pathway plays an important role in chemotherapy treatment for tumors. However, the relationship between HR pathway, chemotherapy sensitivity, and the prognosis of CRC patients is still unclear. Methods: We collected 35 samples of CRC patients after chemotherapy treatment from Guangxi Medical University Cancer Hospital, then collected mutation data and clinical prognosis data from the group. We also downloaded Mondaca-CRC, TCGA-CRC cohorts for chemotherapy treatment. Result: We found that HR mutant-type (HR-MUT) patients are less likely to experience tumor metastasis after receiving chemotherapy. Additionally, our univariate and multivariate cox regression models showed that HR-MUT can be used as an independent predictor of the prognosis of chemotherapy for CRC patients. The KM curve showed that patients with HR-MUT CRC had significantly prolonged overall survival (OS) time (log-rank p = 0.017; hazard ratio (HR) = 0.69). Compared to HR mutant-type (HR-WT), HR-MUT has a significantly lower IC50 value with several chemotherapeutic drugs. Pathway enrichment analysis further revealed that the HR-MUT displayed a significantly lower rate of DNA damage repair ability, tumor growth, metastasis activity, and tumor fatty acid metabolism activity than HR-WT, though its immune response activity was notably higher. Conclusion: These findings indicate that HR-MUT may be a relevant marker for CRC patients receiving chemotherapy, as it is closely related to improving OS time and reducing chemotherapy resistance.
Collapse
Affiliation(s)
- Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoli Liao
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yumei Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guobin Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shanshan Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xinxin He
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Luo
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingzhi Xie
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qian Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yu Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sina Liao
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Rong Liang, ; Yongqiang Li,
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Rong Liang, ; Yongqiang Li,
| |
Collapse
|
10
|
Wang SC, Yen CY, Shiau JP, Chang MY, Hou MF, Jeng JH, Tang JY, Chang HW. Synergistic Antiproliferation of Cisplatin and Nitrated [6,6,6]Tricycle Derivative (SK2) for a Combined Treatment of Oral Cancer Cells. Antioxidants (Basel) 2022; 11:926. [PMID: 35624790 PMCID: PMC9137724 DOI: 10.3390/antiox11050926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/19/2022] Open
Abstract
SK2, a nitrated [6,6,6]tricycle derivative with an n-butyloxy group, showed selective antiproliferation effects on oral cancer but not on normal oral cells. This investigation assessed for the first time the synergistic antiproliferation potential of cisplatin/SK2 in oral cancer cells. Cell viability assay at 24 h showed that a low dose of combined cisplatin/SK2 (10 μM/10 μg/mL) provided more antiproliferation than cisplatin or SK2 alone. Cisplatin/SK2 triggered also more apoptosis inductions in terms of subG1 accumulation, annexin V, pancaspase, and caspase 3/8/9 measurements. Moreover, cisplatin/SK2 provided more oxidative stress and DNA damage in oral cancer cells than independent treatments. Oxidative stress inhibitors rescued the cisplatin/SK2-induced antiproliferation and oxidative stress generation. Moreover, cisplatin/SK2 induced more antiproliferation, apoptosis, oxidative stress, and DNA damage in oral cancer cells than in normal oral cells (S-G). In conclusion, low-dose cisplatin/SK2 combined treatment promoted selective and synergistic antiproliferation in oral cancer cells depending on oxidative-stress-associated responses.
Collapse
Affiliation(s)
- Sheng-Chieh Wang
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Feng Hou
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Ph.D. Program in Life Sciences, Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (M.-F.H.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Passiglia F, Bironzo P, Bertaglia V, Listì A, Garbo E, Scagliotti GV. Optimizing the clinical management of EGFR-mutant advanced non-small cell lung cancer: a literature review. Transl Lung Cancer Res 2022; 11:935-949. [PMID: 35693274 PMCID: PMC9186167 DOI: 10.21037/tlcr-22-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective Despite several steps forward in the treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC), however there are still pending issues and upcoming challenges requiring adequate addressing in order to optimize the clinical management of metastatic patients harboring molecular alterations within the EGFR gene. This review aims to summarize the most recent findings regarding the diagnostic testing and therapeutic strategies of EGFR-mutant advanced NSCLC. Methods Literature search was conducted using MEDLINE/PubMed, EMBASE, Scopus and Cochrane Library databases, up to December 2021. Relevant studies in English language published between 2004 and 2021 were selected. Key Content and Findings The increased detection of uncommon EGFR mutations in the real-word practice along with the clinical development of novel selective inhibitors, highlighted the issue of an adequate selection of the best EGFR-tyrosine-kinase inhibitor (TKI) to the right patient mutation. The advent of osimertinib in first-line has dramatically changed the spectrum of molecular mechanisms underlying both innate and acquired resistance to the EGFR-TKI therapy, accelerating the clinical investigation of novel genomic-driven sequential strategies as well as upfront targeted combinations. The recent approval of potent, selective inhibitors targeting the EGFR exon-20 insertions, renewed interest toward this patients' subset, questioning the diagnostic accuracy of old-standard genomic sequencing technologies and pushing the implementations of next-generation sequencing (NGS)-based molecular profiling in the real word practice scenario. Conclusions This review provides evidence-based answers to the aforementioned challenges aiming to optimize the clinical management of metastatic patients harboring molecular alterations within the EGFR gene.
Collapse
Affiliation(s)
| | | | - Valentina Bertaglia
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | - Angela Listì
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | - Edoardo Garbo
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | | |
Collapse
|
12
|
Sarogni P, Mapanao AK, Gonnelli A, Ermini ML, Marchetti S, Kusmic C, Paiar F, Voliani V. Chorioallantoic membrane tumor models highlight the effects of cisplatin compounds in oral carcinoma treatment. iScience 2022; 25:103980. [PMID: 35310338 PMCID: PMC8924639 DOI: 10.1016/j.isci.2022.103980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
The European Society for Medical Oncology (ESMO) suggests the use of chemotherapy as neoadjuvant, adjuvant, and concomitant to surgery and radiotherapy for the treatment of oral carcinoma by depending on the cancer stage. The usual drug of choice belongs to the platinum compounds. In this context, the evaluation of the cancer behavior associated with the administration of standard or emerging cisplatin compounds supports the establishment of optimal cancer management. Here, we have assessed and compared the performance of cisplatin alone and contained in biodegradable nanocapsules on standardized chorioallantoic membrane (CAM) tumor models. The vascularized environment and optimized grafting procedure allowed the establishment of solid tumors. The treatments showed antitumor and anti-angiogenic activities together with deregulation of pivotal genes responsible of treatment resistance and tumor aggressiveness. This study further supports the significance of CAM tumor models in oncological research for the comprehension of the molecular mechanisms involved in tumor treatment response.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| | - Sabrina Marchetti
- Institute of Clinical Physiology, CNR, Via G. Moruzzi 1, Pisa, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, CNR, Via G. Moruzzi 1, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| |
Collapse
|
13
|
Subramaniyan V, Fuloria S, Gupta G, Kumar DH, Sekar M, Sathasivam KV, Sudhakar K, Alharbi KS, Al-Malki WH, Afzal O, Kazmi I, Al-Abbasi FA, Altamimi ASA, Fuloria NK. A review on epidermal growth factor receptor's role in breast and non-small cell lung cancer. Chem Biol Interact 2022; 351:109735. [PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
Collapse
Affiliation(s)
- Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India
| | - Darnal Hari Kumar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selngor, 47500, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Malaysia
| | - Kathiresan V Sathasivam
- Faculty of Applied Science & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences (LIT-Pharmacy), Lovely Professional University, Jalandhar, 144411, India
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Al-Malki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam BinAbdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia.
| |
Collapse
|
14
|
Ding W, Chen X, Yang L, Chen Y, Song J, Bu W, Feng B, Zhang M, Luo Y, Jia X, Feng L. Combination of ShuangDan Capsule and Sorafenib Inhibits Tumor Growth and Angiogenesis in Hepatocellular Carcinoma Via PI3K/Akt/mTORC1 Pathway. Integr Cancer Ther 2022; 21:15347354221078888. [PMID: 35234063 PMCID: PMC8894619 DOI: 10.1177/15347354221078888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a high mortality liver cancer. The existing treatments (transplantation, chemotherapy, and individualized treatment) with limitations. However, drug combination provides a viable option for hepatocellular carcinoma treatment. A Chinese patent medicine, ShuangDan Capsules (SDC), has been clinically prescribed to hepatocellular carcinoma patients as adjuvant therapy and has shown good antitumor activity. The purpose of this study was to investigate whether SDC could improve the anti-cancer effect and mitigate adverse reactions of sorafenib on HCC in vivo. Magnetic resonance imaging (MRI), immunohistochemistry, and western blot were executed to reveal the potential mechanisms of the combination of SDC and sorafenib on HCC. Tumors appeared hyperintense on T2 sequence images relative to the adjacent normal liver in MRI. Combination of SDC and sorafenib inhibited the progression of DEN (Diethylnitrosamine)-induced HCC. In the HepG2 xenografts model, sorafenib plus SDC exhibited greater suppression on tumor growth than individual treatment accompanied with decreased expression of VEGF, VEGFA, Ki67, CD31 and increased expression of caspase-3. Furthermore, PI3K/Akt/mTORC1 pathway was inhibited by co-administration. Sorafenib monotherapy elicited hepatotoxicity for specific expression in the up-regulated level of aspartate transaminase (AST) and AST/glutamic-pyruvic transaminase (ALT) ratio, but the co-administration could remedy this adverse effect. These dates indicated that the combination of SDC and sorafenib might offer a potential therapy for HCC.
Collapse
Affiliation(s)
- Wenbo Ding
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiuwei Chen
- Yuhuatai District Maternity and Child Care Clinic, Nanjing, P.R. China
| | - Licheng Yang
- China Pharmaceutical University, Nanjing, P.R. China
| | - Yaping Chen
- China Pharmaceutical University, Nanjing, P.R. China
| | - Jie Song
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Weiquan Bu
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Bin Feng
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Meng Zhang
- China Pharmaceutical University, Nanjing, P.R. China
| | - Yi Luo
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiaobin Jia
- China Pharmaceutical University, Nanjing, P.R. China
| | - Liang Feng
- China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
15
|
Liu L, Wang C, Li S, Bai H, Wang J. Tumor immune microenvironment in epidermal growth factor receptor-mutated non-small cell lung cancer before and after epidermal growth factor receptor tyrosine kinase inhibitor treatment: a narrative review. Transl Lung Cancer Res 2021; 10:3823-3839. [PMID: 34733631 PMCID: PMC8512456 DOI: 10.21037/tlcr-21-572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022]
Abstract
Objective To review and summarize the characteristics of the tumor immune microenvironment (TIME) in EGFR-mutated non-small cell lung cancer (NSCLC) after EGFR-TKI treatment and its role in TKI resistance. Background Lung cancer is one of the most commonly diagnosed cancer and the leading cause of death from cancer in both men and women around the world. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are considered a first-line treatment for EGFR-mutated NSCLC. However, almost all patients eventually develop acquired resistance to EGFR-TKIs, with a median progression-free survival (PFS) of 9–14 months. As immunotherapy has developed, it has become apparent that interactions between the TIME and tumor cells also affect EGFR-TKI treatment. The TIME comprises a variety of components but previous studies of the TIME following EGFR-TKI therapy of NSCLC are inconsistent. Here, we reviewed the characteristics of the TIME in NSCLC after EGFR-TKI treatment and its role in TKI resistance. Methods PubMed, Embase, and Web of Science were searched to July 1, 2021 with the following key words: “NSCLC”, “EGFR”, and “immunotherapy”. Conclusions The TIME of EGFR-mutated NSCLC is different from that of non-mutated NSCLC, an explanation for EGFR-mutated NSCLC displaying a poor response to ICIs. The TIME of EGFR-mutated NSCLC also changes during treatment with EGFR-TKIs. The TIME in EGFR-TKI-resistant lung cancer can be summarized as follows: (I) compared with EGFR-TKI-sensitive tumors, EGFR-TKI-resistant tumors have a greater number of immunosuppressive cells and fewer immune-activated cells, while the tumor microenvironment is in an immunosuppressive state; (II) tumor cells and immunosuppressive cells secrete multiple negative immune regulatory factors, inhibit the recognition and presentation of tumor antigens and the antitumor effect of immune cells, resulting in immune escape; 3.EGFR-TKI-resistant tumors promote EMT. These three characteristics interact, resulting in a regulatory signaling network, which together leads to EGFR-TKI resistance.
Collapse
Affiliation(s)
- Lihui Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sini Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
EGFR Combination Therapy Should Become the New Standard First-Line Treatment in Advanced EGFR-Mutant NSCLC. J Thorac Oncol 2021; 16:1788-1792. [PMID: 34716002 DOI: 10.1016/j.jtho.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022]
|
17
|
Cha JE, Bae WY, Choi JS, Lee SH, Jeong JW. Angiogenic activities are increased via upregulation of HIF-1α expression in gefitinib-resistant non-small cell lung carcinoma cells. Oncol Lett 2021; 22:671. [PMID: 34345296 PMCID: PMC8323004 DOI: 10.3892/ol.2021.12932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have been used to treat patients with non-small cell lung cancer (NSCLC) and activating EGFR mutations; however, the emergence of secondary mutations in EGFR or the acquisition of resistance to EGFR-TKIs can develop and is involved in clinical failure. Since angiogenesis is associated with tumor progression and the blockade of antitumor drugs, inhibition of angiogenesis could be a rational strategy for developing anticancer drugs combined with EGFR-TKIs to treat patients with NSCLC. The signaling pathway mediated by hypoxia-inducible factor-1 (HIF-1) is essential for tumor angiogenesis. The present study aimed to identify the dependence of gefitinib resistance on HIF-1α activity using angiogenesis assays, western blot analysis, colony formation assay, xenograft tumor mouse model and immunohistochemical analysis of tumor tissues. In the NSCLC cell lines, HIF-1α protein expression levels and hypoxia-induced angiogenic activities were found to be increased. In a xenograft mouse tumor model, tumor tissues derived from gefitinib-resistant PC9 cells showed increased protein expression of HIF-1α and angiogenesis within the tumors. Furthermore, inhibition of HIF-1α suppressed resistance to gefitinib, whereas overexpression of HIF-1α increased resistance to gefitinib. The results from the present study provides evidence that HIF-1α was associated with the acquisition of resistance to gefitinib and suggested that inhibiting HIF-1α alleviated gefitinib resistance in NSCLC cell lines.
Collapse
Affiliation(s)
- Jeong Eun Cha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woom-Yee Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Sun Choi
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
19
|
Marzo T, La Mendola D. The Effects on Angiogenesis of Relevant Inorganic Chemotherapeutics. Curr Top Med Chem 2021; 21:73-86. [PMID: 33243124 DOI: 10.2174/1568026620666201126163436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a key process allowing the formation of blood vessels. It is crucial for all the tissues and organs, ensuring their function and growth. Angiogenesis is finely controlled by several mechanisms involving complex interactions between pro- or antiangiogenic factors, and an imbalance in this control chain may result in pathological conditions. Metals as copper, zinc and iron cover an essential role in regulating angiogenesis, thus therapies having physiological metals as target have been proposed. In addition, some complexes of heavier metal ions (e.g., Pt, Au, Ru) are currently used as established or experimental anticancer agents targeting genomic or non-genomic targets. These molecules may affect the angiogenic mechanisms determining different effects that have been only poorly and non-systematically investigated so far. Accordingly, in this review article, we aim to recapitulate the impact on the angiogenic process of some reference anticancer drugs, and how it is connected to the overall pharmacological effects. In addition, we highlight how the activity of these drugs can be related to the role of biological essential metal ions. Overall, this may allow a deeper description and understanding of the antineoplastic activity of both approved or experimental metal complexes, providing important insights for the synthesis of new inorganic drugs able to overcome resistance and recurrence phenomena.
Collapse
Affiliation(s)
- Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| |
Collapse
|
20
|
Khaddour K, Jonna S, Deneka A, Patel JD, Abazeed ME, Golemis E, Borghaei H, Boumber Y. Targeting the Epidermal Growth Factor Receptor in EGFR-Mutated Lung Cancer: Current and Emerging Therapies. Cancers (Basel) 2021; 13:3164. [PMID: 34202748 PMCID: PMC8267708 DOI: 10.3390/cancers13133164] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor-targeting tyrosine kinase inhibitors (EGFR TKIs) are the standard of care for patients with EGFR-mutated metastatic lung cancer. While EGFR TKIs have initially high response rates, inherent and acquired resistance constitute a major challenge to the longitudinal treatment. Ongoing work is aimed at understanding the molecular basis of these resistance mechanisms, with exciting new studies evaluating novel agents and combination therapies to improve control of tumors with all forms of EGFR mutation. In this review, we first provide a discussion of EGFR-mutated lung cancer and the efficacy of available EGFR TKIs in the clinical setting against both common and rare EGFR mutations. Second, we discuss common resistance mechanisms that lead to therapy failure during treatment with EGFR TKIs. Third, we review novel approaches aimed at improving outcomes and overcoming resistance to EGFR TKIs. Finally, we highlight recent breakthroughs in the use of EGFR TKIs in non-metastatic EGFR-mutated lung cancer.
Collapse
Affiliation(s)
- Karam Khaddour
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Sushma Jonna
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Alexander Deneka
- Fox Chase Cancer Center, Program in Molecular Therapeutics, Philadelphia, PA 19111, USA; (A.D.); (E.G.)
| | - Jyoti D. Patel
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Mohamed E. Abazeed
- Robert H. Lurie Comprehensive Cancer Center, Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Erica Golemis
- Fox Chase Cancer Center, Program in Molecular Therapeutics, Philadelphia, PA 19111, USA; (A.D.); (E.G.)
| | - Hossein Borghaei
- Fox Chase Cancer Center, Department of Hematology and Oncology, Philadelphia, PA 19111, USA;
| | - Yanis Boumber
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
21
|
Yuan CS, Deng ZW, Qin D, Mu YZ, Chen XG, Liu Y. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand? Acta Biomater 2021; 125:1-28. [PMID: 33639310 DOI: 10.1016/j.actbio.2021.02.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
The past several years have witnessed the blooming of emerging immunotherapy, as well as their therapeutic potential in remodeling the immune system. Nevertheless, with the development of biological mechanisms in oncology, it has been demonstrated that hypoxic tumor microenvironment (TME) seriously impairs the therapeutic outcomes of immunotherapy. Hypoxia, caused by Warburg effect and insufficient oxygen delivery, has been considered as a primary construction element of TME and drawn tremendous attention in cancer therapy. Multiple hypoxia-modulatory theranostic agents have been facing many obstacles and challenges while offering initial therapeutic effect. Inspired by versatile nanomaterials, great efforts have been devoted to design hypoxia-based nanoplatforms to preserve drug activity, reduce systemic toxicity, provide adequate oxygenation, and eventually ameliorate hypoxic-tumor management. Besides these, recently, some curative and innovative hypoxia-related nanoplatforms have been applied in synergistic immunotherapy, especially in combination with immune checkpoint blockade (ICB), immunomodulatory therapeutics, cancer vaccine therapy and immunogenic cell death (ICD) effect. Herein, the paramount impact of hypoxia on tumor immune escape was initially described and discussed, followed by a comprehensive overview on the design tactics of multimodal nanoplatforms based on hypoxia-enabled theranostic agents. A variety of nanocarriers for relieving tumor hypoxic microenvironment were also summarized. On this basis, we presented the latest progress in the use of hypoxia-modulatory nanomaterials for synergistic immunotherapy and highlighted current challenges and plausible promises in this area in the near future. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy, emerging as a novel treatment to eradicate malignant tumors, has achieved a measure of success in clinical popularity and transition. However, over the last decades, hypoxia-induced tumor immune escape has attracted enormous attention in cancer treatment. Limitations of free targeting agents have paved the path for the development of multiple nanomaterials with the hope of boosting immunotherapy. In this review, the innovative design tactics and multifunctional nanocarriers for hypoxia alleviation are summarized, and the smart nanomaterial-assisted hypoxia-modulatory therapeutics for synergistic immunotherapy and versatile biomedical applications are especially highlighted. In addition, the challenges and prospects of clinical transformation are further discussed.
Collapse
|
22
|
Yang X, Gao M, Miao M, Jiang C, Zhang D, Yin Z, Ni Y, Chen J, Zhang J. Combining combretastatin A4 phosphate with ginsenoside Rd synergistically inhibited hepatocellular carcinoma by reducing HIF-1α via PI3K/AKT/mTOR signalling pathway. J Pharm Pharmacol 2021; 73:263-271. [PMID: 33793802 DOI: 10.1093/jpp/rgaa006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Combretastatin A4 phosphate (CA4P), a vascular disrupting agent (VDA), can cause rapid tumour vessel occlusion. Subsequently, extensive necrosis is discovered in the tumour center, which induces widespread hypoxia and the rise of the α subunit of hypoxia-inducible factor-1 (HIF-1α). The aim of this study was to evaluate the inhibition of hepatocellular carcinoma growth by combining CA4P with HIF-1 α inhibitor and investigate the mechanism of this combination. METHODS Ginsenoside Rd (Rd) was used in combination with CA4P to estimate the inhibition effect in HepG2 cells and HepG2 xenograft mouse model. The efficacy of anti-tumour was evaluated by tumour growth curve. The protein expression of HIF-1α and PI3K/AKT/mTOR signalling pathway were analysed by western blot. KEY FINDINGS Combination of CA4P and Rd inhibited HepG2 cell proliferation and induced apoptosis in vivo and in vitro. It also increased the necrotic area of the tumour and delayed the tumour growth. Moreover, Rd down-regulated HIF-1α protein expression by inhibiting PI3K/AKT/mTOR signalling pathway. CONCLUSIONS Combination of CA4P and Rd had synergistic anti-tumour effects. The mechanism may be related to the inhibition of HIF-1α by PI3K/AKT/mTOR signalling pathway. This strategy provides a new thought for the combinative therapy of VDAs.
Collapse
Affiliation(s)
- Xinxiu Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Mengqi Miao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, P.R. China
| | - Yicheng Ni
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Jing Chen
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
23
|
Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J, Xie N. Adaptive Mechanisms of Tumor Therapy Resistance Driven by Tumor Microenvironment. Front Cell Dev Biol 2021; 9:641469. [PMID: 33732706 PMCID: PMC7957022 DOI: 10.3389/fcell.2021.641469] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a disease which frequently has a poor prognosis. Although multiple therapeutic strategies have been developed for various cancers, including chemotherapy, radiotherapy, and immunotherapy, resistance to these treatments frequently impedes the clinical outcomes. Besides the active resistance driven by genetic and epigenetic alterations in tumor cells, the tumor microenvironment (TME) has also been reported to be a crucial regulator in tumorigenesis, progression, and resistance. Here, we propose that the adaptive mechanisms of tumor resistance are closely connected with the TME rather than depending on non-cell-autonomous changes in response to clinical treatment. Although the comprehensive understanding of adaptive mechanisms driven by the TME need further investigation to fully elucidate the mechanisms of tumor therapeutic resistance, many clinical treatments targeting the TME have been successful. In this review, we report on recent advances concerning the molecular events and important factors involved in the TME, particularly focusing on the contributions of the TME to adaptive resistance, and provide insights into potential therapeutic methods or translational medicine targeting the TME to overcome resistance to therapy in clinical treatment.
Collapse
Affiliation(s)
- Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Wenhui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
24
|
Daum S, Hagen H, Naismith E, Wolf D, Pircher A. The Role of Anti-angiogenesis in the Treatment Landscape of Non-small Cell Lung Cancer - New Combinational Approaches and Strategies of Neovessel Inhibition. Front Cell Dev Biol 2021; 8:610903. [PMID: 33469537 PMCID: PMC7813779 DOI: 10.3389/fcell.2020.610903] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor progression depends primarily on vascular supply, which is facilitated by angiogenic activity within the malignant tissue. Non-small cell lung cancer (NSCLC) is a highly vascularized tumor, and inhibition of angiogenesis was projected to be a promising therapeutic approach. Over a decade ago, the first anti-angiogenic agents were approved for advanced stage NSCLC patients, however, they only produced a marginal clinical benefit. Explanations why anti-angiogenic therapies only show modest effects include the highly adaptive tumor microenvironment (TME) as well as the less understood characteristics of the tumor vasculature. Today, advanced methods of in-depth characterization of the NSCLC TME by single cell RNA sequencing (scRNA-Seq) and preclinical observations enable a detailed characterization of individual cancer landscapes, allowing new aspects for a more individualized inhibition of angiogenesis to be identified. Furthermore, the tumor vasculature itself is composed of several cellular subtypes, which closely interact with other cellular components of the TME, and show distinct biological functions such as immune regulation, proliferation, and organization of the extracellular matrix. With these new insights, combinational approaches including chemotherapy, anti- angiogenic and immunotherapy can be developed to yield a more target-oriented anti-tumor treatment in NSCLC. Recently, anti-angiogenic agents were also shown to induce the formation of high endothelial venules (HEVs), which are essential for the formation of tertiary lymphoid structures, and key components in triggering anti-tumor immunity. In this review, we will summarize the current knowledge of tumor-angiogenesis and corresponding anti-angiogenic therapies, as well as new aspects concerning characterization of tumor-associated vessels and the resulting new strategies for anti-angiogenic therapies and vessel inhibition in NSCLC. We will further discuss why anti-angiogenic therapies form an interesting backbone strategy for combinational therapies and how anti-angiogenic approaches could be further developed in a more personalized tumor-oriented fashion with focus on NSCLC.
Collapse
Affiliation(s)
- Sophia Daum
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Hannes Hagen
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Erin Naismith
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
- Medical Clinic 3, Department of Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn (UKB), Bonn, Germany
| | - Andreas Pircher
- Internal Medicine V, Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|
26
|
Ruan X, Sun Y, Wang W, Ye J, Zhang D, Gong Z, Yang M. Multiplexed molecular profiling of lung cancer with malignant pleural effusion using next generation sequencing in Chinese patients. Oncol Lett 2020; 19:3495-3505. [PMID: 32269623 PMCID: PMC7115151 DOI: 10.3892/ol.2020.11446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common type of cancer and the leading cause of cancer-associated death worldwide. Malignant pleural effusion (MPE), which is observed in ~50% of advanced non-small cell lung cancer (NSCLC) cases, and most frequently in lung adenocarcinoma, is a common complication of stage III-IV NSCLC, and it can be used to predict a poor prognosis. In the present study, multiple oncogene mutations were detected, including 17 genes closely associated with initiation of advanced lung cancer, in 108 MPE samples using next generation sequencing (NGS). The NGS data of the present study had broader coverage, deeper sequencing depth and higher capture efficiency compared with NGS findings of previous studies on MPE. In the present study, using NGS, it was demonstrated that 93 patients (86%) harbored EGFR mutations and 62 patients possessed mutations in EGFR exons 18-21, which are targets of available treatment agents. EGFR L858R and exon 19 indel mutations were the most frequently observed alterations, with frequencies of 31 and 25%, respectively. In 1 patient, an EGFR amplification was identified and 6 patients possessed a T790M mutation. ALK + EML4 gene fusions were identified in 6 patients, a ROS1 + CD74 gene fusion was detected in 1 patient and 10 patients possessed a BIM (also known as BCL2L11) 2,903-bp intron deletion. In 4 patients, significant KRAS mutations (G12D, G12S, G13C and A146T) were observed, which are associated with resistance to afatinib, icotinib, erlotinib and gefitinib. There were 83 patients with ERBB2 mutations, but only two of these mutations were targets of available treatments. The results of the present study indicate that MPE is a reliable specimen for NGS based detection of somatic mutations.
Collapse
Affiliation(s)
- Xingya Ruan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yonghua Sun
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Wei Wang
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Jianwei Ye
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Daoyun Zhang
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Ziying Gong
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Mingxia Yang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
27
|
Seiler KM, Bajinting A, Alvarado DM, Traore MA, Binkley MM, Goo WH, Lanik WE, Ou J, Ismail U, Iticovici M, King CR, VanDussen KL, Swietlicki EA, Gazit V, Guo J, Luke CJ, Stappenbeck T, Ciorba MA, George SC, Meacham JM, Rubin DC, Good M, Warner BW. Patient-derived small intestinal myofibroblasts direct perfused, physiologically responsive capillary development in a microfluidic Gut-on-a-Chip Model. Sci Rep 2020; 10:3842. [PMID: 32123209 PMCID: PMC7051952 DOI: 10.1038/s41598-020-60672-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The development and physiologic role of small intestine (SI) vasculature is poorly studied. This is partly due to a lack of targetable, organ-specific markers for in vivo studies of two critical tissue components: endothelium and stroma. This challenge is exacerbated by limitations of traditional cell culture techniques, which fail to recapitulate mechanobiologic stimuli known to affect vessel development. Here, we construct and characterize a 3D in vitro microfluidic model that supports the growth of patient-derived intestinal subepithelial myofibroblasts (ISEMFs) and endothelial cells (ECs) into perfused capillary networks. We report how ISEMF and EC-derived vasculature responds to physiologic parameters such as oxygen tension, cell density, growth factors, and pharmacotherapy with an antineoplastic agent (Erlotinib). Finally, we demonstrate effects of ISEMF and EC co-culture on patient-derived human intestinal epithelial cells (HIECs), and incorporate perfused vasculature into a gut-on-a-chip (GOC) model that includes HIECs. Overall, we demonstrate that ISEMFs possess angiogenic properties as evidenced by their ability to reliably, reproducibly, and quantifiably facilitate development of perfused vasculature in a microfluidic system. We furthermore demonstrate the feasibility of including perfused vasculature, including ISEMFs, as critical components of a novel, patient-derived, GOC system with translational relevance as a platform for precision and personalized medicine research.
Collapse
Grants
- R01 HD105301 NICHD NIH HHS
- R01 DK106382 NIDDK NIH HHS
- T32 DK007130 NIDDK NIH HHS
- R01 DK104698 NIDDK NIH HHS
- R01 DK114047 NIDDK NIH HHS
- R03 DK111473 NIDDK NIH HHS
- R01 DK109384 NIDDK NIH HHS
- R01 DK118568 NIDDK NIH HHS
- R01 DK112378 NIDDK NIH HHS
- K08 DK101608 NIDDK NIH HHS
- P30 DK052574 NIDDK NIH HHS
- T32 HD043010 NICHD NIH HHS
- K01 DK109081 NIDDK NIH HHS
- Association for Academic Surgery Foundation (AASF)
- Children’s Discovery Institute of Washington University in St. Louis and St. Louis Children’s Hospital MI-F-2017-629; National Institutes of Health 4T32HD043010-14
- National Institutes of Health 3T32DK007130-45S1
- Givin’ it all for Guts Foundation (https://givinitallforguts.org/), Lawrence C. Pakula MD IBD Research, Innovation, and Education Fund, National Institutes of Health R01DK109384
- National Institutes of Health R03DK111473, R01DK118568, and K08DK101608, Children’s Discovery Institute of Washington University in St. Louis and St. Louis Children’s Hospital MI-FR-2017-596, March of Dimes Foundation Grant No. 5-FY17-79, Department of Pediatrics at Washington University School of Medicine, St. Louis
Collapse
Affiliation(s)
- Kristen M Seiler
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Adam Bajinting
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Saint Louis University School of Medicine, St. Louis, Missouri, United States
| | - David M Alvarado
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mahama A Traore
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Michael M Binkley
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - William H Goo
- Washington University, St. Louis, Missouri, United States
| | - Wyatt E Lanik
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jocelyn Ou
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Usama Ismail
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - Micah Iticovici
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Cristi R King
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kelli L VanDussen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elzbieta A Swietlicki
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Vered Gazit
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Cliff J Luke
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Thaddeus Stappenbeck
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Matthew A Ciorba
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, California, United States
| | - J Mark Meacham
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - Deborah C Rubin
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States.
| |
Collapse
|
28
|
Li C, Fang Y, Wang K, Gao W, Dou Z, Wang X, Zhang S, Lenahan C, Wu X. Protective effect of c-Myc/Rab7a signal pathway in glioblastoma cells under hypoxia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:283. [PMID: 32355727 PMCID: PMC7186680 DOI: 10.21037/atm.2020.02.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the most common primary brain tumor, and is associated with a poor prognosis. Hypoxia is prevalent in the microenvironment of GBM, and promotes tumorigenesis and resistance to anticancer therapy. However, its mechanism remains incompletely understood. Methods We used immunohistochemistry, quantitative real-time PCR, and Western blots to assess c-Myc and Rab7a expression levels in 12 GBM specimens from a single institution. A luciferase reporter assay was conducted to confirmed whether Rab7a is transcriptionally regulated by c-Myc. To clarify the precise role of c-Myc/Rab7a on GBM cell proliferation, we did in vitro and in vivo analyses with lentivirus vectors. Cell viability was assessed using a cell counting kit-8 assay in the context of hypoxia. Autophagy was measured using transmission electron microscopy and Western blot, and apoptosis was measured using flow cytometry and Western blot. Results Gene and protein expression of c-Myc and Rab7a were significantly upregulated in GBM specimens. Moreover, c-Myc regulated Rab7a by specifically interacting with the Rab7a promoter. Furthermore, hypoxia activated the c-Myc/Rab7a pathway, which protects GBM cells from damage caused by hypoxia. Importantly, c-Myc/Rab7a inhibited apoptosis and induced autophagy in vitro and in vivo. Conclusions Collectively, our results suggest that the c-Myc/Rab7a pathway protects GBM cells from hypoxic injury via regulation of apoptosis and autophagy, contributing to the growth of GBM.
Collapse
Affiliation(s)
- Chenguang Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Wei Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Zhangqi Dou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Sheng Zhang
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiaohua Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
29
|
Zeng L, Xiao L, Jiang W, Yang H, Hu D, Xia C, Li Y, Zhou C, Xiong Y, Liu L, Liao D, Guan R, Li K, Wang J, Zhang Y, Yang N, Mansfield AS. Investigation of efficacy and acquired resistance for EGFR-TKI plus bevacizumab as first-line treatment in patients with EGFR sensitive mutant non-small cell lung cancer in a Real world population. Lung Cancer 2020; 141:82-88. [PMID: 31982639 DOI: 10.1016/j.lungcan.2020.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/22/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We aimed to investigate the clinical efficacy of EGFR tyrosine kinase inhibitor (TKI, T) plus bevacizumab (an antiangiogenic therapy, A) in a real-world population and to provide insights into their mechanism of resistance. METHODS This study included 256 NSCLC patients harboring EGFR sensitizing mutations (EGFR 19del and L858R) who underwent nextgeneration sequencing (NGS) with 168-gene panel prior to treatment between Jan 2015 to Aug 2018. Cohort A included 60 patients treated with A + T; while cohort B consisted of 120 patients treated with EGFR-TKI monotherapy with the patients identified using Propensity Score Matching (Ratio of 1:2). Clinical outcomes and potential resistance mechanism were evaluated. RESULTS Baseline clinical characteristics were not significantly different between Cohort A and B. Compared with cohort B, cohort A had significantly better overall response rate (95% vs 74.2%, p = 0.001) and longer median progression-free survival (PFS, 16.5m vs.12.0 m, HR = 0.7, p = 0.001). Until Jan 2019, 31 and 103 patients in cohort A and B, respectively, were evaluated with progressive disease and underwent tissue re-biopsy and NGS profiling with 168-gene panel. In cohort B, T790M was the predominant acquired resistance mechanism, detected in 51.5% (53/103) of progressive tumors, followed by amplifications in EGFR (15.5%, 16/103) and MET (6.8%, 7/103). Contrastingly, cohort A had a significantly lower rate of T790 M mutation (35.5%, 11/31, p = 0.0003), followed by mutations in TP53 (29.0%, 9/31), RB1 (9.7%, 3/31), SMAD4 (3.2%, 1/31) and EGFR V834 L (3.2%, 1/31) and amplifications in EGFR (9.7%, 3/31), and MET(6.5%, 2/31). CONCLUSION Treatment with first-line A + T significantly extends the time to progression and increases the response rate with acceptable safety profile. T790 M was the most common acquired resistance mechanism but it was less common in patients who received A + T.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Lili Xiao
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China; Graduate School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenjuan Jiang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Haiyan Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Dandan Hu
- Medical Affairs, Roche, Shanghai, 201203, China
| | - Chen Xia
- Department of Medical Oncology, Hepatobiliary and Pancreatic Unit, Hunan Cancer Hospital, Changsha, 410013, China
| | - Yizhi Li
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Chunhua Zhou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yi Xiong
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Li Liu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, 410011, China
| | - Rui Guan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Kunyan Li
- Center of New Drug Clinical Trials, Hunan Cancer Hospital, Changsha, 410011, China
| | - Jing Wang
- Hunan Clinical Research Center in Gynecologic Cancer, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | | |
Collapse
|
30
|
Sun W, He G, Zhang M, Zhao Y, Yu H, Li Y, Wu W, Ji T. 99mTc-3PRGD 2 SPECT Predicts the Outcome of Endostar and Cisplatin Therapy in Xenograft Animals. Dose Response 2019; 17:1559325819882544. [PMID: 31673250 PMCID: PMC6804356 DOI: 10.1177/1559325819882544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 11/16/2022] Open
Abstract
Aims: Our study was designed to investigate the usefulness of 99mTc-3PRGD2 single-photon emission computed tomography (SPECT) for noninvasively monitoring the response of integrin αvβ3 expression to antiangiogenic treatment with endostar and cisplatin in xenograft animals. Methods: 99mTc-3PRGD2 SPECT imaging was performed at days 0, 7, 14, and 21. Tumors were harvested at all imaging time points for Western blotting and histopathological analysis. Result: In 99mTc-3PRGD2 SPECT imaging, the radioactivity accumulation of NaCl group rised gradually in the first half and dispersed on day 21 due to the necrosis of the tumor. While the radioactivity accumulation of treated groups gradually decreased throughout the course. The downtrend of tumor to nontumor ratio in endostar-treated group was more remarkable than cisplatin-treated group. The expression of intergrin αvβ3 of treated groups was lower than NaCl group from day 14. The expression of intergrin αvβ3 of endostar-treated group was significantly lower than cisplatin-treated group from baseline onward. Conclusion: It’s demonstrated that the 99mTc-3PRGD2 could noninvasively visualize and semiquantify tumor angiogenesis in the xenograft model and monitor the response to the antiangiogenic therapy of endostar and cisplatin effectively. It also can predict the outcome of endostar and cisplatin therapy in xenograft animals.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Pediatrics, First Hospital, Jilin University, Changchun, Jilin, China
| | - Guifu He
- Department of Nuclear Medicine, Jilin Provincial Tumor Hospital, Changchun, Jilin, China
| | - Mingming Zhang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yi Zhao
- Department of Nuclear Medicine, Jilin Provincial Tumor Hospital, Changchun, Jilin, China
| | - Hongmei Yu
- Department of Blood Transfusion, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, China
| | - Wei Wu
- Department of Nuclear Medicine, Jilin Provincial Tumor Hospital, Changchun, Jilin, China
| | - Tiefeng Ji
- Department of Radiology, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Kikuchi H, Yuan B, Hu X, Okazaki M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am J Cancer Res 2019; 9:1517-1535. [PMID: 31497340 PMCID: PMC6726994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023] Open
Abstract
Cancer is a diverse class of diseases characterized by uncontrolled cell growth with the potential to invade and spread to other parts of the body, and continues to be one of the leading causes of death worldwide. Conventional cancer treatment modalities include antitumor drugs, surgical resection, locally targeted therapies such as radiation therapy. Along with improved understanding of the molecular pathogenesis of various cancers, generation and the use of smart targeted anti-cancer drugs have been challenged. The need for novel therapeutic strategies remains paramount given the sustained development of drug resistance, tumor recurrence, and metastasis. Development of new strategies aimed at improving chemotherapy sensitivity and minimizing the adverse side effects is thus essential for obtaining satisfied therapeutic outcomes for patients and enhancing their quality of life. Emerging evidence has reported that many cancer patients use either herbs employed in complementary therapies or dietary agents that influence cellular signaling worldwide. Numerous components of edible plants, collectively termed phytochemicals that have beneficial effects for health, are being reported increasingly in the scientific literature. Of those, flavonoids have attracted much attention by virtue of its wide variety of biological functions including antioxidant, anti-inflammatory, and anticancer activity. In this review, we highlight the molecular mechanisms underlying its multiple pharmacological effects, especially focusing on cancer chemoprevention. We further discuss possible strategies to develop anticancer therapy by combining flavonoids nutraceuticals and conventional chemotherapeutic agents. We also highlight numerous pharmacokinetic challenges such as bioavailability, drug-drug interactions, which are still fundamental questions concerning its future clinical application.
Collapse
Affiliation(s)
- Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Department of Clinical Dietetics and Human Nutrition, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Bo Yuan
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Xiaomei Hu
- Xiyuan Hospital, China Academy of Chinese Medical SciencesBeijing 100091, People’s Republic of China
| | - Mari Okazaki
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
32
|
Brands RC, De Donno F, Knierim ML, Steinacker V, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Multi-kinase inhibitors and cisplatin for head and neck cancer treatment in vitro. Oncol Lett 2019; 18:2220-2231. [PMID: 31452723 PMCID: PMC6676536 DOI: 10.3892/ol.2019.10541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) remains one of the major causes of suboptimal outcome following therapy in head and neck squamous cell carcinoma (HNSCC). ATP-binding cassette (ABC) transporters are overexpressed in HNSCC, which contributes to the limited effect of chemotherapeutic treatment. In addition to their named function, tyrosine kinase inhibitors (TKIs) have been revealed to impact on ABC transporter activity and expression. Therefore, the present study aimed to investigate the effects of combination therapy using different TKIs combined with cisplatin. Reverse transcription-quantitative PCR was used to characterize ABC transporter and receptor expression in 5 HNSCC cell lines treated with 3 different TKIs (pazopanib, dovitinib, nintedanib) and cisplatin. Treatment efficacy was analyzed using a crystal violet staining assay. Analysis of ABC transporter (ABCB1, ABCC1 and ABCG2) genetic alterations was performed using The Cancer Genome Atlas. Statistical analysis was conducted to evaluate the effects of mono- and combination treatment. With the exception of ABCB1, all of the investigated ABC transporters were expressed in each cell line. The additive effects of TKI + cisplatin combination treatment were observed for pazopanib in three cell lines, nintedanib in four cell lines, and were not observed for dovitinib in any of the cell lines investigated. The combination of multi-kinase inhibitors and conventional chemotherapy in HNSCC may strengthen the use of current therapeutic strategies; nintedanib appears to be the most suitable TKI for combination therapy. Further efforts are required to classify TKI efficacy with regard to cisplatin resistance.
Collapse
Affiliation(s)
- Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Francesco De Donno
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Marie Luise Knierim
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Valentin Steinacker
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
33
|
Chen Z, Tian D, Liao X, Zhang Y, Xiao J, Chen W, Liu Q, Chen Y, Li D, Zhu L, Cai S. Apigenin Combined With Gefitinib Blocks Autophagy Flux and Induces Apoptotic Cell Death Through Inhibition of HIF-1α, c-Myc, p-EGFR, and Glucose Metabolism in EGFR L858R+T790M-Mutated H1975 Cells. Front Pharmacol 2019; 10:260. [PMID: 30967777 PMCID: PMC6438929 DOI: 10.3389/fphar.2019.00260] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells are characterized by abnormally increased glucose uptake and active bio-energy and biosynthesis to support the proliferation, metastasis, and drug resistant survival. We examined the therapeutic value of the combination of apigenin (a natural small-molecule inhibitor of Glut1 belonging to the flavonoid family) and gefitinib on epidermal growth factor receptor (EGFR)-resistant mutant non-small cell lung cancer, to notably damage glucose utilization and thus suppress cell growth and malignant behavior. Here, we demonstrate that apigenin combined with gefitinib inhibits multiple oncogenic drivers such as c-Myc, HIF-1α, and EGFR, reduces Gluts and MCT1 protein expression, and inactivates the 5' adenosine monophosphate-activated protein kinase (AMPK) signaling, which regulates glucose uptake and maintains energy metabolism, leading to impaired energy utilization in EGFR L858R-T790M-mutated H1975 lung cancer cells. H1975 cells exhibit dysregulated metabolism and apoptotic cell death following treatment with apigenin + gefitinib. Therefore, the combined apigenin + gefitinib treatment presents an attractive strategy as alternative treatment for the acquired resistance to EGFR-TKIs in NSCLC.
Collapse
Affiliation(s)
- ZiSheng Chen
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Dongbo Tian
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xiaowen Liao
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yifei Zhang
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jinghua Xiao
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Weiping Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Qingxia Liu
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yun Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Dongmin Li
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lianyu Zhu
- Department of Neurology, Jiangmen Hospital of Traditional Chinese Medicine Affiliated to Jinan University, Jiangmen, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Yeon M, Byun J, Kim H, Kim M, Jung HS, Jeon D, Kim Y, Jeoung D. CAGE Binds to Beclin1, Regulates Autophagic Flux and CAGE-Derived Peptide Confers Sensitivity to Anti-cancer Drugs in Non-small Cell Lung Cancer Cells. Front Oncol 2018; 8:599. [PMID: 30619741 PMCID: PMC6296237 DOI: 10.3389/fonc.2018.00599] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to determine the role of CAGE, a cancer/testis antigen, in resistance of non-small cell lung cancers to anti-cancer drugs. Erlotinib-resistant PC-9 cells (PC-9/ER) with EGFR mutations (ex 19 del + T790M of EGFR), showed higher level of autophagic flux than parental sensitive PC-9 cells. Erlotinib and osimertinib increased autophagic flux and induced the binding of CAGE to Beclin1 in PC-9 cells. The inhibition or induction of autophagy regulated the binding of CAGE to Beclin1 and the responses to anti-cancer drugs. CAGE showed binding to HER2 while HER2 was necessary for binding of CAGE to Beclin1. CAGE was responsible for high level of autophagic flux and resistance to anti-cancer drugs in PC-9/ER cells. A peptide corresponding to the DEAD box domain of CAGE, 266AQTGTGKT273, enhanced the sensitivity of PC-9/ER cells to erlotinib and osimertinib, inhibited the binding of CAGE to Beclin1 and regulated autophagic flux in PC-9/ER cells. Mutant CAGE-derived peptide 266AQTGTGAT273 or 266AQTGTGKA273 did not affect autophagic flux or the binding of CAGE to Beclin1. AQTGTGKT peptide showed binding to CAGE, but not to Beclin1. FITC-AQTGTGKT peptide showed co-localization with CAGE. AQTGTGKT peptide decreased tumorigenic potentials of PC-9/ER and H1975 cells, non-small cell lung cancer (NSCLC) cells with EGFR mutation (L885R/T790M), by inhibiting autophagic fluxand inhibiting the binding of CAGE to Beclin1. AQTGTGKT peptide also enhanced the sensitivity of H1975 cells to anti-cancer drugs. AQTGTGKT peptide showed tumor homing potential based on ex vivo homing assays of xenograft of H1975 cells. AQTGTGKT peptide restored expression levels of miR-143-3p and miR-373-5p, decreased autophagic flux and conferred sensitivity to anti-cancer drugs. These results present evidence that combination of anti-cancer drug with CAGE-derived peptide could overcome resistance of non-small cell lung cancers to anti-cancer drugs.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Jaewhan Byun
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Hyuna Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | | | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
35
|
The antiangiogenic action of cisplatin on endothelial cells is mediated through the release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells. Oncotarget 2018; 9:34038-34055. [PMID: 30344920 PMCID: PMC6183343 DOI: 10.18632/oncotarget.25954] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/20/2018] [Indexed: 01/10/2023] Open
Abstract
In addition to suppressing cancer cell proliferation and tumor growth, cisplatin has been shown to inhibit tumor angiogenesis. However, the underlying mechanism remains a matter of debate. The present study addressed the impact of cisplatin on potential tumor-to-endothelial cell communication conferring an antiangiogenic effect. For this purpose, migration and tube formation of human umbilical vein endothelial cells (HUVECs) exposed to conditioned media (CM) from vehicle- or cisplatin-treated A549 and H358 lung cancer cells were quantified. Cancer cells were exposed to non-toxic concentrations of cisplatin to mimic low-dose treatment conditions. CM from cancer cells exposed to cisplatin at concentrations of 0.01 to 1 µM elicited a concentration-dependent decrease in HUVEC migration and tube formation as compared with CM from vehicle-treated cells. The viability of HUVECs was virtually unaltered under these conditions. siRNA approaches revealed cisplatin-induced expression and subsequent release of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) by lung cancer cells to be causally linked to a decrease in HUVEC migration and tube formation. Moreover, TIMP-1 upregulation and consequent inhibition of HUVEC migration by cisplatin was shown to be dependent on activation of p38 and p42/44 mitogen-activated protein kinases. Inhibition of angiogenic features was not observed when HUVECs were directly exposed to cisplatin. Similarly, antiangiogenic effects were not detectable in HUVECs exposed to CM from the cisplatin-challenged bronchial non-cancer cell line BEAS-2B. Collectively, the present data suggest a pivotal role of cisplatin-induced TIMP-1 release from lung cancer cells in tumor-to-endothelial cell communication resulting in a reduced cancer-associated angiogenic impact on endothelial cells.
Collapse
|
36
|
Chen Z, Zhao L, Zhao F, Yang G, Wang JJ. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway. Oncol Lett 2018; 15:7433-7437. [PMID: 29849794 DOI: 10.3892/ol.2018.8190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/21/2017] [Indexed: 01/23/2023] Open
Abstract
The present study investigated the effect of tetrandrine on lung cancer cell growth and apoptosis, and its possible underlying molecular mechanism. A549 human lung cancer cells were incubated with between 2.5 and 10 µM tetrandrine for 12, 24 and 48 h, following which the effect of tetrandrine on cell viability and apoptosis were assessed using an MTT assay and flow cytometry. ELISA and western blotting were used to analyze VEGF activity, and the expression of poly (ADP-ribose) polymerase (PARP), phosphorylated protein kinase B (Akt), Bcl-2-associated X protein (Bax), hypoxia inducible factor (HIF)-1α and inter-cellular adhesion molecule-1 (ICAM-1). Tetrandrine effectively suppressed the growth of and induced apoptosis in A549 lung cancer cells. The expression of PARP, Bax, intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) was significantly upregulated, and the phosphorylation of Akt and expression of HIF-1α was significantly suppressed in A549 lung cancer cells. Therefore, tetrandrine may suppress cell viability and induce apoptosis via the VEGF/HIF-1α/ICAM-1 signaling pathway.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Liang Zhao
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Feng Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jian Jun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
37
|
Yang Z, Tam KY. Combination Strategies Using EGFR-TKi in NSCLC Therapy: Learning from the Gap between Pre-Clinical Results and Clinical Outcomes. Int J Biol Sci 2018; 14:204-216. [PMID: 29483838 PMCID: PMC5821041 DOI: 10.7150/ijbs.22955] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/09/2017] [Indexed: 01/04/2023] Open
Abstract
Although epidermal growth factor receptor (EGFR) inhibitors have been used to treat non-small cell lung cancer (NSCLC) for decades with great success in patients with EGFR mutations, acquired resistance inevitably occurs after long-term exposure. More recently, combination therapy has emerged as a promising strategy to overcome this issue. Several experiments have been carried out to evaluate the synergism of combination therapy both in vitro and in vivo. Additionally, many clinical studies have been carried out to investigate the feasibility of treatment with EGFR-tyrosine kinase inhibitors (TKi) combined with other NSCLC treatments, including radiotherapy, cytotoxic chemotherapies, targeted therapies, and emerging immunotherapies. However, a significant gap still exists when applying pre-clinical results to clinical scenarios, which hinders the development and use of these strategies. This article is a literature review analysing the rationalities and controversies in the transition from pre-clinical investigation to clinical practice associated with various combination strategies. It also highlights clues and challenges regarding future combination therapeutic options in NSCLC treatment.
Collapse
Affiliation(s)
| | - Kin Yip Tam
- Faculty of Health Science, University of Macau, Taipa, Macau, China
| |
Collapse
|
38
|
Gu J, Xu S, Huang L, Li S, Wu J, Xu J, Feng J, Liu B, Zhou Y. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer. J Thorac Dis 2018; 10:723-731. [PMID: 29607142 DOI: 10.21037/jtd.2017.12.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18F-Fluoro-2-deoxyglucose (18F-FDG) uptake value of primary tumor and epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC). Methods We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. Results EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs. 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Conclusions Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.
Collapse
Affiliation(s)
- Jincui Gu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Siqi Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lixia Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shaoli Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Junwen Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jinlun Feng
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Baomo Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yanbin Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
39
|
|
40
|
Gao Y, Zhang T, Terai H, Ficarro SB, Kwiatkowski N, Hao MF, Sharma B, Christensen CL, Chipumuro E, Wong KK, Marto JA, Hammerman PS, Gray NS, George RE. Overcoming Resistance to the THZ Series of Covalent Transcriptional CDK Inhibitors. Cell Chem Biol 2017; 25:135-142.e5. [PMID: 29276047 DOI: 10.1016/j.chembiol.2017.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/13/2017] [Accepted: 11/15/2017] [Indexed: 12/25/2022]
Abstract
Irreversible inhibition of transcriptional cyclin-dependent kinases (CDKs) provides a therapeutic strategy for cancers that rely on aberrant transcription; however, lack of understanding of resistance mechanisms to these agents will likely impede their clinical evolution. Here, we demonstrate upregulation of multidrug transporters ABCB1 and ABCG2 as a major mode of resistance to THZ1, a covalent inhibitor of CDKs 7, 12, and 13 in neuroblastoma and lung cancer. To counter this obstacle, we developed a CDK inhibitor, E9, that is not a substrate for ABC transporters, and by selecting for resistance, determined that it exerts its cytotoxic effects through covalent modification of cysteine 1039 of CDK12. These results highlight the importance of considering this common mode of resistance in the development of clinical analogs of THZ1, identify a covalent CDK12 inhibitor that is not susceptible to ABC transporter-mediated drug efflux, and demonstrate that target deconvolution can be accomplished through selection for resistance.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Hideki Terai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Ming-Feng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Bandana Sharma
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Camilla L Christensen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Rani E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Wang H, Wang L, Song Y, Wang S, Huang X, Xuan Q, Kang X, Zhang Q. CD44 +/CD24 - phenotype predicts a poor prognosis in triple-negative breast cancer. Oncol Lett 2017; 14:5890-5898. [PMID: 29113223 PMCID: PMC5661458 DOI: 10.3892/ol.2017.6959] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells are enriched in triple-negative breast cancer (TNBC) tumor tissues, which present strong capacities of proliferation and tumorigenicity. The present study detected the distribution of cancer stem cell markers cluster of differentiation (CD)44/CD24 and analyzed the clinical outcomes of different CD44/CD24 phenotypes in patients with TNBC. Multivariate Cox regression analyses were performed with regard to the prognostic value of cancer stem cell markers CD44/CD24, aldehyde dehydrogenase 1 and other baseline clinical characteristics, including tumor size, lymph node involved, adjuvant chemotherapy, Ki-67, breast cancer susceptibility gene 1, cellular tumor antigen p53, vimentin and basal-like status. The multivariate analyses showed that three of these factors, CD44/CD24 phenotype, basal-like status and number of lymph nodes involved, had an impact on overall survival. Furthermore, patients with CD44+/CD24- phenotype, basal-like tumors and ≥4 lymph nodes involved had a significantly worse prognosis. The expression of CD44 and CD24 was detected by double-staining immunohistochemistry, which can locate cancer stem cells individually. Overall, the present results indicated that CD44/CD24 status evaluated by double-staining immunohistochemistry constitutes an independent prognostic factor for TNBC.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Li Wang
- Department of Medical Oncology, The Fourth People's Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| | - Ying Song
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shuhuai Wang
- Department of Pathology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xu Huang
- Department of Radiation Oncology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qijia Xuan
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xinmei Kang
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qingyuan Zhang
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
42
|
Masuda C, Yanagisawa M, Yorozu K, Kurasawa M, Furugaki K, Ishikura N, Iwai T, Sugimoto M, Yamamoto K. Bevacizumab counteracts VEGF-dependent resistance to erlotinib in an EGFR-mutated NSCLC xenograft model. Int J Oncol 2017. [PMID: 28627678 PMCID: PMC5504975 DOI: 10.3892/ijo.2017.4036] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Erlotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), shows superior efficacy in patients with non-small cell lung cancer (NSCLC) harboring activating EGFR mutations (EGFR Mut+). However, almost all tumors eventually develop resistance to erlotinib. Recently, the Phase II JO25567 study reported significant prolongation of progression-free survival (PFS) by erlotinib plus bevacizumab combination compared with erlotinib in EGFR Mut+ NSCLC. Herein, we established a preclinical model which became refractory to erlotinib after long-term administration and elucidated the mode of action of this combination. In this model, tumor regrowth occurred after remarkable shrinkage by erlotinib; regrowth was successfully inhibited by erlotinib plus bevacizumab. Tumor vascular endothelial growth factor (VEGF) was greatly reduced by erlotinib in the erlotinib-sensitive phase but significantly increased in the erlotinib-refractory phase despite continued treatment with erlotinib. Although EGFR phosphorylation remained suppressed in the erlotinib-refractory phase, phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT, and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) were markedly higher than in the erlotinib-sensitive phase; among these, pERK was suppressed by erlotinib plus bevacizumab. MVD was decreased significantly more with erlotinib plus bevacizumab than with each drug alone. In conclusion, the erlotinib plus bevacizumab combination demonstrated promising efficacy in the B901L xenograft model of EGFR Mut+ NSCLC. Re-induction of VEGF and subsequent direct or indirect VEGF-dependent tumor growth was suggested as a major mechanism of erlotinib resistance, and erlotinib plus bevacizumab achieved remarkably prolonged antitumor activity in this model.
Collapse
Affiliation(s)
- Chinami Masuda
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| | - Mieko Yanagisawa
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| | - Keigo Yorozu
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| | - Mitsue Kurasawa
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| | - Koh Furugaki
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| | - Nobuyuki Ishikura
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| | - Toshiki Iwai
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| | - Masamichi Sugimoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| | - Kaname Yamamoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| |
Collapse
|
43
|
Noninvasive Bioluminescence Imaging of AKT Kinase Activity in Subcutaneous and Orthotopic NSCLC Xenografts: Correlation of AKT Activity with Tumor Growth Kinetics. Neoplasia 2017; 19:310-320. [PMID: 28285180 PMCID: PMC5379573 DOI: 10.1016/j.neo.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Aberrant signaling through the AKT kinase mediates oncogenic phenotypes including cell proliferation, survival, and therapeutic resistance. Here, we utilize a bioluminescence reporter for AKT kinase activity (BAR) to noninvasively assess the therapeutic efficacy of the EGFR inhibitor erlotinib in KRAS-mutated lung cancer therapy. A549 non–small cell lung cancer cell line, engineered to express BAR, enabled the evaluation of compounds targeting the EGFR/PI3K/AKT pathway in vitro as well as in mouse models. We found that erlotinib treatment of resistant A549 subcutaneous and orthotopic xenografts resulted in significant AKT inhibition as determined by an 8- to 13-fold (P < .0001) increase in reporter activity 3 hours after erlotinib (100 mg/kg) administration compared to the control. This was confirmed by a 25% (P < .0001) decrease in pAKT ex vivo and a decrease in tumor growth. Treatment of the orthotopic xenograft with varying doses of erlotinib (25, 50, and 100 mg/kg) revealed a dose- and time-dependent increase in reporter activity (10-, 12-, and 23-fold). Correspondingly, a decrease in phospho-AKT levels (0%, 16%, and 28%, respectively) and a decrease in the AKT dependent proliferation marker PCNA (0%, 50%, and 50%) were observed. We applied μ-CT imaging for noninvasive longitudinal quantification of lung tumor load which revealed a corresponding decrease in tumor growth in a dose-dependent manner. These findings demonstrate the utility of BAR to noninvasively monitor AKT activity in preclinical studies in response to AKT modulating agents. These results also demonstrate that BAR can be applied to study drug dosing, drug combinations, and treatment efficacy in orthotopic mouse lung tumor models.
Collapse
|
44
|
Yang H, Deng Q, Qiu Y, Huang J, Guan Y, Wang F, Xu X, Yang X. Erlotinib intercalating pemetrexed/cisplatin versus erlotinib alone in Chinese patients with brain metastases from lung adenocarcinoma: a prospective, non-randomised, concurrent controlled trial (NCT01578668). ESMO Open 2017; 2:e000112. [PMID: 29147576 PMCID: PMC5682358 DOI: 10.1136/esmoopen-2016-000112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/09/2016] [Indexed: 11/04/2022] Open
Abstract
Objective Erlotinib has a synergistic effect with pemetrexed for treating non-squamous non-small-cell lung cancer. We investigated the efficacy and safety of erlotinib (E) in combination with pemetrexed/cisplatin (E-P) in Chinese patients with lung adenocarcinoma with brain metastases. Design Patients who were erlotinib-naïve or pemetrexed-naïve were assigned in parallel to receive either E or E-P. The primary endpoint was the intracranial overall response rate (ORRi). Results Sixty-nine patients with lung adenocarcinoma with brain metastases received E (n=35) or E-P (n=34) from January 2012 to November 2014. Demographics and patient characteristics were well balanced between the two groups, including epidermal growth factor receptor (EGFR) status, sex, age, smoking status, Eastern Cooperative Oncology Group (ECOG) performance status, brain metastases and number of prior treatments. ORRi in the E-P arm was superior to that in the E arm (79% vs 48%, p=0.008). Compared with E as the first-line treatment, E-P was associated with better intracranial progression-free survival (PFSi, median: 9 vs 2 months, p=0.027) and systemic PFS (median: 8 vs 2 months, p=0.006). The most frequent E-related adverse events were higher in the combination arm. No new safety signals were detected. The side effects were tolerable, and there were no drug-related deaths. Conclusion Our study suggests that the E-P combination may be effective in Chinese patients with lung adenocarcinoma with brain metastases, with improved PFS in treatment-naïve patients. Toxicities are tolerable, and there are more E-related side effects.
Collapse
Affiliation(s)
- Haihong Yang
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Diseases, Guangzhou, China.
| | - Qiuhua Deng
- The Center for Translational Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Qiu
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Jun Huang
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Yubao Guan
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fengnan Wang
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Xin Xu
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Xinyun Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
Berndsen RH, Weiss A, Abdul UK, Wong TJ, Meraldi P, Griffioen AW, Dyson PJ, Nowak-Sliwinska P. Combination of ruthenium(II)-arene complex [Ru(η 6-p-cymene)Cl 2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Sci Rep 2017; 7:43005. [PMID: 28223694 PMCID: PMC5320450 DOI: 10.1038/srep43005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/17/2017] [Indexed: 12/28/2022] Open
Abstract
Ruthenium-based compounds show strong potential as anti-cancer drugs and are being investigated as alternatives to other well-established metal-based chemotherapeutics. The organometallic compound [Ru(η6-p-cymene)Cl2(pta)], where pta = 1,3,5-triaza-7-phosphaadamantane (RAPTA-C) exhibits broad acting anti-tumor efficacy with intrinsic angiostatic activity. In the search for an optimal anti-angiogenesis drug combination, we identified synergistic potential between RAPTA-C and the epidermal growth factor receptor (EGFR) inhibitor, erlotinib. This drug combination results in strong synergistic inhibition of cell viability in human endothelial (ECRF24 and HUVEC) and human ovarian carcinoma (A2780 and A2780cisR) cells. Additionally, erlotinib significantly enhances the cellular uptake of RAPTA-C relative to treatment with RAPTA-C alone in human ovarian carcinoma cells, but not endothelial cells. Drug combinations induce the formation of chromosome bridges that persist after mitotic exit and delay abscission in A2780 and A2780cisR, therefore suggesting initiation of cellular senescence. The therapeutic potential of these compounds and their combination is further validated in vivo on A2780 tumors grown on the chicken chorioallantoic membrane (CAM) model, and in a preclinical model in nude mice. Immunohistochemical analysis confirms effective anti-angiogenic and anti-proliferative activity in vivo, based on a significant reduction of microvascular density and a decrease in proliferating cells.
Collapse
Affiliation(s)
- Robert H. Berndsen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Andrea Weiss
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - U. Kulsoom Abdul
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tse J. Wong
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, University of Geneva (UNIGE), Geneva, Switzerland
| | - Arjan W. Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul J. Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
46
|
Van Der Steen N, Deben C, Deschoolmeester V, Wouters A, Lardon F, Rolfo C, Germonpré P, Giovannetti E, Peters GJ, Pauwels P. Better to be alone than in bad company: The antagonistic effect of cisplatin and crizotinib combination therapy in non-small cell lung cancer. World J Clin Oncol 2016; 7:425-432. [PMID: 28008383 PMCID: PMC5143436 DOI: 10.5306/wjco.v7.i6.425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/29/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the potential benefit of combining the cMET inhibitor crizotinib and cisplatin we performed in vitro combination studies. METHODS We tested three different treatment schemes in four non-small cell lung cancer (NSCLC) cell lines with a different cMET/epidermal growth factor receptor genetic background by means of the sulforhodamine B assay and performed analysis with Calcusyn. RESULTS All treatment schemes showed an antagonistic effect in all cell lines, independent of the cMET status. Despite their different genetic backgrounds, all cell lines (EBC-1, HCC827, H1975 and LUDLU-1) showed antagonistic combination indexes ranging from 1.3-2.7. These results were independent of the treatment schedule. CONCLUSION These results discourage further efforts to combine cMET inhibition with cisplatin chemotherapy in NSCLC.
Collapse
|
47
|
Du Y, Wang P, Sun H, Yang J, Lang X, Wang Z, Zang S, Chen L, Ma J, Sun D. HCRP1 is downregulated in non-small cell lung cancer and regulates proliferation, invasion, and drug resistance. Tumour Biol 2016; 37:15893–15901. [PMID: 27739029 DOI: 10.1007/s13277-016-5416-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022] Open
Abstract
HCRP1 has been reported to have tumor suppressive function. However, its expression pattern and function in human non-small cell lung cancer (NSCLC) remain obscure. This study aims to explore clinical significance of HCRP1 in NSCLC. Immunohistochemical results showed high HCRP1 protein in normal bronchial epithelial tissue and downregulated HCRP1 expression in 47/98 lung cancer specimens. HCRP1 downregulation correlated with clinical stage (p = 0.0203), nodal status (p = 0.0168), and poor patient prognosis (log-rank, p = 0.0076). Univariate analysis showed that TNM stage (p < 0.0001) and HCRP1 (p = 0.0098) were significant prognostic factors; Cox regression model showed that TNM stage serves as an independent prognostic factor (p = 0.0011). We also found that HCRP1 was downregulated in lung cancer cells compared with normal HBE cells. HCRP1 plasmid transfection in H1299 cells inhibited proliferation, cell cycle progression, and invasion. HCRP1 depletion in A549 cells showed the opposite biological effects. In addition, we found that HCRP1 could inhibit MAPK and AKT signaling with downregulation of ERK and AKT phosphorylation, cyclin proteins, Bcl2 and MMP9, while HCRP1 depletion activated ERK and AKT signaling. The level of EGFR phosphorylation was also inhibited by HCRP1. In addition, we found that HCRP1 depletion confers multidrug resistance in H1299 cells. We employed paclitaxel and cisplatin in A549 cells with HCRP1 depletion. HCRP1 depletion decreased the effect of paclitaxel and cisplatin in A549 cells. Treatment with EGFR inhibitor AG1478 and AKT inhibitor LY249004 abolished the effect of HCRP1 depletion on drug resistance. In conclusion, the present study demonstrate that HCRP1 is downregulated in NSCLC and regulates proliferation, invasion, and drug resistance through modulation of EGFR signaling.
Collapse
Affiliation(s)
- Yaming Du
- Department of Cardiovascular Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jingzhou City, People's Republic of China
| | - Peng Wang
- Department of Cardiovascular Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jingzhou City, People's Republic of China
| | - Hongzhi Sun
- Department of Tumor Center, The First Affiliated Hospital of Jinzhou Medical University, NO.2, Section 5 Rinmin Street, Guta District, Jingzhou City, 121001, Liaoning, People's Republic of China.
| | - Jing Yang
- Department of Pathology, Jinzhou Medical University, Jingzhou City, People's Republic of China
| | - Xianping Lang
- Department of Cardiovascular Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jingzhou City, People's Republic of China
| | - Zhongbin Wang
- Department of Cardiovascular Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jingzhou City, People's Republic of China
| | - Sheng Zang
- Department of Cardiovascular Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jingzhou City, People's Republic of China
| | - Lei Chen
- Department of Cardiovascular Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jingzhou City, People's Republic of China
| | - Junjun Ma
- Department of Cardiovascular Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jingzhou City, People's Republic of China
| | - Daohan Sun
- Department of Cardiovascular Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jingzhou City, People's Republic of China
| |
Collapse
|
48
|
Ren X, Zhao W, Du Y, Zhang T, You L, Zhao Y. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim. Oncol Lett 2016; 12:4732-4738. [PMID: 28105181 DOI: 10.3892/ol.2016.5294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells.
Collapse
Affiliation(s)
- Xiaoxia Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenjing Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yongxing Du
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
49
|
Wang C, Wang R, Zhou K, Wang S, Wang J, Shi H, Dou Y, Yang D, Chang L, Shi X, Liu Y, Xu X, Zhang X, Ke Y, Liu H. JD enhances the anti-tumour effects of low-dose paclitaxel on gastric cancer MKN45 cells both in vitro and in vivo. Cancer Chemother Pharmacol 2016; 78:971-982. [PMID: 27620208 DOI: 10.1007/s00280-016-3149-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Gastric cancer is the third most common cause of cancer mortality worldwide, and paclitaxel (PTX) is one of the most widely used traditional drugs in gastric cancer therapy. However, the response to traditional therapy is limited by acquired chemo-resistance and side effects. Here, we establish a newly designed combination therapy consisting of a compound that is a structural variant of oridonin, i.e. Jesridonin (JD), and low-dose PTX for gastric cancer cells (MKN45) to investigate whether the anti-tumour activity of low-dose PTX could be enhanced when combined with JD. METHODS The interaction of JD and low-dose PTX was detected in MKN45 cells using the median-effect analysis method. The synergistic effect on cell viability and apoptosis was measured by MTT assay, colony formation assay, transient transfection, flow cytometry and Western blotting. The synergistic in vivo effect of JD plus low-dose PTX was evaluated in nude mouse xenograft models using H&E and TUNEL staining and Western blotting. RESULTS JD plus low-dose PTX showed a synergistic effect, as the combination indexes were less than 1. Additionally, a synergistic anti-proliferative and pro-apoptotic effect was detected for the combination of JD and low-dose PTX. The apoptotic mechanism induced by JD plus PTX revealed that the combination therapy synergistically activated the mitochondrial pathway. CONCLUSION Our findings suggest that JD enhances the anti-tumour effect of low-dose PTX on gastric carcinoma cancer cells in both vitro and in vivo, accompanied by activation of the mitochondrial pathway, which may present a more effective therapeutic strategy in gastric cancer treatment.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ran Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Kairui Zhou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Saiqi Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Junwei Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hongge Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yinhui Dou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dongxiao Yang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Liming Chang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaoli Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ying Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaowei Xu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiujuan Zhang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yu Ke
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hongmin Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
50
|
Apostolova I, Ego K, Steffen IG, Buchert R, Wertzel H, Achenbach HJ, Riedel S, Schreiber J, Schultz M, Furth C, Derlin T, Amthauer H, Hofheinz F, Kalinski T. The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers. Eur J Nucl Med Mol Imaging 2016; 43:2360-2373. [PMID: 27470327 DOI: 10.1007/s00259-016-3452-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Asphericity (ASP) is a tumour shape descriptor based on the PET image. It quantitates the deviation from spherical of the shape of the metabolic tumour volume (MTV). In order to identify its biological correlates, we investigated the relationship between ASP and clinically relevant histopathological and molecular signatures in non-small-cell lung cancer (NSCLC). METHODS The study included 83 consecutive patients (18 women, aged 66.4 ± 8.9 years) with newly diagnosed NSCLC in whom PET/CT with 18F-FDG had been performed prior to therapy. Primary tumour resection specimens and core biopsies were used for basic histopathology and determination of the Ki-67 proliferation index. EGFR status, VEGF, p53 and ALK expression were obtained in a subgroup of 44 patients. The FDG PET images of the primary tumours were delineated using an automatic algorithm based on adaptive thresholding taking into account local background. In addition to ASP, SUVmax, MTV and some further descriptors of shape and intratumour heterogeneity were assessed as semiquantitative PET measures. RESULTS SUVmax, MTV and ASP were associated with pathological T stage (Kruskal-Wallis, p = 0.001, p < 0.0005 and p < 0.0005, respectively) and N stage (p = 0.017, p = 0.003 and p = 0.002, respectively). Only ASP was associated with M stage (p = 0.026). SUVmax, MTV and ASP were correlated with Ki-67 index (Spearman's rho = 0.326/p = 0.003, rho = 0.302/p = 0.006 and rho = 0.271/p = 0.015, respectively). The latter correlations were considerably stronger in adenocarcinomas than in squamous cell carcinomas. ASP, but not SUVmax or MTV, showed a tendency for a significant association with the extent of VEGF expression (p = 0.058). In multivariate Cox regression analysis, ASP (p < 0.0005) and the presence of distant metastases (p = 0.023) were significantly associated with progression-free survival. ASP (p = 0.006), the presence of distant metastases (p = 0.010), and Ki-67 index (p = 0.062) were significantly associated with overall survival. CONCLUSION The ASP of primary NSCLCs on FDG PET images is associated with tumour dimensions and molecular markers of proliferation and angiogenesis.
Collapse
Affiliation(s)
- Ivayla Apostolova
- Clinic of Radiology and Nuclear Medicine, University Hospital, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Kilian Ego
- Clinic of Radiology and Nuclear Medicine, University Hospital, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Ingo G Steffen
- Clinic of Radiology and Nuclear Medicine, University Hospital, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Ralph Buchert
- Clinic of Nuclear Medicine, University Medicine Charité, Berlin, Germany
| | | | | | - Sandra Riedel
- Clinic of Pneumology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jens Schreiber
- Clinic of Pneumology, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Meinald Schultz
- Institute of Pathology Stendal, Straße der Demokratie 1, Stendal, Germany
| | - Christian Furth
- Clinic of Radiology and Nuclear Medicine, University Hospital, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.,Clinic of Nuclear Medicine, University Medicine Charité, Berlin, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Holger Amthauer
- Clinic of Radiology and Nuclear Medicine, University Hospital, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.,Clinic of Nuclear Medicine, University Medicine Charité, Berlin, Germany
| | | | - Thomas Kalinski
- Institute for Pathology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute for Pathology Lademannbogen, Hamburg, Germany
| |
Collapse
|