1
|
Stockwell CA, Thang M, Kram DE, Satterlee AB, Hingtgen S. Therapeutic approaches for targeting the pediatric brain tumor microenvironment. Drug Deliv Transl Res 2025:10.1007/s13346-025-01839-3. [PMID: 40257744 DOI: 10.1007/s13346-025-01839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
Central nervous system (CNS) tumors are the most frequent solid malignant tumors in pediatric patients and are the leading cause of tumor-related death in children. Treatment for this heterogeneous group of tumors consists of various combinations of safe maximal surgical resection, chemotherapy, and radiation therapy which offer a cure for some children but often cause debilitating adverse late effects in others. While therapies targeting the tumor microenvironment (TME) like immune checkpoint inhibition (ICI) have been successful in treating some cancers, these therapies failed to exhibit treatment efficacy in the majority of pediatric brain tumors in the clinic. Importantly, the pediatric TME is unique and distinct from adult brain tumors and designing therapies to effectively target these tumors requires understanding the unique biology of pediatric brain tumors and the use of translational models that recapitulate the TME. Here we describe the TME of medulloblastoma (MB) and diffuse midline glioma (DMG), specifically diffuse intrinsic pontine glioma (DIPG), and further present the current drug delivery approaches and clinical administration routes targeting the TME in these tumors, including preclinical and clinical studies.
Collapse
Affiliation(s)
- Caroline A Stockwell
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Morrent Thang
- Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew B Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Ross JL, Puigdelloses-Vallcorba M, Piñero G, Soni N, Thomason W, DeSisto J, Angione A, Tsankova NM, Castro MG, Schniederjan M, Wadhwani NR, Raju GP, Morgenstern P, Becher OJ, Green AL, Tsankov AM, Hambardzumyan D. Microglia and monocyte-derived macrophages drive progression of pediatric high-grade gliomas and are transcriptionally shaped by histone mutations. Immunity 2024; 57:2669-2687.e6. [PMID: 39395421 PMCID: PMC11578068 DOI: 10.1016/j.immuni.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
Pediatric high-grade gliomas (pHGGs), including hemispheric pHGGs and diffuse midline gliomas (DMGs), harbor mutually exclusive tumor location-specific histone mutations. Using immunocompetent de novo mouse models of pHGGs, we demonstrated that myeloid cells were the predominant infiltrating non-neoplastic cell population. Single-cell RNA sequencing (scRNA-seq), flow cytometry, and immunohistochemistry illustrated the presence of heterogeneous myeloid cell populations shaped by histone mutations and tumor location. Disease-associated myeloid (DAM) cell phenotypes demonstrating immune permissive characteristics were identified in murine and human pHGG samples. H3.3K27M DMGs, the most aggressive DMG, demonstrated enrichment of DAMs. Genetic ablation of chemokines Ccl8 and Ccl12 resulted in a reduction of DAMs and an increase in lymphocyte infiltration, leading to increased survival of tumor-bearing mice. Pharmacologic inhibition of chemokine receptors CCR1 and CCR5 resulted in extended survival and decreased myeloid cell infiltration. This work establishes the tumor-promoting role of myeloid cells in DMG and the potential therapeutic opportunities for targeting them.
Collapse
Affiliation(s)
- James L Ross
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Montserrat Puigdelloses-Vallcorba
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Gonzalo Piñero
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Nishant Soni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wes Thomason
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells and Development Graduate Program, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Angelo Angione
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Nadejda M Tsankova
- Department of Pathology and Molecular and Cell-Based Medicine, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Maria G Castro
- Departments of Neurosurgery and Cell & Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Matthew Schniederjan
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Nitin R Wadhwani
- Department of Pathology and Laboratory Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G Praveen Raju
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Morgenstern
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells and Development Graduate Program, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Furst LM, Roussel EM, Leung RF, George AM, Best SA, Whittle JR, Firestein R, Faux MC, Eisenstat DD. The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models. BIOLOGY 2024; 13:424. [PMID: 38927304 PMCID: PMC11200883 DOI: 10.3390/biology13060424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Pediatric high-grade gliomas (pHGG) are malignant and usually fatal central nervous system (CNS) WHO Grade 4 tumors. The majority of pHGG consist of diffuse midline gliomas (DMG), H3.3 or H3.1 K27 altered, or diffuse hemispheric gliomas (DHG) (H3.3 G34-mutant). Due to diffuse tumor infiltration of eloquent brain areas, especially for DMG, surgery has often been limited and chemotherapy has not been effective, leaving fractionated radiation to the involved field as the current standard of care. pHGG has only been classified as molecularly distinct from adult HGG since 2012 through Next-Generation sequencing approaches, which have shown pHGG to be epigenetically regulated and specific tumor sub-types to be representative of dysregulated differentiating cells. To translate discovery research into novel therapies, improved pre-clinical models that more adequately represent the tumor biology of pHGG are required. This review will summarize the molecular characteristics of different pHGG sub-types, with a specific focus on histone K27M mutations and the dysregulated gene expression profiles arising from these mutations. Current and emerging pre-clinical models for pHGG will be discussed, including commonly used patient-derived cell lines and in vivo modeling techniques, encompassing patient-derived xenograft murine models and genetically engineered mouse models (GEMMs). Lastly, emerging techniques to model CNS tumors within a human brain environment using brain organoids through co-culture will be explored. As models that more reliably represent pHGG continue to be developed, targetable biological and genetic vulnerabilities in the disease will be more rapidly identified, leading to better treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Liam M. Furst
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Enola M. Roussel
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ryan F. Leung
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Ankita M. George
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Sarah A. Best
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James R. Whittle
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ron Firestein
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia;
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Maree C. Faux
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Surgery, University of Melbourne, Parkville, VIC 3010, Australia
| | - David D. Eisenstat
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Children’s Cancer Centre, The Royal Children’s Hospital Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Mishra DK, Popovski D, Morris SM, Bondoc A, Senthil Kumar S, Girard EJ, Rutka J, Fouladi M, Huang A, Olson JM, Drissi R. Preclinical pediatric brain tumor models for immunotherapy: Hurdles and a way forward. Neuro Oncol 2024; 26:226-235. [PMID: 37713135 PMCID: PMC10836771 DOI: 10.1093/neuonc/noad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 09/16/2023] Open
Abstract
Brain tumors are the most common solid tumor in children and the leading cause of cancer-related deaths. Over the last few years, improvements have been made in the diagnosis and treatment of children with Central Nervous System tumors. Unfortunately, for many patients with high-grade tumors, the overall prognosis remains poor. Lower survival rates are partly attributed to the lack of efficacious therapies. The advent and success of immune checkpoint inhibitors (ICIs) in adults have sparked interest in investigating the utility of these therapies alone or in combination with other drug treatments in pediatric patients. However, to achieve improved clinical outcomes, the establishment and selection of relevant and robust preclinical pediatric high-grade brain tumor models is imperative. Here, we review the information that influenced our model selection as we embarked on an international collaborative study to test ICIs in combination with epigenetic modifying agents to enhance adaptive immunity to treat pediatric brain tumors. We also share challenges that we faced and potential solutions.
Collapse
Affiliation(s)
- Deepak Kumar Mishra
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dean Popovski
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shelli M Morris
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew Bondoc
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Emily J Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - James Rutka
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maryam Fouladi
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - James M Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
5
|
Rechberger JS, Zhang L, Ge J, Nesvick CL, Miller KJ, Daniels DJ. Feasibility of probe washing after stereotactic needle biopsy as a novel technique for developing cell lines and xenografts of H3 K27-altered diffuse midline gliomas. J Neurosurg Pediatr 2023; 32:413-420. [PMID: 37486856 PMCID: PMC11079861 DOI: 10.3171/2023.5.peds22557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/26/2023] [Indexed: 07/26/2023]
Abstract
H3 K27-altered diffuse midline gliomas (DMGs) are frequently biopsied to obtain tissue diagnosis, inform clinical decision-making, and determine clinical trial eligibility. Tissue yield from biopsies is typically low, leaving little material available for research. To advance understanding of disease biology and promote preclinical testing of novel therapeutics, collecting viable cellular material from treatment-naive tumors is of paramount importance. Here, the authors report the feasibility of a practicable technique for creating DMG cell lines and patient-derived xenografts (PDXs) without the need for additional biopsy specimens. Tumor cells are obtained by probe washing immediately after completion of biopsy. Wash fluid is collected, and viable cells are expanded in vitro. Cultured cells are used to establish PDX rodent models. A total of 5 patient samples were collected by this technique. Viable tumor cells were obtained from 3 of the 5 samples, and cell lines suitable for experiments were obtained within 6-8 months. Orthotopic implantation and flank engraftment was successful in 1 of the 3 established cell lines. Animals harboring intracranial tumors were euthanized due to disease burden 6-7 months after stereotactic injection. Flank tumors formed within 4-5 months and were serially passaged. Molecular and tissue analyses confirmed retention of H3 K27M expression and loss of H3 K27me3 in all cell lines and PDXs.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Departments of Neurologic Surgery Mayo Clinic, Rochester, Minnesota
- Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Liang Zhang
- Departments of Neurologic Surgery Mayo Clinic, Rochester, Minnesota
| | - Jizhi Ge
- Departments of Neurologic Surgery Mayo Clinic, Rochester, Minnesota
| | - Cody L. Nesvick
- Departments of Neurologic Surgery Mayo Clinic, Rochester, Minnesota
| | - Kai J. Miller
- Departments of Neurologic Surgery Mayo Clinic, Rochester, Minnesota
| | - David J. Daniels
- Departments of Neurologic Surgery Mayo Clinic, Rochester, Minnesota
- Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Ocasio JK, Budd KM, Roach JT, Andrews JM, Baker SJ. Oncohistones and disrupted development in pediatric-type diffuse high-grade glioma. Cancer Metastasis Rev 2023; 42:367-388. [PMID: 37119408 PMCID: PMC10441521 DOI: 10.1007/s10555-023-10105-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M. This subgroup of glioma is now defined as diffuse midline glioma, H3K27-altered. In contrast, histone H3 Gly34Arg/Val (G34R/V) mutations are found in approximately 30% of diffuse glioma arising in the cerebral hemispheres of older adolescents and young adults, now classified as diffuse hemispheric glioma, H3G34-mutant. Here, we review how oncohistones modulate the epigenome and discuss the mutational landscape and invasive properties of histone mutant HGGs of childhood. The distinct mechanisms through which oncohistones and other mutations rewrite the epigenetic landscape provide novel insights into development and tumorigenesis and may present unique vulnerabilities for pHGGs. Lessons learned from these rare incurable brain tumors of childhood may have broader implications for cancer, as additional high- and low-frequency oncohistone mutations have been identified in other tumor types.
Collapse
Affiliation(s)
- Jennifer K Ocasio
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaitlin M Budd
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jordan T Roach
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
- College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Jared M Andrews
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA.
| |
Collapse
|
7
|
Foss A, Pathania M. Pediatric Glioma Models Provide Insights into Tumor Development and Future Therapeutic Strategies. Dev Neurosci 2023; 46:22-43. [PMID: 37231843 DOI: 10.1159/000531040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.
Collapse
Affiliation(s)
- Amelia Foss
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Manav Pathania
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Laurenge A, Huillard E, Bielle F, Idbaih A. Cell of Origin of Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:85-101. [PMID: 36587383 DOI: 10.1007/978-3-031-14732-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A better understanding of cellular and molecular biology of primary central nervous system (CNS) tumors is a critical step toward the design of innovative treatments. In addition to improving knowledge, identification of the cell of origin in tumors allows for sharp and efficient targeting of specific tumor cells promoting and driving oncogenic processes. The World Health Organization identifies approximately 150 primary brain tumor subtypes with various ontogeny and clinical outcomes. Identification of the cell of origin of each tumor type with its lineage and differentiation level is challenging. In the current chapter, we report the suspected cell of origin of various CNS primary tumors including gliomas, glioneuronal tumors, medulloblastoma, meningioma, atypical teratoid rhabdoid tumor, germinomas, and lymphoma. Most of them have been pinpointed through transgenic mouse models and analysis of molecular signatures of tumors. Identification of the cell or cells of origin in primary brain tumors will undoubtedly open new therapeutic avenues, including the reactivation of differentiation programs for therapeutic perspectives.
Collapse
Affiliation(s)
- Alice Laurenge
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, ICM, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Emmanuelle Huillard
- INSERM, CNRS, APHP, Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Paris, France
| | - Franck Bielle
- AP-HP, SIRIC CURAMUS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de La Moelle Épinière, ICM, Service de Neuropathologie Escourolle, 75013, Paris, France
| | - Ahmed Idbaih
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, ICM, Service de Neurologie 2-Mazarin, 75013, Paris, France.
| |
Collapse
|
9
|
Jovanovich N, Habib A, Head J, Hameed F, Agnihotri S, Zinn PO. Pediatric diffuse midline glioma: Understanding the mechanisms and assessing the next generation of personalized therapeutics. Neurooncol Adv 2023; 5:vdad040. [PMID: 37152806 PMCID: PMC10162114 DOI: 10.1093/noajnl/vdad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Diffuse midline glioma (DMG) is a pediatric cancer that originates in the midline structures of the brain. Prognosis of DMG patients remains poor due to the infiltrative nature of these tumors and the protection they receive from systemically delivered therapeutics via an intact blood-brain barrier (BBB), making treatment difficult. While the cell of origin remains disputed, it is believed to reside in the ventral pons. Recent research has pointed toward epigenetic dysregulation inducing an OPC-like transcriptomic signature in DMG cells. This epigenetic dysregulation is typically caused by a mutation (K27M) in one of two histone genes-H3F3A or HIST1H3B -and can lead to a differentiation block that increases these cells oncogenic potential. Standard treatment with radiation is not sufficient at overcoming the aggressivity of this cancer and only confers a survival benefit of a few months, and thus, discovery of new therapeutics is of utmost importance. In this review, we discuss the cell of origin of DMGs, as well as the underlying molecular mechanisms that contribute to their aggressivity and resistance to treatment. Additionally, we outline the current standard of care for DMG patients and the potential future therapeutics for this cancer that are currently being tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffery Head
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Farrukh Hameed
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sameer Agnihotri
- Sameer Agnihtroi, PhD, 4401 Penn Avenue, Office 7126, Pittsburgh, PA 15224, USA ()
| | - Pascal O Zinn
- Corresponding Authors: Pascal O. Zinn, MD, PhD, 5150 Centre Ave. Suite 433, Pittsburgh, PA 15232, USA ()
| |
Collapse
|
10
|
Tomita Y, Shimazu Y, Somasundaram A, Tanaka Y, Takata N, Ishi Y, Gadd S, Hashizume R, Angione A, Pinero G, Hambardzumyan D, Brat DJ, Hoeman CM, Becher OJ. A novel mouse model of diffuse midline glioma initiated in neonatal oligodendrocyte progenitor cells highlights cell-of-origin dependent effects of H3K27M. Glia 2022; 70:1681-1698. [PMID: 35524725 PMCID: PMC9546478 DOI: 10.1002/glia.24189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/13/2022]
Abstract
Diffuse midline glioma (DMG) is a type of lethal brain tumor that develops mainly in children. The majority of DMG harbor the K27M mutation in histone H3. Oligodendrocyte progenitor cells (OPCs) in the brainstem are candidate cells-of-origin for DMG, yet there is no genetically engineered mouse model of DMG initiated in OPCs. Here, we used the RCAS/Tv-a avian retroviral system to generate DMG in Olig2-expressing progenitors and Nestin-expressing progenitors in the neonatal mouse brainstem. PDGF-A or PDGF-B overexpression, along with p53 deletion, resulted in gliomas in both models. Exogenous overexpression of H3.3K27M had a significant effect on tumor latency and tumor cell proliferation when compared with H3.3WT in Nestin+ cells but not in Olig2+ cells. Further, the fraction of H3.3K27M-positive cells was significantly lower in DMGs initiated in Olig2+ cells relative to Nestin+ cells, both in PDGF-A and PDGF-B-driven models, suggesting that the requirement for H3.3K27M is reduced when tumorigenesis is initiated in Olig2+ cells. RNA-sequencing analysis revealed that the differentially expressed genes in H3.3K27M tumors were non-overlapping between Olig2;PDGF-B, Olig2;PDGF-A, and Nestin;PDGF-A models. GSEA analysis of PDGFA tumors confirmed that the transcriptomal effects of H3.3K27M are cell-of-origin dependent with H3.3K27M promoting epithelial-to-mesenchymal transition (EMT) and angiogenesis when Olig2 marks the cell-of-origin and inhibiting EMT and angiogenesis when Nestin marks the cell-of-origin. We did observe some overlap with H3.3K27M promoting negative enrichment of TNFA_Signaling_Via_NFKB in both models. Our study suggests that the tumorigenic effects of H3.3K27M are cell-of-origin dependent, with H3.3K27M being more oncogenic in Nestin+ cells than Olig2+ cells.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Department of Neurosurgery and Neuroendovascular SurgeryHiroshima City Hiroshima Citizens HospitalHiroshimaJapan
| | - Yosuke Shimazu
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Agila Somasundaram
- Division of Hematology, Oncology and Stem Cell TransplantAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Yoshihiro Tanaka
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Arrhythmia Research, Department of CardiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Nozomu Takata
- Center for Vascular and Developmental BiologyFeinberg Cardiovascular and Renal Research Institute (FCVRRI), Northwestern UniversityChicagoIllinoisUSA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern UniversityChicagoIllinoisUSA
| | - Yukitomo Ishi
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Samantha Gadd
- Department of PathologyAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Rintaro Hashizume
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Division of Hematology, Oncology and Stem Cell TransplantAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Department of Biochemistry and Molecular GeneticsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Angelo Angione
- Department of Neurosurgery and Oncological SciencesMount Sinai School of MedicineNew YorkUSA
| | - Gonzalo Pinero
- Department of Neurosurgery and Oncological SciencesMount Sinai School of MedicineNew YorkUSA
| | - Dolores Hambardzumyan
- Department of Neurosurgery and Oncological SciencesMount Sinai School of MedicineNew YorkUSA
| | - Daniel J. Brat
- Department of PathologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Christine M. Hoeman
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Oren J. Becher
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Division of Hematology, Oncology and Stem Cell TransplantAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Department of Biochemistry and Molecular GeneticsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Jack Martin Division of Pediatric Hematology‐oncologyMount Sinai Kravis Children's HospitalNew YorkUSA
| |
Collapse
|
11
|
The Intricate Epigenetic and Transcriptional Alterations in Pediatric High-Grade Gliomas: Targeting the Crosstalk as the Oncogenic Achilles’ Heel. Biomedicines 2022; 10:biomedicines10061311. [PMID: 35740334 PMCID: PMC9219798 DOI: 10.3390/biomedicines10061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are a deadly and heterogenous subgroup of gliomas for which the development of innovative treatments is urgent. Advances in high-throughput molecular techniques have shed light on key epigenetic components of these diseases, such as K27M and G34R/V mutations on histone 3. However, modification of DNA compaction is not sufficient by itself to drive those tumors. Here, we review molecular specificities of pHGGs subcategories in the context of epigenomic rewiring caused by H3 mutations and the subsequent oncogenic interplay with transcriptional signaling pathways co-opted from developmental programs that ultimately leads to gliomagenesis. Understanding how transcriptional and epigenetic alterations synergize in each cellular context in these tumors could allow the identification of new Achilles’ heels, thereby highlighting new levers to improve their therapeutic management.
Collapse
|
12
|
Pan S, Ye D, Yue Y, Yang L, Pacia CP, DeFreitas D, Esakky P, Dahiya S, Limbrick DD, Rubin JB, Chen H, Strahle JM. Leptomeningeal disease and tumor dissemination in a murine diffuse intrinsic pontine glioma model: implications for the study of the tumor-cerebrospinal fluid-ependymal microenvironment. Neurooncol Adv 2022; 4:vdac059. [PMID: 35733516 PMCID: PMC9209751 DOI: 10.1093/noajnl/vdac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Leptomeningeal disease and hydrocephalus are present in up to 30% of patients with diffuse intrinsic pontine glioma (DIPG), however there are no animal models of cerebrospinal fluid (CSF) dissemination. As the tumor-CSF-ependymal microenvironment may play an important role in tumor pathogenesis, we identified characteristics of the Nestin-tumor virus A (Nestin-Tva) genetically engineered mouse model that make it ideal to study the interaction of tumor cells with the CSF and its associated pathways with implications for the development of treatment approaches to address CSF dissemination in DIPG. Methods A Nestin-Tva model of DIPG utilizing the 3 most common DIPG genetic alterations (H3.3K27M, PDGF-B, and p53) was used for this study. All mice underwent MR imaging and a subset underwent histopathologic analysis with H&E and immunostaining. Results Tumor dissemination within the CSF pathways (ventricles, leptomeninges) from the subependyma was present in 76% (25/33) of mice, with invasion of the choroid plexus, disruption of the ciliated ependyma and regional subependymal fluid accumulation. Ventricular enlargement consistent with hydrocephalus was present in 94% (31/33). Ventricle volume correlated with region-specific transependymal CSF flow (periventricular T2 signal), localized anterior to the lateral ventricles. Conclusions This is the first study to report CSF pathway tumor dissemination associated with subependymal tumor in an animal model of DIPG and is representative of CSF dissemination seen clinically. Understanding the CSF-tumor-ependymal microenvironment has significant implications for treatment of DIPG through targeting mechanisms of tumor spread within the CSF pathways.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Dezhuang Ye
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Lihua Yang
- Department of Pediatrics, Washington University in St. Louis, St Louis, Missouri, USA
| | - Christopher P Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Dakota DeFreitas
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Prabagaran Esakky
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University in St. Louis, St Louis, Missouri, USA
| | - Hong Chen
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Jennifer M Strahle
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
13
|
Ni S, Chen R, Hu K. Experimental murine models of brainstem gliomas. Drug Discov Today 2021; 27:1218-1235. [PMID: 34954326 DOI: 10.1016/j.drudis.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
As an intractable central nervous system (CNS) tumor, brainstem gliomas (BGs) are one of the leading causes of pediatric death by brain tumors. Owing to the risk of surgical resection and the little improvement in survival time after radiotherapy and chemotherapy, there is an urgent need to find reliable model systems to better understand the regional pathogenesis of the brainstem and improve treatment strategies. In this review, we outline the evolution of BG murine models, and discuss both their advantages and limitations in drug discovery.
Collapse
Affiliation(s)
- Shuting Ni
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
14
|
Lindroth AM, Park YJ, Matía V, Squatrito M. The mechanistic GEMMs of oncogenic histones. Hum Mol Genet 2021; 29:R226-R235. [PMID: 32639003 DOI: 10.1093/hmg/ddaa143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022] Open
Abstract
The last decade's progress unraveling the mutational landscape of all age groups of cancer has uncovered mutations in histones as vital contributors of tumorigenesis. Here we review three new aspects of oncogenic histones: first, the identification of additional histone mutations potentially contributing to cancer formation; second, tumors expressing histone mutations to study the crosstalk of post-translational modifications, and; third, development of sophisticated biological model systems to reproduce tumorigenesis. At the outset, we recapitulate the firstly discovered histone mutations in pediatric and adolescent tumors of the brain and bone, which still remain the most pronounced histone alterations in cancer. We branch out to discuss the ramifications of histone mutations, including novel ones, that stem from altered protein-protein interactions of cognate histone modifiers as well as the stability of the nucleosome. We close by discussing animal models of oncogenic histones that reproduce tumor formation molecularly and morphologically and the prospect of utilizing them for drug testing, leading to efficient treatment and cure of deadly cancers with histone mutations.
Collapse
Affiliation(s)
- Anders M Lindroth
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Verónica Matía
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Center, CNIO, 28029 Madrid, Spain
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Center, CNIO, 28029 Madrid, Spain
| |
Collapse
|
15
|
Price G, Bouras A, Hambardzumyan D, Hadjipanayis CG. Current knowledge on the immune microenvironment and emerging immunotherapies in diffuse midline glioma. EBioMedicine 2021; 69:103453. [PMID: 34157482 PMCID: PMC8220552 DOI: 10.1016/j.ebiom.2021.103453] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Diffuse midline glioma (DMG) is an incurable malignancy with the highest mortality rate among pediatric brain tumors. While radiotherapy and chemotherapy are the most common treatments, these modalities have limited promise. Due to their diffuse nature in critical areas of the brain, the prognosis of DMG remains dismal. DMGs are characterized by unique phenotypic heterogeneity and histological features. Mutations of H3K27M, TP53, and ACVR1 drive DMG tumorigenesis. Histological artifacts include pseudopalisading necrosis and vascular endothelial proliferation. Mouse models that recapitulate human DMG have been used to study key driver mutations and the tumor microenvironment. DMG consists of a largely immunologically cold tumor microenvironment that lacks immune cell infiltration, immunosuppressive factors, and immune surveillance. While tumor-associated macrophages are the most abundant immune cell population, there is reduced T lymphocyte infiltration. Immunotherapies can stimulate the immune system to find, attack, and eliminate cancer cells. However, it is critical to understand the immune microenvironment of DMG before designing immunotherapies since differences in the microenvironment influence treatment efficacy. To this end, our review aims to overview the immune microenvironment of DMG, discuss emerging insights about the immune landscape that drives disease pathophysiology, and present recent findings and new opportunities for therapeutic discovery.
Collapse
Affiliation(s)
- Gabrielle Price
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dolores Hambardzumyan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Constantinos G Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Haag D, Mack N, Benites Goncalves da Silva P, Statz B, Clark J, Tanabe K, Sharma T, Jäger N, Jones DTW, Kawauchi D, Wernig M, Pfister SM. H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell 2021; 39:407-422.e13. [PMID: 33545065 DOI: 10.1016/j.ccell.2021.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/08/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive childhood tumor of the brainstem with currently no curative treatment available. The vast majority of DIPGs carry a histone H3 mutation leading to a lysine 27-to-methionine exchange (H3K27M). We engineered human induced pluripotent stem cells (iPSCs) to carry an inducible H3.3-K27M allele in the endogenous locus and studied the effects of the mutation in different disease-relevant neural cell types. H3.3-K27M upregulated bivalent promoter-associated developmental genes, producing diverse outcomes in different cell types. While being fatal for iPSCs, H3.3-K27M increased proliferation in neural stem cells (NSCs) and to a lesser extent in oligodendrocyte progenitor cells (OPCs). Only NSCs gave rise to tumors upon induction of H3.3-K27M and TP53 inactivation in an orthotopic xenograft model recapitulating human DIPGs. In NSCs, H3.3-K27M leads to maintained expression of stemness and proliferative genes and a premature activation of OPC programs that together may cause tumor initiation.
Collapse
Affiliation(s)
- Daniel Haag
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Norman Mack
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Britta Statz
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Jessica Clark
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Koji Tanabe
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tanvi Sharma
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Tokyo 187-0031, Japan
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Chen Z, Peng P, Zhang X, Mania-Farnell B, Xi G, Wan F. Advanced Pediatric Diffuse Pontine Glioma Murine Models Pave the Way towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13051114. [PMID: 33807733 PMCID: PMC7961799 DOI: 10.3390/cancers13051114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) account for ~15% of pediatric brain tumors, which invariably present with poor survival regardless of treatment mode. Several seminal studies have revealed that 80% of DIPGs harbor H3K27M mutation coded by HIST1H3B, HIST1H3C and H3F3A genes. The H3K27M mutation has broad effects on gene expression and is considered a tumor driver. Determination of the effects of H3K27M on posttranslational histone modifications and gene regulations in DIPG is critical for identifying effective therapeutic targets. Advanced animal models play critical roles in translating these cutting-edge findings into clinical trial development. Here, we review current molecular research progress associated with DIPG. We also summarize DIPG animal models, highlighting novel genomic engineered mouse models (GEMMs) and innovative humanized DIPG mouse models. These models will pave the way towards personalized precision medicine for the treatment of DIPGs.
Collapse
Affiliation(s)
- Zirong Chen
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
| | - Peng Peng
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
| | - Xiaolin Zhang
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
| | - Barbara Mania-Farnell
- Department of Biological Science, Purdue University Northwest, Hammond, IN 46323, USA;
| | - Guifa Xi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: (G.X.); (F.W.); Tel.: +1-(312)5034296 (G.X.); +86-(027)-8366-5201 (F.W.)
| | - Feng Wan
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
- Correspondence: (G.X.); (F.W.); Tel.: +1-(312)5034296 (G.X.); +86-(027)-8366-5201 (F.W.)
| |
Collapse
|
18
|
Kanvinde PP, Malla AP, Connolly NP, Szulzewsky F, Anastasiadis P, Ames HM, Kim AJ, Winkles JA, Holland EC, Woodworth GF. Leveraging the replication-competent avian-like sarcoma virus/tumor virus receptor-A system for modeling human gliomas. Glia 2021; 69:2059-2076. [PMID: 33638562 PMCID: PMC8591561 DOI: 10.1002/glia.23984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.
Collapse
Affiliation(s)
- Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adarsha P Malla
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heather M Ames
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Luo H, Tao C, Wang P, Li J, Huang K, Zhu X. Development of a prognostic index based on immunogenomic landscape analysis in glioma. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:467-479. [PMID: 33503296 PMCID: PMC8127549 DOI: 10.1002/iid3.407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/21/2022]
Abstract
Background Glioma is the most common intracranial tumor. The inflammatory response actively participates in the malignancy of gliomas. There is still limited knowledge about the biological function of immune‐related genes (IRGs) and their potential involvement in the malignancy of gliomas. Methods We screened differentially expressed and survival‐associated IRGs, and explored their potential molecular characteristics. Then we developed a prognostic index derived from seven hub IRGs. A prognostic nomogram was built to indicate the prognostic value of the prognostic index and seven IRGs. We characterized the immune infiltration landscape to analyze tumor‐immune interactions. The real‐time quantitative polymerase chain reaction assay was performed to validate bioinformatics results. Results The differentially expressed IRGs are involved in cell chemotaxis, cytokine activity, and the chemokine‐mediated signaling pathway. The prognostic index derived from seven IRGs had clinical prognostic value in glioma, and positively correlated with the malignant clinicopathological characteristics. A nomogram further indicated that the prognostic index and seven hub IRGs had clinical prognostic value for gliomas. We revealed that the prognostic index could reflect the state of the glioma immune microenvironment. Conclusion This study demonstrates the importance of an IRG‐based prognostic index as a potential biomarker for predicting malignancy in gliomas.
Collapse
Affiliation(s)
- Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,East China Institute of Digital Medical Engineering, Shangrao, Jiangxi, China
| | - Peng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Srikanthan D, Taccone MS, Van Ommeren R, Ishida J, Krumholtz SL, Rutka JT. Diffuse intrinsic pontine glioma: current insights and future directions. Chin Neurosurg J 2021; 7:6. [PMID: 33423692 PMCID: PMC7798267 DOI: 10.1186/s41016-020-00218-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor and the leading cause of brain tumor–related death in children. As several clinical trials over the past few decades have led to no significant improvements in outcome, the current standard of care remains fractionated focal radiation. Due to the recent increase in stereotactic biopsies, tumor tissue availabilities have enabled our advancement of the genomic and molecular characterization of this lethal cancer. Several groups have identified key histone gene mutations, genetic drivers, and methylation changes in DIPG, providing us with new insights into DIPG tumorigenesis. Subsequently, there has been increased development of in vitro and in vivo models of DIPG which have the capacity to unveil novel therapies and strategies for drug delivery. This review outlines the clinical characteristics, genetic landscape, models, and current treatments and hopes to shed light on novel therapeutic avenues and challenges that remain.
Collapse
Affiliation(s)
- Dilakshan Srikanthan
- Cell Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Michael S Taccone
- Cell Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Randy Van Ommeren
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Joji Ishida
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Stacey L Krumholtz
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - James T Rutka
- Cell Biology Program, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada. .,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada. .,Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Suite 1503, 555, University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
21
|
Wongthida P, Schuelke MR, Driscoll CB, Kottke T, Thompson JM, Tonne J, Stone C, Huff AL, Wetmore C, Davies JA, Parker AL, Evgin L, Vile RG. Ad-CD40L mobilizes CD4 T cells for the treatment of brainstem tumors. Neuro Oncol 2020; 22:1757-1770. [PMID: 32459315 PMCID: PMC7746943 DOI: 10.1093/neuonc/noaa126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diffuse midline glioma, formerly DIPG (diffuse intrinsic pontine glioma), is the deadliest pediatric brainstem tumor with median survival of less than one year. Here, we investigated (i) whether direct delivery of adenovirus-expressing cluster of differentiation (CD)40 ligand (Ad-CD40L) to brainstem tumors would induce immune-mediated tumor clearance and (ii) if so, whether therapy would be associated with a manageable toxicity due to immune-mediated inflammation in the brainstem. METHODS Syngeneic gliomas in the brainstems of immunocompetent mice were treated with Ad-CD40L and survival, toxicity, and immune profiles determined. A clinically translatable vector, whose replication would be tightly restricted to tumor cells, rAd-Δ24-CD40L, was tested in human patient-derived diffuse midline gliomas and immunocompetent models. RESULTS Expression of Ad-CD40L restricted to brainstem gliomas by pre-infection induced complete rejection, associated with immune cell infiltration, of which CD4+ T cells were critical for therapy. Direct intratumoral injection of Ad-CD40L into established brainstem tumors improved survival and induced some complete cures but with some acute toxicity. RNA-sequencing analysis showed that Ad-CD40L therapy induced neuroinflammatory immune responses associated with interleukin (IL)-6, IL-1β, and tumor necrosis factor α. Therefore, to generate a vector whose replication, and transgene expression, would be tightly restricted to tumor cells, we constructed rAd-Δ24-CD40L, the backbone of which has already entered clinical trials for diffuse midline gliomas. Direct intratumoral injection of rAd-Δ24-CD40L, with systemic blockade of IL-6 and IL-1β, generated significant numbers of cures with readily manageable toxicity. CONCLUSIONS Virus-mediated delivery of CD40L has the potential to be effective in treating diffuse midline gliomas without obligatory neuroinflammation-associated toxicity.
Collapse
Affiliation(s)
| | | | | | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jill M Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Cathy Stone
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Amanda L Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Cynthia Wetmore
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - James A Davies
- Division of Cancer and Genetics, Cardiff University, Cardiff, UK
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University, Cardiff, UK
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Faisal SM, Mendez FM, Nunez F, Castro MG, Lowenstein PR. Immune-stimulatory (TK/Flt3L) gene therapy opens the door to a promising new treatment strategy against brainstem gliomas. Oncotarget 2020; 11:4607-4612. [PMID: 33400737 PMCID: PMC7747859 DOI: 10.18632/oncotarget.27834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare brainstem tumor which carries a dismal prognosis. To date. there are no effective treatments for DIPG. Transcriptomic studies have shown that DIPGs have a distinct profile compared to hemispheric high-grade pediatric gliomas. These specific genomic features coupled with the younger median age group suggest that DIPG is of developmental origin. There is a major unmet need for novel effective therapeutic approaches for DIPG. Clinical and preclinical studies have expanded our understanding of the molecular pathways in this deadly disease. We have developed a genetically engineered brainstem glioma model harboring the recurrent DIPG mutation, activin A receptor type I (ACVR1)-G328V (mACVR1) using the sleeping beauty transposon system. DIPG neurospheres isolated from the genetically engineered mouse model were implanted into the pons of immune-competent mice to assess the therapeutic efficacy and toxicity of immunostimulatory gene therapy using adenoviruses expressing thymidine kinase (TK) and fms-like tyrosine kinase 3 ligand (Flt3L). Immunostimulatory adenoviral-mediated delivery of TK/Flt3L in mice bearing brainstem gliomas resulted in antitumor immunity, recruitment of antitumor-specific T cells, and improved median survival by stimulating the host antitumor immune response. Therapeutic efficacy of the immunostimulatory gene therapy strategy will be tested in the clinical arena in a Phase I clinical trial. We also discuss immunotherapeutic interventions currently being implemented in DIPG patients and discuss the profound therapeutic implications of immunotherapy for this patient populations.
Collapse
Affiliation(s)
- Syed M. Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Flor M. Mendez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fernando Nunez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Zhang X, Ye D, Yang L, Yue Y, Sultan D, Pacia CP, Pang H, Detering L, Heo GS, Luehmann H, Choksi A, Sethi A, Limbrick DD, Becher OJ, Tai YC, Rubin JB, Chen H, Liu Y. Magnetic Resonance Imaging-Guided Focused Ultrasound-Based Delivery of Radiolabeled Copper Nanoclusters to Diffuse Intrinsic Pontine Glioma. ACS APPLIED NANO MATERIALS 2020; 3:11129-11134. [PMID: 34337344 PMCID: PMC8320805 DOI: 10.1021/acsanm.0c02297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an invasive pediatric brainstem malignancy exclusively in children without effective treatment due to the often-intact blood-brain tumor barrier (BBTB), an impediment to the delivery of therapeutics. Herein, we used focused ultrasound (FUS) to transiently open BBTB and delivered radiolabeled nanoclusters (64Cu-CuNCs) to tumors for positron emission tomography (PET) imaging and quantification in a mouse DIPG model. First, we optimized FUS acoustic pressure to open the blood-brain barrier (BBB) for effective delivery of 64Cu-CuNCs to pons in wildtype mice. Then the optimized FUS pressure was used to deliver radiolabeled agents in DIPG mouse. Magnetic resonance imaging (MRI)-guided FUS-induced BBTB opening was demonstrated using a low molecular weight, short-lived 68Ga-DOTA-ECL1i radiotracer and PET/CT before and after treatment. We then compared the delivery efficiency of 64Cu-CuNCs to DIPG tumor with and without FUS treatment and demonstrated the FUS-enhanced delivery and time-dependent diffusion of 64Cu-CuNCs within the tumor.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Dezhuang Ye
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Lihua Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hannah Pang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ankur Choksi
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Abhishek Sethi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Oren J Becher
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Chuan Tai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Balakrishnan I, Danis E, Pierce A, Madhavan K, Wang D, Dahl N, Sanford B, Birks DK, Davidson N, Metselaar DS, Meel MH, Lemma R, Donson A, Vijmasi T, Katagi H, Sola I, Fosmire S, Alimova I, Steiner J, Gilani A, Hulleman E, Serkova NJ, Hashizume R, Hawkins C, Carcaboso AM, Gupta N, Monje M, Jabado N, Jones K, Foreman N, Green A, Vibhakar R, Venkataraman S. Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. Cell Rep 2020; 33:108286. [PMID: 33086074 PMCID: PMC7574900 DOI: 10.1016/j.celrep.2020.108286] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/05/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an incurable brain tumor of childhood characterized by histone mutations at lysine 27, which results in epigenomic dysregulation. There has been a failure to develop effective treatment for this tumor. Using a combined RNAi and chemical screen targeting epigenomic regulators, we identify the polycomb repressive complex 1 (PRC1) component BMI1 as a critical factor for DIPG tumor maintenance in vivo. BMI1 chromatin occupancy is enriched at genes associated with differentiation and tumor suppressors in DIPG cells. Inhibition of BMI1 decreases cell self-renewal and attenuates tumor growth due to induction of senescence. Prolonged BMI1 inhibition induces a senescence-associated secretory phenotype, which promotes tumor recurrence. Clearance of senescent cells using BH3 protein mimetics co-operates with BMI1 inhibition to enhance tumor cell killing in vivo.
Collapse
Affiliation(s)
- Ilango Balakrishnan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Etienne Danis
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Angela Pierce
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Krishna Madhavan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Dong Wang
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nathan Dahl
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Bridget Sanford
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Diane K Birks
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nate Davidson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis S Metselaar
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michaël Hananja Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rakeb Lemma
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Donson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Trinka Vijmasi
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Hiroaki Katagi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ismail Sola
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Fosmire
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Irina Alimova
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jenna Steiner
- Departments of Radiology, Radiation Oncology, and Anesthesiology, Colorado Animal Imaging Shared Resource (AISR), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ahmed Gilani
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Natalie J Serkova
- Departments of Radiology, Radiation Oncology, and Anesthesiology, Colorado Animal Imaging Shared Resource (AISR), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel M Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle Monje
- Departments of Neurology, Neurosurgery, Pediatrics, and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Kenneth Jones
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas Foreman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Adam Green
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| | - Sujatha Venkataraman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
25
|
Graham MS, Mellinghoff IK. Histone-Mutant Glioma: Molecular Mechanisms, Preclinical Models, and Implications for Therapy. Int J Mol Sci 2020; 21:E7193. [PMID: 33003625 PMCID: PMC7582376 DOI: 10.3390/ijms21197193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Pediatric high-grade glioma (pHGG) is the leading cause of cancer death in children. Despite histologic similarities, it has recently become apparent that this disease is molecularly distinct from its adult counterpart. Specific hallmark oncogenic histone mutations within pediatric malignant gliomas divide these tumors into subgroups with different neuroanatomic and chronologic predilections. In this review, we will summarize the characteristic molecular alterations of pediatric high-grade gliomas, with a focus on how preclinical models of these alterations have furthered our understanding of their oncogenicity as well as their potential impact on developing targeted therapies for this devastating disease.
Collapse
Affiliation(s)
- Maya S. Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ingo K. Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
26
|
Hübner JM, Müller T, Papageorgiou DN, Mauermann M, Krijgsveld J, Russell RB, Ellison DW, Pfister SM, Pajtler KW, Kool M. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro Oncol 2020; 21:878-889. [PMID: 30923826 DOI: 10.1093/neuonc/noz058] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Posterior fossa A (PFA) ependymomas are one of 9 molecular groups of ependymoma. PFA tumors are mainly diagnosed in infants and young children, show a poor prognosis, and are characterized by a lack of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark. Recently, we reported overexpression of chromosome X open reading frame 67 (CXorf67) as a hallmark of PFA ependymoma and showed that CXorf67 can interact with enhancer of zeste homolog 2 (EZH2), thereby inhibiting polycomb repressive complex 2 (PRC2), but the mechanism of action remained unclear. METHODS We performed mass spectrometry and peptide modeling analyses to identify the functional domain of CXorf67 responsible for binding and inhibition of EZH2. Our findings were validated by immunocytochemistry, western blot, and methyltransferase assays. RESULTS We find that the inhibitory mechanism of CXorf67 is similar to diffuse midline gliomas harboring H3K27M mutations. A small, highly conserved peptide sequence located in the C-terminal region of CXorf67 mimics the sequence of K27M mutated histones and binds to the SET domain (Su(var)3-9/enhancer-of-zeste/trithorax) of EZH2. This interaction blocks EZH2 methyltransferase activity and inhibits PRC2 function, causing de-repression of PRC2 target genes, including genes involved in neurodevelopment. CONCLUSIONS Expression of CXorf67 is an oncogenic mechanism that drives H3K27 hypomethylation in PFA tumors by mimicking K27M mutated histones. Disrupting the interaction between CXorf67 and EZH2 may serve as a novel targeted therapy for PFA tumors but also for other tumors that overexpress CXorf67. Based on its function, we have renamed CXorf67 as "EZH Inhibitory Protein" (EZHIP).
Collapse
Affiliation(s)
- Jens-Martin Hübner
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Torsten Müller
- Division of Proteomics of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Dimitris N Papageorgiou
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Mauermann
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Robert B Russell
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Bioquant, Heidelberg University, Heidelberg, Germany
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center, Heidelberg, Germany
| |
Collapse
|
27
|
Zhang C, Jin M, Zhao J, Chen J, Jin W. Organoid models of glioblastoma: advances, applications and challenges. Am J Cancer Res 2020; 10:2242-2257. [PMID: 32905502 PMCID: PMC7471358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023] Open
Abstract
The high mortality and poor clinical prognosis of glioblastoma multiforme (GBM) are concerns for many GBM patients as well as clinicians and researchers. The lack of a preclinical model that can easily be established and accurately recapitulate tumour biology and the tumour microenvironment further complicates GBM research and its clinical translation. GBM organoids (GBOs) are promising high-fidelity models that can be applied to model the disease, develop drugs, establish a living biobank, mimic therapeutic responses and explore personalized therapy. However, GBO models face some challenges, including deficient immune responses, absent vascular system and controversial reliability. In recent years, considerable progress has been achieved in the improvement of brain tumour organoid models and research based on such models. In addition to the traditional cultivation method, these models can be cultivated via genetic engineering and co-culture of cerebral organoids and GBM. In this review, we summarize the applications of GBM organoids and related advances and provide our opinions on associated limitations and challenges.
Collapse
Affiliation(s)
- Chaocai Zhang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou, PR China
| | - Mingzhu Jin
- Shanghai Jiao Tong University School of MedicineShanghai, PR China
| | - Jiannong Zhao
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou, PR China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai, PR China
| | - Weilin Jin
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong UniversityShanghai, PR China
| |
Collapse
|
28
|
Lan X, Kedziorek DA, Chu C, Jablonska A, Li S, Kai M, Liang Y, Janowski M, Walczak P. Modeling human pediatric and adult gliomas in immunocompetent mice through costimulatory blockade. Oncoimmunology 2020; 9:1776577. [PMID: 32923139 PMCID: PMC7458632 DOI: 10.1080/2162402x.2020.1776577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Currently, human glioma tumors are mostly modeled in immunodeficient recipients; however, lack of interactions with adaptive immune system is a serious flaw, particularly in the era when immunotherapies dominate treatment strategies. Our group was the first to successfully establish the orthotopic transplantation of human glioblastoma (GBM) in immunocompetent mice by inducing immunological tolerance using a short-term, systemic costimulation blockade strategy (CTLA-4-Ig and MR1). In this study, we further validated the feasibility of this method by modeling pediatric diffuse intrinsic pontine glioma (DIPG) and two types of adult GBM (GBM1, GBM551), in mice with intact immune systems and immunodeficient mice. We found that all three glioma models were successfully established, with distinct difference in tumor growth patterns and morphologies, after orthotopic xenotransplantation in tolerance-induced immunocompetent mice. Long-lasting tolerance that is maintained for up to nearly 200 d in GBM551 confirmed the robustness of this model. Moreover, we found that tumors in immunocompetent mice displayed features more similar to the clinical pathophysiology found in glioma patients, characterized by inflammatory infiltration and strong neovascularization, as compared with tumors in immunodeficient mice. In summary, we have validated the robustness of the costimulatory blockade strategy for tumor modeling and successfully established three human glioma models including the pediatric DIPG whose preclinical study is particularly thwarted by the lack of proper animal models.
Collapse
Affiliation(s)
- Xiaoyan Lan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Dorota A Kedziorek
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chengyan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
29
|
Characterization of the Blood-Brain Barrier Integrity and the Brain Transport of SN-38 in an Orthotopic Xenograft Rat Model of Diffuse Intrinsic Pontine Glioma. Pharmaceutics 2020; 12:pharmaceutics12050399. [PMID: 32349240 PMCID: PMC7284501 DOI: 10.3390/pharmaceutics12050399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 11/17/2022] Open
Abstract
The blood-brain barrier (BBB) hinders the brain delivery of many anticancer drugs. In pediatric patients, diffuse intrinsic pontine glioma (DIPG) represents the main cause of brain cancer mortality lacking effective drug therapy. Using sham and DIPG-bearing rats, we analyzed 1) the brain distribution of 3-kDa-Texas red-dextran (TRD) or [14C]-sucrose as measures of BBB integrity, and 2) the role of major ATP-binding cassette (ABC) transporters at the BBB on the efflux of the irinotecan metabolite [3H]-SN-38. The unaffected [14C]-sucrose or TRD distribution in the cerebrum, cerebellum, and brainstem regions in DIPG-bearing animals suggests an intact BBB. Targeted proteomics retrieved no change in P-glycoprotein (P-gp), BCRP, MRP1, and MRP4 levels in the analyzed regions of DIPG rats. In vitro, DIPG cells express BCRP but not P-gp, MRP1, or MRP4. Dual inhibition of P-gp/Bcrp, or Mrp showed a significant increase on SN-38 BBB transport: Cerebrum (8.3-fold and 3-fold, respectively), cerebellum (4.2-fold and 2.8-fold), and brainstem (2.6-fold and 2.2-fold). Elacridar increased [3H]-SN-38 brain delivery beyond a P-gp/Bcrp inhibitor effect alone, emphasizing the role of another unidentified transporter in BBB efflux of SN-38. These results confirm a well-preserved BBB in DIPG-bearing rats, along with functional ABC-transporter expression. The development of chemotherapeutic strategies to circumvent ABC-mediated BBB efflux are needed to improve anticancer drug delivery against DIPG.
Collapse
|
30
|
Aziz-Bose R, Monje M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Curr Opin Oncol 2020; 31:522-530. [PMID: 31464759 DOI: 10.1097/cco.0000000000000577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem malignancy. Despite advances in understanding of the molecular underpinnings of the tumor in the past decade, the dismal prognosis of DIPG has thus far remained unchanged. This review seeks to highlight promising therapeutic targets within three arenas: DIPG cell-intrinsic vulnerabilities, immunotherapeutic approaches to tumor clearance, and microenvironmental dependencies that promote tumor growth. RECENT FINDINGS Promising therapeutic strategies from recent studies include epigenetic modifying agents such as histone deacetylase inhibitors, bromodomain and extra-terminal motif (BET) protein inhibitors, and CDK7 inhibitors. Tumor-specific immunotherapies are emerging. Key interactions between DIPG and normal brain cells are coming to light, and targeting critical microenvironmental mechanisms driving DIPG growth in the developing childhood brain represents a new direction for therapy. SUMMARY Several DIPG treatment strategies are being evaluated in early clinical trials. Ultimately, we suspect that a multifaceted therapeutic approach utilizing cell-intrinsic, microenvironmental, and immunotherapeutic targets will be necessary for eradicating DIPG.
Collapse
Affiliation(s)
| | - Michelle Monje
- Department of Neurology and Neurological Sciences.,Stanford Institute for Stem Cell Biology and Regenerative Medicine.,Stanford Cancer Institute.,Department of Pediatrics.,Department of Psychiatry and Behavioral Sciences.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
31
|
Silva-Evangelista C, Barret E, Ménez V, Merlevede J, Kergrohen T, Saccasyn A, Oberlin E, Puget S, Beccaria K, Grill J, Castel D, Debily MA. A kinome-wide shRNA screen uncovers vaccinia-related kinase 3 (VRK3) as an essential gene for diffuse intrinsic pontine glioma survival. Oncogene 2019; 38:6479-6490. [DOI: 10.1038/s41388-019-0884-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/08/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
|
32
|
Ahmad F, Sun Q, Patel D, Stommel JM. Cholesterol Metabolism: A Potential Therapeutic Target in Glioblastoma. Cancers (Basel) 2019; 11:cancers11020146. [PMID: 30691162 PMCID: PMC6406281 DOI: 10.3390/cancers11020146] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is a highly lethal adult brain tumor with no effective treatments. In this review, we discuss the potential to target cholesterol metabolism as a new strategy for treating glioblastomas. Twenty percent of cholesterol in the body is in the brain, yet the brain is unique among organs in that it has no access to dietary cholesterol and must synthesize it de novo. This suggests that therapies targeting cholesterol synthesis in brain tumors might render their effects without compromising cell viability in other organs. We will describe cholesterol synthesis and homeostatic feedback pathways in normal brain and brain tumors, as well as various strategies for targeting these pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Fahim Ahmad
- National Institutes of Health, National Cancer Institute, Radiation Oncology Branch, Bethesda, MD 20892, USA.
| | - Qian Sun
- National Institutes of Health, National Cancer Institute, Radiation Oncology Branch, Bethesda, MD 20892, USA.
| | - Deven Patel
- National Institutes of Health, National Cancer Institute, Radiation Oncology Branch, Bethesda, MD 20892, USA.
| | - Jayne M Stommel
- National Institutes of Health, National Cancer Institute, Radiation Oncology Branch, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Abstract
Diffuse intrinsic brain stem gliomas (DIPGs) with characteristic K27M mutation of H3.3 are lethal and poorly understood childhood cancers. In this issue of Cancer Cell, Larson et al. exploit a unique murine DIPG model with inducible, endogenous K27M expression to reveal insights into mechanisms of K27M-mediated transformation in DIPG.
Collapse
Affiliation(s)
- Patrick Sin-Chan
- Arthur and Sonia Labatt Brain Tumour Research Centre, Department of Pediatrics/Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Iqra Mumal
- Arthur and Sonia Labatt Brain Tumour Research Centre, Department of Pediatrics/Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5S3H7, Canada
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumour Research Centre, Department of Pediatrics/Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5S3H7, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S3H7, Canada.
| |
Collapse
|
34
|
Hoeman C, Shen C, Becher OJ. CDK4/6 and PDGFRA Signaling as Therapeutic Targets in Diffuse Intrinsic Pontine Glioma. Front Oncol 2018; 8:191. [PMID: 29904623 PMCID: PMC5990603 DOI: 10.3389/fonc.2018.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are incurable childhood brain tumors, whereby the standard of care is focal radiation, a treatment that provides temporary relief for most patients. Surprisingly, decades of clinical trials have failed to identify additional therapies that can prolong survival in this disease. In this conference manuscript, we discuss how genetic engineered mouse modeling techniques with the use of a retroviral gene delivery system can help dissect the complex pathophysiology of this disease. With this approach, autochthonous murine DIPG models can be readily induced to (1) help interrogate the function of novel genetic alterations in tumorigenesis, (2) identify candidate cells of origin for this disease, (3) address how region-specific differences in the central nervous system influence the process of gliomagenesis, and (4) evaluate novel therapeutics in an immunocompetent model.
Collapse
Affiliation(s)
- Christine Hoeman
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
| | - Chen Shen
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
| | - Oren J Becher
- Department of Pediatrics, Northwestern University, Chicago, IL, United States.,Ann & Robert Lurie Children's Hospital of Chicago, Division of Hematology-Oncology and Stem Cell Transplant, Chicago, IL, United States
| |
Collapse
|
35
|
Mathew RK, Rutka JT. Diffuse Intrinsic Pontine Glioma : Clinical Features, Molecular Genetics, and Novel Targeted Therapeutics. J Korean Neurosurg Soc 2018; 61:343-351. [PMID: 29742880 PMCID: PMC5957322 DOI: 10.3340/jkns.2018.0008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/21/2018] [Indexed: 12/18/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a deadly paediatric brain cancer. Transient response to radiation, ineffective chemotherapeutic agents and aggressive biology result in rapid progression of symptoms and a dismal prognosis. Increased availability of tumour tissue has enabled the identification of histone gene aberrations, genetic driver mutations and methylation changes, which have resulted in molecular and phenotypic subgrouping. However, many of the underlying mechanisms of DIPG oncogenesis remain unexplained. It is hoped that more representative in vitro and preclinical models–using both xenografted material and genetically engineered mice–will enable the development of novel chemotherapeutic agents and strategies for targeted drug delivery. This review provides a clinical overview of DIPG, the barriers to progress in developing effective treatment, updates on drug development and preclinical models, and an introduction to new technologies aimed at enhancing drug delivery.
Collapse
Affiliation(s)
- Ryan K Mathew
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK.,Department of Neurosurgery, Leeds General Infirmary, Leeds, UK
| | - James T Rutka
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Han HJ, Jain P, Resnick AC. Shared ACVR1 mutations in FOP and DIPG: Opportunities and challenges in extending biological and clinical implications across rare diseases. Bone 2018; 109:91-100. [PMID: 28780023 PMCID: PMC7888549 DOI: 10.1016/j.bone.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Gain-of-function mutations in the Type I Bone Morphogenic Protein (BMP) receptor ACVR1 have been identified in two diseases: Fibrodysplasia Ossificans Progressiva (FOP), a rare autosomal dominant disorder characterized by genetically driven heterotopic ossification, and in 20-25% of Diffuse Intrinsic Pontine Gliomas (DIPGs), a pediatric brain tumor with no effective therapies and dismal median survival. While the ACVR1 mutation is causal for FOP, its role in DIPG tumor biology remains under active investigation. Here, we discuss cross-fertilization between the FOP and DIPG fields, focusing on the biological mechanisms and principles gleaned from FOP that can be applied to DIPG biology. We highlight our current knowledge of ACVR1 in both diseases, and then describe the growing opportunities and barriers to effectively investigate ACVR1 in DIPG. Importantly, learning from other seemingly unrelated diseases harboring similar mutations may uncover novel mechanisms or processes for future investigation.
Collapse
Affiliation(s)
- Harry J Han
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Colket Translational Research Building Room 4052, 3501 Civic Center Blvd, Philadelphia 19104, PA, United States; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Blvd, Room 4052, Philadelphia 19104, PA, United States
| | - Payal Jain
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Colket Translational Research Building Room 4052, 3501 Civic Center Blvd, Philadelphia 19104, PA, United States; Center for Data Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Colket Translational Research Building Room 4052, 3501 Civic Center Blvd, Philadelphia 19104, PA, United States; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Blvd, Room 4052, Philadelphia 19104, PA, United States
| | - Adam C Resnick
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Colket Translational Research Building Room 4052, 3501 Civic Center Blvd, Philadelphia 19104, PA, United States; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Colket Translational Research Building Room 4052, 3501 Civic Center Blvd, Philadelphia 19104, PA, United States; Center for Data Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Colket Translational Research Building Room 4052, 3501 Civic Center Blvd, Philadelphia 19104, PA, United States; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Colket Translational Research Building Room 4052, 3501 Civic Center Blvd, Philadelphia 19104, PA, United States; Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Blvd, Room 4052, Philadelphia 19104, PA, United States.
| |
Collapse
|
37
|
Abstract
One of the most striking results in the area of chromatin and cancer in recent years has been the identification of recurrent mutations in histone genes in pediatric cancers. These mutations occur at high frequency and lead to the expression of mutant histones that exhibit oncogenic features. Thus, they are termed oncohistones. Thus far, mutations have been found in the genes encoding histone H3 and its variants. The expression of the oncohistones affects the global chromatin landscape through mechanisms that have just begun to be unraveled. In this review, we provide an overview of histone mutations that have been identified and discuss the possible mechanisms by which they contribute to tumor development. We further discuss the targeted therapies that have been proposed to treat cancers expressing oncohistones.
Collapse
Affiliation(s)
- Faizaan Mohammad
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Novo Nordisk Center for Stem Cell Biology (Danstem), University of Copenhagen, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Novo Nordisk Center for Stem Cell Biology (Danstem), University of Copenhagen, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
38
|
Developing chemotherapy for diffuse pontine intrinsic gliomas (DIPG). Crit Rev Oncol Hematol 2017; 120:111-119. [PMID: 29198324 DOI: 10.1016/j.critrevonc.2017.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 10/06/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Prognosis of diffuse intrinsic pontine glioma (DIPG) is poor, with a median survival of 10 months after radiation. At present, chemotherapy has failed to show benefits over radiation. Advances in biotechnology have enabled the use of autopsy specimens for genomic analyses and molecular profiling of DIPG, which are quite different from those of supratentorial high grade glioma. Recently, combined treatments of cytotoxic agents with target inhibitors, based on biopsied tissue, are being examined in on-going trials. Spontaneous DIPG mice models have been recently developed that is useful for preclinical studies. Finally, the convection-enhanced delivery could be used to infuse drugs directly into the brainstem parenchyma, to which conventional systemic administration fails to achieve effective concentration. The WHO glioma classification defines a diffuse midline glioma with a H3-K27M-mutation, and we expect increase of tissue confirmation of DIPG, which will give us the biological information helping the development of a targeted therapy.
Collapse
|
39
|
Miyai M, Tomita H, Soeda A, Yano H, Iwama T, Hara A. Current trends in mouse models of glioblastoma. J Neurooncol 2017; 135:423-432. [PMID: 29052807 PMCID: PMC5700231 DOI: 10.1007/s11060-017-2626-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma is the most deadly brain tumor type and is characterized by a severe and high rate of angiogenesis, remaining an incurable disease in the majority of cases. Mechanistic understanding of glioblastoma initiation and progression is complicated by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell or tissue of origin. To determine these mechanisms, mouse models that recapitulate the molecular and histological characteristics of glioblastoma are required. Unlike in other malignancies, viral-mediated mouse models of glioblastoma rather than chemically induced mouse models have been developed because of its sensitivity to viruses. Based on recent molecular analyses reported for human glioblastoma, this review critically evaluates genetically engineered, xenograft, allograft, viral-mediated, and chemically induced mouse models of glioblastoma. Further, we focus on the clinical value of these models by examining their contributions to studies of glioblastoma prevention, tumorigenesis, and chemoresistance.
Collapse
Affiliation(s)
- Masafumi Miyai
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.,Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Akio Soeda
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hirohito Yano
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
40
|
Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics 2017; 14:372-384. [PMID: 28374184 PMCID: PMC5398995 DOI: 10.1007/s13311-017-0524-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.
Collapse
Affiliation(s)
- Tamara J Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case, Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Stephen M Dombrowski
- Department of Neurological Surgery, Section of Pediatric Neurosurgical Oncology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
41
|
New in vivo avatars of diffuse intrinsic pontine gliomas (DIPG) from stereotactic biopsies performed at diagnosis. Oncotarget 2017; 8:52543-52559. [PMID: 28881750 PMCID: PMC5581049 DOI: 10.18632/oncotarget.15002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/10/2017] [Indexed: 11/25/2022] Open
Abstract
Diffuse Instrinsic Pontine Glioma is the most aggressive form of High Grade Gliomas in children. The lack of biological material and the absence of relevant models have hampered the development of new therapeutics. Their extensive infiltration of the brainstem renders any surgical resection impossible and until recently biopsies were considered not informative enough and therefore not recommended. Thus, most models were derived from autopsy material. We aimed to develop relevant in vivo DIPG models that mimic this specific disease and its molecular diversity from tumor material obtained at diagnosis. Eight patient-derived orthotopic xenograft models were obtained after direct stereotactic injection of a mixed cell suspension containing tumor cells and stromal cells in the brainstem or thalamus of nude mice and serially passaged thereafter. In parallel, we developed 6 cell-derived xenograft models after orthotopic injection of tumor-initiating cells cultured from stereotactic biopsies. Cells were modified to express luciferase to enable longitudinal tumor growth monitoring, and fluorescent reporter proteins to trace the tumor cells in the brain. These models do not form a tumor mass, they are invasive, show the H3K27 trimethylation loss in vivo and the tumor type diversity observed in patients in terms of histone H3 mutations and lineage markers. Histological and MRI features at 11.7 Tesla show similarities with treatment naïve human DIPG, and in this respect, both direct and indirect orthotopic xenograft looked alike. These DIPG models will therefore constitute valuable tools for evaluating new therapeutic approaches in this devastating disease.
Collapse
|
42
|
Marigil M, Martinez-Velez N, Domínguez PD, Idoate MA, Xipell E, Patiño-García A, Gonzalez-Huarriz M, García-Moure M, Junier MP, Chneiweiss H, El-Habr E, Diez-Valle R, Tejada-Solís S, Alonso MM. Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System. PLoS One 2017; 12:e0170501. [PMID: 28107439 PMCID: PMC5249159 DOI: 10.1371/journal.pone.0170501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
Objective In this work we set to develop and to validate a new in vivo frameless orthotopic Diffuse Intrinsic Pontine Glioma (DIPG) model based in the implantation of a guide-screw system. Methods It consisted of a guide-screw also called bolt, a Hamilton syringe with a 26-gauge needle and an insulin-like 15-gauge needle. The guide screw is 2.6 mm in length and harbors a 0.5 mm central hole which accepts the needle of the Hamilton syringe avoiding a theoretical displacement during insertion. The guide-screw is fixed on the mouse skull according to the coordinates: 1mm right to and 0.8 mm posterior to lambda. To reach the pons the Hamilton syringe is adjusted to a 6.5 mm depth using a cuff that serves as a stopper. This system allows delivering not only cells but also any kind of intratumoral chemotherapy, antibodies or gene/viral therapies. Results The guide-screw was successfully implanted in 10 immunodeficient mice and the animals were inoculated with DIPG human cell lines during the same anesthetic period. All the mice developed severe neurologic symptoms and had a median overall survival of 95 days ranging the time of death from 81 to 116 days. Histopathological analysis confirmed tumor into the pons in all animals confirming the validity of this model. Conclusion Here we presented a reproducible and frameless DIPG model that allows for rapid evaluation of tumorigenicity and efficacy of chemotherapeutic or gene therapy products delivered intratumorally to the pons.
Collapse
Affiliation(s)
- Miguel Marigil
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Neurosurgery, University Clinic of Navarra, Pamplona, Spain
| | - Naiara Martinez-Velez
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Pablo D. Domínguez
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Radiology, University Hospital of Navarra, Pamplona, Spain
| | - Miguel Angel Idoate
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Pathology, University Hospital of Navarra, Pamplona, Spain
| | - Enric Xipell
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Ana Patiño-García
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Marisol Gonzalez-Huarriz
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Marc García-Moure
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Marie-Pierre Junier
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine - IBPS, Sorbonne Universities, Paris, France
| | - Hervé Chneiweiss
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine - IBPS, Sorbonne Universities, Paris, France
| | - Elías El-Habr
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine - IBPS, Sorbonne Universities, Paris, France
| | - Ricardo Diez-Valle
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Neurosurgery, University Clinic of Navarra, Pamplona, Spain
| | - Sonia Tejada-Solís
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Neurosurgery, University Clinic of Navarra, Pamplona, Spain
| | - Marta M. Alonso
- The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Pamplona, Spain
- Dpt of Pediatrics, University Hospital of Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
43
|
Sreedharan S, Maturi NP, Xie Y, Sundström A, Jarvius M, Libard S, Alafuzoff I, Weishaupt H, Fryknäs M, Larsson R, Swartling FJ, Uhrbom L. Mouse Models of Pediatric Supratentorial High-grade Glioma Reveal How Cell-of-Origin Influences Tumor Development and Phenotype. Cancer Res 2016; 77:802-812. [PMID: 28115362 DOI: 10.1158/0008-5472.can-16-2482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022]
Abstract
High-grade glioma (HGG) is a group of primary malignant brain tumors with dismal prognosis. Whereas adult HGG has been studied extensively, childhood HGG, a relatively rare disease, is less well-characterized. Here, we present two novel platelet-derived growth factor (PDGF)-driven mouse models of pediatric supratentorial HGG. Tumors developed from two different cells of origin reminiscent of neural stem cells (NSC) or oligodendrocyte precursor cells (OPC). Cross-species transcriptomics showed that both models are closely related to human pediatric HGG as compared with adult HGG. Furthermore, an NSC-like cell-of-origin enhanced tumor incidence, malignancy, and the ability of mouse glioma cells (GC) to be cultured under stem cell conditions as compared with an OPC-like cell. Functional analyses of cultured GC from these tumors showed that cells of NSC-like origin were more tumorigenic, had a higher rate of self-renewal and proliferation, and were more sensitive to a panel of cancer drugs compared with GC of a more differentiated origin. These two mouse models relevant to human pediatric supratentorial HGG propose an important role of the cell-of-origin for clinicopathologic features of this disease. Cancer Res; 77(3); 802-12. ©2016 AACR.
Collapse
Affiliation(s)
- Smitha Sreedharan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Naga Prathyusha Maturi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Yuan Xie
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden.
| |
Collapse
|