1
|
Collinge CW, Razzoli M, Mansk R, McGonigle S, Lamming DW, Pacak CA, van der Pluijm I, Niedernhofer L, Bartolomucci A. The mouse Social Frailty Index (mSFI): a novel behavioral assessment for impaired social functioning in aging mice. GeroScience 2025; 47:85-107. [PMID: 38987495 PMCID: PMC11872866 DOI: 10.1007/s11357-024-01263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024] Open
Abstract
Various approaches exist to quantify the aging process and estimate biological age on an individual level. Frailty indices based on an age-related accumulation of physical deficits have been developed for human use and translated into mouse models. However, declines observed in aging are not limited to physical functioning but also involve social capabilities. The concept of "social frailty" has been recently introduced into human literature, but no index of social frailty exists for laboratory mice yet. To fill this gap, we developed a mouse Social Frailty Index (mSFI) consisting of seven distinct assays designed to quantify social functioning which is relatively simple to execute and is minimally invasive. Application of the mSFI in group-housed male C57BL/6 mice demonstrated a progressively elevated levels of social frailty through the lifespan. Conversely, group-housed females C57BL/6 mice manifested social frailty only at a very old age. Female mice also showed significantly lower mSFI score from 10 months of age onward when compared to males. We also applied the mSFI in male C57BL/6 mice under chronic subordination stress and in chronic isolation, both of which induced larger increases in social frailty compared to age-matched group-housed males. Lastly, we show that the mSFI is enhanced in mouse models that show accelerated biological aging such as progeroid Ercc1-/Δ and Xpg-/- mice of both sexes compared to age matched littermate wild types. In summary, the mSFI represents a novel index to quantify trajectories of biological aging in mice and may help elucidate links between impaired social behavior and the aging process.
Collapse
Affiliation(s)
- Charles W Collinge
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Mansk
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Christina A Pacak
- Greg Marzolf Jr. Muscular Dystrophy Center & Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, and Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. High fat diet consumption and social instability stress impair stress adaptation and maternal care in C57Bl/6 dams. Psychoneuroendocrinology 2024; 169:107168. [PMID: 39146876 DOI: 10.1016/j.psyneuen.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Poor maternal diet and psychosocial stress represent two environmental factors that can significantly impact maternal health during pregnancy. While various mouse models have been developed to study the relationship between maternal and offspring health and behaviour, few incorporate multiple sources of stress that mirror the complexity of human experiences. Maternal high-fat diet (HF) models in rodents are well-established, whereas use of psychosocial stress interventions in female mice are still emerging. The social instability stress (SIS) paradigm, serves as a chronic and unpredictable form of social stress. To evaluate the combined effects of a poor maternal diet and intermittent social stress on maternal health and behaviour, we developed a novel maternal stress model using adult female C57Bl/6 mice. We observed that all HF+ mice demonstrated rapid weight gain, elevated fasting blood glucose levels and impaired glucose tolerance independent of the presence (+) or absence (-) of SIS. Behavioural testing output revealed anxiety-like behaviours remained similar across all groups prior to pregnancy. However, integrated anxiety z-scores revealed a mixed anxious profile amongst HF+/SIS+ females prior to pregnancy. HF+/SIS+ females also did not show reduced plasma ACTH and corticosterone levels that were observed in our other HF+ and HF- stress groups after SIS exposure. Further, HF+/SIS+ females demonstrated significant postpartum maternal neglect, resulting in fewer numbers of live offspring. These findings suggest that prolonged maternal HF diet consumption, coupled with previous exposure to SIS, places a significant burden on the maternal stress response system, resulting in reduced parental investment and negative postpartum behaviour towards offspring.
Collapse
Affiliation(s)
- Morgan C Bucknor
- School of Life and Environmental Sciences, Faculty of Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Anand Gururajan
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia.
| | - Russell C Dale
- The Children's Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Markus J Hofer
- School of Life and Environmental Sciences, Faculty of Science, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Martin LD, Shelton J, Houser LA, MacAllister R, Coleman K. Refinements in Clinical and Behavioral Management for Macaques on Infectious Disease Protocols. Vet Sci 2024; 11:460. [PMID: 39453052 PMCID: PMC11512263 DOI: 10.3390/vetsci11100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
Providing optimal clinical and behavioral care is a key component of promoting animal welfare for macaques and other nonhuman primates (NHPs) in research. This overlap between critical areas of management is particularly important for NHPs on infectious disease protocols, which often have unique challenges. For example, traditionally these NHPs were often housed alone, which can have behavioral and clinical consequences. However, in the past decade or so, considerable effort has been directed at modifying procedures in an effort to improve animal welfare for this group of NHPs. In this review, we examine some refinements that can positively impact the clinical and behavioral management of macaques on infectious disease studies, including increased social housing and the use of positive reinforcement techniques to train animals to cooperate with procedures such as daily injections or awake blood draws. We also discuss ways to facilitate the implementation of these refinements, as well as to identify logistical considerations for their implementation. Finally, we look to the future and consider what more we can do to improve the welfare of these animals.
Collapse
Affiliation(s)
- Lauren Drew Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006, USA; (J.S.); (L.A.H.); (R.M.); (K.C.)
| | | | | | | | | |
Collapse
|
4
|
Uusi‐Heikkilä S, Salonen JK, Karjalainen JS, Väisänen A, Hippeläinen J, Hämärvuo T, Kuparinen A. Fish with slow life-history cope better with chronic manganese exposure than fish with fast life-history. Ecol Evol 2024; 14:e70134. [PMID: 39119176 PMCID: PMC11307103 DOI: 10.1002/ece3.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Animals with different life-history types vary in their stress-coping styles, which can affect their fitness and survival in changing environments. We studied how chronic exposure to manganese sulfate (MnSO4), a common aquatic pollutant, affects life-history traits, physiology, and behavior of zebrafish (Danio rerio) with two life-history types: fast (previously selected for fast juvenile growth, early maturation, and small adult body size) and slow life histories (selected for slow juvenile growth, late maturation, and large adult body size). We found that MnSO4 had negative effects on growth and condition factors, but the magnitude of these effects depended on the life-history type. Individuals with fast life histories were more susceptible to MnSO4 than fish with slow life histories as they had lower growth rate, condition factor and feeding probability in high MnSO4 concentrations. Our results demonstrate that MnSO4 can impair fish performance, and life-history variation can modulate the stress-coping ability of individuals.
Collapse
Affiliation(s)
- Silva Uusi‐Heikkilä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Jouni K. Salonen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Juha S. Karjalainen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Ari Väisänen
- Department of ChemistryUniversity of JyväskyläJyvaskylaFinland
| | - Johanna Hippeläinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Teemu Hämärvuo
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
| |
Collapse
|
5
|
Bartolomucci A, Tung J, Harris KM. The fortunes and misfortunes of social life across the life course: A new era of research from field, laboratory and comparative studies. Neurosci Biobehav Rev 2024; 162:105655. [PMID: 38583652 DOI: 10.1016/j.neubiorev.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Social gradients in health and aging have been reported in studies across many human populations, and - as the papers included in this special collection highlight - also occur across species. This paper serves as a general introduction to the special collection of Neuroscience and Biobehavioral Reviews entitled "Social dimensions of health and aging: population studies, preclinical research, and comparative research using animal models". Authors of the fourteen reviews are primarily members of a National Institute of Aging-supported High Priority Research Network on "Animal Models for the Social Dimensions of Health and Aging". The collection is introduced by a foreword, commentaries, and opinion pieces by leading experts in related fields. The fourteen reviews are divided into four sections: Section 1: Biodemography and life course studies; Section 2: Social behavior and healthy aging in nonhuman primates; Section 3: Social factors, stress, and hallmarks of aging; Section 4: Neuroscience and social behavior.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biology, Duke University, Durham, NC, USA; Canadian Institute for Advanced Research, Toronto, Canada; Duke Population Research Institute, Duke University, Durham, NC, USA.
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
van Ingelgom T, Didone V, Godefroid L, Quertemont É. Effects of social housing conditions on ethanol-induced behavioral sensitization in Swiss mice. Psychopharmacology (Berl) 2024; 241:987-1000. [PMID: 38206359 DOI: 10.1007/s00213-024-06527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
RATIONALE In previous animal model studies, it was shown that drug sensitization is dependent upon physical environmental conditions. However, the effects of social housing conditions on drug sensitization is much less known. OBJECTIVE The aim of the present study was to investigate the effects of social conditions, through the size of housing groups, on ethanol stimulant effects and ethanol-induced behavioral sensitization in mice. MATERIALS AND METHODS Male and female Swiss mice were housed in groups of different sizes (isolated mice, two mice per cage, four mice per cage and eight mice per cage) during a six-week period. A standard paradigm of ethanol-induced locomotor sensitization was then started with one daily injection of 2.5 g/kg ethanol for 8 consecutive days. RESULTS The results show that social housing conditions affect the acute stimulant effects of ethanol. The highest stimulant effects were observed in socially isolated mice and then gradually decreased as the size of the group increased. Although the rate of ethanol sensitization did not differ between groups, the ultimate sensitized levels of ethanol-induced stimulant effects were significantly reduced in mice housed in groups of eight. CONCLUSIONS These results are consistent with the idea that higher levels of acute and sensitized ethanol stimulant effects are observed in mice housed in stressful housing conditions, such as social isolation.
Collapse
Affiliation(s)
- Théo van Ingelgom
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Vincent Didone
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Leeloo Godefroid
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium
| | - Étienne Quertemont
- Psychologie et Neuroscience Cognitive (PsyNCog), Psychologie Quantitative, Université de Liège, Place des Orateurs 2 (B32), Liège, B-4000, Belgium.
| |
Collapse
|
7
|
Johnson EE, Southern WM, Doud B, Steiger B, Razzoli M, Bartolomucci A, Ervasti JM. Retention of stress susceptibility in the mdx mouse model of Duchenne muscular dystrophy after PGC-1α overexpression or ablation of IDO1 or CD38. Hum Mol Genet 2024; 33:594-611. [PMID: 38181046 PMCID: PMC10954366 DOI: 10.1093/hmg/ddad206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal degenerative muscle wasting disease caused by the loss of the structural protein dystrophin with secondary pathological manifestations including metabolic dysfunction, mood and behavioral disorders. In the mildly affected mdx mouse model of DMD, brief scruff stress causes inactivity, while more severe subordination stress results in lethality. Here, we investigated the kynurenine pathway of tryptophan degradation and the nicotinamide adenine dinucleotide (NAD+) metabolic pathway in mdx mice and their involvement as possible mediators of mdx stress-related pathology. We identified downregulation of the kynurenic acid shunt, a neuroprotective branch of the kynurenine pathway, in mdx skeletal muscle associated with attenuated peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) transcriptional regulatory activity. Restoring the kynurenic acid shunt by skeletal muscle-specific PGC-1α overexpression in mdx mice did not prevent scruff -induced inactivity, nor did abrogating extrahepatic kynurenine pathway activity by genetic deletion of the pathway rate-limiting enzyme, indoleamine oxygenase 1. We further show that reduced NAD+ production in mdx skeletal muscle after subordination stress exposure corresponded with elevated levels of NAD+ catabolites produced by ectoenzyme cluster of differentiation 38 (CD38) that have been implicated in lethal mdx response to pharmacological β-adrenergic receptor agonism. However, genetic CD38 ablation did not prevent mdx scruff-induced inactivity. Our data do not support a direct contribution by the kynurenine pathway or CD38 metabolic dysfunction to the exaggerated stress response of mdx mice.
Collapse
Affiliation(s)
- Erynn E Johnson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, United States
| | - W Michael Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, United States
| | - Baird Doud
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, United States
| | - Brandon Steiger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, United States
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 321 Church St. SE, Minneapolis, MN 55455, United States
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 321 Church St. SE, Minneapolis, MN 55455, United States
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, United States
| |
Collapse
|
8
|
Zipple MN, Vogt CC, Sheehan MJ. Re-wilding model organisms: Opportunities to test causal mechanisms in social determinants of health and aging. Neurosci Biobehav Rev 2023; 152:105238. [PMID: 37225063 PMCID: PMC10527394 DOI: 10.1016/j.neubiorev.2023.105238] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Social experiences are strongly associated with individuals' health, aging, and survival in many mammalian taxa, including humans. Despite their role as models of many other physiological and developmental bases of health and aging, biomedical model organisms (particularly lab mice) remain an underutilized tool in resolving outstanding questions regarding social determinants of health and aging, including causality, context-dependence, reversibility, and effective interventions. This status is largely due to the constraints of standard laboratory conditions on animals' social lives. Even when kept in social housing, lab animals rarely experience social and physical environments that approach the richness, variability, and complexity they have evolved to navigate and benefit from. Here we argue that studying biomedical model organisms outside under complex, semi-natural social environments ("re-wilding") allows researchers to capture the methodological benefits of both field studies of wild animals and laboratory studies of model organisms. We review recent efforts to re-wild mice and highlight discoveries that have only been made possible by researchers studying mice under complex, manipulable social environments.
Collapse
Affiliation(s)
- Matthew N Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Caleb C Vogt
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Scott E, Brewer MS, Peralta AL, Issa FA. The Effects of Social Experience on Host Gut Microbiome in Male Zebrafish ( Danio rerio). THE BIOLOGICAL BULLETIN 2023; 244:177-189. [PMID: 38457676 DOI: 10.1086/729377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractAlthough the gut and the brain vastly differ in physiological function, they have been interlinked in a variety of different neurological and behavioral disorders. The bacteria that comprise the gut microbiome communicate and influence the function of various physiological processes within the body, including nervous system function. However, the effects of social experience in the context of dominance and social stress on gut microbiome remain poorly understood. Here, we examined whether social experience impacts the host zebrafish (Danio rerio) gut microbiome. We studied how social dominance during the first 2 weeks of social interactions changed the composition of zebrafish gut microbiome by comparing gut bacterial composition, diversity, and relative abundance between socially dominant, submissive, social isolates and control group-housed communal fish. Using amplicon sequencing of the 16S rRNA gene, we report that social dominance significantly affects host gut bacterial community composition but not bacterial diversity. At the genus level, Aeromonas and unclassified Enterobacteriaceae relative abundance decreased in dominant individuals while commensal bacteria (e.g., Exiguobacterium and Cetobacterium) increased in relative abundance. Conversely, the relative abundance of Psychrobacter and Acinetobacter was increased in subordinates, isolates, and communal fish compared to dominant fish. The shift in commensal and pathogenic bacteria highlights the impact of social experience and the accompanying stress on gut microbiome, with potentially similar effects in other social organisms.
Collapse
|
10
|
Dee G, Ryznar R, Dee C. Epigenetic Changes Associated with Different Types of Stressors and Suicide. Cells 2023; 12:cells12091258. [PMID: 37174656 PMCID: PMC10177343 DOI: 10.3390/cells12091258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Stress is associated with various epigenetic changes. Some stress-induced epigenetic changes are highly dynamic, whereas others are associated with lasting marks on the epigenome. In our study, a comprehensive narrative review of the literature was performed by investigating the epigenetic changes that occur with acute stress, chronic stress, early childhood stress, and traumatic stress exposures, along with examining those observed in post-mortem brains or blood samples of suicide completers and attempters. In addition, the transgenerational effects of these changes are reported. For all types of stress studies examined, the genes Nr3c1, OXTR, SLC6A4, and BDNF reproducibly showed epigenetic changes, with some modifications observed to be passed down to subsequent generations following stress exposures. The aforementioned genes are known to be involved in neuronal development and hormonal regulation and are all associated with susceptibility to mental health disorders including depression, anxiety, personality disorders, and PTSD (post-traumatic stress disorder). Further research is warranted in order to determine the scope of epigenetic actionable targets in individuals suffering from the long-lasting effects of stressful experiences.
Collapse
Affiliation(s)
- Garrett Dee
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA
| | - Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80112, USA
| | - Colton Dee
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
11
|
Razzoli M, Nyuyki-Dufe K, Chen BH, Bartolomucci A. Contextual modifiers of healthspan, lifespan, and epigenome in mice under chronic social stress. Proc Natl Acad Sci U S A 2023; 120:e2211755120. [PMID: 37043532 PMCID: PMC10120026 DOI: 10.1073/pnas.2211755120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Sustained life stress and low socioeconomic status are among the major causes of aging-related diseases and decreased life expectancy. Experimental rodent models can help to identify the underlying mechanisms, yet very few studies address the long-term consequences of social stress on aging. We conducted a randomized study involving more than 300 male mice of commonly used laboratory strains (C57BL/6J, CD1, and Sv129Ev) chosen for the spontaneous aggression gradient and stress-vulnerability. Mice were exposed to a lifelong chronic psychosocial stress protocol to model social gradients in aging and disease vulnerability. Low social rank, inferred based on a discretized aggression index, was found to negatively impact lifespan in our study population. However, social rank interacted with genetic background in that low-ranking C57BL/6J, high-ranking Sv129Ev, and middle-ranking CD1 mice had lower survival, respectively, implying a cost of maintaining a given social rank that varies across strains. Machine learning linear discriminant analysis identified baseline fat-free mass as the most important predictor of mouse genetic background and social rank in the present dataset. Finally, strain and social rank differences were significantly associated with epigenetic changes, most significantly in Sv129Ev mice and in high-ranking compared to lower ranking subjects. Overall, we identified genetic background and social rank as critical contextual modifiers of aging and lifespan in an ethologically relevant rodent model of social stress, thereby providing a preclinical experimental paradigm to study the impact of social determinants of health disparities and accelerated aging.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Kewir Nyuyki-Dufe
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Brian H. Chen
- FOXO Technologies Inc., Minneapolis, MN55401
- Division of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
12
|
Ecological validity of social defeat stressors in mouse models of vulnerability and resilience. Neurosci Biobehav Rev 2023; 145:105032. [PMID: 36608919 DOI: 10.1016/j.neubiorev.2023.105032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Laboratory mouse models offer opportunities to bridge the gap between basic neuroscience and applied stress research. Here we consider the ecological validity of social defeat stressors in mouse models of emotional vulnerability and resilience. Reports identified in PubMed from 1980 to 2020 are reviewed for the ecological validity of social defeat stressors, sex of subjects, and whether results are discussed in terms of vulnerability alone, resilience alone, or both vulnerability and resilience. Most of the 318 reviewed reports (95%) focus on males, and many reports (71%) discuss vulnerability and resilience. Limited ecological validity is associated with increased vulnerability and decreased resilience. Elements of limited ecological validity include frequent and repeated exposure to defeat stressors without opportunities to avoid or escape from unfamiliar conspecifics that are pre-screened and selected for aggressive behavior. These elements ensure defeat and may be required to induce vulnerability, but they are not representative of naturalistic conditions. Research aimed at establishing causality is needed to determine whether ecologically valid stressors build resilience in both sexes of mice.
Collapse
|
13
|
Wang Z, Jin S, Xia T, Liu Y, Zhou Y, Liu X, Pan R, Liao Y, Yan M, Chang Q. Nelumbinis Stamen Ameliorates Chronic Restraint Stress-Induced Muscle Dysfunction and Fatigue in Mice by Decreasing Serum Corticosterone Levels and Activating Sestrin2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16188-16200. [PMID: 36529943 DOI: 10.1021/acs.jafc.2c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nelumbo nucifera Gaertn. is an important aquatic vegetable, and its dried stamen (Nelumbinis stamen, NS) is a valuable nutraceutical usually used as a herbal tea. Here, we used ultrahigh-performance liquid chromatography (UPLC)-quadrupole time-of-flight mass spectrometry and high-performance liquid chromatography (HPLC) to chemically profile NS and quantify their main constituent flavonoids, respectively. In total, 44 components were identified, including organic acids, flavonoids, monoterpene glycosides, and fatty acids. Experimental mice were induced with fatigue by exposure to chronic restraint stress (CRS) for 8 h daily for 15 days and then treated with an aqueous extract of NS (0.5 and 1 g/kg) via gavage. NS significantly mitigated CRS-induced skeletal muscle dysfunction and fatigue in mice possibly by lowering serum corticosterone levels and restoring Sestrin2 expression in the gastrocnemius to regulate metabolism, preserve mitochondrial homeostasis, and promote antioxidant capacity. These results demonstrate that NS can be used as a nutraceutical or supplement for controlling stress-induced muscle dysfunction and fatigue.
Collapse
Affiliation(s)
- Zhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Suwei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Tianji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yongguang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yunfeng Zhou
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xinmin Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yonghong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Mingzhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
14
|
Leaves of Cedrela sinensis Attenuate Chronic Unpredictable Mild Stress-Induced Depression-like Behavior via Regulation of Hormonal and Inflammatory Imbalance. Antioxidants (Basel) 2022; 11:antiox11122448. [PMID: 36552656 PMCID: PMC9774296 DOI: 10.3390/antiox11122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the protective effects of ethyl acetate fraction from Cedrela sinensis (EFCS) against chronic unpredictable mild stress (CUMS)-induced behavioral dysfunction and stress response in C57BL/6 mice. The physiological compounds of EFCS were identified as rutin, isoquercitrin, ethyl gallate, quercitrin, kaempferol-3-O-rhamnoside, and ethyl digallate, using UPLC-Q-TOF/MSE. To evaluate the neuroprotective effect of EFCS, H2O2- and corticosterone-induced neuronal cell viability was conducted in human neuroblastoma MC-IXC cells. It was found that EFCS alleviated depression-like behavior by conducting the sucrose preference test (SPT), forced swimming test (FST), open field test (OFT), and tail suspension test (TST). EFCS inhibited mitochondrial dysfunction related to neuronal energy metabolism by regulating reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and ATP contents in brain tissue. In addition, the administration of EFCS regulated the stress hormones in serum. EFCS regulated stress-related indicators such as CRF, ACTH, CYP11B1, and BDNF. Moreover, EFCS downregulated the inflammatory responses and apoptosis proteins such as caspase-1, TNF-α, IL-1β, p-JNK, BAX, and p-tau in brain tissues. These results suggest that EFCS might be a potential natural plant material that alleviates CUMS-induced behavior disorder by regulating inflammation in brain tissue against CUMS-induced depression.
Collapse
|
15
|
Lee S, Park JT, Bang M, An SK, Namkoong K, Park HY, Lee E. Theory of mind and hair cortisol in healthy young adults: the moderating effects of childhood trauma. Eur J Psychotraumatol 2022; 13:2116826. [PMID: 36186166 PMCID: PMC9518292 DOI: 10.1080/20008066.2022.2116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Experiences of negative social interactions and childhood trauma (CT) can lead to aberrant hypothalamic-pituitary-adrenal functions. Poor theory of mind (ToM) ability is related to increased social stress levels; however, studies on the relationship between ToM and cortisol remain scarce. Objective: This study aimed to evaluate the relationship between ToM and the hair cortisol concentration (HCC) in healthy young adults considering the moderating role of CT. Method: A total of 206 healthy young adults were divided into two groups based on an experience of moderate-to-severe childhood trauma (CT+ and CT-). To determine whether CT moderated the relationship between ToM and HCC, moderation analysis was conducted controlling for age, sex, years of education, and scores of perceived stress, depression, and anxiety. Results: CT+ individuals reported higher subjective stress perception and depressive symptoms than CT- individuals, whereas anxiety-related symptoms, ToM, and HCC were not different between the groups. The experience of CT significantly moderated the relationship between ToM and HCC. The association between poorer ToM ability and higher HCC was significant only in CT+ group. Conclusion: CT is a moderator of the association between ToM and HCC, indicating the importance of CT in social cognition and the stress response.
Collapse
Affiliation(s)
- Suonaa Lee
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Tak Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Suk Kyoon An
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kee Namkoong
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Yoon Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eun Lee
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Ma YK, Zeng PY, Chu YH, Lee CL, Cheng CC, Chen CH, Su YS, Lin KT, Kuo TH. Lack of social touch alters anxiety-like and social behaviors in male mice. Stress 2022; 25:134-144. [PMID: 35254226 DOI: 10.1080/10253890.2022.2047174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The importance of social interactions has been reported in a variety of animal species. In human and rodent models, social isolation is known to alter social behaviors and change anxiety or depression levels. During the coronavirus pandemic, although people could communicate with each other through other sensory cues, social touch was mostly prohibited under different levels of physical distancing policies. These social restrictions inspired us to explore the necessity of physical contact, which has rarely been investigated in previous studies on mouse social interactions. We first conducted a long-term observation to show that pair-housed mice in a standard laboratory cage spent nearly half the day in direct physical contact with each other. Furthermore, we designed a split-housing condition to demonstrate that even with free access to visual, auditory, and olfactory social signals, the lack of social touch significantly increased anxiety-like behaviors and changed social behaviors. There were correspondingly higher levels of the pro-inflammatory cytokine interleukin-6 in the hippocampus in mice with no access to physical contact. Our study demonstrated the necessity of social touch for the maintenance of mental health in mice and could have important implications for human social interactions.
Collapse
Affiliation(s)
- Yu-Kai Ma
- Department of Life Science, National Tsing Hua University, Hsinchu, Republic of China
| | - Pei-Yun Zeng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Republic of China
| | - Yu-Hsin Chu
- Department of Life Science, National Tsing Hua University, Hsinchu, Republic of China
| | - Chih-Lin Lee
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Republic of China
| | - Ching-Chuan Cheng
- Department of Life Science, National Tsing Hua University, Hsinchu, Republic of China
| | - Chen-Hung Chen
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Republic of China
| | - Yu-Shan Su
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Republic of China
| | - Kai-Ti Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, Republic of China
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Republic of China
| | - Tsung-Han Kuo
- Department of Life Science, National Tsing Hua University, Hsinchu, Republic of China
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Republic of China
- Brain Research Center, National Tsing Hua University, Hsinchu, Republic of China
| |
Collapse
|
17
|
Ponzi D, Dadomo H, Filonzi L, Palanza P, Pelosi A, Ceresini G, Parmigiani S, Marzano FN. Cortisol, Temperament and Serotonin in Karate Combats: An Evolutionary Psychobiological Perspective. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2021. [DOI: 10.1007/s40750-021-00178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Objectives
There is evidence suggesting that in martial arts competitions athletes characterized by higher anxiety and harm avoidance may be more likely to lose a fight. This psychological profile has been hypothesized to explain in part the observation that cortisol is higher in losers before and in response to a competition. An important research target that needs further exploration is the identification of phenotypic traits that can be helpful in predicting athletes’ performance. Here we present a brief description of the theoretical bases that drives our research in the evolutionary psychobiology of sports and illustrate preliminary data on the relationship between the 5HTTLPR genotype, salivary cortisol, temperament and competition.
Methods
Sixty-five healthy male non-professional athletes provided saliva samples 10 min before and after a kumite session and filled out the Tridimensional Personality Questionnaire.
Results
Salivary cortisol levels 10 min before the competition were higher in losers and in athletes with the S allele. Temperament was associated with competition outcome and cortisol: losers were characterized by higher scores of harm avoidance and harm avoidance was positively correlated with cortisol levels.
Conclusions
The results confirm previous findings linking temperamental traits, pre-and post- competition physiological stress response with competition outcome in kumite fight. Moreover, they indicate an association between the 5HTTLPR polymorphism and pre-competition salivary cortisol, thus providing a preliminary but non-conclusive evidence on the role played by the 5HTTLPR genotype as a vulnerability factor in sport competition.
Collapse
|
18
|
LeClair KB, Chan KL, Kaster MP, Parise LF, Burnett CJ, Russo SJ. Individual history of winning and hierarchy landscape influence stress susceptibility in mice. eLife 2021; 10:71401. [PMID: 34581271 PMCID: PMC8497051 DOI: 10.7554/elife.71401] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, although gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.
Collapse
Affiliation(s)
- Katherine B LeClair
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States.,Graduate School of Biological Science, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Kenny L Chan
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States
| | - Manuella P Kaster
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States.,Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Lyonna F Parise
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States
| | - Charles Joseph Burnett
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States
| | - Scott J Russo
- Nash Family Department of Neuroscience, New York, United States.,Friedman Brain Institute, New York, United States.,Graduate School of Biological Science, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
19
|
Bogeska R. Resilience to social stress: is it in the blood? FEBS Open Bio 2021; 11:2675-2677. [PMID: 34496161 PMCID: PMC8487048 DOI: 10.1002/2211-5463.13291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
|
20
|
Cooper MA, Clinard CT, Dulka BN, Grizzell JA, Loewen AL, Campbell AV, Adler SG. Gonadal steroid hormone receptors in the medial amygdala contribute to experience-dependent changes in stress vulnerability. Psychoneuroendocrinology 2021; 129:105249. [PMID: 33971475 PMCID: PMC8217359 DOI: 10.1016/j.psyneuen.2021.105249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Social experience can generate neural plasticity that changes how individuals respond to stress. Winning aggressive encounters alters how animals respond to future challenges and leads to increased plasma testosterone concentrations and androgen receptor (AR) expression in the social behavior neural network. In this project, our aim was to identify neuroendocrine mechanisms that account for changes in stress-related behavior following the establishment of dominance relationships over a two-week period. We used a Syrian hamster model in which acute social defeat stress increases anxiety-like responses in a conditioned defeat test in males and in a social avoidance test in females. First, we administered flutamide, an AR antagonist, via intraperitoneal injections daily during the establishment of dominance relationships in male hamsters. We found that pharmacological blockade of AR prevented a reduction in conditioned defeat in dominant males and blocked an upregulation of AR in the posterior dorsal medial amygdala (MePD) and posterior ventral medial amygdala (MePV), but not in the ventral lateral septum. Next, we administered flutamide into the posterior aspects of the medial amygdala (MeP) prior to acute social defeat stress or prior to conditioned defeat testing in males. We found that pharmacological blockade of AR in the MeP prior to social defeat, but not prior to testing, increased the conditioned defeat response in dominant males and did not alter behavior in subordinates. Finally, we developed a procedure to establish dominance relationships in female hamsters and investigated status-dependent changes in plasma steroid hormone concentrations, estrogen receptor alpha (ERα) immunoreactivity, and defeat-induced social avoidance. We found that dominant female hamsters showed reduced social avoidance regardless of social defeat exposure as well as increased ERα expression in the MePD, but no status-dependent changes in the concentration of plasma steroid hormones. Overall, these findings suggest that achieving and maintaining stable social dominance leads to sex-specific neural plasticity in the MeP that underlies status-dependent changes in stress vulnerability.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States.
| | - Catherine T Clinard
- Department of Social Sciences, Dalton State College, Dalton, GA, United States
| | - Brooke N Dulka
- Department of Psychology, University of Wisconsin, Milwaukee, WI, United States
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| | - Annie L Loewen
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Ashley V Campbell
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| | - Samuel G Adler
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
21
|
LeClair KB, Russo SJ. Using social rank as the lens to focus on the neural circuitry driving stress coping styles. Curr Opin Neurobiol 2021; 68:167-180. [PMID: 33930622 DOI: 10.1016/j.conb.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/02/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Social hierarchy position in humans is negatively correlated with stress-related psychiatric disease risk. Animal models have largely corroborated human studies, showing that social rank can impact stress susceptibility and is considered to be a major risk factor in the development of psychiatric illness. Differences in stress coping style is one of several factors that mediate this relationship between social rank and stress susceptibility. Coping styles encompass correlated groupings of behaviors associated with differential physiological stress responses. Here, we discuss recent insights from animal models that highlight several neural circuits that can contribute to social rank-associated differences in coping style.
Collapse
Affiliation(s)
- Katherine B LeClair
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
22
|
Contribution of growth hormone secretagogue receptor (GHSR) signaling in the ventral tegmental area (VTA) to the regulation of social motivation in male mice. Transl Psychiatry 2021; 11:230. [PMID: 33879778 PMCID: PMC8058340 DOI: 10.1038/s41398-021-01350-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023] Open
Abstract
Most psychiatric disorders are characterized by deficits in the ability to interact socially with others. Ghrelin, a hormone normally associated with the regulation of glucose utilization and appetite, is also implicated in the modulation of motivated behaviors including those associated with food and sex rewards. Here we hypothesized that deficits in ghrelin receptor (growth hormone secretagogue receptor; GHSR) signaling are also associated with deficits in social motivation in male mice. To test this hypothesis, we compared social motivation in male mice lacking GHSR or mice treated with the GHSR antagonist JMV2959 with that of WT or vehicle-treated mice. GHSR signaling in dopamine cells of the ventral tegmental area (VTA) has been implicated in the control of sexual behavior, thus we further hypothesized that GHSR signaling in the VTA is important for social motivation. Thus, we conducted studies where we delivered JMV2959 to block GHSR in the VTA of mice, and studies where we rescued the expression of GHSR in the VTA of GHSR knockout (KO) mice. Mice lacking GHSR or injected with JMV2959 peripherally for 3 consecutive days displayed lower social motivation as reflected by a longer latency to approach a novel conspecific and shorter interaction time compared to WT or vehicle-treated controls. Furthermore, intra-VTA infusion of JMV2959 resulted in longer latencies to approach a novel conspecific, whereas GHSR KO mice with partial rescue of the GHSR showed decreased latencies to begin a novel social interaction. Together, these data suggest that GHSR in the VTA facilitate social approach in male mice, and GHSR-signaling deficits within the VTA result in reduced motivation to interact socially.
Collapse
|
23
|
Stoneham ET, McHail DG, Samipour-Biel S, Liehr N, Lee CM, Evans JC, Boggs K, Dumas TC. Spatial Learning Is Impaired in Male Pubertal Rats Following Neonatal Daily but Not Randomly Spaced Maternal Deprivation. Front Cell Dev Biol 2021; 9:621308. [PMID: 33816470 PMCID: PMC8012507 DOI: 10.3389/fcell.2021.621308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023] Open
Abstract
Severe early life stress has long been associated with neuropsychological disorders in adulthood, including depression, schizophrenia, post-traumatic stress disorder, and memory dysfunction. To some extent, all of these conditions involve dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and reduced negative feedback inhibition of cortisol release in adulthood. However, the time course for mental health and hormonal outcomes across life stages and the attributes of early life stress that direct the behavioral and biological alterations is not fully understood. We designed our studies to compare outcomes of the two most common maternal deprivation schedules on cognitive ability prior to adulthood. We exposed rat pups to daily or randomly spaced maternal separation bouts within the first 3 weeks of life and examined cognitive performance, neurotrophic signaling, and stress and immune system markers during puberty. We found that the daily separation schedule impaired spatial learning while the randomly spaced schedule did not alter maze performance relative to normally reared control animals. Animals that underwent daily separation showed a tendency for reduced body weight compared to the randomly spaced condition, but there were no differences in adrenal weight. Thymus weight normalized by body weight was increased following daily separation compared to random separation and control conditions. Plasma corticosterone levels measured after behavior testing did not differ amongst experimental groups and there was no impact of TrKB receptor inhibition. Combined, the results show that different early life stress schedules produce different behavioral and biological outcomes when measured at puberty. Combined with prior findings from more mature animals, the results presented here suggest that daily neonatal stress produces varied alterations in spatial cognition at different life stages with a transient learning deficit at puberty preceding a more persistent and a progressive memory impairment through adulthood and into aging.
Collapse
Affiliation(s)
- Emily T Stoneham
- Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| | - Daniel G McHail
- Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| | | | - Nicole Liehr
- George Mason University, Fairfax, VA, United States
| | | | | | | | - Theodore C Dumas
- Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| |
Collapse
|
24
|
Dadomo H, Ponzi D, Nicolini Y, Vignali A, Ablondi F, Ceresini G, Maggio M, Palanza P, Govoni P, Volpi R, Parmigiani S. Behavioral and hormonal effects of prolonged Sildenafil treatment in a mouse model of chronic social stress. Behav Brain Res 2020; 392:112707. [PMID: 32461132 DOI: 10.1016/j.bbr.2020.112707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Chronic social defeat can inhibit the reproductive system of subordinate males and causes behavioral deficits. Sildenafil treatment increases mice testosterone levels through its effects on Leydig cells of mice and it has been found to work as an antidepressant drug both in humans and in animal models. Since previous findings showed that sildenafil can counteract the inhibitory effects of chronic social defeat on agonistic, reproductive and anxiety-like behaviors of subordinate male mice, we investigated whether these behavioral outcomes can be explained by Sildenafil stimulation of testosterone. CD1 mice underwent an intruder-resident paradigm. After the fifth day of test, subordinate mice were injected with either a 10 mg/kg Sildenafil or a saline solution for 4 weeks. The results of the present study showed that Sildenafil treatment increased counterattacking behaviors and sexual motivation of subordinate males in addition to limiting the increase in body weight often observed in subordinate mice following chronic psychosocial stress. Moreover, sildenafil treated mice showed a pattern of behaviors reflecting lower anxiety. In agreement with previous studies, Sildenafil also increased testosterone levels. These data demonstrate that sildenafil can counteract the effects of chronic stress, possibly through its stimulatory effects on Leydig cells. These data demonstrate that sildenafil might counteract the effects of chronic psychosocial stress through centrally and peripherally mediated mechanisms.
Collapse
Affiliation(s)
- H Dadomo
- Department of Medicine and Surgery, University of Parma, Italy.
| | - D Ponzi
- Department of Medicine and Surgery, University of Parma, Italy
| | - Y Nicolini
- Department of Medicine and Surgery, University of Parma, Italy
| | - A Vignali
- Department of Medicine and Surgery, University of Parma, Italy
| | - F Ablondi
- Department of Medicine and Surgery, University of Parma, Italy
| | - G Ceresini
- Department of Medicine and Surgery, University of Parma, Italy
| | - M Maggio
- Department of Medicine and Surgery, University of Parma, Italy
| | - P Palanza
- Department of Medicine and Surgery, University of Parma, Italy
| | - P Govoni
- Department of Medicine and Surgery, University of Parma, Italy
| | - R Volpi
- Department of Medicine and Surgery, University of Parma, Italy
| | - S Parmigiani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| |
Collapse
|
25
|
Whittaker AL, Hickman DL. The Impact of Social and Behavioral Factors on Reproducibility in Terrestrial Vertebrate Models. ILAR J 2020; 60:252-269. [PMID: 32720675 DOI: 10.1093/ilar/ilaa005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The use of animal models remains critical in preclinical and translational research. The reliability of the animal models and aspects of their validity is likely key to effective translation of findings to medicine. However, despite considerable uniformity in animal models brought about by control of genetics, there remain a number of social as well as innate and acquired behavioral characteristics of laboratory animals that may impact on research outcomes. These include the effects of strain and genetics, age and development, sex, personality and affective states, and social factors largely brought about by housing and husbandry. In addition, aspects of the testing environment may also influence research findings. A number of considerations resulting from the animals' innate and acquired behavioral characteristics as well as their social structures are described. Suggestions for minimizing the impact of these factors on research are provided.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Debra L Hickman
- Laboratory Animal Resource Center, Indiana University, Indianapolis, Indiana
| |
Collapse
|
26
|
Bengtsson S, Bäckström T, Brinton R, Irwin R, Johansson M, Sjöstedt J, Wang M. GABA-A receptor modulating steroids in acute and chronic stress; relevance for cognition and dementia? Neurobiol Stress 2020; 12:100206. [PMID: 31921942 PMCID: PMC6948369 DOI: 10.1016/j.ynstr.2019.100206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
Cognitive dysfunction, dementia and Alzheimer's disease (AD) are increasing as the population worldwide ages. Therapeutics for these conditions is an unmet need. This review focuses on the role of the positive GABA-A receptor modulating steroid allopregnanolone (APα), it's role in underlying mechanisms for impaired cognition and of AD, and to determine options for therapy of AD. On one hand, APα given intermittently promotes neurogenesis, decreases AD-related pathology and improves cognition. On the other, continuous exposure of APα impairs cognition and deteriorates AD pathology. The disparity between these two outcomes led our groups to analyze the mechanisms underlying the difference. We conclude that the effects of APα depend on administration pattern and that chronic slightly increased APα exposure is harmful to cognitive function and worsens AD pathology whereas single administrations with longer intervals improve cognition and decrease AD pathology. These collaborative assessments provide insights for the therapeutic development of APα and APα antagonists for AD and provide a model for cross laboratory collaborations aimed at generating translatable data for human clinical trials.
Collapse
Affiliation(s)
- S.K.S. Bengtsson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - T. Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - R. Brinton
- Center for Innovation in Brain Science, Professor Departments of Pharmacology and Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R.W. Irwin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - M. Johansson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - J. Sjöstedt
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - M.D. Wang
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| |
Collapse
|
27
|
Shah SWA, Ishfaq M, Nasrullah M, Qayum A, Akhtar MU, Jo H, Hussain M, Teng X. Ammonia inhalation-induced inflammation and structural impairment in the bursa of fabricius and thymus of broilers through NF-κB signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11596-11607. [PMID: 31970641 DOI: 10.1007/s11356-020-07743-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Ammonia (NH3) is a toxic, environmental pollutant, and irritant gas. Previous studies reported the toxic effects of NH3 which led to inflammation in various organs of chicken. However, the exact mechanism of NH3-induced inflammation in chicken lymphoid organs bursa of fabricius (BF) and thymus is still elusive. Thus, this study was designed to investigate NH3-induced inflammation in chicken BF and thymus. Experimental chickens were divided into low (5.0 mg/m3), middle (10.0-15.0 mg/m3), and high (20.0-45.0 mg/m3) NH3-treated groups. To investigate NH3-induced inflammation in chicken's BF and thymus, histological observation, NO content and iNOS activity, inflammatory cytokine contents, and mRNA levels were performed by light microscopy, microplate spectrophotometer, ELISA assay, and qRT-PCR. The finding of the present study showed that NH3 exposure reduced BF and thymus index, increased nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity, inflammatory cytokine contents and mRNA levels of nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (Cox-2), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), IL-10, IL-1β, IL-18, toll-like receptor 2A (TLR-2A), and iNOS. Histopathological examination revealed signs of inflammation including increased nuclear debris and vacuoles in the cortex and medulla of thymus and bursal follicles. Conclusively, our findings displayed that NH3 exposure affects the normal function of BF and thymus and led inflammation. The data provided a new ground for NH3-induced toxicity and risk assessment in chicken production.
Collapse
Affiliation(s)
- Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Chang Jiang Road, Xiang Fang District, Harbin, People's Republic of China
| | - Muhammad Nasrullah
- College of Agricultural economics and Management, Northeast Agricultural University, Harbin, People's Republic of China
| | - Abdul Qayum
- Key Laboratory of Dairy Science, College of Food Science and Technology, Ministry of Education, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Muhammad Usman Akhtar
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hyeonsoo Jo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Muhammad Hussain
- Key Laboratory of Dairy Science, College of Food Science and Technology, Ministry of Education, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
28
|
Basson AR, LaSalla A, Lam G, Kulpins D, Moen EL, Sundrud MS, Miyoshi J, Ilic S, Theriault BR, Cominelli F, Rodriguez-Palacios A. Artificial microbiome heterogeneity spurs six practical action themes and examples to increase study power-driven reproducibility. Sci Rep 2020; 10:5039. [PMID: 32193395 PMCID: PMC7081340 DOI: 10.1038/s41598-020-60900-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
With >70,000 yearly publications using mouse data, mouse models represent the best engrained research system to address numerous biological questions across all fields of science. Concerns of poor study and microbiome reproducibility also abound in the literature. Despite the well-known, negative-effects of data clustering on interpretation and study power, it is unclear why scientists often house >4 mice/cage during experiments, instead of ≤2. We hypothesized that this high animal-cage-density practice abounds in published literature because more mice/cage could be perceived as a strategy to reduce housing costs. Among other sources of 'artificial' confounding, including cyclical oscillations of the 'dirty-cage/excrement microbiome', we ranked by priority the heterogeneity of modern husbandry practices/perceptions across three professional organizations that we surveyed in the USA. Data integration (scoping-reviews, professional-surveys, expert-opinion, and 'implementability-score-statistics') identified Six-Actionable Recommendation Themes (SART) as a framework to re-launch emerging protocols and intuitive statistical strategies to use/increase study power. 'Cost-vs-science' discordance was a major aspect explaining heterogeneity, and scientists' reluctance to change. With a 'housing-density cost-calculator-simulator' and fully-annotated statistical examples/code, this themed-framework streamlines the rapid analysis of cage-clustered-data and promotes the use of 'study-power-statistics' to self-monitor the success/reproducibility of basic and translational research. Examples are provided to help scientists document analysis for study power-based sample size estimations using preclinical mouse data to support translational clinical trials, as requested in NIH/similar grants or publications.
Collapse
Affiliation(s)
- Abigail R Basson
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Alexandria LaSalla
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gretchen Lam
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Danielle Kulpins
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Erika L Moen
- Department of Biomedical Data Science, Geisel School of Medicine, The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, USA
| | - Mark S Sundrud
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Sanja Ilic
- Department of Human Sciences and Nutrition, The Ohio State University, Columbus, OH, USA
| | | | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Mouse Models Core, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, USA
- Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Mouse Models Core, Silvio O'Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH, USA.
- Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
29
|
Razzoli M, Lindsay A, Law ML, Chamberlain CM, Southern WM, Berg M, Osborn J, Engeland WC, Metzger JM, Ervasti JM, Bartolomucci A. Social stress is lethal in the mdx model of Duchenne muscular dystrophy. EBioMedicine 2020; 55:102700. [PMID: 32192914 PMCID: PMC7251247 DOI: 10.1016/j.ebiom.2020.102700] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is caused by the loss of dystrophin. Severe and ultimately lethal, DMD progresses relatively slowly in that patients become wheelchair bound only around age twelve with a survival expectancy reaching the third decade of life. Methods The mildly-affected mdx mouse model of DMD, and transgenic DysΔMTB-mdx and Fiona-mdx mice expressing dystrophin or utrophin, respectively, were exposed to either mild (scruffing) or severe (subordination stress) stress paradigms and profiled for their behavioral and physiological responses. A subgroup of mdx mice exposed to subordination stress were pretreated with the beta-blocker metoprolol. Findings Subordination stress caused lethality in ∼30% of mdx mice within 24 h and ∼70% lethality within 48 h, which was not rescued by metoprolol. Lethality was associated with heart damage, waddling gait and hypo-locomotion, as well as marked up-regulation of the hypothalamus-pituitary-adrenocortical axis. A novel cardiovascular phenotype emerged in mdx mice, in that scruffing caused a transient drop in arterial pressure, while subordination stress caused severe and sustained hypotension with concurrent tachycardia. Transgenic expression of dystrophin or utrophin in skeletal muscle protected mdx mice from scruffing and social stress-induced responses including mortality. Interpretation We have identified a robust new stress phenotype in the otherwise mildly affected mdx mouse that suggests relatively benign handling may impact the outcome of behavioural experiments, but which should also expedite the knowledge-based therapy development for DMD. Funding Greg Marzolf Jr. Foundation, Summer's Wish Fund, NIAMS, Muscular Dystrophy Association, University of Minnesota and John and Cheri Gunvalson Trust.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Angus Lindsay
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Michelle L Law
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christopher M Chamberlain
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - William M Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Madeleine Berg
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - John Osborn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - William C Engeland
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, United States.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States.
| |
Collapse
|
30
|
Shah SWA, Chen J, Han Q, Xu Y, Ishfaq M, Teng X. Ammonia inhalation impaired immune function and mitochondrial integrity in the broilers bursa of fabricius: Implication of oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110078. [PMID: 31841897 DOI: 10.1016/j.ecoenv.2019.110078] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Ammonia (NH3) is considered as environmental pollutant and toxic agent for animals and humans including poultry. Previous reports demonstrated that NH3 suppressed broilers immunity. However, the harmful effects of NH3 on broilers bursa of fabricius (BF) is still unknown. Functionally, apoptosis is very important for many physiological processes including homeostasis of lymphocyte population. Therefore, the present study was aimed to investigate the underlying mechanisms of NH3 toxicity in the broilers BF. Histological observation showed lymphocyte accumulation, cavities and increased interstitial cells in BF. Ultrastructural observation indicated mitochondrial vacuoles, deformation and disappearance of mitochondrial membranes. Oxidative stress markers (CAT, MDA, H2O2, GGT, GSH-Px and GSH) showed that NH3-induced oxidative stress in BF. Meanwhile, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay revealed increased apoptotic cells. In addition, the mRNA and protein expression of dynamin-related protein 1 (Drp1), mitochondrial fission factor (Mff), mitofusin 1 and 2 (Mfn1 and Mfn2), optic atrophy 1 (Opa1) indicated imbalance between mitochondrial inner and outer membrane and results in mitochondrial dysfunction in broilers BF. The mRNA and protein expression of apoptosis-related genes including Caspase-3, Caspase-9, Caspase-8, Cytochrome-C (Cyt-C), p53, B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein (Bax) were significantly altered in broilers BF. Conclusively, these results displayed that excessive NH3 causes BF damage and mitochondrial dysfunction through oxidative stress and apoptosis in BF and could affect immune function of BF. These findings provide possible therapeutic targets to prevent NH3 induced toxicity in the BF of broilers.
Collapse
Affiliation(s)
- Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Chang jiang Road, Xiang fang District, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
31
|
Obese mice exposed to psychosocial stress display cardiac and hippocampal dysfunction associated with local brain-derived neurotrophic factor depletion. EBioMedicine 2019; 47:384-401. [PMID: 31492565 PMCID: PMC6796537 DOI: 10.1016/j.ebiom.2019.08.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Obesity and psychosocial stress (PS) co-exist in individuals of Western society. Nevertheless, how PS impacts cardiac and hippocampal phenotype in obese subjects is still unknown. Nor is it clear whether changes in local brain-derived neurotrophic factor (BDNF) account, at least in part, for myocardial and behavioral abnormalities in obese experiencing PS. METHODS In adult male WT mice, obesity was induced via a high-fat diet (HFD). The resident-intruder paradigm was superimposed to trigger PS. In vivo left ventricular (LV) performance was evaluated by echocardiography and pressure-volume loops. Behaviour was indagated by elevated plus maze (EPM) and Y-maze. LV myocardium was assayed for apoptosis, fibrosis, vessel density and oxidative stress. Hippocampus was analyzed for volume, neurogenesis, GABAergic markers and astrogliosis. Cardiac and hippocampal BDNF and TrkB levels were measured by ELISA and WB. We investigated the pathogenetic role played by BDNF signaling in additional cardiac-selective TrkB (cTrkB) KO mice. FINDINGS When combined, obesity and PS jeopardized LV performance, causing prominent apoptosis, fibrosis, oxidative stress and remodeling of the larger coronary branches, along with lower BDNF and TrkB levels. HFD/PS weakened LV function similarly in WT and cTrkB KO mice. The latter exhibited elevated LV ROS emission already at baseline. Obesity/PS augmented anxiety-like behaviour and impaired spatial memory. These changes were coupled to reduced hippocampal volume, neurogenesis, local BDNF and TrkB content and augmented astrogliosis. INTERPRETATION PS and obesity synergistically deteriorate myocardial structure and function by depleting cardiac BDNF/TrkB content, leading to augmented oxidative stress. This comorbidity triggers behavioral deficits and induces hippocampal remodeling, potentially via lower BDNF and TrkB levels. FUND: J.A. was in part supported by Rotary Foundation Global Study Scholarship. G.K. was supported by T32 National Institute of Health (NIH) training grant under award number 1T32AG058527. S.C. was funded by American Heart Association Career Development Award (19CDA34760185). G.A.R.C. was funded by NIH (K01HL133368-01). APB was funded by a Grant from the Friuli Venezia Giulia Region entitled: "Heart failure as the Alzheimer disease of the heart; therapeutic and diagnostic opportunities". M.C. was supported by PRONAT project (CNR). N.P. was funded by NIH (R01 HL136918) and by the Magic-That-Matters fund (JHU). V.L. was in part supported by institutional funds from Scuola Superiore Sant'Anna (Pisa, Italy), by the TIM-Telecom Italia (WHITE Lab, Pisa, Italy), by a research grant from Pastificio Attilio Mastromauro Granoro s.r.l. (Corato, Italy) and in part by ETHERNA project (Prog. n. 161/16, Fondazione Pisa, Italy). Funding source had no such involvement in study design, in the collection, analysis, interpretation of data, in the writing of the report; and in the decision to submit the paper for publication.
Collapse
|
32
|
do Nascimento EB, Dierschnabel AL, de Macêdo Medeiros A, Suchecki D, Silva RH, Ribeiro AM. Memory impairment induced by different types of prolonged stress is dependent on the phase of the estrous cycle in female rats. Horm Behav 2019; 115:104563. [PMID: 31377100 DOI: 10.1016/j.yhbeh.2019.104563] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
A growing body of evidence demonstrates that estrogen and corticosterone (CORT) impact on cognition and emotion. On the one hand, ovarian hormones may have beneficial effects on several neurophysiological processes, including memory. On the other hand, chronic exposure to stressful conditions has negative effects on brain structures related to learning and memory. In the present study, we used the plus-maze discriminative avoidance task (PMDAT) to evaluate the influence of endogenous variations of sex hormones and exposure to different types of prolonged stressors on learning, memory, anxiety-like behavior and locomotion. Female Wistar rats were submitted to seven consecutive days of restraint stress (4 h/day), overcrowding (18 h/day) or social isolation (18 h/day) and tested in different phases of the estrous cycle. The main results showed that: (1) neither stress conditions nor estrous cycle modified PMDAT acquisition; (2) restraint stress and social isolation induced memory impairments; (3) this impairment was observed particularly in females in metestrus/diestrus; (4) stressed females in estrus displayed less risk assessment behavior, suggesting reduced anxiety-like behavior; (5) restraint stress and social isolation, but not overcrowding, elevated corticosterone levels. Taken together, our findings suggest that the phase of the estrous cycle is an important modulatory factor of the cognitive processing disrupted by stress in female rats. Negative effects were observed in metestrus/diestrus, indicating that the peak of sex hormones may protect females against stress-induced memory impairment.
Collapse
Affiliation(s)
- Ezequiel Batista do Nascimento
- Health Science Center, Universidade Federal do Sul da Bahia, Teixeira de Freitas, BA, Brazil; Memory Studies Laboratory, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Aline Lima Dierschnabel
- Memory Studies Laboratory, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - André de Macêdo Medeiros
- Laboratory of Behavioral Neuroscience, Department of Pharmacology, Universidade Federal de São Paulo, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, SP, Brazil
| | - Regina Helena Silva
- Memory Studies Laboratory, Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Alessandra Mussi Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
33
|
Nip E, Adcock A, Nazal B, MacLellan A, Niel L, Choleris E, Levison L, Mason G. Why are enriched mice nice? Investigating how environmental enrichment reduces agonism in female C57BL/6, DBA/2, and BALB/c mice. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Gądek-Michalska A, Tadeusz J, Bugajski A, Bugajski J. Chronic Isolation Stress Affects Subsequent Crowding Stress-Induced Brain Nitric Oxide Synthase (NOS) Isoforms and Hypothalamic-Pituitary-Adrenal (HPA) Axis Responses. Neurotox Res 2019; 36:523-539. [PMID: 31209786 PMCID: PMC6745034 DOI: 10.1007/s12640-019-00067-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
The nitric oxide (NO) pathway in the brain is involved in response to psychosocial stressors. The aim of this study was to elucidate the role of nNOS and iNOS in the prefrontal cortex (PFC), hippocampus (HIP), and hypothalamus (HYPO) during social isolation stress (IS), social crowding stress (CS), and a combined IS + CS. In the PFC, 3 days of CS increased iNOS but not nNOS protein level. In the HIP and HYPO, the levels of nNOS and iNOS significantly increased after 3 days of CS. In the PFC, IS alone (11 days) enhanced iNOS protein level following 3 days of CS and increased nNOS level in the HIP and HYPO after 14 days of CS. By contrast, in the HIP, IS abolished the subsequent CS-induced increase in nNOS in the HIP and strongly elevated iNOS level after 7 days of CS. In the HYPO, prior IS inhibited nNOS protein level induced by subsequent CS for 3 days, but increased nNOS protein level after longer exposure times to CS. Isolation stress strongly upregulated plasma interleukin-1β (IL-1β) and adrenocorticotropic hormone (ACTH) levels while corticosterone (CORT) level declined. We show that the modulatory action of the NO pathway and ACTH/CORT adaptation to chronic social isolation stress is dependent on the brain structure and nature and duration of the stressor. Our results indicate that isolation is a robust natural stressor in social animals; it enhances the NO pathway in the PFC and abolishes subsequent social CS-induced NOS responses in the HIP and HYPO.
Collapse
Affiliation(s)
- Anna Gądek-Michalska
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland.
| | - Joanna Tadeusz
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland
| | - Andrzej Bugajski
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18 Street, 31-121, Kraków, Poland
| | - Jan Bugajski
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland
| |
Collapse
|
35
|
Reshetnikov VV, Ryabushkina YA, Bondar NP. Impact of mothers’ experience and early‐life stress on aggression and cognition in adult male mice. Dev Psychobiol 2019; 62:36-49. [DOI: 10.1002/dev.21887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Vasiliy V. Reshetnikov
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
| | - Yulia A. Ryabushkina
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk State University Novosibirsk Russia
| | - Natalia P. Bondar
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk State University Novosibirsk Russia
| |
Collapse
|
36
|
Sarode RM, Das A, Verma AK, Singh P, Saini M, Bhardwaj Y, Sharma AK. Partial replacement of dietary buffalo meat on the bone with chicken carcass improves serum antioxidant profile of zoo-housed Indian leopards (Panthera pardus fusca). Zoo Biol 2019; 38:292-304. [PMID: 30955226 DOI: 10.1002/zoo.21485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/01/2019] [Accepted: 03/20/2019] [Indexed: 11/09/2022]
Abstract
This experiment was conducted to study the effect of gradual replacement of dietary buffalo meat on the bone (BMB) with chicken carcass (CC) on nutrient utilization, serum cortisol, and total serum antioxidant profile of zoo-housed Indian leopard. Twelve adult leopards were randomly distributed into a replicated Latin square design comprising three treatments, three periods, four animals, and three sequences. Leopards in group T1 were fed normal zoo diet of BMB. On the basis of dry matter, 10% and 20% of BMB was replaced with CC in groups T2 and T3 , respectively. Each experimental period comprised 21 days. During each period, a digestion trial of 4-day collection period was conducted after an adaptation period of 17 days. On Day 21 of each experimental period, blood was collected from all the animals by puncturing the ventral coccygial vein. Intake and apparent digestibility of major nutrients were similar among the groups. Replacement of 20% BMB with addition of CC increased (p < 0.001) the calculated supply of I, niacin, and vitamin A. Carotenoid intake increased (p < 0.01) with increased level of CC in the diet. Serum concentration of cortisol decreased (p < 0.01) whereas serum concentration of total carotenoids increased (p < 0.001) with increased level of CC in the diet. Serum concentration of antioxidant enzymes increased (p < 0.001) with increased level of CC in the diet. It was concluded that replacement of 20% of BMB with CC increased antioxidant profile. This may reduce oxidative stress in zoo-housed Indian leopards without any adverse effect on nutrient utilization.
Collapse
Affiliation(s)
- Roshan M Sarode
- Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Asit Das
- Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Ashok K Verma
- Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Putan Singh
- Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Mohini Saini
- Animal Biochemistry Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Anil K Sharma
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
37
|
Pallé A, Zorzo C, Luskey VE, McGreevy KR, Fernández S, Trejo JL. Social dominance differentially alters gene expression in the medial prefrontal cortex without affecting adult hippocampal neurogenesis or stress and anxiety-like behavior. FASEB J 2019; 33:6995-7008. [PMID: 30857420 DOI: 10.1096/fj.201801600r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Social hierarchies are crucial for a group's survival and can influence the way an individual behaves and relates to a given social context. The study of social rank has been classically based on ethological and observational paradigms, but it recently has taken advantage of the use of other approaches, such as the tube test that measures territorial dominance without the display of in situ aggression and is executable in group-living animals. However, little is known about how previous basal individual differences affect the development of dominance hierarchy measured in the tube test. We have analyzed in male mice body weight, locomotion, anxiety, and serum corticosterone both before and after the tube test, as well as adult hippocampal neurogenesis and transcriptome in the prefrontal cortex after the hierarchy had been established. We found differential gene expression between dominants and subordinates but no association between the other parameters and social status, neither pre- nor posttest. Our findings reveal that social rank in mice is stable along time and is not related to basal differences in stress, mood, or physical features. Lastly, real-time quantitative PCR analysis confirmed differential expression of vomeronasal and olfactory receptors in the cerebral cortex between dominant and subordinate individuals, suggesting that differential brain gene expression in the medial prefrontal cortex could potentially be used as a biomarker of social dominance.-Pallé, A., Zorzo, C., Luskey, V. E., McGreevy, K. R., Fernández, S., Trejo, J. L. Social dominance differentially alters gene expression in the medial prefrontal cortex without affecting adult hippocampal neurogenesis or stress and anxiety-like behavior.
Collapse
Affiliation(s)
- Anna Pallé
- Department of Translational Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; and
| | - Candela Zorzo
- Department of Translational Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; and
| | - Valerie E Luskey
- Department of Translational Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; and
| | - Kerry R McGreevy
- Department of Translational Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; and
| | - Silvia Fernández
- Molecular and Cellular Biology Unit, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Trejo
- Department of Translational Neuroscience, Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; and
| |
Collapse
|
38
|
Ghosal S, Sandi C, van der Kooij MA. Neuropharmacology of the mesolimbic system and associated circuits on social hierarchies. Neuropharmacology 2019; 159:107498. [PMID: 30660627 DOI: 10.1016/j.neuropharm.2019.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Most socially living species are organized hierarchically, primarily based on individual differences in social dominance. Dominant individuals typically gain privileged access to important resources, such as food, mating partners and territories, whereas submissive conspecifics are often devoid of such benefits. The benefits associated with a high social status provide a strong incentive to become dominant. Importantly, motivational- and reward-related processes are regulated, to a large extent, by the mesolimbic system. Consequently, several studies point to a key role for the mesolimbic system in social hierarchy formation. This review summarizes the growing body of literature that implicates the mesolimbic system, and associated neural circuits, on social hierarchies. In particular, we discuss the neurochemical and pharmacological studies that have highlighted the contributions of the mesolimbic system and associated circuits including dopamine signaling through the D1 or D2 receptors, GABAergic neurotransmission, the androgen receptor system, and mitochondria and bioenergetics. Given that low social status has been linked to the emergence of anxiety- and depressive-like disorders, a greater understanding of the neurochemistry underlying social dominance could be of tremendous benefit for the development of pharmacological treatments to dysfunctions in social behaviors. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- S Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015, Lausanne, Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015, Lausanne, Switzerland.
| | - M A van der Kooij
- Translational Psychiatry, Department of Psychiatry, Psychotherapy and Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; German Resilience Center, University Medical Center, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| |
Collapse
|
39
|
Goñi-Balentziaga O, Perez-Tejada J, Renteria-Dominguez A, Lebeña A, Labaka A. Social instability in female rodents as a model of stress related disorders: A systematic review. Physiol Behav 2018; 196:190-199. [DOI: 10.1016/j.physbeh.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 01/29/2023]
|
40
|
Preis A, Samuni L, Mielke A, Deschner T, Crockford C, Wittig RM. Urinary oxytocin levels in relation to post-conflict affiliations in wild male chimpanzees (Pan troglodytes verus). Horm Behav 2018; 105:28-40. [PMID: 30031684 DOI: 10.1016/j.yhbeh.2018.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023]
Abstract
Many animals living in social groups have evolved behaviors to resolve conflicts between group members, behaviors thought crucial for maintaining stable group life. Several hypotheses, based mainly on observational data, aim to explain how post-conflict (PC) affiliations, such as reconciliation and consolation, resolve conflicts by restoring relationships and/or alleviating anxiety. To examine a potential endocrinological mechanism of PC affiliations, we used an experimental-like procedure to investigate whether the oxytocinergic system is activated during naturally observed reconciliations, receiving bystander PC affiliations and aggressions not followed by PC affiliations in wild male chimpanzees. We compared urinary oxytocin (uOT) levels after reconciliations, receiving bystander PC affiliations or aggressions without affiliations with two control conditions: affiliations without previous aggression and after time periods without social interactions. We furthermore tested the 'valuable relationship' hypothesis of reconciliation, as well as the influence of relationship quality between individuals engaged in each of the three behavioral conditions involving aggression on uOT levels. We found that the probability to reconcile a conflict increased with increasing relationship quality between opponents, thus our results support the 'valuable relationship' hypothesis. However, relationship quality did not influence uOT levels, while behavioral condition had a significant effect on uOT levels. uOT levels after reconciliations, receiving bystander PC affiliations and affiliations not related to conflicts were higher than after aggressions alone and time periods without social interactions. Overall, our results indicate that the oxytocinergic system is activated during affiliative interactions, whether occurring as reconciliation, bystander PC affiliation or affiliation alone. We conclude that the oxytocinergic system, in addition to building and maintaining social relationships, also takes part in repairing them.
Collapse
Affiliation(s)
- Anna Preis
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire.
| | - L Samuni
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - A Mielke
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - T Deschner
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany
| | - C Crockford
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - R M Wittig
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire.
| |
Collapse
|
41
|
Larrieu T, Sandi C. Stress-Induced Depression: Is Social Rank a Predictive Risk Factor? Bioessays 2018; 40:e1800012. [PMID: 29869396 DOI: 10.1002/bies.201800012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/27/2018] [Indexed: 12/17/2022]
Abstract
An intriguing question in the field of stress is what makes an individual more likely to be susceptible or resilient to stress-induced depression. Predisposition to stress susceptibility is believed to be influenced by genetic factors and early adversity. However, beyond genetics and life experiences, recent evidence has highlighted social rank as a key determinant of susceptibility to stress, underscoring dominant individuals as the vulnerable ones. This evidence is in conflict with epidemiological, clinical, and animal work pointing at a link between social subordination and depression. Here, we review and analyze rodent protocols addressing the relevance of social rank to predict vulnerability to chronic social stress. We also discuss whether a specific social status (i.e., dominance or subordination) is the appropriate predictor of vulnerability to develop stress-induced depression or rather, the loss of social rank and resources.
Collapse
Affiliation(s)
- Thomas Larrieu
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Carmen Sandi
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
42
|
Ibáñez A, García AM, Esteves S, Yoris A, Muñoz E, Reynaldo L, Pietto ML, Adolfi F, Manes F. Social neuroscience: undoing the schism between neurology and psychiatry. Soc Neurosci 2018; 13:1-39. [PMID: 27707008 PMCID: PMC11177280 DOI: 10.1080/17470919.2016.1245214] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple disorders once jointly conceived as "nervous diseases" became segregated by the distinct institutional traditions forged in neurology and psychiatry. As a result, each field specialized in the study and treatment of a subset of such conditions. Here we propose new avenues for interdisciplinary interaction through a triangulation of both fields with social neuroscience. To this end, we review evidence from five relevant domains (facial emotion recognition, empathy, theory of mind, moral cognition, and social context assessment), highlighting their common disturbances across neurological and psychiatric conditions and discussing their multiple pathophysiological mechanisms. Our proposal is anchored in multidimensional evidence, including behavioral, neurocognitive, and genetic findings. From a clinical perspective, this work paves the way for dimensional and transdiagnostic approaches, new pharmacological treatments, and educational innovations rooted in a combined neuropsychiatric training. Research-wise, it fosters new models of the social brain and a novel platform to explore the interplay of cognitive and social functions. Finally, we identify new challenges for this synergistic framework.
Collapse
Affiliation(s)
- Agustín Ibáñez
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- c Center for Social and Cognitive Neuroscience (CSCN), School of Psychology , Universidad Adolfo Ibáñez , Santiago de Chile , Chile
- d Universidad Autónoma del Caribe , Barranquilla , Colombia
- e Centre of Excellence in Cognition and its Disorders , Australian Research Council (ACR) , Sydney , Australia
| | - Adolfo M García
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- f Faculty of Elementary and Special Education (FEEyE) , National University of Cuyo (UNCuyo) , Mendoza , Argentina
| | - Sol Esteves
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | - Adrián Yoris
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
| | - Edinson Muñoz
- g Departamento de Lingüística y Literatura, Facultad de Humanidades , Universidad de Santiago de Chile , Santiago , Chile
| | - Lucila Reynaldo
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | | | - Federico Adolfi
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | - Facundo Manes
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- e Centre of Excellence in Cognition and its Disorders , Australian Research Council (ACR) , Sydney , Australia
- i Department of Experimental Psychology , University of South Carolina , Columbia , SC , USA
| |
Collapse
|
43
|
Dadomo H, Gioiosa L, Cigalotti J, Ceresini G, Parmigiani S, Palanza P. What is stressful for females? Differential effects of unpredictable environmental or social stress in CD1 female mice. Horm Behav 2018; 98:22-32. [PMID: 29187314 DOI: 10.1016/j.yhbeh.2017.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Stressful life events are a major factor in the etiology of several diseases, such as cardiovascular, inflammatory and psychiatric disorders (i.e., depression and anxiety), with the two sexes greatly differing in vulnerability. In humans and other animals, physiological and behavioral responses to stress are strongly dependent on gender, and conditions that are stressful for males are not necessarily stressful for females. Hence the need of an animal model of social chronic stress specifically designed for females. In the present study we aimed to compare the effects of two different chronic stress procedures in female mice, by investigating the impact of 4weeks of nonsocial unpredictable, physical stress by the Chronic Mild Stress paradigm (CMS; Exp.1) or of Social Instability Stress (SIS; Exp.2) on physiological, endocrine and behavioral parameters in adult female mice. CMS had a pronounced effect on females' response to novelty (i.e., either novel environment or novel social stimulus), body weight growth and hormonal profile. Conversely, 4weeks of social instability did not alter females' response to novelty nor hormonal levels but induced anhedonia. Our findings thus showed that female mice were more sensitive to nonsocial stress due to unpredictable physical environment than to social instability stressors. Neither of these stress paradigms, however, induced a consistent behavioral and physiological stress response in female mice comparable to that induced by chronic stress procedures in male mice, thus confirming the difficulties of developing a robust and validated model of chronic psychosocial stress in female mice.
Collapse
Affiliation(s)
- Harold Dadomo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Gioiosa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Jenny Cigalotti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Graziano Ceresini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Parmigiani
- Department of Chemistry, Life Sciences and Environmental Sustainaibility, University of Parma, Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
44
|
Kappel S, Hawkins P, Mendl MT. To Group or Not to Group? Good Practice for Housing Male Laboratory Mice. Animals (Basel) 2017; 7:ani7120088. [PMID: 29186765 PMCID: PMC5742782 DOI: 10.3390/ani7120088] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Wild mice live in territories inhabited by one adult male, several females, and their offspring. This cannot be replicated in the laboratory, so male mice are usually housed in single-sex groups or individually. However, there can be serious animal welfare problems associated with both these approaches, such as lack of social contact when housed individually or aggression between males when kept in groups. Group housing is widely recommended to give male laboratory mice the opportunity to behave as ‘social animals’, but social stress can be detrimental to the welfare of these animals, even without injurious fighting. All of this can also affect the quality of the science, giving rise to ethical concerns. This review discusses whether it is in the best welfare interests of male mice to be housed in groups, or alone. We conclude that it is not possible to give general recommendations for good practice for housing male laboratory mice, as responses to single- and group-housing can be highly context-dependent. The welfare implications of housing protocols should be researched and considered in each case. Abstract It is widely recommended to group-house male laboratory mice because they are ‘social animals’, but male mice do not naturally share territories and aggression can be a serious welfare problem. Even without aggression, not all animals within a group will be in a state of positive welfare. Rather, many male mice may be negatively affected by the stress of repeated social defeat and subordination, raising concerns about welfare and also research validity. However, individual housing may not be an appropriate solution, given the welfare implications associated with no social contact. An essential question is whether it is in the best welfare interests of male mice to be group- or singly housed. This review explores the likely impacts—positive and negative—of both housing conditions, presents results of a survey of current practice and awareness of mouse behavior, and includes recommendations for good practice and future research. We conclude that whether group- or single-housing is better (or less worse) in any situation is highly context-dependent according to several factors including strain, age, social position, life experiences, and housing and husbandry protocols. It is important to recognise this and evaluate what is preferable from animal welfare and ethical perspectives in each case.
Collapse
Affiliation(s)
- Sarah Kappel
- Bristol Veterinary School, Bristol University, Langford House, Langford BS40 5DU, UK;
- Correspondence: (S.K.); (P.H.); Tel.: +44-1403-793-231 (P.H.)
| | - Penny Hawkins
- Research Animals Department, RSPCA, Wilberforce Way, Southwater, West Sussex RH13 9RS, UK
- Correspondence: (S.K.); (P.H.); Tel.: +44-1403-793-231 (P.H.)
| | - Michael T. Mendl
- Bristol Veterinary School, Bristol University, Langford House, Langford BS40 5DU, UK;
| |
Collapse
|
45
|
Socially induced plasticity in sensorimotor gating in the African cichlid fish Astatotilapia burtoni. Behav Brain Res 2017; 332:32-39. [DOI: 10.1016/j.bbr.2017.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
|
46
|
Hierarchical Status Predicts Behavioral Vulnerability and Nucleus Accumbens Metabolic Profile Following Chronic Social Defeat Stress. Curr Biol 2017; 27:2202-2210.e4. [PMID: 28712571 DOI: 10.1016/j.cub.2017.06.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/09/2017] [Accepted: 06/09/2017] [Indexed: 11/21/2022]
Abstract
Extensive data highlight the existence of major differences in individuals' susceptibility to stress [1-4]. While genetic factors [5, 6] and exposure to early life stress [7, 8] are key components for such neurobehavioral diversity, intriguing observations revealed individual differences in response to stress in inbred mice [9-12]. This raised the possibility that other factors might be critical in stress vulnerability. A key challenge in the field is to identify non-invasively risk factors for vulnerability to stress. Here, we investigated whether behavioral factors, emerging from preexisting dominance hierarchies, could predict vulnerability to chronic stress [9, 13-16]. We applied a chronic social defeat stress (CSDS) model of depression in C57BL/6J mice to investigate the predictive power of hierarchical status to pinpoint which individuals will exhibit susceptibility to CSDS. Given that the high social status of dominant mice would be the one particularly challenged by CSDS, we predicted and found that dominant individuals were the ones showing a strong susceptibility profile as indicated by strong social avoidance following CSDS, while subordinate mice were not affected. Data from 1H-NMR spectroscopy revealed that the metabolic profile in the nucleus accumbens (NAc) relates to social status and vulnerability to stress. Under basal conditions, subordinates show lower levels of energy-related metabolites compared to dominants. In subordinates, but not dominants, levels of these metabolites were increased after exposure to CSDS. To the best of our knowledge, this is the first study that identifies non-invasively the origin of behavioral risk factors predictive of stress-induced depression-like behaviors associated with metabolic changes.
Collapse
|
47
|
Han QQ, Yang L, Huang HJ, Wang YL, Yu R, Wang J, Pilot A, Wu GC, Liu Q, Yu J. Differential GR Expression and Translocation in the Hippocampus Mediates Susceptibility vs. Resilience to Chronic Social Defeat Stress. Front Neurosci 2017; 11:287. [PMID: 28588443 PMCID: PMC5440566 DOI: 10.3389/fnins.2017.00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
While social stress exposure is a common risk factor for affective disorders, most individuals exposed to it can maintain normal physical and psychological functioning. However, factors that determine susceptibility vs. resilience to social stress remain unclear. Here, the resident-intruder model of social defeat was used as a social stressor in male C57BL/6J mice to investigate the difference between susceptibility and resilience. As depression is often characterized by hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, we conducted the present study to further investigate the individual differences in the HPA axis response and glucocorticoid receptor (GR) protein expression and translocation between susceptible mice and resilient mice. We found that hypercortisolemia, induced by social defeat stress occurred in susceptible mice, but not in resilient mice. Moreover, susceptible mice exhibited significantly less GR protein expression and nuclear translocation in the hippocampus than resilient mice. Treatment with escitalopram could decrease the serum corticosterone (CORT), increase GR protein expression as well as nuclear translocation in the hippocampus and ultimately reverse social withdrawal behaviors in susceptible mice. These results indicate that the up-regulation of GR and the enhancement of GR nuclear translocation in the hippocampus play an important role in resilience to chronic social defeat stress.
Collapse
Affiliation(s)
- Qiu-Qin Han
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Liu Yang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Hui-Jie Huang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Ya-Lin Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Rui Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Jing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Adam Pilot
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of ShanghaiShanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|
48
|
Razzoli M, Pearson C, Crow S, Bartolomucci A. Stress, overeating, and obesity: Insights from human studies and preclinical models. Neurosci Biobehav Rev 2017; 76:154-162. [PMID: 28292531 PMCID: PMC5403578 DOI: 10.1016/j.neubiorev.2017.01.026] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/06/2017] [Accepted: 01/21/2017] [Indexed: 12/22/2022]
Abstract
Eating disorders and obesity have become predominant in human society. Their association to modern lifestyle, encompassing calorie-rich diets, psychological stress, and comorbidity with major diseases are well documented. Unfortunately the biological basis remains elusive and the pharmacological treatment inadequate, in part due to the limited availability of valid animal models. Human research on binge eating disorder (BED) proves a strong link between stress exposure and bingeing: state-levels of stress and negative affect are linked to binge eating in individuals with BED both in laboratory settings and the natural environment. Similarly, classical animal models of BED reveal an association between acute exposure to stressors and binging but they are often associated with unchanged or decreased body weight, thus reflecting a negative energy balance, which is uncommon in humans where most commonly BED is associated with excessive or unstable body weight gain. Recent mouse models of subordination stress induce spontaneous binging and hyperphagia, altogether more closely mimicking the behavioral and metabolic features of human BED. Therefore the translational relevance of subordination stress models could facilitate the identification of the neurobiological basis of BED and obesity-associated disease and inform on the development of innovative therapies.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Carolyn Pearson
- Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454, USA
| | - Scott Crow
- Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue, Minneapolis, MN 55454, USA; The Emily Program, 2265 Como Avenue, St. Paul, MN 55108, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
49
|
Palanza P, Parmigiani S. How does sex matter? Behavior, stress and animal models of neurobehavioral disorders. Neurosci Biobehav Rev 2017; 76:134-143. [DOI: 10.1016/j.neubiorev.2017.01.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/27/2017] [Indexed: 12/25/2022]
|
50
|
Liu YY, Zhou XY, Yang LN, Wang HY, Zhang YQ, Pu JC, Liu LX, Gui SW, Zeng L, Chen JJ, Zhou CJ, Xie P. Social defeat stress causes depression-like behavior with metabolite changes in the prefrontal cortex of rats. PLoS One 2017; 12:e0176725. [PMID: 28453574 PMCID: PMC5409051 DOI: 10.1371/journal.pone.0176725] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/15/2017] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder is a serious mental disorder with high morbidity and mortality. The role of social stress in the development of depression remains unclear. Here, we used the social defeat stress paradigm to induce depression-like behavior in rats, then evaluated the behavior of the rats and measured metabolic changes in the prefrontal cortex using gas chromatography-mass spectrometry. Within the first week after the social defeat procedure, the sucrose preference test (SPT), open field test (OFT), elevated plus maze (EPM) and forced swim test (FST) were conducted to examine the depressive-like and anxiety-like behaviors. For our metabolite analysis, multivariate statistics were applied to observe the distribution of all samples and to differentiate the socially defeated group from the control group. Ingenuity pathway analysis was used to find the potential relationships among the differential metabolites. In the OFT and EPM, there were no significant differences between the two experimental groups. In the SPT and FST, socially defeated rats showed less sucrose intake and longer immobility time compared with control rats. Metabolic profiling identified 25 significant variables with good predictability. Ingenuity pathways analysis revealed that “Hereditary Disorder, Neurological Disease, Lipid Metabolism” was the most significantly altered network. Stress-induced alterations of low molecular weight metabolites were observed in the prefrontal cortex of rats. Particularly, lipid metabolism, amino acid metabolism, and energy metabolism were significantly perturbed. The results of this study suggest that repeated social defeat can lead to metabolic changes and depression-like behavior in rats.
Collapse
Affiliation(s)
- Yi-Yun Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Xin-Yu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Li-Ning Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yu-Qing Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Jun-Cai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Lan-Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Si-Wen Gui
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Jian-Jun Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Chan-Juan Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|