1
|
Shiroyama T, Maeda M, Tanii H, Motomura E, Okada M. Distinguished Frontal White Matter Abnormalities Between Psychotic and Nonpsychotic Bipolar Disorders in a Pilot Study. Brain Sci 2025; 15:108. [PMID: 40002441 PMCID: PMC11853555 DOI: 10.3390/brainsci15020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Recent studies indicate extensive shared white matter (WM) abnormalities between bipolar disorder (BD) and schizophrenia (SZ). However, the heterogeneity of WM in BD in terms of the presence of psychosis remains a critical issue for exploring the boundaries between BD and SZ. Previous studies comparing WM microstructures in psychotic and nonpsychotic BDs (PBD and NPBD) have resulted in limited findings, probably due to subtle changes, emphasizing the need for further investigation. METHODS Diffusion tensor imaging measures were obtained from 8 individuals with PBD, 8 with NPBD, and 22 healthy controls (HC), matched for age, gender, handedness, and educational years. Group comparisons were conducted using tract-based spatial statistics (TBSS). The most significant voxels showing differences between PBD and HC in the TBSS analyses were defined as a TBSS-ROI and subsequently analyzed. RESULTS Increased radial diffusivity (RD) in PBD compared to NPBD (p < 0.006; d = 1.706) was observed in TBSS-ROI, distributed in the confined regions of some WM tracts, including the body of the corpus callosum (bCC), the left genu of the CC (gCC), and the anterior and superior corona radiata (ACR and SCR). Additionally, NPBD exhibited significant age-associated RD increases (R2 = 0.822, p < 0.001), whereas the greater RD observed in PBD compared to NPBD remained consistent across middle age. CONCLUSIONS Preliminary findings from this small sample suggest severe frontal WM disconnection in the anterior interhemispheric communication, left fronto-limbic circuits, and cortico-striatal-thalamic loop in PBD compared to NPBD. While these results require replication and validation in larger and controlled samples, they provide insights into the pathophysiology of PBD, which is diagnostically located at the boundary between BD and SZ.
Collapse
Affiliation(s)
- Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (E.M.); (M.O.)
| | - Masayuki Maeda
- Department of Neuroradiology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan;
| | - Hisashi Tanii
- Center for Physical and Mental Health, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan;
- Department of Health Promotion and Disease Prevention, Graduate School of Medicine, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (E.M.); (M.O.)
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (E.M.); (M.O.)
| |
Collapse
|
2
|
Rychagov N, Del Re EC, Zeng V, Oykhman E, Lizano P, McDowell J, Yassin W, Clementz BA, Gershon E, Pearlson G, Sweeney JA, Tamminga CA, Keshavan MS. Gyrification across psychotic disorders: A bipolar-schizophrenia network of intermediate phenotypes study. Schizophr Res 2024; 271:169-178. [PMID: 39032429 PMCID: PMC11384321 DOI: 10.1016/j.schres.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The profiles of cortical gyrification across schizophrenia, bipolar I disorder, and schizoaffective disorder have been studied to a limited extent, report discordant findings, and are rarely compared in the same study. Here we assess gyrification in a large dataset of psychotic disorder probands, categorized according to the DSM-IV. Furthermore, we explore gyrification changes with age across healthy controls and probands. METHODS Participants were recruited within the Bipolar-Schizophrenia Network of Intermediate Phenotypes study and received T1-MPRAGE and clinical assessment. Gyrification was measured using FreeSurfer 7.1.0. Pairwise t-tests were conducted in R, and age-related gyrification changes were analyzed in MATLAB. P values <0.05 after false discovery rate correction were considered significant. RESULTS Significant hypogyria in schizophrenia, bipolar disorder, and schizoaffective disorder probands compared to controls was found, with a significant difference bilaterally in the frontal lobe between schizophrenia and bipolar disorder probands. Verbal memory was associated with gyrification in the right frontal and right cingulate cortex in schizophrenia. Age-fitted gyrification curves differed significantly among psychotic disorders and controls. CONCLUSIONS Findings indicate hypogyria in DSM-IV psychotic disorders compared to controls and suggest differential patterns of gyrification across the different diagnoses. The study extends age related models of gyrification to psychotic disorder probands and supports that age-related differences in gyrification may differ across diagnoses. Fitted gyrification curves among probands categorized by DSM-IV significantly deviate from controls, with the model capturing early hypergyria and later hypogyria in schizophrenia compared to controls; this suggests unique disease and age-related changes in gyrification across psychotic disorders.
Collapse
Affiliation(s)
- Nicole Rychagov
- Harvard University, United States of America; Beth Israel Deaconess Medical Center, United States of America
| | - Elisabetta C Del Re
- Harvard University, United States of America; Beth Israel Deaconess Medical Center, United States of America; Harvard Medical School, United States of America; VA Boston HealthCare System, United States of America.
| | - Victor Zeng
- Beth Israel Deaconess Medical Center, United States of America
| | - Efim Oykhman
- Beth Israel Deaconess Medical Center, United States of America
| | - Paulo Lizano
- Harvard University, United States of America; Beth Israel Deaconess Medical Center, United States of America; Harvard Medical School, United States of America
| | | | - Walid Yassin
- Harvard University, United States of America; Beth Israel Deaconess Medical Center, United States of America; Harvard Medical School, United States of America
| | | | | | | | | | - Carol A Tamminga
- University of Texas Southwestern Medical Center, United States of America
| | - Matcheri S Keshavan
- Harvard University, United States of America; Beth Israel Deaconess Medical Center, United States of America; Harvard Medical School, United States of America
| |
Collapse
|
3
|
Chrobak AA, Siuda-Krzywicka K, Soltys Z, Bielak S, Nowaczek D, Żyrkowska A, Fafrowicz M, Marek T, Pęcherzewska E, Kużdżał J, Starowicz-Filip A, Gorostowicz A, Dudek D, Siwek M. When practice does not make a perfect - paradoxical learning curve in schizophrenia and bipolar disorder revealed by different serial reaction time task variants. Front Psychiatry 2023; 14:1238473. [PMID: 37766926 PMCID: PMC10521726 DOI: 10.3389/fpsyt.2023.1238473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Our previous studies identified a paradoxical implicit motor learning curve in schizophrenia (SZ) and bipolar disorder (BD) patients. This study aimed to verify whether those previously observed deficits may be captured by a new version of the ambidextrous serial reaction time task (SRTT), prepared for use in the MRI. Methods This study involved 186 participants. A total of 97 participants (33 BD, 33 SZ, and 31 healthy controls, HCs) completed the original, unlimited time response variant of SRTT. A total of 90 individuals (30 BD, 30 SZ, and 30 HCs) underwent a newer, limited response time version of this procedure. Results There was no significant difference in terms of implicit motor learning indices between both limited and unlimited response time SRTT. Compared to HCs, SZ, and BD patients presented decreased indices of implicit motor learning. Both clinical groups showed a paradoxical learning pattern that differed significantly from the HCs. Moreover, in the SZ group, the pattern depended on the hand performing SRTT. Discussion The limited response time SRTT variant allowed us to replicate the findings of disrupted implicit motor learning in SZ and BD. The use of this paradigm in further neuroimaging studies may help to determine the neuronal underpinnings of this cognitive dysfunction in the abovementioned clinical groups.
Collapse
Affiliation(s)
| | | | - Zbigniew Soltys
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Sylwia Bielak
- Department of Adult, Child and Adolescent Psychiatry, University Hospital in Cracow, Kraków, Poland
| | | | - Aleksandra Żyrkowska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Doctoral School in the Social Sciences, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Tadeusz Marek
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Katowice, Poland
| | | | - Jan Kużdżał
- Malopolska Centre of Biotechnology, Kraków, Poland
| | - Anna Starowicz-Filip
- Medical Psychology Department, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
4
|
Bortoletto R, Piscitelli F, Candolo A, Bhattacharyya S, Balestrieri M, Colizzi M. Questioning the role of palmitoylethanolamide in psychosis: a systematic review of clinical and preclinical evidence. Front Psychiatry 2023; 14:1231710. [PMID: 37533892 PMCID: PMC10390736 DOI: 10.3389/fpsyt.2023.1231710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The endocannabinoid (eCB) system disruption has been suggested to underpin the development of psychosis, fueling the search for novel, better-tolerated antipsychotic agents that target the eCB system. Among these, palmitoylethanolamide (PEA), an N-acylethanolamine (AE) with neuroprotective, anti-inflammatory, and analgesic properties, has drawn attention for its antipsychotic potential. Methods This Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020-compliant systematic review aimed at reappraising all clinical and preclinical studies investigating the biobehavioral role of PEA in psychosis. Results Overall, 13 studies were eligible for data extraction (11 human, 2 animal). Observational studies investigating PEA tone in psychosis patients converged on the evidence for increased PEA plasma (6 human) and central nervous system (CNS; 1 human) levels, as a potential early compensatory response to illness and its severity, that seems to be lost in the longer-term (CNS; 1 human), opening to the possibility of exogenously supplementing it to sustain control of the disorder. Consistently, PEA oral supplementation reduced negative psychotic and manic symptoms among psychosis patients, with no serious adverse events (3 human). No PEA changes emerged in either preclinical psychosis model (2 animal) studied. Discussion Evidence supports PEA signaling as a potential psychosis biomarker, also indicating a therapeutic role of its supplementation in the disorder. Systematic review registration https://doi.org/10.17605/OSF.IO/AFMTK.
Collapse
Affiliation(s)
- Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Piscitelli
- Department of Chemical Sciences and Materials Technologies, Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
| | - Anna Candolo
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Atwood B, Yassin W, Chan SY, Hall MH. Subfield-specific longitudinal changes of hippocampal volumes in patients with early-stage bipolar disorder. Bipolar Disord 2023; 25:301-311. [PMID: 36855850 PMCID: PMC10330583 DOI: 10.1111/bdi.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND The hippocampus is a heterogeneous structure composed of biologically and functionally distinct subfields. Hippocampal aberrations are proposed to play a fundamental role in the etiology of psychotic symptoms. Bipolar disorder (BPD) has substantial overlap in symptomatology and genetic liability with schizophrenia (SZ), and reduced hippocampal volumes, particularly at the chronic illness stages, are documented in both disorders. Studies of hippocampal subfields in the early stage of BPD are limited and cross-sectional findings to date report no reduction in hippocampal volumes. To our knowledge, there have been no longitudinal studies of BPD evaluating hippocampal volumes in the early phase of illness. We investigated the longitudinal changes in hippocampal regions and subfields in BPD mainly and in early stage of psychosis (ESP) patients more broadly and compared them to those in controls (HC). METHODS Baseline clinical and structural MRI data were acquired from 88 BPD, from a total of 143 ESP patients, and 74 HCs. Of those, 66 participants (23 HC, 43 patients) completed a 12-month follow-up visit. The hippocampus regions and subfields were segmented using Freesurfer automated pipeline. RESULTS We found general baseline deficits in hippocampal volumes among BPD and ESP cohorts. Both cohorts displayed significant increases in the anterior hippocampal region and dentate gyrus compared with controls. Additionally, antipsychotic medications were positively correlated with the posterior region at baseline. CONCLUSION These findings highlight brain plasticity in BPD and in ESP patients providing evidence that deviations in hippocampal volumes are adaptive responses to atypical signaling rather than progressive degeneration.
Collapse
Affiliation(s)
- Bruce Atwood
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
| | - Walid Yassin
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Shi Yu Chan
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Mørch-Johnsen L, Jørgensen KN, Barth C, Nerland S, Bringslid IK, Wortinger LA, Andreou D, Melle I, Andreassen OA, Agartz I. Thalamic nuclei volumes in schizophrenia and bipolar spectrum disorders - Associations with diagnosis and clinical characteristics. Schizophr Res 2023; 256:26-35. [PMID: 37126979 DOI: 10.1016/j.schres.2023.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The thalamus is central to brain functions ranging from primary sensory processing to higher-order cognition. Structural deficits in thalamic association nuclei such as the pulvinar and mediodorsal nuclei have previously been reported in schizophrenia. However, the specificity with regards to clinical presentation, and whether or not bipolar disorder (BD) is associated with similar alterations is unclear. METHODS We investigated thalamic nuclei volumes in 334 patients with schizophrenia spectrum disorders (SSD) (median age 29 years, 59 % male), 322 patients with BD (30 years, 40 % male), and 826 healthy controls (HC) (34 years, 54 % male). Volumes of 25 thalamic nuclei were extracted from T1-weighted magnetic resonance imaging using an automated Bayesian segmentation method and compared between groups. Furthermore, we explored associations with clinical characteristics across diagnostic groups, including psychotic and mood symptoms and medication use, as well as diagnostic subtype in BD. RESULTS Significantly smaller volumes were found in the mediodorsal, pulvinar, and lateral and medial geniculate thalamic nuclei in SSD. Similarly, smaller volumes were found in BD in the same four regions, but mediodorsal nucleus volume alterations were limited to its lateral part and pulvinar alterations to its anterior region. Smaller volumes in BD compared to HC were seen only in BD type I, not BD type II. Across diagnoses, having more negative symptoms was associated with smaller pulvinar volumes. CONCLUSIONS Structural alterations were found in both SSD and BD, mainly in the thalamic association nuclei. Structural deficits in the pulvinar may be of relevance for negative symptoms.
Collapse
Affiliation(s)
- Lynn Mørch-Johnsen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway.
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ida Kippersund Bringslid
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laura A Wortinger
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Magnani L, Carmisciano L, dell'Orletta F, Bettinardi O, Chiesa S, Imbesi M, Limonta G, Montagna E, Turone I, Martinasso D, Aguglia A, Serafini G, Amore M, Amerio A, Costanza A, Sibilla F, Calcagno P, Patti S, Molino G, Escelsior A, Trabucco A, Marzano L, Brunato D, Ravelli AA, Cappucciati M, Fiocchi R, Guerzoni G, Maravita D, Macchetti F, Mori E, Paglia CA, Roscigno F, Saginario A. Linguistic profile automated characterisation in pluripotential clinical high-risk mental state (CHARMS) conditions: methodology of a multicentre observational study. BMJ Open 2023; 13:e066642. [PMID: 36948562 PMCID: PMC10040055 DOI: 10.1136/bmjopen-2022-066642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
INTRODUCTION Language is usually considered the social vehicle of thought in intersubjective communications. However, the relationship between language and high-order cognition seems to evade this canonical and unidirectional description (ie, the notion of language as a simple means of thought communication). In recent years, clinical high at-risk mental state (CHARMS) criteria (evolved from the Ultra-High-Risk paradigm) and the introduction of the Clinical Staging system have been proposed to address the dynamicity of early psychopathology. At the same time, natural language processing (NLP) techniques have greatly evolved and have been successfully applied to investigate different neuropsychiatric conditions. The combination of at-risk mental state paradigm, clinical staging system and automated NLP methods, the latter applied on spoken language transcripts, could represent a useful and convenient approach to the problem of early psychopathological distress within a transdiagnostic risk paradigm. METHODS AND ANALYSIS Help-seeking young people presenting psychological distress (CHARMS+/- and Clinical Stage 1a or 1b; target sample size for both groups n=90) will be assessed through several psychometric tools and multiple speech analyses during an observational period of 1-year, in the context of an Italian multicentric study. Subjects will be enrolled in different contexts: Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa-IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Mental Health Department-territorial mental services (ASL 3-Genoa), Genoa, Italy; and Mental Health Department-territorial mental services (AUSL-Piacenza), Piacenza, Italy. The conversion rate to full-blown psychopathology (CS 2) will be evaluated over 2 years of clinical observation, to further confirm the predictive and discriminative value of CHARMS criteria and to verify the possibility of enriching them with several linguistic features, derived from a fine-grained automated linguistic analysis of speech. ETHICS AND DISSEMINATION The methodology described in this study adheres to ethical principles as formulated in the Declaration of Helsinki and is compatible with International Conference on Harmonization (ICH)-good clinical practice. The research protocol was reviewed and approved by two different ethics committees (CER Liguria approval code: 591/2020-id.10993; Comitato Etico dell'Area Vasta Emilia Nord approval code: 2022/0071963). Participants will provide their written informed consent prior to study enrolment and parental consent will be needed in the case of participants aged less than 18 years old. Experimental results will be carefully shared through publication in peer-reviewed journals, to ensure proper data reproducibility. TRIAL REGISTRATION NUMBER DOI:10.17605/OSF.IO/BQZTN.
Collapse
Affiliation(s)
- Luca Magnani
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Luca Carmisciano
- Department of Health Sciences (DISSAL), Section of Biostatistics, University of Genoa, Genoa, Italy
| | - Felice dell'Orletta
- Italian Natural Language Processing Lab, Institute of Computational Linguistics "Antonio Zampolli", CNR di Pisa, Pisa, Italy
| | - Ornella Bettinardi
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Silvia Chiesa
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Massimiliano Imbesi
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Giuliano Limonta
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Elisa Montagna
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Ilaria Turone
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Dario Martinasso
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Andrea Aguglia
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Mario Amore
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Andrea Amerio
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Psychiatry, Service of Adult Psychiatry (SPA), University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Francesca Sibilla
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Pietro Calcagno
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Sara Patti
- Department of Mental Health and Pathological Addictions, Genoa Local Authority, Genoa, Liguria, Italy
| | - Gabriella Molino
- Department of Mental Health and Pathological Addictions, Genoa Local Authority, Genoa, Liguria, Italy
| | - Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Alice Trabucco
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Lisa Marzano
- Departement of Psychology, School of Science and Technology, Middlesex University, London, UK
| | - Dominique Brunato
- Italian Natural Language Processing Lab, Institute of Computational Linguistics "Antonio Zampolli", CNR di Pisa, Pisa, Italy
| | - Andrea Amelio Ravelli
- Italian Natural Language Processing Lab, Institute of Computational Linguistics "Antonio Zampolli", CNR di Pisa, Pisa, Italy
| | - Marco Cappucciati
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Roberta Fiocchi
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Gisella Guerzoni
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Davide Maravita
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Fabio Macchetti
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Elisa Mori
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Chiara Anna Paglia
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Federica Roscigno
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| | - Antonio Saginario
- Department of Mental Health and Pathological Addictions, Piacenza Local Authority, Piacenza, Italy
| |
Collapse
|
8
|
Chrobak AA, Soltys Z, Dudek D, Siwek M. Neurological and cerebellar soft signs in bipolar disorder: The role of staging, type and history of psychotic symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110673. [PMID: 36349610 DOI: 10.1016/j.pnpbp.2022.110673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
AIM Bipolar disorder (BD) patients show neurological abnormalities in form of neurological and cerebellar soft signs (NSS and CSS). NSS represents heterogeneous group of symptoms representing i.a. deficits of motor coordination, sequencing of complex motor acts and sensory integration. CSS were introduced as group of the neurological deficits of posture, gait, kinetic functions, eye movements and speech, associated more specifically to cerebellar abnormalities than NSS. Studies show significant effect size variability of those symptoms in BD group suggesting the existence of differing subpopulations. The aim of our study was to evaluate the effect of BD type, stage and the history of psychotic symptoms (HoPS) on the severity of CSS and NSS as none of the previous studies had verified the role of those categories. METHODS This study involved 181 participants: 116 euthymic BD patients (66 BD I, 50 BD II) and 65 healthy controls (HC). CSS was assessed with the International Cooperative Ataxia Rating Scale and NSS with Neurological Evaluation Scale. Patients were divided into early and late stage of the disorder according to Kapczinski's criteria. Rater was blind to patients' stage, type and HoPS. RESULTS Staging was related to vast majority of CSS and NSS scores. HoPS was related to oculomotor deficits. The effect of BD type was the least significant. Late stage BD showed more severe CSS and NSS than HC in every measure. There were no differences between early stage BD and HC, apart of posture and gait disturbances. Except of sensory integration scores, late stage BD showed higher CSS and NSS rates than early stage patients. CONCLUSION In this hitherto the largest study of neurological abnormalities in BD we have shown significant role of staging in CSS and NSS severity. Progression criteria based on inter-episode psychosocial functioning may stand as unrecognised factor responsible for variability observed in previous studies evaluating neurological abnormalities in BD. Our study suggests that in clinical practice NSS and CSS may be potentially used as easy-to-assess biological marker of BD staging. Observed severity of neurological impairments of BD patients may more likely correspond to the disease progression than to BD type and HoPS.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Jagiellonian University Medical College, Department of Adult Psychiatry, Kopernika St. 21a, 31-501 Cracow, Poland
| | - Zbigniew Soltys
- Jagiellonian University, Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Gronostajowa 9, 30-387 Cracow, Poland
| | - Dominika Dudek
- Jagiellonian University Medical College, Department of Adult Psychiatry, Kopernika St. 21a, 31-501 Cracow, Poland
| | - Marcin Siwek
- Jagiellonian University Medical College, Department of Affective Disorders, Kopernika St. 21a, 31-501 Cracow, Poland.
| |
Collapse
|
9
|
Sitarz R, Juchnowicz D, Karakuła K, Forma A, Baj J, Rog J, Karpiński R, Machrowska A, Karakuła-Juchnowicz H. Niacin Skin Flush Backs-From the Roots of the Test to Nowadays Hope. J Clin Med 2023; 12:1879. [PMID: 36902666 PMCID: PMC10003235 DOI: 10.3390/jcm12051879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The niacin skin flush test (NSFT) is a simple method used to assess the content of fatty acids in cell membranes and is a possible indicator of factors hidden behind various outcomes in patients. The purpose of this paper is to determine the potential usefulness of NSFT in mental disorder diagnostics along with the determination of factors that may affect its results. The authors reviewed articles from 1977 onwards, focusing on the history, variety of methodologies, influencing factors, and proposed mechanisms underlying its performance. Research indicated that NSFT could be applicable in early intervention, staging in psychiatry, and the search for new therapeutic methods and drugs based on the mechanisms of NSFT action. The NSFT can contribute to defining an individualized diet for patients and prevent the development of damaging disease effects at an early stage. There is promising evidence for supplementation with polyunsaturated fatty acids, which have a beneficial influence on the metabolic profile and are effective even in the subclinical phase of the disease. NSFT can contribute to the new classification of diseases and a better understanding of certain mental disorders' pathophysiology. However, there is a need to establish a validated method for assessing the NSFT results.
Collapse
Affiliation(s)
- Ryszard Sitarz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
| | - Dariusz Juchnowicz
- Department of Psychiatry and Psychiatric Nursing, Medical University of Lublin, 20-059 Lublin, Poland
| | - Kaja Karakuła
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
- Department of Forensic Medicine, Medical University of Lublin, 20-059 Lublin, Poland
| | - Alicja Forma
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
- Department of Forensic Medicine, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Joanna Rog
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 02-776 Warsaw, Poland
| | - Robert Karpiński
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| | - Anna Machrowska
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| | - Hanna Karakuła-Juchnowicz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
| |
Collapse
|
10
|
Chrobak AA, Rybakowski JK, Abramowicz M, Perdziak M, Gryncewicz W, Dziuda S, Fafrowicz M, Czarnecki P, Soltys Z, Ceglarek A, Ober JK, Marek T, Dudek D, Siwek M. Vergence eye movements impairments in schizophrenia and bipolar disorder. J Psychiatr Res 2022; 156:379-389. [PMID: 36323140 DOI: 10.1016/j.jpsychires.2022.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
One of the most evaluated eye tracking tasks in schizophrenia (SZ) and bipolar disorder (BD) are smooth pursuit eye movements. They rely on the maintenance of slowly moving object on the fovea. While most of the studies evaluated tracking of a target that moves in the fronto-parallel plane, only two assessed vergence eye movements (VEM), which relies on the pursuit of object that moves in depth. The aim of our study was to compare VEM performance in SZ and BD. We evaluated 28 SZ patients, 32 BD patients and 25 healthy controls (HC). Participants underwent thorough optometric examination before eye tracking task. VEM were measured with the use of infrared eye tracker and dedicated vergence stimuli generator. SZ patients showed higher mean break and recovery points of fusion and shorter correct tracking time than HC. BD individuals revealed tracking accuracy deficits and higher number of saccades than HC. Compared to BD, SZ patients showed decrease of maximal convergence and divergence. Moreover, they presented tracking accuracy deficits of non-dominant eye: altered eyes positioning error during convergence and divergence gain. Exploratory analysis revealed significant gender differences between groups in terms of binocular VEM parameters. In this study we have recognized pattern of eye movement disturbances differentiating abovementioned groups. SZ patients showed decreased vergence tracking range with shorter tracking time and impaired accuracy of non-dominant eye, while BD patients showed higher number of saccades with decreased tracking accuracy. Neuroimaging studies are necessary to identify neuronal underpinnings of VEM impairments in SZ and BD.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Jagiellonian University Medical College, Department of Adult Psychiatry, Kopernika St. 21a, 31-501, Cracow, Poland
| | - Janusz Kazimierz Rybakowski
- Poznan University of Medical Sciences, Department of Adult Psychiatry, Szpitalna St. 27/33, 61-572, Poznań, Poland
| | - Maria Abramowicz
- Poznan University of Medical Sciences, Department of Adult Psychiatry, Szpitalna St. 27/33, 61-572, Poznań, Poland
| | - Maciej Perdziak
- Poznan University of Medical Sciences, Department of Optometry, Chair of Ophthalmology and Optometry, Rokietnicka St. 5D, 60-806, Poznań, Poland
| | - Wojciech Gryncewicz
- Polish Academy of Sciences, Nałęcz Institute of Biocybernetics and Biomedical Engineering, Księcia Trojdena St. 4, 02-109, Warsaw, Poland
| | - Sebastian Dziuda
- Poznan University of Medical Sciences, Department of Adult Psychiatry, Szpitalna St. 27/33, 61-572, Poznań, Poland
| | - Magdalena Fafrowicz
- Jagiellonian University, Institute of Applied Psychology, Department of Cognitive Neuroscience and Neuroergonomics, Łojasiewicza St. 4, 30-348, Cracow, Poland
| | - Paweł Czarnecki
- Polish Academy of Sciences, Nałęcz Institute of Biocybernetics and Biomedical Engineering, Księcia Trojdena St. 4, 02-109, Warsaw, Poland
| | - Zbigniew Soltys
- Jagiellonian University, Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Gronostajowa 9, 30-387, Cracow, Poland
| | - Anna Ceglarek
- Jagiellonian University, Institute of Applied Psychology, Department of Cognitive Neuroscience and Neuroergonomics, Łojasiewicza St. 4, 30-348, Cracow, Poland
| | - Jan Krzysztof Ober
- Poznan University of Medical Sciences, Department of Optometry, Chair of Ophthalmology and Optometry, Rokietnicka St. 5D, 60-806, Poznań, Poland
| | - Tadeusz Marek
- Jagiellonian University, Institute of Applied Psychology, Department of Cognitive Neuroscience and Neuroergonomics, Łojasiewicza St. 4, 30-348, Cracow, Poland
| | - Dominika Dudek
- Jagiellonian University Medical College, Department of Adult Psychiatry, Kopernika St. 21a, 31-501, Cracow, Poland
| | - Marcin Siwek
- Jagiellonian University Medical College, Department of Affective Disorders, Kopernika St. 21a, 31-501, Cracow, Poland.
| |
Collapse
|
11
|
Zhuo C, Tian H, Chen J, Li Q, Yang L, Zhang Q, Chen G, Cheng L, Zhou C, Song X. Associations of cognitive impairment in patients with schizophrenia with genetic features and with schizophrenia-related structural and functional brain changes. Front Genet 2022; 13:880027. [PMID: 36061201 PMCID: PMC9437456 DOI: 10.3389/fgene.2022.880027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment is highly prevalent in patients with major psychiatric disorders (MPDs), including schizophrenia (SCZ), bipolar disorder, major depressive disorder, in whom it can be highly disruptive to community functioning and worsen prognosis. Previously, genetic factors and cognitive impairments in MPD patients have been examined mostly in isolated circuits rather than in the whole brain. In the present study, genetic, neuroimaging, and psychometric approaches were combined to investigate the relationship among genetic factors, alterations throughout the brain, and cognitive impairments in a large cohort of patients diagnosed with SCZ, with a reference healthy control (HC) group. Single nucleotide polymorphisms (SNPs) in SCZ-risk genes were found to be strongly related to cognitive impairments as well as to gray matter volume (GMV) and functional connectivity (FC) alterations in the SCZ group. Annotating 136 high-ranking SNPs revealed 65 affected genes (including PPP1R16B, GBBR2, PDE4B, CANCNA1C, SLC12AB, SATB2, MAG12, and SATB2). Only one, a PDE4B SNP (rs1006737), correlated with GMV (r = 0:19 p = 0.015) and FC (r = 0.21, p = 0.0074) in SCZ patients. GMV and FC alterations correlated with one another broadly across brain regions. Moreover, the present data demonstrate three-way SNP-FC-GMV associations in patients with SCZ, thus providing clues regarding potential genetic bases of cognition impairments in SCZ. SNP-FC-GMV relationships correlated with visual learning and reasoning dimensions of cognition. These data provide evidence that SCZ-related cognitive impairments may reflect genetically underlain whole-brain structural and functional alterations.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brian Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
- Digital Analysis Center of Psychiatry, Tianjin Fourth Center Hospital, Tianjin, China
- Department of Psychiatry and Neurology Imaging-Genetics and Comorbidity Laboratory (PNGC_Lab) of Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Deep Learning Center of MRI and Genetics, Wenzhou Seventh People’s Hospital, Wenzhou, China
- *Correspondence: Chuanjun Zhuo, ; Xueqin Song,
| | - Hongjun Tian
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Jiayue Chen
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qianchen Li
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qiuyu Zhang
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Chuanjun Zhuo, ; Xueqin Song,
| |
Collapse
|
12
|
Ramain J, Conus P, Golay P. Grouping affective psychoses in early intervention: Justification for specific treatment guidelines. Psychiatry Res 2022; 314:114690. [PMID: 35753221 DOI: 10.1016/j.psychres.2022.114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022]
Abstract
The concept of affective psychosis regroups psychotic disorders with mood syndrome. Previous studies provided evidence to support a dichotomy between affective and non-affective psychoses although questions remain regarding the utility and validity of such a category to develop clinical guidelines. The aim of this study is to explore similarities and differences within affective psychoses to question whether strategies would apply to all the diagnoses falling under this umbrella term. Using Bayesian model comparison methods, we explored the homogeneity of the characteristics of first-episode affective patients (N = 77) treated in a specialized 3-year early intervention in psychosis programme. Our analysis revealed affective psychoses display many similarities regarding socio-demographic variables, the course of positive and manic symptoms over three years, and outcome at discharge. Our results did not support the heterogeneous model. However, despite no significant differences in the course of symptoms with the major depressive disorder group, the schizoaffective disorder group displayed a more severe clinical picture at the beginning of the programme and a poorer functional outcome than the two other groups. Absence of clear boundaries and the several similarities within affective psychoses suggest they can usefully be grouped to define treatment strategies that are easily legible by clinicians.
Collapse
Affiliation(s)
- Julie Ramain
- Service of General Psychiatry, Treatment and Early Intervention in Psychosis Program (TIPP-Lausanne), Lausanne University Hospital and University of Lausanne, Place Chauderon 18, Lausanne 1003, Switzerland.
| | - Philippe Conus
- Service of General Psychiatry, Treatment and Early Intervention in Psychosis Program (TIPP-Lausanne), Lausanne University Hospital and University of Lausanne, Place Chauderon 18, Lausanne 1003, Switzerland
| | - Philippe Golay
- Service of General Psychiatry, Treatment and Early Intervention in Psychosis Program (TIPP-Lausanne), Lausanne University Hospital and University of Lausanne, Place Chauderon 18, Lausanne 1003, Switzerland; Institute of Psychology, Faculty of Social and Political Sciences, University of Lausanne, Place Chauderon 18, Lausanne 1003, Switzerland
| |
Collapse
|
13
|
Graph Analysis of Verbal Fluency Tests in Schizophrenia and Bipolar Disorder. Brain Sci 2022; 12:brainsci12020166. [PMID: 35203930 PMCID: PMC8870283 DOI: 10.3390/brainsci12020166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Verbal Fluency Tests (VFT) are one of the most common neuropsychological tasks used in bipolar disorder (BD) and schizophrenia (SZ) research. Recently, a new VFT analysis method based on graph theory was developed. Interpreting spoken words as nodes and every temporal connection between consecutive words as edges, researchers created graph structures, allowing the extraction of more data from participants’ speech, called Speech Graph Attributes (SGA). The aim of our study was to compare speech graphs, derived from Phonemic and Semantic VFT, between SZ, BD, and healthy controls (HC). Twenty-nine SZ patients, twenty-nine BD patients, and twenty-nine HC performed Semantic and Phonemic VFT. Standard measures (SM) and 13 SGA were analyzed. SZ patients’ Semantic VFT graphs showed lower total word count and correct responses. Their graphs presented less nodes and edges, higher density, smaller diameter, average shortest path (ASP), and largest strongly connected component than the HC group. SM did not differentiate BD and HC groups, and patients’ Semantic VFT graphs presented smaller diameter and ASP than HC. None of the parameters differentiated BD and SZ patients. Our results encourage the use of speech graph analysis, as it reveals verbal fluency alterations that remained unnoticed in the routine comparisons of groups with the use SM.
Collapse
|
14
|
Chrobak AA, Siuda-Krzywicka K, Sołtys Z, Siwek GP, Bohaterewicz B, Sobczak AM, Ceglarek A, Tereszko A, Starowicz-Filip A, Fąfrowicz M, Marek T, Siwek M, Dudek D. Relationship between neurological and cerebellar soft signs, and implicit motor learning in schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110137. [PMID: 33053417 DOI: 10.1016/j.pnpbp.2020.110137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/22/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Schizophrenia (SZ) and bipolar disorder (BD) patients share deficits in motor functions in the form of neurological (NSS) and cerebellar soft signs (CSS), and implicit motor learning disturbances. Here, we use cluster analysis method to assess (1) the relationship between those abnormalities in SZ and BD and (2) the differences between those groups. METHODS 33 SZ patients, 33 BD patients as well as 31 healthy controls (HC) took part in the study. We assessed CSS with the International Cooperative Ataxia Rating Scale (ICARS) and NSS with the Neurological Evaluation Scale (NES). Implicit motor learning was evaluated with the Serial Reaction Time Task (SRTT). Participants were divided into clusters (Ward's method) based on the mean response time and mean error rate in SRTT. The difference in ICARS and NES scores, and SRTT variables between clusters were evaluated. We have measured associations between SRTT parameters and both ICARS and NES total scores and subscores. RESULTS Cluster analysis based on the SRTT parameters allowed to extract three clusters. Those were characterized by the increasing disruption of motor functioning (psychomotor retardation, the severity of NSS and CSS) regardless of the diagnosis. Cluster 1 covered almost all of HC and was characterized by faster reaction times and small number of errors. BD and SZ patients represented in cluster 1, although fully functional in performing the SRTT, showed higher rates of NSS and CSS. Patients with BD and SZ were set apart in clusters 2 and 3 in a similar proportion. Cluster 2 presented significantly slower reaction times but with the comparable number of errors to cluster 1. Cluster 3 consisted of participants with normal or decreased reaction time and significantly increased number of errors. None of the clusters were predominantly composed of the patients representing one psychiatric diagnosis. CONCLUSIONS To our best knowledge, we are presenting the first data indicating the relationship between implicit motor learning and NSS and CSS in SZ and BD patients' groups. Lack of clusters predominantly represented by patients with the diagnosis of SZ or BD may refer to the model of schizophrenia-bipolar disorder boundary, pointing out the similarities between those two disorders.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Department of Adult Psychiatry, Jagiellonian University Medical College, Cracow, Poland.
| | - Katarzyna Siuda-Krzywicka
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitie´ -Salpêtrière, 75013 Paris, France
| | - Zbigniew Sołtys
- Jagiellonian University, Institute of Zoology and Biomedical Research, Department of Neuroanatomy, Cracow, Poland
| | | | - Bartosz Bohaterewicz
- Jagiellonian University, Department of Cognitive Neuroscience and Neuroergonomics, Cracow, Poland
| | - Anna Maria Sobczak
- Jagiellonian University, Department of Cognitive Neuroscience and Neuroergonomics, Cracow, Poland
| | - Anna Ceglarek
- Jagiellonian University, Department of Cognitive Neuroscience and Neuroergonomics, Cracow, Poland
| | - Anna Tereszko
- Department of Psychiatry, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Starowicz-Filip
- Medical Psychology Department, Jagiellonian University Medical College, Cracow, Poland
| | - Magdalena Fąfrowicz
- Jagiellonian University, Department of Cognitive Neuroscience and Neuroergonomics, Cracow, Poland
| | - Tadeusz Marek
- Jagiellonian University, Department of Cognitive Neuroscience and Neuroergonomics, Cracow, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Cracow, Poland
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
15
|
da Motta C, Pato MT, Barreto Carvalho C, Castilho P. The neurocognitive and functional profile of schizophrenia in a genetically homogenous European sample. Psychiatry Res 2021; 304:114140. [PMID: 34340130 DOI: 10.1016/j.psychres.2021.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia is a complex heritable brain disorder that entails significant social, neurocognitive, and functional deficits, and significant psychosocial challenges to affected and unaffected family members. In this cross-sectional study, we explore impairments in specific neurocognitive and social cognition processes in patients affected with schizophrenia, unaffected relatives, and in controls to provide a characterization of a genetically homogenous European sample from an endophenotypic and functional standpoint. A sample of 38 affected patients, 28 first-degree relatives, and 97 controls performed a series of computerized and skills-based assessments. Samples were compared across several neurocognitive, social, and functional domains. Significant impairments in episodic memory, executive function, social cognition, complex cognition, sensorimotor domains were found in patients and first-degree relatives. Findings also showed increased processing speed in memory and other complex cognitive processes relevant to autonomous living. A discriminant function analysis yielded 2 functions allowing 79% of correct group classifications based on social cognition and functional skills, neurocognition, and age. The study highlights the importance of resourcing to wide-ranging assessment methodologies, of developing research efforts to further understand the decline of social and neurocognitive processes, and the need for designing more targeted intervention strategies to be implemented both with affected patients and families.
Collapse
Affiliation(s)
- Carolina da Motta
- School of Psychology and Life Sciences, Lusófona University, Portugal; Digital Human-Environment Interaction Lab (HEI-Lab); Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), University of Coimbra, Portugal.
| | - Michele T Pato
- SUNY Downstate Medical Center, Brooklyn, New York, United States
| | - Célia Barreto Carvalho
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), University of Coimbra, Portugal; SUNY Downstate Medical Center, Brooklyn, New York, United States; Department of Psychology, Faculty of Social and Human sciences, University of Azores, Azores, Portugal
| | - Paula Castilho
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention (CINEICC), University of Coimbra, Portugal
| |
Collapse
|
16
|
Madeira N, Martins R, Valente Duarte J, Costa G, Macedo A, Castelo-Branco M. A fundamental distinction in early neural processing of implicit social interpretation in schizophrenia and bipolar disorder. NEUROIMAGE-CLINICAL 2021; 32:102836. [PMID: 34619651 PMCID: PMC8498462 DOI: 10.1016/j.nicl.2021.102836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Social cognition impairment is a key phenomenon in serious mental disorders such as schizophrenia (SCZ) and bipolar disorder (BPD). Although genetic and neurobiological studies have suggested common neural correlates, here we hypothesized that a fundamental dissociation of social processing occurs at an early level in these conditions. METHODS Based on the hypothesis that key structures in the social brain, namely the temporoparietal junction, should present distinctive features in SCZ and BPD during low-level social judgment, we conducted a case-control study in SCZ (n = 20) and BPD (n = 20) patients and controls (n = 20), using task-based fMRI during a Theory of Mind (ToM) visual paradigm leading to interpretation of social meaning based on simple geometric figures. RESULTS We found opposite neural responses in two core ToM regions: SCZ patients showed social content-related deactivation (relative to controls and BPD) of the right supramarginal gyrus, while the opposite pattern was found in BPD; reverse patterns, relative to controls and SCZ, were found in the left posterior superior temporal gyrus, a region involved in inferring other's intentions. Receiver-operating-characteristic curve analysis showed 88% accuracy in discriminating the two clinical groups based on these neural responses. CONCLUSIONS These contrasting activation patterns of the temporoparietal junction in SCZ and BPD represent mechanistic differences of social cognitive dysfunction that may be explored as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Nuno Madeira
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; Centro Hospitalar e Universitário de Coimbra (CHUC) - Department of Psychiatry, Portugal
| | - Ricardo Martins
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| | - João Valente Duarte
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| | - Gabriel Costa
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| | - António Macedo
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; Centro Hospitalar e Universitário de Coimbra (CHUC) - Department of Psychiatry, Portugal
| | - Miguel Castelo-Branco
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| |
Collapse
|
17
|
Barnes-Scheufler CV, Passow C, Rösler L, Mayer JS, Oertel V, Kittel-Schneider S, Matura S, Reif A, Bittner RA. Transdiagnostic comparison of visual working memory capacity in bipolar disorder and schizophrenia. Int J Bipolar Disord 2021; 9:12. [PMID: 33797645 PMCID: PMC8018920 DOI: 10.1186/s40345-020-00217-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/22/2020] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Impaired working memory is a core cognitive deficit in both bipolar disorder and schizophrenia. Its study might yield crucial insights into the underpinnings of both disorders on the cognitive and neurophysiological level. Visual working memory capacity is a particularly promising construct for such translational studies. However, it has not yet been investigated across the full spectrum of both disorders. The aim of our study was to compare the degree of reductions of visual working memory capacity in patients with bipolar disorder (PBD) and patients with schizophrenia (PSZ) using a paradigm well established in cognitive neuroscience. METHODS 62 PBD, 64 PSZ, and 70 healthy controls (HC) completed a canonical visual change detection task. Participants had to encode the color of four circles and indicate after a short delay whether the color of one of the circles had changed or not. We estimated working memory capacity using Pashler's K. RESULTS Working memory capacity was significantly reduced in both PBD and PSZ compared to HC. We observed a small effect size (r = .202) for the difference between HC and PBD and a medium effect size (r = .370) for the difference between HC and PSZ. Working memory capacity in PSZ was also significantly reduced compared to PBD with a small effect size (r = .201). Thus, PBD showed an intermediate level of impairment. CONCLUSIONS These findings provide evidence for a gradient of reduced working memory capacity in bipolar disorder and schizophrenia, with PSZ showing the strongest degree of impairment. This underscores the importance of disturbed information processing for both bipolar disorder and schizophrenia. Our results are compatible with the cognitive manifestation of a neurodevelopmental gradient affecting bipolar disorder to a lesser degree than schizophrenia. They also highlight the relevance of visual working memory capacity for the development of both behavior- and brain-based transdiagnostic biomarkers.
Collapse
Affiliation(s)
- Catherine V Barnes-Scheufler
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Caroline Passow
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Lara Rösler
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany.,Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jutta S Mayer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Viola Oertel
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany.,Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Robert A Bittner
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany. .,Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Demin KA, Smagin DA, Kovalenko IL, Strekalova T, Galstyan DS, Kolesnikova TO, De Abreu MS, Galyamina AG, Bashirzade A, Kalueff AV. CNS genomic profiling in the mouse chronic social stress model implicates a novel category of candidate genes integrating affective pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110086. [PMID: 32889031 DOI: 10.1016/j.pnpbp.2020.110086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/23/2023]
Abstract
Despite high prevalence, medical impact and societal burden, anxiety, depression and other affective disorders remain poorly understood and treated. Clinical complexity and polygenic nature complicate their analyses, often revealing genetic overlap and cross-disorder heritability. However, the interplay or overlaps between disordered phenotypes can also be based on shared molecular pathways and 'crosstalk' mechanisms, which themselves may be genetically determined. We have earlier predicted (Kalueff et al., 2014) a new class of 'interlinking' brain genes that do not affect the disordered phenotypes per se, but can instead specifically determine their interrelatedness. To test this hypothesis experimentally, here we applied a well-established rodent chronic social defeat stress model, known to progress in C57BL/6J mice from the Anxiety-like stage on Day 10 to Depression-like stage on Day 20. The present study analyzed mouse whole-genome expression in the prefrontal cortex and hippocampus during the Day 10, the Transitional (Day 15) and Day 20 stages in this model. Our main question here was whether a putative the Transitional stage (Day 15) would reveal distinct characteristic genomic responses from Days 10 and 20 of the model, thus reflecting unique molecular events underlining the transformation or switch from anxiety to depression pathogenesis. Overall, while in the Day 10 (Anxiety) group both brain regions showed major genomic alterations in various neurotransmitter signaling pathways, the Day 15 (Transitional) group revealed uniquely downregulated astrocyte-related genes, and the Day 20 (Depression) group demonstrated multiple downregulated genes of cell adhesion, inflammation and ion transport pathways. Together, these results reveal a complex temporal dynamics of mouse affective phenotypes as they develop. Our genomic profiling findings provide first experimental support to the idea that novel brain genes (activated here only during the Transitional stage) may uniquely integrate anxiety and depression pathogenesis and, hence, determine the progression from one pathological state to another. This concept can potentially be extended to other brain conditions as well. This preclinical study also further implicates cilial and astrocytal mechanisms in the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Dmitry A Smagin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | | | | | - Alim Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
19
|
Gotra MY, Hill SK, Gershon ES, Tamminga CA, Ivleva EI, Pearlson GD, Keshavan MS, Clementz BA, McDowell JE, Buckley PF, Sweeney JA, Keedy SK. Distinguishing patterns of impairment on inhibitory control and general cognitive ability among bipolar with and without psychosis, schizophrenia, and schizoaffective disorder. Schizophr Res 2020; 223:148-157. [PMID: 32674921 PMCID: PMC7704797 DOI: 10.1016/j.schres.2020.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Deficits in inhibitory control on a Stop Signal Task (SST) were previously observed to be of similar magnitude across schizophrenia, schizoaffective, and bipolar disorder with psychosis, despite variation in general cognitive ability. Understanding different patterns of performance on the SST may elucidate different pathways to the impaired inhibitory control each group displayed. Comparing nonpsychotic bipolar disorder to the psychosis groups on SST may also expand our understanding of the shared neurobiology of this illness spectrum. METHODS We tested schizophrenia (n = 220), schizoaffective (n = 216), bipolar disorder with (n = 192) and without psychosis (n = 67), and 280 healthy comparison participants with a SST and the Brief Assessment of Cognition in Schizophrenia (BACS), a measure of general cognitive ability. RESULTS All patient groups had a similar degree of impaired inhibitory control over prepotent responses. However, bipolar groups differed from schizophrenia and schizoaffective groups in showing speeded responses and inhibition errors that were not accounted for by general cognitive ability. Schizophrenia and schizoaffective groups had a broader set of deficits on inhibition and greater general cognitive deficit, which fully accounted for the inhibition deficits. No differences were found between the clinically well-matched bipolar with and without psychosis groups, including for inhibitory control or general cognitive ability. CONCLUSIONS We conclude that 1) while impaired inhibitory control on a SST is of similar magnitude across the schizo-bipolar spectrum, including nonpsychotic bipolar, different mechanisms may underlie the impairments, and 2) history of psychosis in bipolar disorder does not differentially impact inhibitory behavioral control or general cognitive abilities.
Collapse
Affiliation(s)
- Milena Y Gotra
- Department of Psychology, Rosalind Franklin University, North Chicago, IL, United States
| | - Scot K Hill
- Department of Psychology, Rosalind Franklin University, North Chicago, IL, United States
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States
| | - Carol A Tamminga
- Department of Psychiatry, UT-Southwestern Medical Center, Dallas, TX, United States
| | - Elena I Ivleva
- Department of Psychiatry, UT-Southwestern Medical Center, Dallas, TX, United States
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, United States; Institute of Living, Hartford Hospital, Hartford, CT, United States
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA, United States
| | - Brett A Clementz
- Department of Psychology and Neuroscience, University of Georgia, Athens, GA, United States
| | - Jennifer E McDowell
- Department of Psychology and Neuroscience, University of Georgia, Athens, GA, United States
| | - Peter F Buckley
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
20
|
Watkeys OJ, Cohen-Woods S, Quidé Y, Cairns MJ, Overs B, Fullerton JM, Green MJ. Derivation of poly-methylomic profile scores for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109925. [PMID: 32194204 DOI: 10.1016/j.pnpbp.2020.109925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Schizophrenia and bipolar disorder share biological features and environmental risk factors that may be associated with altered DNA methylation. In this study we sought to: 1) construct a novel 'Poly-Methylomic Profile Score (PMPS)' by transforming schizophrenia-associated epigenome-wide methylation from a previously published epigenome-wide association study (EWAS) into a single quantitative metric; and 2) examine associations between the PMPS and clinical status in an independent sample of 57 schizophrenia (SZ) cases, 59 bipolar disorder (BD) cases and 55 healthy controls (HC) for whom blood-derived DNA methylation was quantified using the Illumina 450 K methylation beadchip. We constructed five PMPSs at different p-value thresholds by summing methylation beta-values weighted by individual-CpG effect sizes from the meta-analysis of a previously published schizophrenia EWAS (comprising three separate cohorts with 675 [353 SZ and 322 HC] discovery cohort participants, 847 [414 SZ and 433 HC] replication cohort participants, and 96 monozygotic twin-pairs discordant for SZ). All SZ PMPSs were elevated in SZ participants relative to HCs, with the score calculated at a p-value threshold of 1 × 10-5 accounting for the greatest amount of variance. All PMPSs were elevated in SZ relative to BD and none of the PMPSs were increased in BD, or in a combined cohort of BD and SZ cases, relative to HCs. PMPSs were also not associated with positive or negative symptom severity. That this SZ-derived PMPSs was elevated in SZ, but not BD, suggests that epigenome-wide methylation patterns may represent distinct pathophysiology that is yet to be elucidated.
Collapse
Affiliation(s)
- Oliver J Watkeys
- School of Psychiatry, University of New South Wales (UNSW Sydneey), Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Sarah Cohen-Woods
- Discipline of Psychology, Flinders University, Adelaide, SA, Australia; Flinders Centre for Innovation in Cancer, Adelaide, SA, Australia; Centre for Neuroscience, Adelaide, SA, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales (UNSW Sydneey), Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Bronwyn Overs
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales (UNSW Sydneey), Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
21
|
White T, Langen C, Schmidt M, Hough M, James A. Comparative Neuropsychiatry: White Matter Abnormalities in Children and Adolescents with Schizophrenia, Bipolar Affective Disorder, and Obsessive-Compulsive Disorder. Eur Psychiatry 2020; 30:205-13. [DOI: 10.1016/j.eurpsy.2014.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 12/14/2022] Open
Abstract
AbstractBackground:There is considerable evidence that white matter abnormalities play a key role in the pathogenesis of a number of major psychiatric disorders, including schizophrenia, bipolar affective disorder, and obsessive-compulsive disorder. Few studies, however, have compared white matter abnormalities early in the course of the illness.Methods:A total of 102 children and adolescents participated in the study, including 43 with early-onset schizophrenia, 13 with early-onset bipolar affective disorder, 17 with obsessive-compulsive disorder, and 29 healthy controls. Diffusion tensor imaging scans were obtained on all children and the images were assessed for the presence of non-spatially overlapping regions of white matter differences, a novel algorithm known as the pothole approach.Results:Patients with early-onset schizophrenia and early-onset bipolar affective disorder had a significantly greater number of white matter potholes compared to controls, but the total number of potholes did not differ between the two groups. The volumes of the potholes were significantly larger in patients with early-onset bipolar affective disorder compared to the early-onset schizophrenia group. Children and adolescents with obsessive-compulsive disorder showed no differences in the total number of white matter potholes compared to controls.Conclusions:White matter abnormalities in early-onset schizophrenia and bipolar affective disorder are more global in nature, whereas children and adolescents with obsessive-compulsive disorder do not show widespread differences in FA.
Collapse
|
22
|
Madeira N, Duarte JV, Martins R, Costa GN, Macedo A, Castelo-Branco M. Morphometry and gyrification in bipolar disorder and schizophrenia: A comparative MRI study. NEUROIMAGE-CLINICAL 2020; 26:102220. [PMID: 32146321 PMCID: PMC7063231 DOI: 10.1016/j.nicl.2020.102220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Increased right globus pallidus is a consistent marker in schizophrenia (SCZ). Left supramarginal gyrification increases in bipolar disorder (BPD) in contrast with SCZ. Gyrification analysis may help distinguish early phases of BPD and SCZ.
Schizophrenia is believed to be a neurodevelopmental disease with high heritability. Differential diagnosis is often challenging, especially in early phases, namely with other psychotic disorders or even mood disorders. such as bipolar disorder with psychotic symptoms. Key pathophysiological changes separating these two classical psychoses remain poorly understood, and current evidence favors a more dimensional than categorical differentiation between schizophrenia and bipolar disorder. While established biomarkers like cortical thickness and grey matter volume are heavily influenced by post-onset changes and thus provide limited possibility of accessing early pathologies, gyrification is assumed to be more specifically determined by genetic and early developmental factors. The aim of our study was to compare both classical and novel morphometric features in these two archetypal psychiatric disorders. We included 20 schizophrenia patients, 20 bipolar disorder patients and 20 age- and gender-matched healthy controls. Data analyses were performed with CAT12/SPM12 applying general linear models for four morphometric measures: gyrification and cortical thickness (surface-based morphometry), and whole-brain grey matter/grey matter volume (voxel-based morphometry - VBM). Group effects were tested using age and gender as covariates (and total intracranial volume for VBM). Voxel-based morphometry analysis revealed a schizophrenia vs. control group effect on regional grey matter volume (p < 0.05, familywise error correction) in the right globus pallidus. There was no group effect on white matter volume when correcting for multiple comparisons neither on cortical thickness. Gyrification changes in clinical samples were found in the left supramarginal gyrus (BA40) – increased and reduced gyrification, respectively, in BPD and SCZ patients - and in the right inferior frontal gyrus (BA47), with a reduction in gyrification of the SCZ group when compared with controls. The joint analysis of different morphometric features, namely measures such as gyrification, provides a promising strategy for the elucidation of distinct phenotypes in psychiatric disorders. Different morphological change patterns, highlighting specific disease trajectories, could potentially generate neuroimaging-derived biomarkers, helping to discriminate schizophrenia from bipolar disorder in early phases, such as first-episode psychosis patients.
Collapse
Affiliation(s)
- Nuno Madeira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - Gabriel Nascimento Costa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal
| | - António Macedo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, Portugal; Department of Psychiatry, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Portugal; Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Portugal; Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
23
|
Ji L, Meda SA, Tamminga CA, Clementz BA, Keshavan MS, Sweeney JA, Gershon ES, Pearlson GD. Characterizing functional regional homogeneity (ReHo) as a B-SNIP psychosis biomarker using traditional and machine learning approaches. Schizophr Res 2020; 215:430-438. [PMID: 31439419 DOI: 10.1016/j.schres.2019.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recently, a biologically-driven psychosis classification (B-SNIP Biotypes) was derived using brain-based cognitive and electrophysiological markers. Here, we characterized a local functional-connectivity measure, regional homogeneity (ReHo), as a biomarker across Biotypes and conventional DSM diagnoses. METHODS Whole-brain ReHo measures of resting-state functional MRI were examined in psychosis patients and healthy controls organized by Biotype and by DSM-IV-TR diagnosis (n = 737). Group-level ANOVA and individual-level prediction models using support vector machines (SVM) were employed to evaluate the discriminative characteristics in comparisons of 1) DSM diagnostic groups, 2) Biotypes, to controls, and 3) within-proband subgroups with each other. RESULTS Probands grouped by Biotype versus controls showed a unique abnormality pattern: Biotype-1 displayed bidirectional ReHo differences in more widespread areas, with higher ReHo in para-hippocampus, fusiform, inferior temporal, cerebellum, thalamus and caudate, plus lower ReHo in the postcentral gyrus, middle temporal, cuneus, and middle occipital cortex; Biotype-2 and Biotype-3 showed lesser and unidirectional ReHo changes. Among diagnostic groups, only schizophrenia showed higher ReHo versus control values in the inferior/middle temporal area and fusiform gyrus. For within-patient comparisons, Biotype-1 showed characteristic ReHo when compared to Biotype-2 and Biotype-3. SVM results more accurately identified Biotypes than DSM diagnoses. CONCLUSION We characterized patterns of ReHo abnormalities across both Biotypes and DSM sub-groups. Both group-level statistical and machine-learning methods were more sensitive in capturing ReHo deficits in Biotypes than DSM. Overall ReHo is a robust psychosis biomarker.
Collapse
Affiliation(s)
- Lanxin Ji
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA; Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Shashwath A Meda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brett A Clementz
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA, USA
| | - John A Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elliot S Gershon
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
24
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
25
|
Prospective memory in schizophrenia: A meta-analysis of comparative studies. Schizophr Res 2019; 212:62-71. [PMID: 31447355 DOI: 10.1016/j.schres.2019.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/17/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Impairment of prospective memory (PM) in schizophrenia has gained increasing attention. This meta-analysis systematically examined PM impairment in schizophrenia. METHODS Both English (PubMed, PsycINFO, EMBASE, and Cochrane Library) and Chinese (WanFang, Chinese Biomedical and China Journal Net databases) databases were systematically searched from their inception until August 14, 2017. Case-control studies of PM in schizophrenia were included. Standardized mean differences (SMDs) and their 95% confidence interval (CI) were calculated using the random-effects model. RESULTS Twenty-nine case-control studies (n = 2492) were included in the analyses. The overall and three subtypes of PM were compared between patients with schizophrenia (n = 1284) and healthy controls (n = 1208). Compared to healthy controls, patients performed significantly poorer in overall (SMD = -1.125), time-based (SMD = -1.155), event-based (SMD = -1.068), and activity-based PM (SMD = -0.563). Subgroup analyses revealed significant differences between older and younger patients (SMD = -1.398 vs. -0.763), higher male predominance and no sex predominance (SMD = -1.679 vs. -0.800), lower and higher education level (SMD = -1.373 vs.-0.637), chronic and first-episode patients (SMD = -1.237 vs. -0.641) and between eco-valid and dual-task laboratory measurements (SMD = -1.542 vs. -0.725) regarding overall PM. Meta-regression analysis showed that higher negative symptom score was significantly associated with more severe overall PM impairment in patients (P = 0.022). CONCLUSIONS In this meta-analysis the overall PM and all its subtypes, particularly the time-based PM, were significantly impaired in schizophrenia.
Collapse
|
26
|
Mørch-Johnsen L, Nerland S, Jørgensen KN, Osnes K, Hartberg CB, Andreassen OA, Melle I, Nesvåg R, Agartz I. Cortical thickness abnormalities in bipolar disorder patients with a lifetime history of auditory hallucinations. Bipolar Disord 2018; 20:647-657. [PMID: 29441665 DOI: 10.1111/bdi.12627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We aimed to investigate morphometric correlates of auditory hallucinations in bipolar disorder (BD) by comparing cortical thickness and cortical surface area in bipolar disorder patients with (BD+) and without (BD-) a lifetime history of auditory hallucinations. Based on previous findings in schizophrenia patients, we hypothesized that the cortex would be thinner in the auditory cortex in BD+ compared to BD-. METHODS Bipolar disorder spectrum (n = 157) patients and healthy controls (n = 279) underwent 1.5T magnetic resonance imaging (MRI) scanning. Hypothesis-driven analyses of cortical thickness and surface area in regions of the auditory cortex (Heschl's gyrus [HG], planum temporale and superior temporal gyrus) were conducted comparing BD+ (n = 49) and BD- (n = 108) using linear regression models, covaried for age and sex. Furthermore, we explored vertex-wise group differences in thickness and surface area across the whole cerebral cortex. RESULTS Hypothesis-driven analyses:BD+ had significantly thicker cortex in the left HG compared to BD- (B = 0.128, P = .0046). The finding was not explained by duration of illness, global functioning, bipolar subtype, IQ or use of antipsychotic, antidepressant or antiepileptic medication, or by lithium. Exploratory analyses: A small region of thicker cortex in BD+ compared to BD- was seen in the left superior parietal lobule (false discovery rate <0.05). There were no significant group differences in cortical surface area. CONCLUSION A lifetime history of auditory hallucinations in BD was associated with cortical thickness alterations in both the left HG and the superior parietal lobule. Contrary to our hypothesis, BD+ showed thicker, rather than thinner cortex compared to BD-. Replications in independent samples are needed.
Collapse
Affiliation(s)
- Lynn Mørch-Johnsen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil N Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kåre Osnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Cecilie B Hartberg
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ragnar Nesvåg
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT and K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Calafato MS, Thygesen JH, Ranlund S, Zartaloudi E, Cahn W, Crespo-Facorro B, Díez-Revuelta Á, Di Forti M, Hall MH, Iyegbe C, Jablensky A, Kahn R, Kalaydjieva L, Kravariti E, Lin K, McDonald C, McIntosh AM, McQuillin A, Picchioni M, Rujescu D, Shaikh M, Toulopoulou T, Os JV, Vassos E, Walshe M, Powell J, Lewis CM, Murray RM, Bramon E. Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders. Br J Psychiatry 2018; 213:535-541. [PMID: 30113282 PMCID: PMC6130805 DOI: 10.1192/bjp.2018.89] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND There is increasing evidence for shared genetic susceptibility between schizophrenia and bipolar disorder. Although genetic variants only convey subtle increases in risk individually, their combination into a polygenic risk score constitutes a strong disease predictor.AimsTo investigate whether schizophrenia and bipolar disorder polygenic risk scores can distinguish people with broadly defined psychosis and their unaffected relatives from controls. METHOD Using the latest Psychiatric Genomics Consortium data, we calculated schizophrenia and bipolar disorder polygenic risk scores for 1168 people with psychosis, 552 unaffected relatives and 1472 controls. RESULTS Patients with broadly defined psychosis had dramatic increases in schizophrenia and bipolar polygenic risk scores, as did their relatives, albeit to a lesser degree. However, the accuracy of predictive models was modest. CONCLUSIONS Although polygenic risk scores are not ready for clinical use, it is hoped that as they are refined they could help towards risk reduction advice and early interventions for psychosis.Declaration of interestR.M.M. has received honoraria for lectures from Janssen, Lundbeck, Lilly, Otsuka and Sunovian.
Collapse
Affiliation(s)
- Maria Stella Calafato
- Division of Psychiatry, University College London, UK,Correspondence: Maria Stella Calafato, Mental Health Neuroscience Research Department, Division of Psychiatry, University College London, 149 Tottenham Court Rd, London W1T 7NF, UK.
| | | | - Siri Ranlund
- Division of Psychiatry, University College London, UK
| | - Eirini Zartaloudi
- Division of Psychiatry, University College London and Institute of Psychiatry, Psychology and Neuroscience at King's College London and South London and Maudsley NHS Foundation Trust, UK
| | - Wiepke Cahn
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Benedicto Crespo-Facorro
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid and Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria–IDIVAL, Spain
| | - Álvaro Díez-Revuelta
- Division of Psychiatry, University College London, London, UK and Laboratory of Cognitive and Computational Neuroscience − Centre for Biomedical Technology (CTB), Complutense University and Technical University of Madrid, Spain
| | - Marta Di Forti
- Institute of Psychiatry, Psychology and Neuroscience at King's College London and South London and Maudsley NHS Foundation Trust, UK
| | | | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, Harvard Medical School, McLean Hospital, USA
| | - Conrad Iyegbe
- Institute of Psychiatry, Psychology and Neuroscience at King's College London and South London and Maudsley NHS Foundation Trust, UK
| | - Assen Jablensky
- Centre for Clinical Research in Neuropsychiatry, The University of Western Australia, Australia
| | - Rene Kahn
- Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Luba Kalaydjieva
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Australia
| | - Eugenia Kravariti
- Institute of Psychiatry, Psychology and Neuroscience at King's College London and South London and Maudsley NHS Foundation Trust, UK
| | - Kuang Lin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust and Nuffield Department of Population Health, University of Oxford, UK
| | - Colm McDonald
- The Centre for Neuroimaging & Cognitive Genomics (NICOG) and NCBES Galway Neuroscience Centre, National University of Ireland Galway, Ireland
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital and Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK
| | | | | | - Marco Picchioni
- Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, UK
| | - Dan Rujescu
- Department of Psychiatry, Ludwig-Maximilians University of Munich and Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle Wittenberg, Germany
| | - Madiha Shaikh
- North East London Foundation Trust and Research Department of Clinical, Educational and Health Psychology, University College London, UK
| | - Timothea Toulopoulou
- Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, UK and Department of Psychology, Bilkent University, Turkey
| | - Jim Van Os
- Institute of Psychiatry Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, UK and Department of Psychiatry and Psychology, Maastricht University Medical Centre, EURON, the Netherlands
| | - Evangelos Vassos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, UK
| | - Muriel Walshe
- Division of Psychiatry, University College London and Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, UK
| | - John Powell
- Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, UK
| | - Cathryn M. Lewis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, UK
| | - Robin M. Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, UK
| | - Elvira Bramon
- Division of Psychiatry and Institute of Cognitive Neuroscience, University College London and Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, UK
| | | |
Collapse
|
28
|
Godwin D, Alpert KI, Wang L, Mamah D. Regional cortical thinning in young adults with schizophrenia but not psychotic or non-psychotic bipolar I disorder. Int J Bipolar Disord 2018; 6:16. [PMID: 29992455 PMCID: PMC6161965 DOI: 10.1186/s40345-018-0124-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/06/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Schizophrenia shares some genetic risk and clinical symptoms with bipolar disorder. Clinical heterogeneity across subjects is thought to contribute to variable structural imaging findings across studies. The current study investigates cortical thickness in young adults diagnosed with schizophrenia or bipolar I disorder with a history of hyperthymic mania. We hypothesize that cortical thickness will be most similar between SCZ and the psychotic bipolar 1 disorder subtype. METHODS Patients with schizophrenia (n = 52), psychotic bipolar I disorder (PBD; n = 49) and non-psychotic bipolar I disorder (NPBD; n = 24) and healthy controls (n = 40) were scanned in a 3T Trio MRI. The thickness of 34 cortical regions was estimated with FreeSurfer, and analyzed using univariate analyses of variance. Relationships to psychotic (SAPS) and negative (SANS) symptoms were investigated using linear regression. RESULTS Cortical thickness showed significant group effects, after covarying for sex, age, and intracranial volume (p = 0.001). SCZ subjects had thinner paracentral, inferior parietal, supramarginal and fusiform cortices compared to CON. Caudal anterior cingulate cortical thickness was increased in SCZ, PBD and NPBD. Cortical thickness in PBD and NPBD were not significantly different from controls. Significant partial correlations were observed for SAPS severity with middle temporal (r = - 0.26; p = 0.001) and fusiform (- 0.26; p = 0.001) cortical thickness. CONCLUSIONS Individuals with SCZ displayed significantly reduced cortical thickness in several cortical regions compared to both CON and bipolar. We found that SCZ participants had significant cortical thinning relative to CON and bipolar disorder most significantly in the frontal (i.e. paracentral), parietal (i.e. inferior parietal, supramarginal), and temporal (i.e. middle temporal, fusiform) cortices.
Collapse
Affiliation(s)
- Douglass Godwin
- Department of Psychiatry, Washington University Medical School, St. Louis, USA
| | - Kathryn I. Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, USA
| |
Collapse
|
29
|
Preti A, Scanu R, Muratore T, Claudetti G, Cao A, Scerman R, Carrus M, Cadoni C, Manca A, D'Errico G, Contu A, Petretto DR. The factor structure of the short form of the Wisconsin schizotypy scales. Psychiatry Res 2018; 265:128-136. [PMID: 29702304 DOI: 10.1016/j.psychres.2018.04.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/28/2022]
Abstract
The Chapman psychosis-proneness scales-also known as Wisconsin schizotypy scales (WSS)-are among the most used tools to measure schizotypy. The factor structure of the short-form WSS was investigated in a mixed sample of patients with chronic mental disorders and of healthy subjects from the general population. One hundred patients with a chronic mental disorder were enrolled over a 6-month period. For each patient, two controls of same sex and similar age (±5 years) were enrolled; 131 accepted to take part in the study. The unidimensional, the correlated four-factor, the second-order two-factor models, and the bifactor model with two or four orthogonally independent factors of the short-form WSS were tested with confirmatory factor analysis. Good reliability of the short-form WSS was confirmed, as its capacity of differentiating people with and without schizotypy. The bifactor models were superior to other models. However, in both bifactor models the explained common variance (ECV) attributable to the general factor and the percentage of uncontaminated correlations (PUC) were too low to use a general summary score as a measure of a single latent schizotypy variable. Symptoms scores derived from the short-form WSS can be better appreciated within a multidimensional model of schizotypy.
Collapse
Affiliation(s)
- Antonio Preti
- Centro Medico "Genneruxi", Cagliari, Italy; Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy; Center of Liaison Psychiatry and Psychosomatics, University Hospital, University of Cagliari, Cagliari, Italy.
| | - Rosanna Scanu
- Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | - Tamara Muratore
- Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | | | - Andrea Cao
- Department of Mental Health, ASL Cagliari, Cagliari, Italy
| | - Rossana Scerman
- Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | - Marta Carrus
- Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | - Carlotta Cadoni
- Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | - Antonio Manca
- Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | - Giovanni D'Errico
- Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| | - Augusto Contu
- Department of Mental Health, ASL Cagliari, Cagliari, Italy
| | - Donatella R Petretto
- Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Cagliari, Italy
| |
Collapse
|
30
|
Viswanath B, Rao NP, Narayanaswamy JC, Sivakumar PT, Kandasamy A, Kesavan M, Mehta UM, Venkatasubramanian G, John JP, Mukherjee O, Purushottam M, Kannan R, Mehta B, Kandavel T, Binukumar B, Saini J, Jayarajan D, Shyamsundar A, Moirangthem S, Vijay Kumar KG, Thirthalli J, Chandra PS, Gangadhar BN, Murthy P, Panicker MM, Bhalla US, Chattarji S, Benegal V, Varghese M, Reddy JYC, Raghu P, Rao M, Jain S. Discovery biology of neuropsychiatric syndromes (DBNS): a center for integrating clinical medicine and basic science. BMC Psychiatry 2018; 18:106. [PMID: 29669557 PMCID: PMC5907468 DOI: 10.1186/s12888-018-1674-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND There is emerging evidence that there are shared genetic, environmental and developmental risk factors in psychiatry, that cut across traditional diagnostic boundaries. With this background, the Discovery biology of neuropsychiatric syndromes (DBNS) proposes to recruit patients from five different syndromes (schizophrenia, bipolar disorder, obsessive compulsive disorder, Alzheimer's dementia and substance use disorders), identify those with multiple affected relatives, and invite these families to participate in this study. The families will be assessed: 1) To compare neuro-endophenotype measures between patients, first degree relatives (FDR) and healthy controls., 2) To identify cellular phenotypes which differentiate the groups., 3) To examine the longitudinal course of neuro-endophenotype measures., 4) To identify measures which correlate with outcome, and 5) To create a unified digital database and biorepository. METHODS The identification of the index participants will occur at well-established specialty clinics. The selected individuals will have a strong family history (with at least another affected FDR) of mental illness. We will also recruit healthy controls without family history of such illness. All recruited individuals (N = 4500) will undergo brief clinical assessments and a blood sample will be drawn for isolation of DNA and peripheral blood mononuclear cells (PBMCs). From among this set, a subset of 1500 individuals (300 families and 300 controls) will be assessed on several additional assessments [detailed clinical assessments, endophenotype measures (neuroimaging- structural and functional, neuropsychology, psychophysics-electroencephalography, functional near infrared spectroscopy, eye movement tracking)], with the intention of conducting repeated measurements every alternate year. PBMCs from this set will be used to generate lymphoblastoid cell lines, and a subset of these would be converted to induced pluripotent stem cell lines and also undergo whole exome sequencing. DISCUSSION We hope to identify unique and overlapping brain endophenotypes for major psychiatric syndromes. In a proportion of subjects, we expect these neuro-endophenotypes to progress over time and to predict treatment outcome. Similarly, cellular assays could differentiate cell lines derived from such groups. The repository of biomaterials as well as digital datasets of clinical parameters, will serve as a valuable resource for the broader scientific community who wish to address research questions in the area.
Collapse
Affiliation(s)
- Biju Viswanath
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Naren P. Rao
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | | | | | - Arun Kandasamy
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Muralidharan Kesavan
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | | | | | - John P. John
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Odity Mukherjee
- Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bangalore, India
| | - Meera Purushottam
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Ramakrishnan Kannan
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Bhupesh Mehta
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Thennarasu Kandavel
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - B. Binukumar
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Jitender Saini
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Deepak Jayarajan
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - A. Shyamsundar
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Sydney Moirangthem
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - K. G. Vijay Kumar
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Jagadisha Thirthalli
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Prabha S. Chandra
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | | | - Pratima Murthy
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Mitradas M. Panicker
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Upinder S. Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Sumantra Chattarji
- Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bangalore, India
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Vivek Benegal
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - Mathew Varghese
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | | | - Padinjat Raghu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bangalore, India
| | - Mahendra Rao
- Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bangalore, India
| | - Sanjeev Jain
- National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| |
Collapse
|
31
|
Zhou FC, Wang YY, Zheng W, Ungvari GS, Ng CH, Yuan Z, Xiang YT. Prospective memory in bipolar disorder: A meta-analysis. Psychiatry Res 2018; 259:184-190. [PMID: 29055798 DOI: 10.1016/j.psychres.2017.09.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/10/2017] [Accepted: 09/25/2017] [Indexed: 01/21/2023]
Abstract
There are conflicting findings about prospective memory (PM) performance in bipolar disorder. This meta-analysis systematically examined PM in patients with bipolar disorders. Articles were systematically searched in both English and Chinese databases, from their inception to Nov 15, 2016. Only case-control studies on PM in bipolar patients were included for analyses. The random effect model was used in all meta-analytic outcomes. Four studies (n = 390) comparing PM performance between patients with bipolar disorder (n = 208) and healthy controls (n = 182) were included. Three studies were rated as "high quality", while the quality of evidence in 3 meta-analyzable outcomes ranged from "moderate" (67%) to "high" (33%). Compared to healthy controls, bipolar disorder patients showed impairments in overall PM [2 studies, n = 196; SMD: - 1.08 (95%CI: - 1.61, - 0.55), P < 0.0001; I2 = 65%], event-based PM [4 studies, n = 367; SMD: - 0.51 (95%CI: - 0.78, - 0.23), P = 0.0003; I2 = 37%] and time-based PM performance [4 studies, n = 367; SMD: - 0.82 (95%CI: - 1.11, - 0.52), P < 0.0001; I2 = 41%]. In this meta-analysis, both time-based PM and event-based PM deficits appeared to be evident in bipolar disorder.
Collapse
Affiliation(s)
- Fu-Chun Zhou
- Department of Psychiatry, Beijing Anding Hospital, Capital Medical University & Beijing Key Laboratory of Mental Disorders & The National Clinical Research Center for Mental Disorders, China & Beijing Institute for Brain Disorders Center of Schizophrenia; Beijing, China
| | - Yuan-Yuan Wang
- Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Gabor S Ungvari
- The University of Notre Dame Australia / Graylands Hospital, Perth, Australia
| | - Chee H Ng
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria , Australia
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yu-Tao Xiang
- Faculty of Health Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
32
|
Chrobak AA, Siuda-Krzywicka K, Siwek GP, Tereszko A, Janeczko W, Starowicz-Filip A, Siwek M, Dudek D. Disrupted implicit motor sequence learning in schizophrenia and bipolar disorder revealed with ambidextrous Serial Reaction Time Task. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28648566 DOI: 10.1016/j.pnpbp.2017.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Impairment of implicit motor sequence learning was shown in schizophrenia (SZ) and, most recently, in bipolar disorder (BD), and was connected to cerebellar abnormalities. The goal of this study was to compare implicit motor sequence learning in BD and SZ. METHODS We examined 33 patients with BD, 33 patients with SZ and 31 healthy controls with a use of ambidextrous Serial Reaction Time Task (SRTT), which allows exploring asymmetries in performance depending on the hand used. RESULTS BD and SZ patients presented impaired implicit motor sequence learning, although the pattern of their impairments was different. While BD patients showed no signs of implicit motor sequence learning for both hands, the SZ group presented some features of motor learning when performing with the right, but not with the left hand. CONCLUSIONS To our best knowledge this is the first study comparing implicit motor sequence learning in BD and SZ. We show that both diseases share impairments in this domain, however in the case of SZ this impairment differs dependently on the hand performing SRTT. We propose that implicit motor sequence learning impairments constitute an overlapping symptom in BD and SZ and suggest further neuroimaging studies to verify cerebellar underpinnings as its cause.
Collapse
Affiliation(s)
| | - Katarzyna Siuda-Krzywicka
- Department of Psychophysiology, Faculty of Psychology, Jagiellonian University, Kraków, Poland; Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | | | - Anna Tereszko
- Department of Psychiatry, Jagiellonian University, Medical College, Kraków, Poland
| | - Weronika Janeczko
- Students' Scientific Association of Affective Disorders, Jagiellonian University, Medical College, Kraków, Poland
| | - Anna Starowicz-Filip
- Medical Psychology Department, Jagiellonian University, Medical College, Kraków, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University, Medical College, Kraków, Poland
| | - Dominika Dudek
- Department of Affective Disorders, Chair of Psychiatry, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
33
|
Law PC, Gurvich CT, Ngo TT, Miller SM. Evidence that eye-movement profiles do not explain slow binocular rivalry rate in bipolar disorder: support for a perceptual endophenotype. Bipolar Disord 2017; 19:465-476. [PMID: 28714555 DOI: 10.1111/bdi.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/31/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Presenting conflicting images simultaneously, one to each eye, produces perceptual alternations known as binocular rivalry (BR). Slow BR rate has been proposed as an endophenotype for bipolar disorder (BD) for use in large-scale genome-wide association studies. However, the trait could conceivably reflect eye movement (EM) dysfunction in BD rather than anomalous perceptual processing per se. To address this question, we examined the relationship between EM profiles and BR rate for various stimulus types in BD and healthy subjects. We also examined differences in EM profiles between these groups. METHODS Employing a repeated-measures within-subjects design, 20 BD outpatients and 20 age- and sex-matched healthy controls completed EM tasks and separate BR tasks involving a range of stimuli with different drift speeds. The association between each EM measure and BR rate was examined with correlational analyses for all stimulus conditions in both groups. Between-group comparisons were performed to determine any differences in those EM measures. Corresponding Bayesian analyses were also conducted. RESULTS There were no EM measures that showed a significant relationship with BR rate in either the BD group or the healthy group (P≥7.87×10-3 ), where those EM measures were also significantly different between the BD and healthy groups (P≥1.32 × 10-2 ). These findings were verified with Bayes factors. CONCLUSIONS The results provide evidence that EM profiles do not explain the slow BR endophenotype for BD, thus indicating that the trait reflects anomalous perceptual processing per se. This perceptual trait can be employed in clinical, genetic, mechanistic and pathophysiological studies.
Collapse
Affiliation(s)
- Phillip Cf Law
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, Melbourne, Australia
| | - Caroline T Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, Melbourne, Australia
| | - Trung T Ngo
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, Melbourne, Australia.,Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Mater Research Institute-UQ, Neurosciences & Cognitive Health Program, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Steven M Miller
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, Melbourne, Australia.,School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
34
|
Chouinard VA, Kim SY, Valeri L, Yuksel C, Ryan KP, Chouinard G, Cohen BM, Du F, Öngür D. Brain bioenergetics and redox state measured by 31P magnetic resonance spectroscopy in unaffected siblings of patients with psychotic disorders. Schizophr Res 2017; 187:11-16. [PMID: 28258794 PMCID: PMC5581291 DOI: 10.1016/j.schres.2017.02.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/24/2017] [Accepted: 02/19/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Brain bioenergetic anomalies and redox dysregulation have been implicated in the pathophysiology of psychotic disorders. The present study examined brain energy-related metabolites and the balance between nicotinamide adenine dinucleotide metabolites (oxidized NAD+ and reduced NADH) using 31P-magnetic resonance spectroscopy (31P-MRS) in unaffected siblings, compared to first episode psychosis (FEP) patients and healthy controls. METHODS 21 unaffected siblings, 32 FEP patients (including schizophrenia spectrum and affective psychoses), and 21 controls underwent 31P-MRS in the frontal lobe (6×6×4cm3) on a 4T MR scanner, using custom-designed dual-tuned surface coil with outer volume suppression. Brain parenchymal pH and steady-state metabolite ratios of high energy phosphate compounds were measured. NAD+ and NADH levels were determined using a 31P-MRS fitting algorithm. 13 unaffected sibling-patient pairs were related; other patients and siblings were unrelated. ANCOVA analyses were used to examine 31P-MRS measures, with age and gender as covariates. RESULTS The phosphocreatine/adenosine triphosphate ratio was significantly reduced in both unaffected siblings and FEP patients, compared to controls. NAD+/NADH ratio was significantly reduced in patients compared to siblings and controls, with siblings showing a reduction in NAD+/NADH compared to controls that was not statistically significant. Compared to patients and controls, siblings showed significantly reduced levels of NAD+. Siblings did not differ from patients or controls on brain pH. DISCUSSION Our results indicate that unaffected siblings show some, but not all the same abnormalities in brain energy metabolites and redox state as FEP patients. Thus, 31P-MRS studies may identify factors related both to risk and expression of psychosis.
Collapse
Affiliation(s)
- Virginie-Anne Chouinard
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Sang-Young Kim
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Linda Valeri
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA
| | - Cagri Yuksel
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kyle P Ryan
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
| | - Guy Chouinard
- Clinical Pharmacology Program, McGill University, Montreal, Quebec, Canada; Mental Health Institute of Montreal, University of Montreal, Montreal, Quebec, Canada
| | - Bruce M Cohen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Abstract
OBJECTIVES The time required in completing the 26 items of neurological examinations in the standard Neurological Evaluation Scale (NES) may limit its utility in pragmatic clinical situations. We propose the Short Neurological Evaluation Scale (S-NES) for use in busy clinical settings, and in research. METHODS Using confirmatory factor analyses, we identified 12 items of neurological examination showing significant overlap with previously reported theoretical and empirical categories of neurological soft signs (NSS) in schizophrenia. This provided justification for the development of a shorter version of the NES based on the empirically identified NSS. In the present study, we relied on existing data to present an initial validation of the S-NES against the referent standard 26-item NES. We determined sensitivity, specificity, and likelihood ratios. Posterior-test probability was estimated using a Bayesian nomogram plot. RESULTS Using data derived from 84 unmedicated or minimally treated patients with first-episode schizophrenia, 12 empirically determined items of neurological examinations showed high agreement with the 26 items in the standard NES battery (sensitivity=96.3%, specificity=100%, and posterior-test probability=100%). CONCLUSIONS Within limitations of validity estimates derived from existing data, the present results suggest that the design of the S-NES based on empirically identified 12 items of neurological examination is a logical step. If successful, the S-NES will be useful for rapid screening of NSS in busy clinical settings, and also in research.
Collapse
|
36
|
Pereira LP, Köhler CA, de Sousa RT, Solmi M, de Freitas BP, Fornaro M, Machado-Vieira R, Miskowiak KW, Vieta E, Veronese N, Stubbs B, Carvalho AF. The relationship between genetic risk variants with brain structure and function in bipolar disorder: A systematic review of genetic-neuroimaging studies. Neurosci Biobehav Rev 2017; 79:87-109. [DOI: 10.1016/j.neubiorev.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022]
|
37
|
Squarcina L, Bellani M, Rossetti MG, Perlini C, Delvecchio G, Dusi N, Barillari M, Ruggeri M, Altamura CA, Bertoldo A, Brambilla P. Similar white matter changes in schizophrenia and bipolar disorder: A tract-based spatial statistics study. PLoS One 2017; 12:e0178089. [PMID: 28658249 PMCID: PMC5489157 DOI: 10.1371/journal.pone.0178089] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Several strands of evidence reported a significant overlapping, in terms of clinical symptoms, epidemiology and treatment response, between the two major psychotic disorders—Schizophrenia (SCZ) and Bipolar Disorder (BD). Nevertheless, the shared neurobiological correlates of these two disorders are far from conclusive. This study aims toward a better understanding of possible common microstructural brain alterations in SCZ and BD. Magnetic Resonance Diffusion data of 33 patients with BD, 19 with SCZ and 35 healthy controls were acquired. Diffusion indexes were calculated, then analyzed using Tract-Based Spatial Statistics (TBSS). We tested correlations with clinical and psychological variables. In both patient groups mean diffusion (MD), volume ratio (VR) and radial diffusivity (RD) showed a significant increase, while fractional anisotropy (FA) and mode (MO) decreased compared to the healthy group. Changes in diffusion were located, for both diseases, in the fronto-temporal and callosal networks. Finally, no significant differences were identified between patient groups, and a significant correlations between length of disease and FA and VR within the corpus callosum, corona radiata and thalamic radiation were observed in bipolar disorder. To our knowledge, this is the first study applying TBSS on all the DTI indexes at the same time in both patient groups showing that they share similar impairments in microstructural connectivity, with particular regards to fronto-temporal and callosal communication, which are likely to worsen over time. Such features may represent neural common underpinnings characterizing major psychoses and confirm the central role of white matter pathology in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
| | | | - Maria Gloria Rossetti
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cinzia Perlini
- Section of Clinical Psychology, Department of Neurosciences, Biomedicine and Movement Sciences, Verona, Italy
| | | | - Nicola Dusi
- Section of Psychiatry, AOUI Verona, Verona, Italy
| | - Marco Barillari
- Department of Radiology, University of Verona, Verona, Italy
| | | | - Carlo A. Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering (DEI), University of Padova, Padova, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Department of Psychiatry and Behavioral Sciences, UTHouston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Morgan CJ, Coleman MJ, Ulgen A, Boling L, Cole JO, Johnson FV, Lerbinger J, Bodkin JA, Holzman PS, Levy DL. Thought Disorder in Schizophrenia and Bipolar Disorder Probands, Their Relatives, and Nonpsychiatric Controls. Schizophr Bull 2017; 43:523-535. [PMID: 28338967 PMCID: PMC5463905 DOI: 10.1093/schbul/sbx016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thought disorder (TD) has long been associated with schizophrenia (SZ) and is now widely recognized as a symptom of mania and other psychotic disorders as well. Previous studies have suggested that the TD found in the clinically unaffected relatives of SZ, schizoaffective and bipolar probands is qualitatively similar to that found in the probands themselves. Here, we examine which quantitative measures of TD optimize the distinction between patients with diagnoses of SZ and bipolar disorder with psychotic features (BP) from nonpsychiatric controls (NC) and from each other. In addition, we investigate whether these same TD measures also distinguish their respective clinically unaffected relatives (RelSZ, RelBP) from controls as well as from each other. We find that deviant verbalizations are significantly associated with SZ and are co-familial in clinically unaffected RelSZ, but are dissociated from, and are not co-familial for, BP disorder. In contrast, combinatory thinking was nonspecifically associated with psychosis, but did not aggregate in either group of relatives. These results provide further support for the usefulness of TD for identifying potential non-penetrant carriers of SZ-risk genes, in turn enhancing the power of genetic analyses. These findings also suggest that further refinement of the TD phenotype may be needed in order to be suitable for use in genetic studies of bipolar disorder.
Collapse
Affiliation(s)
- Charity J Morgan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | | | - Ayse Ulgen
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
| | - Lenore Boling
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
| | - Jonathan O Cole
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | | | - Jan Lerbinger
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
| | - J Alexander Bodkin
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Philip S Holzman
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Deborah L Levy
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Abstract
First, we describe the hallmark contributions of Irv Gottesman's pioneering scholarship for schizophrenia research including concepts of polygenicity, gene × environment interactions, epigenetics and the endophenotype concept. Gottesman and colleagues' twin studies showed that genes, not social factors, mediate schizophrenia risk. He then showed that schizophrenia is highly polygenic. Next, he introduced the concept of epigenetics into schizophrenia research. Gottesman then introduced the quantitative endophenotype concept. Endophenotypes are laboratory-based measures that show deficits in schizophrenia patients and lesser deficits in their first degree "unaffected" relatives and are viewed as being more proximal to genes and having a simpler genetic architecture than are "fuzzy" qualitative diagnostic disorders. Endophenotypes offer an exciting path to gene discovery, neural circuits, genetic architecture and new treatment pathways of schizophrenia and related psychotic disorders. Second, we were asked to discuss 2 of many endophenotype Consortia and related studies, in order to illustrate the impact of Gottesman's work. We describe the Consortium on the Genetics of Schizophrenia (COGS) exploring neurocognitive and neurophysiological endophenotypes in family and case-control studies. Association, linkage, sequencing and epigenetic studies are described. The Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP) uses an array of endophenotypes including brain imaging in studies across the psychosis dimension, allowing for dimensional analyses. BSNIP results have led to the concept of biotypes, advancing the field. Irv Gottesman was imaginatively prescient in generating novel insights and predicting many major issues which challenge schizophrenia researchers who still use his concepts to guide current research approaches.
Collapse
Affiliation(s)
- David L Braff
- Department of Psychiatry, University of California, San Diego, La Jolla, CA;
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX
| |
Collapse
|
40
|
Bureau A, Croteau J. When Is an Endophenotype Useful to Detect Association to a Disease? Exploring the Relationships between Disease Status, Endophenotype and Genetic Polymorphisms. Hum Hered 2016; 81:11-25. [PMID: 27475094 DOI: 10.1159/000446475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/26/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To investigate the conditions and analysis strategies required so that endophenotypes related to a disease help discover genetic variants involved in the disease. METHODS The association with disease susceptibility variants is examined as a function of the relationships between disease status, endophenotype values and the genotype at another disease or endophenotype susceptibility locus assumed to be previously known, using approximate linear models of allele frequencies as a function of these variables and simulations in the context of family studies when the endophenotype is dichotomous. RESULTS Under genetic mechanisms where the risk allele of the tested locus has an effect exclusively in subjects with the endophenotype, the risk allele frequency differences between affected and unaffected subjects are much greater in the subset of subjects with an endophenotype impairment than in those without such an impairment, and power gains are obtained when testing the association under a joint disease-endophenotype model, both with two-locus or single-locus tests. However, with moderate main effect on the risk of disease or endophenotype impairment, testing directly the association between risk allele and disease or endophenotype is more powerful than testing under a joint disease-endophenotype model. CONCLUSIONS Joint modeling of disease and endophenotype should be used only in parallel with standard disease association testing.
Collapse
Affiliation(s)
- Alexandre Bureau
- Département de médecine sociale et préventive, Université Laval, Québec, Qué., Canada
| | | |
Collapse
|
41
|
Data-driven classification of bipolar I disorder from longitudinal course of mood. Transl Psychiatry 2016; 6:e912. [PMID: 27727242 PMCID: PMC5315544 DOI: 10.1038/tp.2016.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022] Open
Abstract
The Diagnostic and Statistical Manual of Mental Disorder (DSM) classification of bipolar disorder defines categories to reflect common understanding of mood symptoms rather than scientific evidence. This work aimed to determine whether bipolar I can be objectively classified from longitudinal mood data and whether resulting classes have clinical associations. Bayesian nonparametric hierarchical models with latent classes and patient-specific models of mood are fit to data from Longitudinal Interval Follow-up Evaluations (LIFE) of bipolar I patients (N=209). Classes are tested for clinical associations. No classes are justified using the time course of DSM-IV mood states. Three classes are justified using the course of subsyndromal mood symptoms. Classes differed in attempted suicides (P=0.017), disability status (P=0.012) and chronicity of affective symptoms (P=0.009). Thus, bipolar I disorder can be objectively classified from mood course, and individuals in the resulting classes share clinical features. Data-driven classification from mood course could be used to enrich sample populations for pharmacological and etiological studies.
Collapse
|
42
|
Homberg JR, Kyzar EJ, Nguyen M, Norton WH, Pittman J, Poudel MK, Gaikwad S, Nakamura S, Koshiba M, Yamanouchi H, Scattoni ML, Ullman JF, Diamond DM, Kaluyeva AA, Parker MO, Klimenko VM, Apryatin SA, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci Biobehav Rev 2016; 65:292-312. [DOI: 10.1016/j.neubiorev.2016.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
|
43
|
Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, Keshavan MS, Tamminga CA. Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers. Am J Psychiatry 2016; 173:373-84. [PMID: 26651391 PMCID: PMC5314432 DOI: 10.1176/appi.ajp.2015.14091200] [Citation(s) in RCA: 505] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Clinical phenomenology remains the primary means for classifying psychoses despite considerable evidence that this method incompletely captures biologically meaningful differentiations. Rather than relying on clinical diagnoses as the gold standard, this project drew on neurobiological heterogeneity among psychosis cases to delineate subgroups independent of their phenomenological manifestations. METHOD A large biomarker panel (neuropsychological, stop signal, saccadic control, and auditory stimulation paradigms) characterizing diverse aspects of brain function was collected on individuals with schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis (N=711), their first-degree relatives (N=883), and demographically comparable healthy subjects (N=278). Biomarker variance across paradigms was exploited to create nine integrated variables that were used to capture neurobiological variance among the psychosis cases. Data on external validating measures (social functioning, structural magnetic resonance imaging, family biomarkers, and clinical information) were collected. RESULTS Multivariate taxometric analyses identified three neurobiologically distinct psychosis biotypes that did not respect clinical diagnosis boundaries. The same analysis procedure using clinical DSM diagnoses as the criteria was best described by a single severity continuum (schizophrenia worse than schizoaffective disorder worse than bipolar psychosis); this was not the case for biotypes. The external validating measures supported the distinctiveness of these subgroups compared with clinical diagnosis, highlighting a possible advantage of neurobiological versus clinical categorization schemes for differentiating psychotic disorders. CONCLUSIONS These data illustrate how multiple pathways may lead to clinically similar psychosis manifestations, and they provide explanations for the marked heterogeneity observed across laboratories on the same biomarker variables when DSM diagnoses are used as the gold standard.
Collapse
Affiliation(s)
- Brett A Clementz
- From the Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens; the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas; the Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Conn., and the Institute of Living, Hartford Hospital, Hartford, Conn.; and the Department of Psychiatry, Harvard Medical School, Boston
| | - John A Sweeney
- From the Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens; the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas; the Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Conn., and the Institute of Living, Hartford Hospital, Hartford, Conn.; and the Department of Psychiatry, Harvard Medical School, Boston
| | - Jordan P Hamm
- From the Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens; the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas; the Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Conn., and the Institute of Living, Hartford Hospital, Hartford, Conn.; and the Department of Psychiatry, Harvard Medical School, Boston
| | - Elena I Ivleva
- From the Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens; the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas; the Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Conn., and the Institute of Living, Hartford Hospital, Hartford, Conn.; and the Department of Psychiatry, Harvard Medical School, Boston
| | - Lauren E Ethridge
- From the Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens; the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas; the Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Conn., and the Institute of Living, Hartford Hospital, Hartford, Conn.; and the Department of Psychiatry, Harvard Medical School, Boston
| | - Godfrey D Pearlson
- From the Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens; the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas; the Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Conn., and the Institute of Living, Hartford Hospital, Hartford, Conn.; and the Department of Psychiatry, Harvard Medical School, Boston
| | - Matcheri S Keshavan
- From the Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens; the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas; the Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Conn., and the Institute of Living, Hartford Hospital, Hartford, Conn.; and the Department of Psychiatry, Harvard Medical School, Boston
| | - Carol A Tamminga
- From the Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens; the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas; the Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Conn., and the Institute of Living, Hartford Hospital, Hartford, Conn.; and the Department of Psychiatry, Harvard Medical School, Boston
| |
Collapse
|
44
|
Chouinard VA, Pingali SM, Chouinard G, Henderson DC, Mallya SG, Cypess AM, Cohen BM, Öngür D. Factors associated with overweight and obesity in schizophrenia, schizoaffective and bipolar disorders. Psychiatry Res 2016; 237:304-10. [PMID: 26805561 DOI: 10.1016/j.psychres.2016.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 11/17/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022]
Abstract
Evidence suggests abnormal bioenergetic status throughout the body in psychotic disorders. The present study examined predictors of elevated body mass index (BMI) across diagnostic categories of schizophrenia, schizoaffective and bipolar disorders. In a cross-sectional study, we studied demographic and clinical risk factors for overweight and obesity in a well-characterized sample of 262 inpatients and outpatients with schizophrenia (n=59), schizoaffective disorder (n=81) and bipolar I disorder (n=122). Across the three diagnostic categories, the prevalence of overweight (29.4%) and obesity (33.2%) combined was 62.6% (164/262). Logistic regression analyses, adjusted for age, sex and ethnicity, showed that schizoaffective disorder, lifetime major depressive episode, presence of prior suicide attempt, and more than 5 lifetime hospitalizations were significantly associated with BMI≥25. Patients with schizophrenia had significantly lower risk for overweight and obesity. Overall, we found that affective components of illness were associated with elevated BMI in our cross-diagnostic sample. Our results show that patients with schizoaffective disorder have a greater risk for obesity. Identifying predictors of elevated BMI in patients with psychotic and mood disorders will help prevent obesity and related cardiovascular and cerebral complications. Future studies are needed to elucidate the mechanistic nature of the relationship between obesity and psychiatric illness.
Collapse
Affiliation(s)
- Virginie-Anne Chouinard
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, USA.
| | | | - Guy Chouinard
- Clinical Pharmacology and Toxicology Program, McGill University and Mental Health Institute of Montreal Fernand Seguin Research Centre, Montreal, Canada
| | - David C Henderson
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA; Schizophrenia Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sonal G Mallya
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
| | - Aaron M Cypess
- Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Bruce M Cohen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, USA
| |
Collapse
|
45
|
Frydecka D, Beszłej JA, Pawlak-Adamska E, Misiak B, Karabon L, Tomkiewicz A, Partyka A, Jonkisz A, Szewczuk-Bogusławska M, Zawadzki M, Kiejna A. CTLA4 and CD28 Gene Polymorphisms with Respect to Affective Symptom Domain in Schizophrenia. Neuropsychobiology 2016; 71:158-67. [PMID: 25998553 DOI: 10.1159/000379751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/02/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Accumulating evidence indicates that immune alterations in schizophrenia are due to genetic underpinnings. Here, we aimed at investigating whether polymorphisms in CTLA4 and CD28 genes, encoding molecules that regulate T-cell activity, influence schizophrenia symptomatology. METHOD We recruited 120 schizophrenia patients and 380 healthy age- and sex-matched controls. We divided the patients into two groups: one with no co-occurrence between psychotic and affective symptoms and the second one with psychotic symptoms dominating in the clinical manifestation, although also with occasional affective disturbances in the course of illness. RESULTS Among the patients with co-occurring affective symptoms, there were significantly more CTLA4 c.49A>G[A] alleles (p = 0.018, odds ratio (OR) 2.03, 95% confidence interval (CI) 1.2-3.66) and more CTLA4 g.319C>T[T] alleles (p = 0.07, OR 1.93, 95% CI 0.94-4.13) in comparison to the second group. Additionally, we have shown that CD28 c.17 + 3T>C[C+] were more significantly overrepresented among patients with co-occurring psychotic and affective symptoms (p = 0.0003, OR 3.36, 95% CI 1.69-6.68) than in patients without co-occurence between these symptoms (p = 0.012, OR 1.88, 95% CI 1.15-3.10). CONCLUSION CTLA4 and CD28 gene polymorphisms may not only act in immune deregulation observed in schizophrenia, but may also influence the course of the illness by modifying the susceptibility to the co-occurrence of psychotic and affective symptoms.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Neurological and cerebellar soft signs do not discriminate schizophrenia from bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:96-101. [PMID: 26241859 DOI: 10.1016/j.pnpbp.2015.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/16/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022]
Abstract
Patients with schizophrenia (SZ) and bipolar disorder (BD) share subtle motor abnormalities called the neurological soft signs (NSS). Since in both diseases there is evidence for alterations in cerebellar functions, structure and connectivity, we expected that the cerebellar soft signs (CSS), analogue of NSS focusing strictly on cerebellar symptoms, would be also a common trait in SZ and BD. We examined 30 patients with BD, 30 patients with SZ and 28 control subjects using the Neurological Evaluation Scale (NES, for NSS) and International Cooperative Ataxia Rating Scale (ICARS, for CSS). SZ and BD did not differ in total and subscales' scores in both NES and ICARS. Subscale analysis revealed that SZ performed significantly worse than controls in all the subscales of both NES and ICARS. BD patients scored significantly worse than controls in all NES subscales and in oculomotor and kinetic subscales of the ICARS, while other ICARS subscales did not differentiate those two groups. To our knowledge this is the first study to show that CSS constitute common symptoms in BD and SZ. We recommend a special focus on those diseases in further research regarding structural and functional changes of cerebellum and their clinical outcome.
Collapse
|
47
|
A review of genetic alterations in the serotonin pathway and their correlation with psychotic diseases and response to atypical antipsychotics. Schizophr Res 2016; 170:18-29. [PMID: 26644303 DOI: 10.1016/j.schres.2015.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Serotonin is a neurotransmitter that plays a predominant role in mood regulation. The importance of the serotonin pathway in controlling behavior and mental status is well recognized. All the serotonin elements - serotonin receptors, serotonin transporter, tryptophan hydroxylase and monoamine oxidase proteins - can show alterations in terms of mRNA or protein levels and protein sequence, in schizophrenia and bipolar disorder. Additionally, when examining the genes sequences of all serotonin elements, several single nucleotide polymorphisms (SNPs) have been found to be more prevalent in schizophrenic or bipolar patients than in healthy individuals. Several of these alterations have been associated either with different phenotypes between patients and healthy individuals or with the response of psychiatric patients to the treatment with atypical antipsychotics. The complex pattern of genetic diversity within the serotonin pathway hampers efforts to identify the key variations contributing to an individual's susceptibility to the disease. In this review article, we summarize all genetic alterations found across the serotonin pathway, we provide information on whether and how they affect schizophrenia or bipolar disorder phenotypes, and, on the contribution of familial relationships on their detection frequencies. Furthermore, we provide evidence on whether and how specific gene polymorphisms affect the outcome of schizophrenic or bipolar patients of different ethnic groups, in response to treatment with atypical antipsychotics. All data are discussed thoroughly, providing prospective for future studies.
Collapse
|
48
|
Zenisek R, Thaler NS, Sutton GP, Ringdahl EN, Snyder JS, Allen DN. Auditory processing deficits in bipolar disorder with and without a history of psychotic features. Bipolar Disord 2015; 17:769-80. [PMID: 26396062 DOI: 10.1111/bdi.12333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 08/01/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Auditory perception deficits have been identified in schizophrenia (SZ) and linked to dysfunction in the auditory cortex. Given that psychotic symptoms, including auditory hallucinations, are also seen in bipolar disorder (BD), it may be that individuals with BD who also exhibit psychotic symptoms demonstrate a similar impairment in auditory perception. METHODS Fifty individuals with SZ, 30 individuals with bipolar I disorder with a history of psychosis (BD+), 28 individuals with bipolar I disorder with no history of psychotic features (BD-), and 29 normal controls (NC) were administered a tone discrimination task and an emotion recognition task. RESULTS Mixed-model analyses of covariance with planned comparisons indicated that individuals with BD+ performed at a level that was intermediate between those with BD- and those with SZ on the more difficult condition of the tone discrimination task and on the auditory condition of the emotion recognition task. There were no differences between the BD+ and BD- groups on the visual or auditory-visual affect recognition conditions. Regression analyses indicated that performance on the tone discrimination task predicted performance on all conditions of the emotion recognition task. Auditory hallucinations in BD+ were not related to performance on either task. CONCLUSIONS Our findings suggested that, although deficits in frequency discrimination and emotion recognition are more severe in SZ, these impairments extend to BD+. Although our results did not support the idea that auditory hallucinations may be related to these deficits, they indicated that basic auditory deficits may be a marker for psychosis, regardless of SZ or BD diagnosis.
Collapse
Affiliation(s)
- RyAnna Zenisek
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nicholas S Thaler
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Griffin P Sutton
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Erik N Ringdahl
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Joel S Snyder
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Daniel N Allen
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
49
|
Meda SA, Wang Z, Ivleva EI, Poudyal G, Keshavan MS, Tamminga CA, Sweeney JA, Clementz BA, Schretlen DJ, Calhoun VD, Lui S, Damaraju E, Pearlson GD. Frequency-Specific Neural Signatures of Spontaneous Low-Frequency Resting State Fluctuations in Psychosis: Evidence From Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Consortium. Schizophr Bull 2015; 41:1336-48. [PMID: 26012519 PMCID: PMC4601713 DOI: 10.1093/schbul/sbv064] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND We quantified frequency-specific, absolute, and fractional amplitude of low-frequency fluctuations (ALFF/fALFF) across the schizophrenia (SZ)-psychotic bipolar disorder (PBP) psychosis spectrum using resting functional magnetic resonance imaging data from the large BSNIP family study. METHODS We assessed 242 healthy controls (HC), 547 probands (180 PBP, 220 SZ, and 147 schizoaffective disorder-SAD), and 410 of their first-degree relatives (134 PBPR, 150SZR, and 126 SADR). Following standard preprocessing in statistical parametric mapping (SPM8), we computed absolute and fractional power (ALFF/fALFF) in 2 low-frequency bands: slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz). We evaluated voxelwise post hoc differences across traditional Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition diagnostic categories. RESULTS Across ALFF/fALFF, in contrast to HC, BP/SAD showed hypoactivation in frontal/anterior brain regions in the slow-5 band and hypoactivation in posterior brain regions in the slow-4 band. SZ showed consistent hypoactivation in precuneus/cuneus and posterior cingulate across both bands and indices. Increased ALFF/fALFF was noted predominantly in deep subcortical and temporal structures across probands in both bands and indices. Across probands, spatial ALFF/fALFF differences in SAD resembled PBP more than SZ. None of these ALFF/fALFF differences were detected in relatives. CONCLUSIONS Results suggest ALFF/fALFF is a putative biomarker rather than a familial endophenotype. Overall sensitivity to discriminate proband brain alteration was stronger for fALFF than ALFF. Patterns of differences noted in SAD were more similar to those observed in PBP. Differential effects were noted across the 2 frequency bands, more prominently for BP/SAD compared with SZ, suggesting frequency-sensitive physiologic mechanisms for the former.
Collapse
Affiliation(s)
- Shashwath A. Meda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT;,*To whom correspondence should be addressed; 200 Retreat Avenue, Olin Neuropsychiatry Research Center, Hartford Hospital/IOL, Hartford, CT 06102, US; tel: 860-545-7483, fax: 860-545-7797, e-mail:
| | - Zheng Wang
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| | - Elena I. Ivleva
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX
| | - Gaurav Poudyal
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX
| | | | - Carol A. Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX
| | - John A. Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX
| | | | | | | | - Su Lui
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | | | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT;,Department of Psychiatry, Yale University, New Haven, CT;,Department of Neurobiology, Yale University, New Haven, CT
| |
Collapse
|
50
|
Marco C, Antonio D, Antonina S, Alessandro S, Concetta C, Antonina S, Serretti A, Alessandro S, Crisafulli C, Concetta C. Genes involved in pruning and inflammation are enriched in a large mega-sample of patients affected by Schizophrenia and Bipolar Disorder and controls. Psychiatry Res 2015; 228:945-9. [PMID: 26160200 PMCID: PMC4532584 DOI: 10.1016/j.psychres.2015.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/08/2015] [Accepted: 06/24/2015] [Indexed: 12/26/2022]
Abstract
A molecular pathway analysis has been performed in order to complement previous genetic investigations on Schizophrenia. 4486 Schizophrenic patients and 4477 controls served as the investigation sample. 3521 Bipolar patients and 3195 controls served as replication sample. A molecular pathway associated with the neuronal pruning activity was found to be enriched in subjects with Schizophrenia compared to controls. HLA-C and HLA-DRA had more SNPs associated with both Schizophrenia and Bipolar Disorder than expected by chance.
Collapse
Affiliation(s)
- Calabrò Marco
- Department of Biomedical Science and morphological and functional images, University of Messina, Italy,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy,IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Drago Antonio
- Department of Biomedical and Neuromotor Sciences – DIBINEM -, University of Bologna, Italy,I.R.C.C.S. “San Giovanni di Dio”, Fatebenefratelli, Brescia, Italy, Telephone: +39 051 6584233. Fax +39 051 521030
| | - Sidoti Antonina
- Department of Biomedical Science and morphological and functional images, University of Messina, Italy,IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Serretti Alessandro
- Department of Biomedical and Neuromotor Sciences – DIBINEM -, University of Bologna, Italy
| | - Crisafulli Concetta
- Department of Biomedical Science and morphological and functional images, University of Messina, Italy
| | - Sidoti Antonina
- .Department of Biomedical Science and morphological and functional images, University of Messina, Italy; IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | - Serretti Alessandro
- Department of Biomedical and Neuromotor Sciences - DIBINEM -, University of Bologna, Italy
| | | | - Crisafulli Concetta
- .Department of Biomedical Science and morphological and functional images, University of Messina, Italy
| |
Collapse
|