1
|
Tetzlaff SK, Reyhan E, Layer N, Bengtson CP, Heuer A, Schroers J, Faymonville AJ, Langeroudi AP, Drewa N, Keifert E, Wagner J, Soyka SJ, Schubert MC, Sivapalan N, Pramatarov RL, Buchert V, Wageringel T, Grabis E, Wißmann N, Alhalabi OT, Botz M, Bojcevski J, Campos J, Boztepe B, Scheck JG, Conic SH, Puschhof MC, Villa G, Drexler R, Zghaibeh Y, Hausmann F, Hänzelmann S, Karreman MA, Kurz FT, Schröter M, Thier M, Suwala AK, Forsberg-Nilsson K, Acuna C, Saez-Rodriguez J, Abdollahi A, Sahm F, Breckwoldt MO, Suchorska B, Ricklefs FL, Heiland DH, Venkataramani V. Characterizing and targeting glioblastoma neuron-tumor networks with retrograde tracing. Cell 2025; 188:390-411.e36. [PMID: 39644898 DOI: 10.1016/j.cell.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Glioblastomas are invasive brain tumors with high therapeutic resistance. Neuron-to-glioma synapses have been shown to promote glioblastoma progression. However, a characterization of tumor-connected neurons has been hampered by a lack of technologies. Here, we adapted retrograde tracing using rabies viruses to investigate and manipulate neuron-tumor networks. Glioblastoma rapidly integrated into neural circuits across the brain, engaging in widespread functional communication, with cholinergic neurons driving glioblastoma invasion. We uncovered patient-specific and tumor-cell-state-dependent differences in synaptogenic gene expression associated with neuron-tumor connectivity and subsequent invasiveness. Importantly, radiotherapy enhanced neuron-tumor connectivity by increased neuronal activity. In turn, simultaneous neuronal activity inhibition and radiotherapy showed increased therapeutic effects, indicative of a role for neuron-to-glioma synapses in contributing to therapeutic resistance. Lastly, rabies-mediated genetic ablation of tumor-connected neurons halted glioblastoma progression, offering a viral strategy to tackle glioblastoma. Together, this study provides a framework to comprehensively characterize neuron-tumor networks and target glioblastoma.
Collapse
Affiliation(s)
- Svenja K Tetzlaff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ekin Reyhan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolas Layer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Alina Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Schroers
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anton J Faymonville
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Nina Drewa
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Elijah Keifert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Wagner
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Stella J Soyka
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Marc C Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nirosan Sivapalan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Rangel L Pramatarov
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Verena Buchert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Wageringel
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Elena Grabis
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Niklas Wißmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Obada T Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Botz
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jovana Bojcevski
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Berin Boztepe
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas G Scheck
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Sascha Henry Conic
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Maria C Puschhof
- Faculty of Medicine, Heidelberg University, and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Giulia Villa
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Hänzelmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix T Kurz
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Neuroradiology, University Hospital Geneva, Geneva, Switzerland
| | - Manuel Schröter
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Marc Thier
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Abigail K Suwala
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology (B300), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University, and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology (B300), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Henrik Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Li J, Yu G, Wang L, Zhang W, Ke W, Li Y, Liu D, Xie K, Xu Y, Cha C, Guo G, Zhang J. Enriched environment rescues bisphenol A induced anxiety-like behavior and cognitive impairment by modulating synaptic plasticity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117427. [PMID: 39632333 DOI: 10.1016/j.ecoenv.2024.117427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Bisphenol A (BPA) is an exogenous endocrine disruptor in the environmental context, garnering attention for its harmful effects on the nervous system function and behavior. Research indicates that being exposed to BPA may result in anxiety-like behavior and impairment in cognitive function. Enriched environment (EE) is beneficial to improve cognitive behavior, but whether EE can improve BPA-induced behavioral impairment is still unclear. This research explored the possible pathways through which EE alleviates anxiety-like behavior and cognitive impairment in mice exposed to BPA. Except for the control mice, all mice received BPA treatment. After BPA treatment, some mice were housed normally, some housed with EE, and some were given NMDA and AMPA receptor agonists. Our research revealed that exposure to BPA results in anxiety-like behavior in open field and elevated-plus maze experiments. Additionally, spatial and learning memory cognitive impairments were observed in Y-maze and water maze tests. Furthermore, exposure to BPA led to a decrease in both the density and maturity of dendritic spines, as well as a reduction in neurite length and branch numbers. PSD-95, GluA1, and NR2A expression were down-regulated, and excitatory synaptic transmission was decreased. However, EE treatment increased dendrite spine density and maturity, up-regulated PSD-95, GluA1and NR2A expression, enhanced excitatory synaptic transmission, and relieved anxiety-like behavior and cognitive impairment in BPA mice. Furthermore, administering NMDA or AMPA receptor agonists to BPA mice led to an increase in dendritic spine density and maturity, a rise in mEPSC amplitude, as well as a restoration of anxiety-like behavior and cognitive deficits induced by BPA. The findings of this study provide proof that EE has a neuroprotective effect in reducing anxiety-related behavior and cognitive decline caused by BPA.
Collapse
Affiliation(s)
- Jiong Li
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Guangyin Yu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Laijian Wang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Wenjun Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Wenya Ke
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yifei Li
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Danlei Liu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Keman Xie
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yuanyuan Xu
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Caihui Cha
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510120, China
| | - Guoqing Guo
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China
| | - Jifeng Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
3
|
Hu Y, Qi H, Yang J, Wang F, Peng X, Chen X, Zhu X. Wogonin mitigates microglia-mediated synaptic over-pruning and cognitive impairment following epilepsy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156222. [PMID: 39547095 DOI: 10.1016/j.phymed.2024.156222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Epilepsy, a neurological disorder characterized by recurrent abnormal neuronal discharges, leading to brain dysfunction and imposing significant psychological and economic burdens on patients. Microglia, the resident immune cells within the central nervous system (CNS), play a crucial role in maintaining CNS homeostasis. However, activated microglia can excessively prune synapses, exacerbating neuronal damage and cognitive dysfunction following epilepsy. Wogonin, a flavonoid from Scutellaria Baicalensis, has known neuroprotective effects via anti-inflammatory and antioxidative mechanisms, but its impact on microglial activation and synaptic pruning in neurons post-epilepsy remains unclear. METHODS Synaptic density was assessed using presynaptic marker Synaptophysin and postsynaptic marker Psd-95, and microglial phagocytosis was evaluated with fluorescent microspheres. Pilocarpine-induced mouse model of status epilepticus was used to evaluate synaptic density changes of mouse hippocampus following an intraperitoneal injection of wogonin (50 and 100 mg/kg). Memory and cognitive function in mice were subsequently evaluated using the Y-maze, object recognition, and Morris water maze tests. Single-cell sequencing was employed to investigate the underlying causes of microglial state alterations, followed by experimental validation. RESULTS Microglia were transitioned to an activated state post-epilepsy, exhibiting significantly enhanced phagocytic capacity. Correspondingly, levels of synaptophysin and Psd-95 were markedly reduced in neurons. Treatment with wogonin (100 mg/kg) significantly increased neuronal synaptic density and improved learning and memory deficits in epileptic mice. Further investigation revealed that wogonin inhibits the release of pro-inflammatory cytokines and synaptic phagocytosis of microglia by activating the AKT/FoxO1 pathway. CONCLUSIONS Wogonin could alleviate excessive synaptic pruning of epileptic neurons by microglia and improve cognitive dysfunction of epileptic mice via the AKT/FoxO1 pathway.
Collapse
Affiliation(s)
- Yang Hu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Feiyu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Xintao Peng
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Xiang Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Rahman AFMT, Bulbule S, Belayet JB, Benko A, Gottschalk CG, Frick DN, Arnold LA, Hossain MM, Roy A. JRM-28, a Novel HDAC2 Inhibitor, Upregulates Plasticity-Associated Proteins in Hippocampal Neurons and Enhances Morphological Plasticity via Activation of CREB: Implications for Alzheimer's Disease. Cells 2024; 13:1964. [PMID: 39682714 PMCID: PMC11640089 DOI: 10.3390/cells13231964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Enhancement of neuronal plasticity by small-molecule therapeutics protects cognitive skills and also ameliorates progressive neurodegenerative pathologies like Alzheimer's disease (AD) and dementia. One such compound, a novel histone deacetylase 2 (HDAC2) inhibitor named JRM-28, was shown here to enhance dendritic strength, augment spine density, and upregulate post-synaptic neurotransmission in hippocampal neurons. The molecular basis for this effect correlates with JRM-28-induced upregulation of the transcription of cAMP response element-binding protein(CREB), induction of its transcriptional activity, and subsequent stimulation of expressions of CREB-dependent plasticity-associated genes, such as those encoding N-methyl-D-aspartate (NMDA) receptor subunit NR2A and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1. Specifically, JRM-28 stimulated the NMDA- and AMPA-receptor-sensitive ionotropic calcium influx in hippocampal neurons. Interestingly, JRM-28 did not induce NMDA- and AMPA-sensitive calcium influx in hippocampal neurons once the expression of CREB was knocked down by creb siRNA, suggesting the critical role of CREB in JRM-28-mediated upregulation of synaptic plasticity. Finally, JRM-28 upregulated CREB mRNA, CREB-dependent plasticity-associated markers, and ionotropic calcium influx in iPSC-derived AD human neurons, indicating its therapeutic implications in the amelioration of AD pathologies.
Collapse
Affiliation(s)
- A. F. M. Towheedur Rahman
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
| | - Sarojini Bulbule
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| | - Jawad Bin Belayet
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
| | - Anna Benko
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - Carl Gunnar Gottschalk
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| | - David N. Frick
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - M. Mahmun Hossain
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
| | - Avik Roy
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA.; (A.F.M.T.R.); (S.B.); (J.B.B.); (A.B.); (C.G.G.); (D.N.F.); (L.A.A.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Milwaukee Institute for Drug Discovery, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA
- Simmaron Research and Development Laboratory, University of Wisconsin-Milwaukee, Chemistry Building, 2000 E Kenwood Blvd, Suite # 320, Milwaukee, WI 53211, USA
| |
Collapse
|
5
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
6
|
Feng H, Zhang Z, Lyu W, Kong X, Li J, Zhou H, Wei P. The Effects of Appropriate Perioperative Exercise on Perioperative Neurocognitive Disorders: a Narrative Review. Mol Neurobiol 2024; 61:4663-4676. [PMID: 38110646 PMCID: PMC11236851 DOI: 10.1007/s12035-023-03864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Perioperative neurocognitive disorders (PNDs) are now considered the most common neurological complication in older adult patients undergoing surgical procedures. A significant increase exists in the incidence of post-operative disability and mortality in patients with PNDs. However, no specific treatment is still available for PNDs. Recent studies have shown that exercise may improve cognitive dysfunction-related disorders, including PNDs. Neuroinflammation is a key mechanism underlying exercise-induced neuroprotection in PNDs; others include the regulation of gut microbiota and mitochondrial and synaptic function. Maintaining optimal skeletal muscle mass through preoperative exercise is important to prevent the occurrence of PNDs. This review summarizes current clinical and preclinical evidence and proposes potential molecular mechanisms by which perioperative exercise improves PNDs, providing a new direction for exploring exercise-mediated neuroprotective effects on PNDs. In addition, it intends to provide new strategies for the prevention and treatment of PNDs.
Collapse
Affiliation(s)
- Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Zheng Zhang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Haipeng Zhou
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China.
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China.
| |
Collapse
|
7
|
Yang P, Li Y, Qian K, Zhou L, Cheng Y, Wu J, Xu M, Wang T, Yang X, Mu Y, Liu X, Zhang Q. Precise Modulation of Pericyte Dysfunction by a Multifunctional Nanoprodrug to Ameliorate Alzheimer's Disease. ACS NANO 2024; 18:14348-14366. [PMID: 38768086 DOI: 10.1021/acsnano.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Pericyte dysfunction severely undermines cerebrovascular integrity and exacerbates neurodegeneration in Alzheimer's disease (AD). However, pericyte-targeted therapy is a yet-untapped frontier for AD. Inspired by the elevation of vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species (ROS) levels in pericyte lesions, we fabricated a multifunctional nanoprodrug by conjugating the hybrid peptide VLC, a fusion of the VCAM-1 high-affinity peptide VHS and the neuroprotective apolipoprotein mimetic peptide COG1410, to curcumin (Cur) through phenylboronic ester bond (VLC@Cur-NPs) to alleviate complex pericyte-related pathological changes. Importantly, VLC@Cur-NPs effectively homed to pericyte lesions via VLC and released their contents upon ROS stimulation to maximize their regulatory effects. Consequently, VLC@Cur-NPs markedly increased pericyte regeneration to form a positive feedback loop and thus improved neurovascular function and ultimately alleviated memory defects in APP/PS1 transgenic mice. We present a promising therapeutic strategy for AD that can precisely modulate pericytes and has the potential to treat other cerebrovascular diseases.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Lingling Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Xiyu Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yongkang Mu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Xuan Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| |
Collapse
|
8
|
Sun R, Yuan H, Wang J, Zhu K, Xiong Y, Zheng Y, Ni X, Huang M. Rehmanniae Radix Preparata ameliorates behavioral deficits and hippocampal neurodevelopmental abnormalities in ADHD rat model. Front Neurosci 2024; 18:1402056. [PMID: 38872946 PMCID: PMC11169733 DOI: 10.3389/fnins.2024.1402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives Abnormal hippocampal neurodevelopment, particularly in the dentate gyrus region, may be a key mechanism of attention-deficit/hyperactivity disorder (ADHD). In this study, we investigate the effect of the most commonly used Chinese herb for the treatment of ADHD, Rehmanniae Radix Preparata (RRP), on behavior and hippocampal neurodevelopment in spontaneously hypertensive rats (SHR). Methods Behavior tests, including Morris water maze (MWM) test, open field test (OFT) and elevated plus maze (EPM) test were performed to assess the effect of RRP on hyperactive and impulsive behavior. Hippocampal neurodevelopment was characterized by transmission electron microscopy, immunofluorescence, Golgi staining and Nissl staining approaches. Regulatory proteins such as Trkb, CDK5, FGF2/FGFR1 were examined by Western blot analysis. Results The results showed that RRP could effectively control the impulsive and spontaneous behavior and improve the spatial learning and memory ability. RRP significantly reduced neuronal loss and increased the number of hippocampal stem cells, and promoted synaptic plasticity. In addition, FGF/FGFR signaling was upregulated after RRP treatment. Conclusion RRP can effectively reduce impulsive and spontaneous behavior and ameliorate hippocampal neurodevelopmental abnormalities in ADHD rat model.
Collapse
Affiliation(s)
- Ruxin Sun
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Haixia Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Kanglin Zhu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yu Xiong
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yabei Zheng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinqiang Ni
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Min Huang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
9
|
Pan K, Jinnah HA, Hess EJ, Smith Y, Villalba RM. Ultrastructural analysis of nigrostriatal dopaminergic terminals in a knockin mouse model of DYT1 dystonia. Eur J Neurosci 2024; 59:1407-1427. [PMID: 38123503 DOI: 10.1111/ejn.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023]
Abstract
DYT1 dystonia is associated with decreased striatal dopamine release. In this study, we examined the possibility that ultrastructural changes of nigrostriatal dopamine terminals could contribute to this neurochemical imbalance using a serial block face/scanning electron microscope (SBF/SEM) and three-dimensional reconstruction to analyse striatal tyrosine hydroxylase-immunoreactive (TH-IR) terminals and their synapses in a DYT1(ΔE) knockin (DYT1-KI) mouse model of DYT1 dystonia. Furthermore, to study possible changes in vesicle packaging capacity of dopamine, we used transmission electron microscopy to assess the synaptic vesicle size in striatal dopamine terminals. Quantitative comparative analysis of 80 fully reconstructed TH-IR terminals in the WT and DYT1-KI mice indicate (1) no significant difference in the volume of TH-IR terminals; (2) no major change in the proportion of axo-spinous versus axo-dendritic synapses; (3) no significant change in the post-synaptic density (PSD) area of axo-dendritic synapses, while the PSDs of axo-spinous synapses were significantly smaller in DYT1-KI mice; (4) no significant change in the contact area between TH-IR terminals and dendritic shafts or spines, while the ratio of PSD area/contact area decreased significantly for both axo-dendritic and axo-spinous synapses in DYT1-KI mice; (5) no significant difference in the mitochondria volume; and (6) no significant difference in the synaptic vesicle area between the two groups. Altogether, these findings suggest that abnormal morphometric changes of nigrostriatal dopamine terminals and their post-synaptic targets are unlikely to be a major source of reduced striatal dopamine release in DYT1 dystonia.
Collapse
Affiliation(s)
- Ke Pan
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Physical Therapy & Human Movement Sciences, Northwestern University, Chicago, Illinois, USA
| | - Hyder A Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
- Department of Human Genetics and Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Ellen J Hess
- Department of Neurology, Emory University, Atlanta, Georgia, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA
| | - Yoland Smith
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Rosa M Villalba
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Hashimoto J, Fujita E, Tanimoto K, Kondo S, Matsumoto-Miyai K. Effects of Cardiac Glycoside Digoxin on Dendritic Spines and Motor Learning Performance in Mice. Neuroscience 2024; 541:77-90. [PMID: 38278474 DOI: 10.1016/j.neuroscience.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Synapse formation following the generation of postsynaptic dendritic spines is essential for motor learning and functional recovery after brain injury. The C-terminal fragment of agrin cleaved by neurotrypsin induces dendritic spine formation in the adult hippocampus. Since the α3 subunit of sodium-potassium ATPase (Na/K ATPase) is a neuronal receptor for agrin in the central nervous system, cardiac glycosides might facilitate dendritic spine formation and subsequent improvements in learning. This study investigated the effects of cardiac glycoside digoxin on dendritic spine turnover and learning performance in mice. Golgi-Cox staining revealed that intraperitoneal injection of digoxin less than its IC50 in the brain significantly increased the density of long spines (≥2 µm) in the cerebral cortex in wild-type mice and neurotrypsin-knockout (NT-KO) mice showing impairment of activity-dependent spine formation. Although the motor learning performance of NT-KO mice was significantly lower than control wild-type mice under the control condition, low doses of digoxin enhanced performance to a similar degree in both strains. In NT-KO mice, lower digoxin doses equivalent to clinical doses also significantly improved motor learning performance. These data suggest that lower doses of digoxin could modify dendritic spine formation or recycling and facilitate motor learning in compensation for the disruption of neurotrypsin-agrin pathway.
Collapse
Affiliation(s)
- Junichi Hashimoto
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Erika Fujita
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Keisuke Tanimoto
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Suzuo Kondo
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Kazumasa Matsumoto-Miyai
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan.
| |
Collapse
|
11
|
Thongsopha C, Chaiwut T, Thaweekhotr P, Sudwan P, Phasukdee N, Quiggins R. Aegle marmelos (L.) Leaf Extract Improves Symptoms of Memory Loss Induced by Scopolamine in Rats. Foods 2024; 13:627. [PMID: 38397604 PMCID: PMC10888157 DOI: 10.3390/foods13040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease that results in memory impairment. Aegle marmelos (L.) Correa (AM) is used as a traditional medicine. AM leaves have the potential to inhibit acetylcholinesterase activity. This study used scopolamine to induce AD in rats. The aim of this study was to investigate the effects of AM leaf extract using this model. Motor and memory functions were tested by the motor activity and Morris water maze (MWM) tests, respectively. The density of the synaptophysin and dendritic spines in the CA1 were detected by immunofluorescence and Golgi impregnation, respectively. The hippocampal histology was reviewed by H&E staining. After the treatment, the latency times in the MWM tests of the AD groups reduced, while the motor activities showed no difference. The density of the synaptophysin of the AD groups increased after the treatments, and that of the dendritic spines also increased in all AD groups post-treatment. The hippocampal tissue also recovered. AM leaf extract can improve cognitive impairment in AD models by maintaining the presynaptic vesicle proteins and dendritic spines in a dose-dependent manner.
Collapse
Affiliation(s)
- Chanida Thongsopha
- The Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.S.); (N.P.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanasit Chaiwut
- The Department of General Education, Kanchanabhishek Institute of medical and Public Health Technology, Nonthaburi 11150, Thailand;
| | - Pornnarez Thaweekhotr
- The School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Paiwan Sudwan
- The Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.S.); (N.P.)
| | - Noppadol Phasukdee
- The Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.S.); (N.P.)
| | - Ranida Quiggins
- The Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.T.); (P.S.); (N.P.)
| |
Collapse
|
12
|
Wu R, Liu Y, Zhang F, Dai S, Xue X, Peng C, Li Y, Li Y. Protective mechanism of Paeonol on central nervous system. Phytother Res 2024; 38:470-488. [PMID: 37872838 DOI: 10.1002/ptr.8049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Cerebrovascular diseases involve neuronal damage, resulting in degenerative neuropathy and posing a serious threat to human health. The discovery of effective drug components from natural plants and the study of their mechanism are a research idea different from chemical synthetic medicines. Paeonol is the main active component of traditional Chinese medicine Paeonia lactiflora Pall. It widely exists in many medicinal plants and has pharmacological effects such as anti-atherosclerosis, antiplatelet aggregation, anti-oxidation, and anti-inflammatory, which keeps generally used in the treatment of cardiovascular and cerebrovascular diseases. Based on the therapeutic effects of Paeonol for cardiovascular and cerebrovascular diseases, this article reviewed the pharmacological effects of Paeonol in Alzheimer's disease, Parkinson's disease, stroke, epilepsy, diabetes encephalopathy, and other neurological diseases, providing a reference for the research of the mechanism of Paeonol in central nervous system diseases.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Bangar A, Khan H, Kaur A, Dua K, Singh TG. Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117153. [PMID: 37717842 DOI: 10.1016/j.jep.2023.117153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is one of the leading causes of death and disability. The only FDA-approved therapy for treating stroke is tissue plasminogen activator (tPA), exhibiting a short therapeutic window. Due to this reason, only a small number of patients can be benefitted in this critical period. In addition, the use of endovascular interventions may reverse vessel occlusion more effectively and thus help further improve outcomes in experimental stroke. During recovery of blood flow after ischemia, patients experience cognitive, behavioral, affective, emotional, and electrophysiological changes. Therefore, it became the need for an hour to discover a novel strategy for managing stroke. The drug discovery process has focused on developing herbal medicines with neuroprotective effects via modulating neuroplasticity. AIM OF THE STUDY We gather and highlight the most essential traditional understanding of therapeutic plants and their efficacy in cerebral ischemia-reperfusion injury. In addition, we provide a concise summary and explanation of herbal drugs and their role in improving neuroplasticity. We review the pharmacological activity of polyherbal formulations produced from some of the most frequently referenced botanicals for the treatment of cerebral ischemia damage. MATERIALS AND METHODS A systematic literature review of bentham, scopus, pubmed, medline, and embase (elsevier) databases was carried out with the help of the keywords like neuroplasticity, herbal drugs, neural progenitor cells, neuroprotection, stem cells. The review was conducted using the above keywords to understand the therapeutic and mechanistic role of herbal neuroprotective agents on neuroplasticity in cerebral ischemic-reperfusion injury. RESULTS Neuroplasticity emerged as an alternative to improve recovery and management after cerebral ischemic reperfusion injury. Neuroplasticity is a physiological process throughout one's life in response to any stimuli and environment. Traditional herbal medicines have been established as an adjuvant to stroke therapy since they were used from ancient times and provided promising effects as an adjuvant to experimental stroke. The plants and phytochemicals such as Curcuma longa L., Moringa oliefera Lam, Panax ginseng C.A. Mey., and Rehmannia glutinosa (Gaertn.) DC., etc., have shown promising effects in improving neuroplasticity after experimental stroke. Such effects occur by modulation of various molecular signalling pathways, including PI3K/Akt, BDNF/CREB, JAK/STAT, HIF-1α/VEGF, etc. CONCLUSIONS: Here, we gave a perspective on plant species that have shown neuroprotective effects and can show promising results in promoting neuroplasticity with specific targets after cerebral ischemic reperfusion injury. In this review, we provide the complete detail of studies conducted on the role of herbal drugs in improving neuroplasticity and the signaling pathway involved in the recovery and management of experimental stroke.
Collapse
Affiliation(s)
- Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | |
Collapse
|
14
|
Di Credico A, Weiss A, Corsini M, Gaggi G, Ghinassi B, Wilbertz JH, Di Baldassarre A. Machine learning identifies phenotypic profile alterations of human dopaminergic neurons exposed to bisphenols and perfluoroalkyls. Sci Rep 2023; 13:21907. [PMID: 38081991 PMCID: PMC10713827 DOI: 10.1038/s41598-023-49364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the loss of midbrain dopaminergic neurons. Endocrine disrupting chemicals (EDCs) are active substances that interfere with hormonal signaling. Among EDCs, bisphenols (BPs) and perfluoroalkyls (PFs) are chemicals leached from plastics and other household products, and humans are unavoidably exposed to these xenobiotics. Data from animal studies suggest that EDCs exposure may play a role in PD, but data about the effect of BPs and PFs on human models of the nervous system are lacking. Previous studies demonstrated that machine learning (ML) applied to microscopy data can classify different cell phenotypes based on image features. In this study, the effect of BPs and PFs at different concentrations within the real-life exposure range (0.01, 0.1, 1, and 2 µM) on the phenotypic profile of human stem cell-derived midbrain dopaminergic neurons (mDANs) was analyzed. Cells exposed for 72 h to the xenobiotics were stained with neuronal markers and evaluated using high content microscopy yielding 126 different phenotypic features. Three different ML models (LDA, XGBoost and LightGBM) were trained to classify EDC-treated versus control mDANs. EDC treated mDANs were identified with high accuracies (0.88-0.96). Assessment of the phenotypic feature contribution to the classification showed that EDCs induced a significant increase of alpha-synuclein (αSyn) and tyrosine hydroxylase (TH) staining intensity within the neurons. Moreover, microtubule-associated protein 2 (MAP2) neurite length and branching were significantly diminished in treated neurons. Our study shows that human mDANs are adversely impacted by exposure to EDCs, causing their phenotype to shift and exhibit more characteristics of PD. Importantly, ML-supported high-content imaging can identify concrete but subtle subcellular phenotypic changes that can be easily overlooked by visual inspection alone and that define EDCs effects in mDANs, thus enabling further pathological characterization in the future.
Collapse
Affiliation(s)
- Andrea Di Credico
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | | | - Massimo Corsini
- Dipartimento Di Neuroscienze Umane, "Sapienza" University of Rome, Chieti, Italy
| | - Giulia Gaggi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | - Barbara Ghinassi
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| | | | - Angela Di Baldassarre
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies, and Technology (CAST), 66100, Chieti, Italy
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
- UdATech Lab Center (UdATech), 66100, Chieti, Italy
| |
Collapse
|
15
|
Frederiksen SD, Wicki-Stordeur LE, Swayne LA. Overlap in synaptic neurological condition susceptibility pathways and the neural pannexin 1 interactome revealed by bioinformatics analyses. Channels (Austin) 2023; 17:2253102. [PMID: 37807670 PMCID: PMC10563626 DOI: 10.1080/19336950.2023.2253102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Many neurological conditions exhibit synaptic impairments, suggesting mechanistic convergence. Additionally, the pannexin 1 (PANX1) channel and signaling scaffold is linked to several of these neurological conditions and is an emerging regulator of synaptic development and plasticity; however, its synaptic pathogenic contributions are relatively unexplored. To this end, we explored connections between synaptic neurodevelopmental disorder and neurodegenerative disease susceptibility genes discovered by genome-wide association studies (GWASs), and the neural PANX1 interactome (483 proteins) identified from mouse Neuro2a (N2a) cells. To identify shared susceptibility genes, we compared synaptic suggestive GWAS candidate genes amongst autism spectrum disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. To further probe PANX1 signaling pathways at the synapse, we used bioinformatics tools to identify PANX1 interactome signaling pathways and protein-protein interaction clusters. To shed light on synaptic disease mechanisms potentially linking PANX1 and these four neurological conditions, we performed additional cross-analyses between gene ontologies enriched for the PANX1 synaptic and disease-susceptibility gene sets. Finally, to explore the regional specificity of synaptic PANX1-neurological condition connections, we identified brain region-specific elevations of synaptic PANX1 interactome and GWAS candidate gene set transcripts. Our results confirm considerable overlap in risk genes for autism spectrum disorders and schizophrenia and identify potential commonalities in genetic susceptibility for neurodevelopmental disorders and neurodegenerative diseases. Our findings also pinpointed novel putative PANX1 links to synaptic disease-associated pathways, such as regulation of vesicular trafficking and proteostasis, warranting further validation.
Collapse
Affiliation(s)
| | | | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
16
|
Huang YQ, Gu X, Chen X, Du YT, Chen BC, Sun FY. BMECs Ameliorate High Glucose-Induced Morphological Aberrations and Synaptic Dysfunction via VEGF-Mediated Modulation of Glucose Uptake in Cortical Neurons. Cell Mol Neurobiol 2023; 43:3575-3592. [PMID: 37418138 PMCID: PMC10477237 DOI: 10.1007/s10571-023-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023]
Abstract
It has been demonstrated that diabetes cause neurite degeneration in the brain and cognitive impairment and neurovascular interactions are crucial for maintaining brain function. However, the role of vascular endothelial cells in neurite outgrowth and synaptic formation in diabetic brain is still unclear. Therefore, present study investigated effects of brain microvascular endothelial cells (BMECs) on high glucose (HG)-induced neuritic dystrophy using a coculture model of BMECs with neurons. Multiple immunofluorescence labelling and western blot analysis were used to detect neurite outgrowth and synapsis formation, and living cell imaging was used to detect uptake function of neuronal glucose transporters. We found cocultured with BMECs significantly reduced HG-induced inhibition of neurites outgrowth (including length and branch formation) and delayed presynaptic and postsynaptic development, as well as reduction of neuronal glucose uptake capacity, which was prevented by pre-treatment with SU1498, a vascular endothelial growth factor (VEGF) receptor antagonist. To analyse the possible mechanism, we collected BMECs cultured condition medium (B-CM) to treat the neurons under HG culture condition. The results showed that B-CM showed the same effects as BMEC on HG-treated neurons. Furthermore, we observed VEGF administration could ameliorate HG-induced neuronal morphology aberrations. Putting together, present results suggest that cerebral microvascular endothelial cells protect against hyperglycaemia-induced neuritic dystrophy and restorate neuronal glucose uptake capacity by activation of VEGF receptors and endothelial VEGF release. This result help us to understand important roles of neurovascular coupling in pathogenesis of diabetic brain, providing a new strategy to study therapy or prevention for diabetic dementia. Hyperglycaemia induced inhibition of neuronal glucose uptake and impaired to neuritic outgrowth and synaptogenesis. Cocultured with BMECs/B-CM and VEGF treatment protected HG-induced inhibition of glucose uptake and neuritic outgrowth and synaptogenesis, which was antagonized by blockade of VEGF receptors. Reduction of glucose uptake may further deteriorate impairment of neurites outgrowth and synaptogenesis.
Collapse
Affiliation(s)
- Yu-Qi Huang
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Gu
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yi-Ting Du
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bin-Chi Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Feng-Yan Sun
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China.
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
17
|
Zhou F, Ouyang L, Xie J, Liu S, Li Q, Yang S, Li J, Su R, Rao S, Yan L, Wan X, Cheng H, Liu P, Li L, Zhu Y, Du G, Feng C, Fan G. Co-exposure to low-dose lead, cadmium, and mercury promotes memory deficits in rats: Insights from the dynamics of dendritic spine pruning in brain development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115425. [PMID: 37660527 DOI: 10.1016/j.ecoenv.2023.115425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Lead (Pb), cadmium (Cd), and mercury (Hg) are environmentally toxic heavy metals that can be simultaneously detected at low levels in the blood of the general population. Although our previous studies have demonstrated neurodevelopmental toxicity upon co-exposure to these heavy metals at these low levels, the precise mechanisms remain largely unknown. Dendritic spines are the structural foundation of memory and undergo significant dynamic changes during development. This study focused on the dynamics of dendritic spines during brain development following Pb, Cd, and Hg co-exposure-induced memory impairment. First, the dynamic characteristics of dendritic spines in the prefrontal cortex were observed throughout the life cycle of normal rats. We observed that dendritic spines increased rapidly from birth to their peak value at weaning, followed by significant pruning and a decrease during adolescence. Dendritic spines tended to be stable until their loss in old age. Subsequently, a rat model of low-dose Pb, Cd, and Hg co-exposure from embryo to adolescence was established. The results showed that exposure to low doses of heavy metals equivalent to those detected in the blood of the general population impaired spatial memory and altered the dynamics of dendritic spine pruning from weaning to adolescence. Proteomic analysis of brain and blood samples suggested that differentially expressed proteins upon heavy metal exposure were enriched in dendritic spine-related cytoskeletal regulation and axon guidance signaling pathways and that cofilin was enriched in both of these pathways. Further experiments confirmed that heavy metal exposure altered actin cytoskeleton dynamics and disturbed the dendritic spine pruning-related LIM domain kinase 1-cofilin pathway in the rat prefrontal cortex. Our findings demonstrate that low-dose Pb, Cd, and Hg co-exposure may promote memory impairment by perturbing dendritic spine dynamics through dendritic spine pruning-related signaling pathways.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Sisi Liu
- Jiangxi Academy of Medical Science, Nanchang 330006, PR China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jiajun Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Rui Su
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingyu Yan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Xin Wan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Hui Cheng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Peishan Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingling Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Yanhui Zhu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
18
|
Ge J, Tan R, Gao Q, Li R, Xu P, Song H, Wang S, Wan Y, Zhou L. A Multifunctional Nanocarrier System for Highly Efficient and Targeted Delivery of Ketamine to NMDAR Sites for Improved Treatment of Depression. Adv Healthc Mater 2023; 12:e2300154. [PMID: 37031162 DOI: 10.1002/adhm.202300154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Indexed: 04/10/2023]
Abstract
Ketamine (KA), commonly used as an anesthetic, is now widely studied as an antidepressant for the treatment of depression. However, due to its side effects, such as addiction and cognitive impairment, the dosage and frequency of (S)-ketamine approved by the FDA for the treatment of refractory depression is very low, which limits its efficacy. Here, a new multifunctional nanocarrier system (AC-RM@HA-MS) with specific targeting capabilities is developed to improve the efficacy of KA treatment. KA-loaded NPs (AC-RM@HA-MS-KA) are constructed with a multilayer core-shell structure. KA-loaded mesoporous silica NPs are prepared, conjugated with hyaluronic acid (HA) as pore gatekeepers, and sheathed with an RBC-membrane (RM) for camouflage. Finally, the surface is tagged with bifunctional peptides (Ang-2-Con-G, AC) to achieve specific targeting. One peptide (Ang-2) is acted as a guide to facilitate the crossing of the blood-brain barrier (BBB), while the other (Con-G) is functioned as a ligand for the targeted delivery of KA to the N-methyl-D-aspartate receptor sites. Animal experiments reveal that AC-RM@HA-MS-KA NPs effectively cross the BBB and directionally accumulate in the curing areas, thereby alleviating the depressive symptoms and improving the cognitive functions of depressed mice. After treatment, the depressed mice almost completely return to normal without obvious symptoms of addiction.
Collapse
Affiliation(s)
- Jing Ge
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ronghua Tan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qian Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Rui Li
- School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Pengxin Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hang Song
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shenqi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lei Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
19
|
Hu Y, Cao X, Zhao Y, Jin Y, Li F, Xu B, Zhao M, Chen Y, Du B, Sun Y, Zhang L. The Function of Spag6 to Repair Brain Edema Damage After Cerebral Ischemic Stroke-reperfusion. Neuroscience 2023; 522:132-149. [PMID: 37169167 DOI: 10.1016/j.neuroscience.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Sperm associated antigen 6 (Spag6) is the PF16 homolog of Chlamydomonas and participates in the regulation of cilia movement. Studies have shown that Spag6 is expressed in the brain, and its loss will lead to cerebral edema caused by a defect in motor cilium function in ependymal cells. However, it has not been reported whether the limited or extensive cerebral edema resulting from ischemic strokes is related to the expression regulation of Spag6. Therefore, this study aimed to investigate the effect and related mechanism of Spag6 in alleviating Cerebral Ischemic stroke-reperfusion (CIS/R) damage. Our experimental results showed that Spag6 overexpression alleviated CIS/R-mediated motor cilia structural disorder, improved cerebral edema, inhibited nerve injuries in rats with cerebral ischemia, and alleviated synaptic and dendritic spinal injuries by regulating the expressions of synaptic-related proteins such as CaMKII, PSD95, and CREB. Based on significant changes in PI3K/AKT-mTOR signaling pathway activity after CIS/R determination, we determined that Spag6 regulates the abnormal expression of CIS/R-induced inflammatory factors NF-κB, NLRP3, IL-10, and the autophagy-related proteins Beclin-1, LC3, and P62 by activating the PI3K/AKT-mTOR signaling pathway. This inhibits inflammation and autophagy in the brain tissue. In summary, this study revealed that Spag6 alleviates brain edema damage after CIS/R by maintaining the structural function of the motor cilium, regulating the PI3K/AKT-mTOR signaling pathway, and inhibiting inflammation and autophagy reaction.
Collapse
Affiliation(s)
- Yiming Hu
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaolu Cao
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yujie Zhao
- Qiaoxi Center for Disease Control and Prevention, Shijiazhuang, China
| | - Yang Jin
- Department of Biology, College of Arts and Science, New York University, New York, United States
| | - Fengqin Li
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bingmei Xu
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Minghui Zhao
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yajun Chen
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bingxue Du
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yu Sun
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ling Zhang
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
20
|
Pchitskaya E, Vasiliev P, Smirnova D, Chukanov V, Bezprozvanny I. SpineTool is an open-source software for analysis of morphology of dendritic spines. Sci Rep 2023; 13:10561. [PMID: 37386071 PMCID: PMC10310755 DOI: 10.1038/s41598-023-37406-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
Dendritic spines form most excitatory synaptic inputs in neurons and these spines are altered in many neurodevelopmental and neurodegenerative disorders. Reliable methods to assess and quantify dendritic spines morphology are needed, but most existing methods are subjective and labor intensive. To solve this problem, we developed an open-source software that allows segmentation of dendritic spines from 3D images, extraction of their key morphological features, and their classification and clustering. Instead of commonly used spine descriptors based on numerical metrics we used chord length distribution histogram (CLDH) approach. CLDH method depends on distribution of lengths of chords randomly generated within dendritic spines volume. To achieve less biased analysis, we developed a classification procedure that uses machine-learning algorithm based on experts' consensus and machine-guided clustering tool. These approaches to unbiased and automated measurements, classification and clustering of synaptic spines that we developed should provide a useful resource for a variety of neuroscience and neurodegenerative research applications.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.
| | - Peter Vasiliev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, St. Petersburg, Russia, 195251
| | - Daria Smirnova
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, St. Petersburg, Russia, 195251
| | - Vyacheslav Chukanov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, St. Petersburg, Russia, 195251
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
21
|
Tan S, Mo X, Qin H, Dong B, Zhou J, Long C, Yang L. Biocytin-Labeling in Whole-Cell Recording: Electrophysiological and Morphological Properties of Pyramidal Neurons in CYLD-Deficient Mice. Molecules 2023; 28:molecules28104092. [PMID: 37241833 DOI: 10.3390/molecules28104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Biocytin, a chemical compound that is an amide formed from the vitamin biotin and the amino acid L-lysine, has been used as a histological dye to stain nerve cells. Electrophysiological activity and morphology are two key characteristics of neurons, but revealing both the electrophysiological and morphological properties of the same neuron is challenging. This article introduces a detailed and easy-to-operate procedure for single-cell labeling in combination with whole-cell patch-clamp recording. Using a recording electrode filled with a biocytin-containing internal solution, we demonstrate the electrophysiological and morphological characteristics of pyramidal (PNs), medial spiny (MSNs) and parvalbumin neurons (PVs) in brain slices, where the electrophysiological and morphological properties of the same individual cell are elucidated. We first introduce a protocol for whole-cell patch-clamp recording in various neurons, coupled with the intracellular diffusion of biocytin delivered by the glass capillary of the recording electrode, followed by a post hoc procedure to reveal the architecture and morphology of biocytin-labeled neurons. An analysis of action potentials (APs) and neuronal morphology, including the dendritic length, number of intersections, and spine density of biocytin-labeled neurons, were performed using ClampFit and Fiji Image (ImageJ), respectively. Next, to take advantage of the techniques introduced above, we uncovered defects in the APs and the dendritic spines of PNs in the primary motor cortex (M1) of deubiquitinase cylindromatosis (CYLD) knock-out (Cyld-/-) mice. In summary, this article provides a detailed methodology for revealing the morphology as well as the electrophysiological activity of a single neuron that will have many applications in neurobiology.
Collapse
Affiliation(s)
- Shuyi Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiuping Mo
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huihui Qin
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Binbin Dong
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiankui Zhou
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
22
|
Kaur P, Attri S, Singh D, Rashid F, Singh S, Kumar A, Kaur H, Bedi N, Arora S. Neuromodulatory effect of 4-(methylthio)butyl isothiocyanate against 3-nitropropionic acid induced oxidative impairments in human dopaminergic SH-SY5Y cells via BDNF/CREB/TrkB pathway. Sci Rep 2023; 13:4461. [PMID: 36932199 PMCID: PMC10023800 DOI: 10.1038/s41598-023-31716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Mitochondrial impairment, energetic crisis and elevated oxidative stress have been demonstrated to play a pivotal role in the pathological processes of Huntington's disease (HD). 3-Nitropropionic acid (3-NPA) is a natural neurotoxin that mimics the neurological dysfunctions, mitochondrial impairments and oxidative imbalance of HD. The current investigation was undertaken to demonstrate the neuroprotective effect of 4-(methylthio)butyl isothiocyanate (4-MTBITC) against the 3-NPA induced neurotoxicity in human dopaminergic SH-SY5Y cells. The experimental evidence of oxidative DNA damage by 3-NPA was elucidated by pBR322 DNA nicking assay. In contrast, the 4-MTBITC considerably attenuated the DNA damage, suggesting its free radical scavenging action against 3-NPA and Fenton's reagent. The dose and time-dependent increase of 3-NPA revealed its neurotoxic dose as 0.5 mM after 24 h of treatment of SH-SY5Y cells in MTT assay. In order to determine the optimal dose at which 4-MTBITC protects cell death, the 3-NPA (IC50) induced cells were pretreated with different concentrations of 4-MTBITC for 1 h. The neuroprotective dose of 4-MTBITC against 3-NPA was found to be 0.25 μM. Additionally, the elevated GSH levels in cells treated with 4-MTBITC indicate its propensity to eliminate reactive species generated as a result of 3-NPA-induced mitochondrial dysfunction. Likewise, it was determined through microscopic and flow cytometric experiments that 3-NPA's induced overproduction of reactive species and a decline in mitochondrial membrane potential (MMP) could be efficiently prevented by pre-treating cells with 4-MTBITC. To elucidate the underlying molecular mechanism, the RT-qPCR analysis revealed that the pre-treatment of 4-MTBITC effectively protected neuronal cells against 3-NPA-induced cell death by preventing Caspase-3 activation, Brain-derived neurotrophic factor (BDNF) upregulation, activation of cAMP response element-binding protein (CREB) and Nrf2 induction. Together, our findings lend credence to the idea that pre-treatment with 4-MTBITC reduced 3-NPA-induced neurotoxicity by lowering redox impairment, apoptotic state, and mitochondrial dysfunction. The present work, in conclusion, presented the first proof that the phytoconstituent 4-MTBITC supports the antioxidant system, BDNF/TrkB/CREB signaling, and neuronal survival in dopaminergic SH-SY5Y cells against 3-NPA-induced oxidative deficits.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA.
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harjot Kaur
- Department of Biotechnology, Punjabi University, Patiala, 147001, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
23
|
Choi J, Lee SE, Lee Y, Cho E, Chang S, Jeong WK. DXplorer: A Unified Visualization Framework for Interactive Dendritic Spine Analysis Using 3D Morphological Features. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1424-1437. [PMID: 34591770 DOI: 10.1109/tvcg.2021.3116656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Dendritic spines are dynamic, submicron-scale protrusions on neuronal dendrites that receive neuronal inputs. Morphological changes in the dendritic spine often reflect alterations in physiological conditions and are indicators of various neuropsychiatric conditions. However, owing to the highly dynamic and heterogeneous nature of spines, accurate measurement and objective analysis of spine morphology are major challenges in neuroscience research. Most conventional approaches for analyzing dendritic spines are based on two-dimensional (2D) images, which barely reflect the actual three-dimensional (3D) shapes. Although some recent studies have attempted to analyze spines with various 3D-based features, it is still difficult to objectively categorize and analyze spines based on 3D morphology. Here, we propose a unified visualization framework for an interactive 3D dendritic spine analysis system, DXplorer, that displays 3D rendering of spines and plots the high-dimensional features extracted from the 3D mesh of spines. With this system, users can perform the clustering of spines interactively and explore and analyze dendritic spines based on high-dimensional features. We propose a series of high-dimensional morphological features extracted from a 3D mesh of dendritic spines. In addition, an interactive machine learning classifier with visual exploration and user feedback using an interactive 3D mesh grid view ensures a more precise classification based on the spine phenotype. A user study and two case studies were conducted to quantitatively verify the performance and usability of the DXplorer. We demonstrate that the system performs the entire analytic process effectively and provides high-quality, accurate, and objective analysis.
Collapse
|
24
|
Tan SY, Jiang JX, Huang HX, Mo XP, Feng JR, Chen Y, Yang L, Long C. Neural mechanism underlies CYLD modulation of morphology and synaptic function of medium spiny neurons in dorsolateral striatum. Front Mol Neurosci 2023; 16:1107355. [PMID: 36846565 PMCID: PMC9945542 DOI: 10.3389/fnmol.2023.1107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Although the deubiquitinase cylindromatosis (CYLD), an abundant protein in the postsynaptic density fraction, plays a crucial role in mediating the synaptic activity of the striatum, the precise molecular mechanism remains largely unclear. Here, using a Cyld-knockout mouse model, we demonstrate that CYLD regulates dorsolateral striatum (DLS) neuronal morphology, firing activity, excitatory synaptic transmission, and plasticity of striatal medium spiny neurons via, likely, interaction with glutamate receptor 1 (GluA1) and glutamate receptor 2 (GluA2), two key subunits of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). CYLD deficiency reduces levels of GluA1 and GluA2 surface protein and increases K63-linked ubiquitination, resulting in functional impairments both in AMPAR-mediated excitatory postsynaptic currents and in AMPAR-dependent long-term depression. The results demonstrate a functional association of CYLD with AMPAR activity, which strengthens our understanding of the role of CYLD in striatal neuronal activity.
Collapse
Affiliation(s)
- Shu-Yi Tan
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jin-Xiang Jiang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hui-Xian Huang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiu-Ping Mo
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jing-Ru Feng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Chen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
25
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Álvarez A, Gutiérrez D, Chandía-Cristi A, Yáñez M, Zanlungo S. c-Abl kinase at the crossroads of healthy synaptic remodeling and synaptic dysfunction in neurodegenerative diseases. Neural Regen Res 2023; 18:237-243. [PMID: 35900397 PMCID: PMC9396477 DOI: 10.4103/1673-5374.346540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Our ability to learn and remember depends on the active formation, remodeling, and elimination of synapses. Thus, the development and growth of synapses as well as their weakening and elimination are essential for neuronal rewiring. The structural reorganization of synaptic complexes, changes in actin cytoskeleton and organelle dynamics, as well as modulation of gene expression, determine synaptic plasticity. It has been proposed that dysregulation of these key synaptic homeostatic processes underlies the synaptic dysfunction observed in many neurodegenerative diseases. Much is known about downstream signaling of activated N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoazolepropionate receptors; however, other signaling pathways can also contribute to synaptic plasticity and long-lasting changes in learning and memory. The non-receptor tyrosine kinase c-Abl (ABL1) is a key signal transducer of intra and extracellular signals, and it shuttles between the cytoplasm and the nucleus. This review focuses on c-Abl and its synaptic and neuronal functions. Here, we discuss the evidence showing that the activation of c-Abl can be detrimental to neurons, promoting the development of neurodegenerative diseases. Nevertheless, c-Abl activity seems to be in a pivotal balance between healthy synaptic plasticity, regulating dendritic spines remodeling and gene expression after cognitive training, and synaptic dysfunction and loss in neurodegenerative diseases. Thus, c-Abl genetic ablation not only improves learning and memory and modulates the brain genetic program of trained mice, but its absence provides dendritic spines resiliency against damage. Therefore, the present review has been designed to elucidate the common links between c-Abl regulation of structural changes that involve the actin cytoskeleton and organelles dynamics, and the transcriptional program activated during synaptic plasticity. By summarizing the recent discoveries on c-Abl functions, we aim to provide an overview of how its inhibition could be a potentially fruitful treatment to improve degenerative outcomes and delay memory loss.
Collapse
|
27
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
28
|
Kishimoto T, Masui K, Minoshima W, Hosokawa C. Recent advances in optical manipulation of cells and molecules for biological science. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Pentylenetetrazol-induced seizures are followed by a reduction in the multiunitary activity of hippocampal CA1 pyramidal neurons in adult rats. Epilepsy Behav 2022; 137:108922. [PMID: 36279807 DOI: 10.1016/j.yebeh.2022.108922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
Pentylenetetrazol (PTZ) blocks the inhibitory action of GABA, triggering a Glu-mediated hyperexcitation of the dendritic spines in hippocampal CA1 pyramidal neurons that leads to the generation of epileptiform seizures. The aim of this work was to determine the effect of PTZ on the electrical activity of the hippocampal pyramidal neurons in male rats. Bipolar electrodes were implanted stereotaxically in the right and left hippocampal CA1 fields of adults, and PTZ (65 mg/kg) was administered i.p. Simultaneous recordings of the field activity and the firing rate (multiunitary activity, MUA) were analyzed at 10, 20, and 30 min post-administration of PTZ. Only rats that presented tonic-clonic seizures during the first 1-5 min after PTZ treatment were included in the study. The recordings of the field activity were analyzed in 4 frequency bands. In both the right and left hippocampal CA1 fields, the relative power corresponding to the slow waves (4-7 Hz) increased, while in the bands 13-30 Hz and 31-50 Hz, it decreased at 10, 20, and 30 min post-PTZ. MUA recordings were analyzed at four levels. The highest levels corresponded to larger amplitudes of the action potentials in the pyramidal neurons. The firing rates of the PTZ-treated rats did not differ from baseline but presented a significant decrement at 10, 20, and 30 min post-PTZ. The decreased firing rate of the hippocampal CA1 pyramidal neurons after PTZ treatment could be associated with plastic changes of dendritic spines along with some microenvironmental adaptations at synaptic level, after neuronal PTZ-mediated hyperexcitation.
Collapse
|
30
|
Speranza L, Filiz KD, Goebel S, Perrone-Capano C, Pulcrano S, Volpicelli F, Francesconi A. Combined DiI and Antibody Labeling Reveals Complex Dysgenesis of Hippocampal Dendritic Spines in a Mouse Model of Fragile X Syndrome. Biomedicines 2022; 10:2692. [PMID: 36359212 PMCID: PMC9687937 DOI: 10.3390/biomedicines10112692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Structural, functional, and molecular alterations in excitatory spines are a common hallmark of many neurodevelopmental disorders including intellectual disability and autism. Here, we describe an optimized methodology, based on combined use of DiI and immunofluorescence, for rapid and sensitive characterization of the structure and composition of spines in native brain tissue. We successfully demonstrate the applicability of this approach by examining the properties of hippocampal spines in juvenile Fmr1 KO mice, a mouse model of Fragile X Syndrome. We find that mutant mice display pervasive dysgenesis of spines evidenced by an overabundance of both abnormally elongated thin spines and cup-shaped spines, in combination with reduced density of mushroom spines. We further find that mushroom spines expressing the actin-binding protein Synaptopodin-a marker for spine apparatus-are more prevalent in mutant mice. Previous work identified spines with Synaptopodin/spine apparatus as the locus of mGluR-LTD, which is abnormally elevated in Fmr1 KO mice. Altogether, our data suggest this enhancement may be linked to the preponderance of this subset of spines in the mutant. Overall, these findings demonstrate the sensitivity and versatility of the optimized methodology by uncovering a novel facet of spine dysgenesis in Fmr1 KO mice.
Collapse
Affiliation(s)
- Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kardelen Dalım Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sarah Goebel
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, C.N.R., 80131 Naples, Italy
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
31
|
Jin H, Yang C, Jiang C, Li L, Pan M, Li D, Han X, Ding J. Evaluation of Neurotoxicity in BALB/c Mice following Chronic Exposure to Polystyrene Microplastics. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:107002. [PMID: 36251724 PMCID: PMC9555296 DOI: 10.1289/ehp10255] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND The toxicity of microplastics (MPs) has attracted wide attention from researchers. Previous studies have indicated that MPs produce toxic effects on a variety of organs in aquatic organisms and mammals. However, the exact neurotoxicity of MPs in mammals is still unclear. OBJECTIVES We aimed to confirm the neurotoxicity of chronic exposure to polystyrene MPs (PS-MPs) at environmental pollution concentrations. METHODS In the present study, mice were provided drinking water containing 100μg/L and 1,000μg/L PS-MPs with diameters of 0.5, 4, and 10μm for 180 consecutive days. After the exposure period, the mice were anesthetized to gain brain tissues. The accumulation of PS-MPs in brain tissues, integrity of the blood-brain barrier, inflammation, and spine density were detected. We evaluated learning and memory ability by the Morris water maze and novel object recognition tests. RESULTS We observed the accumulation of PS-MPs with various particle diameters (0.5, 4, and 10μm) in the brains of exposed mice. Meanwhile, exposed mice also exhibited disruption of the blood-brain barrier, higher level of dendritic spine density, and an inflammatory response in the hippocampus. In addition, exposed mice exhibited cognitive and memory deficits compared with control mice as determined using the Morris water maze and novel object recognition tests, respectively. There was a concentration-dependent trend, but no particle size-dependent differences were seen in the neurotoxicity of MPs. CONCLUSIONS Collectively, our results suggested that PS-MPs exposure can lead to learning and memory dysfunctions and induce neurotoxic effects in mice, findings which have wide-ranging implications for the public regarding the potential risks of MPs. https://doi.org/10.1289/EHP10255.
Collapse
Affiliation(s)
- Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Chen Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Chengyue Jiang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Luxi Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Mengge Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| |
Collapse
|
32
|
Bartesaghi R. Brain circuit pathology in Down syndrome: from neurons to neural networks. Rev Neurosci 2022; 34:365-423. [PMID: 36170842 DOI: 10.1515/revneuro-2022-0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022]
Abstract
Down syndrome (DS), a genetic pathology caused by triplication of chromosome 21, is characterized by brain hypotrophy and impairment of cognition starting from infancy. While studies in mouse models of DS have elucidated the major neuroanatomical and neurochemical defects of DS, comparatively fewer investigations have focused on the electrophysiology of the DS brain. Electrical activity is at the basis of brain functioning. Therefore, knowledge of the way in which brain circuits operate in DS is fundamental to understand the causes of behavioral impairment and devise targeted interventions. This review summarizes the state of the art regarding the electrical properties of the DS brain, starting from individual neurons and culminating in signal processing in whole neuronal networks. The reported evidence derives from mouse models of DS and from brain tissues and neurons derived from individuals with DS. EEG data recorded in individuals with DS are also provided as a key tool to understand the impact of brain circuit alterations on global brain activity.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
33
|
Sharma A, Bhalla S, Mehan S. PI3K/AKT/mTOR signalling inhibitor chrysophanol ameliorates neurobehavioural and neurochemical defects in propionic acid-induced experimental model of autism in adult rats. Metab Brain Dis 2022; 37:1909-1929. [PMID: 35687217 DOI: 10.1007/s11011-022-01026-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/05/2022] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder marked by social and communication deficits as well as repetitive behaviour. Several studies have found that overactivation of the PI3K/AKT/mTOR signalling pathways during brain development plays a significant role in autism pathogenesis. Overexpression of the PI3K/AKT/mTOR signalling pathway causes neurological disorders by increasing cell death, neuroinflammation, and oxidative stress. Chrysophanol, also known as chrysophanic acid, is a naturally occurring chemical obtained from the plant Rheum palmatum. This study aimed to examine the neuroprotective effect of CPH on neurobehavioral, molecular, neurochemical, and gross pathological alterations in ICV-PPA induced experimental model of autism in adult rats. The effects of ICV-PPA on PI3K/AKT/mTOR downregulation in the brain were studied in autism-like rats. Furthermore, we investigated how CPH affected myelin basic protein (MBP) levels in rat brain homogenate and apoptotic biomarkers such as caspase-3, Bax, and Bcl-2 levels in rat brain homogenate and blood plasma samples. Rats were tested for behavioural abnormalities such as neuromuscular dysfunction using an actophotometer, motor coordination using a beam crossing task (BCT), depressive behaviour using a forced swim test (FST), cognitive deficiency, and memory consolidation using a Morris water maze (MWM) task. In PPA-treated rats, prolonged oral CPH administration from day 12 to day 44 of the experimental schedule reduces autistic-like symptoms. Furthermore, in rat brain homogenates, blood plasma, and CSF samples, cellular, molecular, and cell death markers, neuroinflammatory cytokines, neurotransmitter levels, and oxidative stress indicators were investigated. The recent findings imply that CPH also restores abnormal neurochemical levels and may prevent autism-like gross pathological alterations, such as demyelination volume, in the rat brain.
Collapse
Affiliation(s)
- Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sonalika Bhalla
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
34
|
Contreras D, Piña R, Carvallo C, Godoy F, Ugarte G, Zeise M, Rozas C, Morales B. Methylphenidate Restores Behavioral and Neuroplasticity Impairments in the Prenatal Nicotine Exposure Mouse Model of ADHD: Evidence for Involvement of AMPA Receptor Subunit Composition and Synaptic Spine Morphology in the Hippocampus. Int J Mol Sci 2022; 23:ijms23137099. [PMID: 35806103 PMCID: PMC9266648 DOI: 10.3390/ijms23137099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
In ADHD treatment, methylphenidate (MPH) is the most frequently used medication. The present work provides evidence that MPH restored behavioral impairments and neuroplasticity due to changes in AMPAR subunit composition and distribution, as well as maturation of dendritic spines, in a prenatal nicotine exposure (PNE) ADHD mouse model. PNE animals and controls were given a single oral dose of MPH (1 mg/kg), and their behavior was tested for attention, hyperactivity, and working memory. Long-term potentiation (LTP) was induced and analyzed at the CA3/CA1 synapse in hippocampal slices taken from the same animals tested behaviorally, measuring fEPSPs and whole-cell patch-clamp EPSCs. By applying crosslinking and Western blots, we estimated the LTP effects on AMPAR subunit composition and distribution. The density and types of dendritic spines were quantified by using the Golgi staining method. MPH completely restored the behavioral impairments of PNE mice. Reduced LTP and AMPA-receptor-mediated EPSCs were also restored. EPSC amplitudes were tightly correlated with numbers of GluA1/GluA1 AMPA receptors at the cell surface. Finally, we found a lower density of dendritic spines in hippocampal pyramidal neurons in PNE mice, with a higher fraction of thin-type immature spines and a lower fraction of mushroom mature spines; the latter effect was also reversed by MPH.
Collapse
Affiliation(s)
- Darwin Contreras
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
| | - Ricardo Piña
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile;
- Departamento de Ciencias Pedagógicas, Facultad de Educación, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Claudia Carvallo
- Centro de investigación e innovación en Gerontología Aplicada (CIGAP), Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Felipe Godoy
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
| | - Gonzalo Ugarte
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
| | - Marc Zeise
- School of Psychology, Faculty of Humanities, University of Santiago de Chile, Santiago 9170022, Chile;
| | - Carlos Rozas
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
- Correspondence: (C.R.); (B.M.)
| | - Bernardo Morales
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Alameda 3363, Santiago 9170022, Chile; (D.C.); (F.G.); (G.U.)
- Correspondence: (C.R.); (B.M.)
| |
Collapse
|
35
|
Wang Y, Gu C, Ewing AG. Single-Vesicle Electrochemistry Following Repetitive Stimulation Reveals a Mechanism for Plasticity Changes with Iron Deficiency. Angew Chem Int Ed Engl 2022; 61:e202200716. [PMID: 35267233 PMCID: PMC9315038 DOI: 10.1002/anie.202200716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/25/2022]
Abstract
Deficiency of iron, the most abundant transition metal in the brain and important for neuronal activity, is known to affect synaptic plasticity, causing learning and memory deficits. How iron deficiency impacts plasticity by altering neurotransmission at the cellular level is not fully understood. We used electrochemical methods to study the effect of iron deficiency on plasticity with repetitive stimulation. We show that during iron deficiency, repetitive stimulation causes significant decrease in exocytotic release without changing vesicular content. This results in a lower fraction of release, opposite to the control group, upon repetitive stimulation. These changes were partially reversible by iron repletion. This finding suggests that iron deficiency has a negative effect on plasticity by decreasing the fraction of vesicular release in response to repetitive stimulation. This provides a putative mechanism for how iron deficiency modulates plasticity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Forensic MedicineSchool of Basic Medicine and Biological SciencesAffiliated Guangji HospitalSoochow University215123SuzhouChina
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivagen 1041296GothenburgSweden
| | - Chaoyi Gu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivagen 1041296GothenburgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivagen 1041296GothenburgSweden
| |
Collapse
|
36
|
Ewing AG, Wang Y, Gu C. Single‐Vesicle Electrochemistry Following Repetitive Stimulation Reveals a Mechanism for Plasticity Changes with Iron Deficiency. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andrew G. Ewing
- University of Gothenburg: Goteborgs Universitet Chemistry and Molecular Biology Kemivägen 10 41296 Gothenburg SWEDEN
| | - Ying Wang
- University of Gothenburg: Goteborgs Universitet Chemistry and Molecular Biology SWEDEN
| | - Chaoyi Gu
- University of Gothenburg: Goteborgs Universitet Chemistry and Molecular Biology SWEDEN
| |
Collapse
|
37
|
Control of Synapse Structure and Function by Actin and Its Regulators. Cells 2022; 11:cells11040603. [PMID: 35203254 PMCID: PMC8869895 DOI: 10.3390/cells11040603] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023] Open
Abstract
Neurons transmit and receive information at specialized junctions called synapses. Excitatory synapses form at the junction between a presynaptic axon terminal and a postsynaptic dendritic spine. Supporting the shape and function of these junctions is a complex network of actin filaments and its regulators. Advances in microscopic techniques have enabled studies of the organization of actin at synapses and its dynamic regulation. In addition to highlighting recent advances in the field, we will provide a brief historical perspective of the understanding of synaptic actin at the synapse. We will also highlight key neuronal functions regulated by actin, including organization of proteins in the pre- and post- synaptic compartments and endocytosis of ion channels. We review the evidence that synapses contain distinct actin pools that differ in their localization and dynamic behaviors and discuss key functions for these actin pools. Finally, whole exome sequencing of humans with neurodevelopmental and psychiatric disorders has identified synaptic actin regulators as key disease risk genes. We briefly summarize how genetic variants in these genes impact neurotransmission via their impact on synaptic actin.
Collapse
|
38
|
Resveratrol attenuates methylmercury-induced neurotoxicity by modulating synaptic homeostasis. Toxicol Appl Pharmacol 2022; 440:115952. [DOI: 10.1016/j.taap.2022.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2022]
|
39
|
Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Raj P, Rathipriya AG, Qoronfleh MW, Essa MM, Chidambaram SB. Impact of Pharmacological and Non-Pharmacological Modulators on Dendritic Spines Structure and Functions in Brain. Cells 2021; 10:3405. [PMID: 34943913 PMCID: PMC8699406 DOI: 10.3390/cells10123405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small, thin, hair-like protrusions found on the dendritic processes of neurons. They serve as independent compartments providing large amplitudes of Ca2+ signals to achieve synaptic plasticity, provide sites for newer synapses, facilitate learning and memory. One of the common and severe complication of neurodegenerative disease is cognitive impairment, which is said to be closely associated with spine pathologies viz., decreased in spine density, spine length, spine volume, spine size etc. Many treatments targeting neurological diseases have shown to improve the spine structure and distribution. However, concise data on the various modulators of dendritic spines are imperative and a need of the hour. Hence, in this review we made an attempt to consolidate the effects of various pharmacological (cholinergic, glutamatergic, GABAergic, serotonergic, adrenergic, and dopaminergic agents) and non-pharmacological modulators (dietary interventions, enriched environment, yoga and meditation) on dendritic spines structure and functions. These data suggest that both the pharmacological and non-pharmacological modulators produced significant improvement in dendritic spine structure and functions and in turn reversing the pathologies underlying neurodegeneration. Intriguingly, the non-pharmacological approaches have shown to improve intellectual performances both in preclinical and clinical platforms, but still more technology-based evidence needs to be studied. Thus, we conclude that a combination of pharmacological and non-pharmacological intervention may restore cognitive performance synergistically via improving dendritic spine number and functions in various neurological disorders.
Collapse
Affiliation(s)
- Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Praveen Raj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
| | | | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
- Biomedical Sciences Department, University of Pacific, Sacramento, CA 95211, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (A.M.M.); (B.R.); (S.T.); (T.A.H.); (P.R.)
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
40
|
A multimodal electrochemical approach to measure the effect of zinc on vesicular content and exocytosis in a single cell model of ischemia. QRB DISCOVERY 2021. [PMID: 37529672 PMCID: PMC10392633 DOI: 10.1017/qrd.2021.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Zinc ion is essential for normal brain function that modulates synaptic activity and neuronal plasticity and it is associated with memory formation. Zinc is considered to be a contributing factor to the pathogenesis of ischemia, but the association between zinc and ischemia on vesicular exocytosis is unclear. In this study, we used a combination of chemical analysis methods and a cell model of ischemia/reperfusion to investigate exocytotic release and vesicular content, as well as the effect of zinc alteration on vesicular exocytosis. Oxygen–glucose deprivation and reperfusion (OGDR) was used as an in vitro model of ischemia in a model cell line. Exocytotic release and vesicular storage of catecholamine content were increased following OGDR, resulting in a higher fraction of release during exocytosis. However, zinc eliminated these increases following OGDR and the fraction of release remained unchanged. Understanding the consequences of zinc accumulation on vesicular exocytosis at the early stage of OGDR should aid in the development of therapeutic strategies to reduce ischemic brain injury. As the fraction released has been suggested to be related to presynaptic plasticity, insights are gained towards deciphering ischemia related memory impairment.
Collapse
|
41
|
Barón-Mendoza I, Maqueda-Martínez E, Martínez-Marcial M, De la Fuente-Granada M, Gómez-Chavarin M, González-Arenas A. Changes in the Number and Morphology of Dendritic Spines in the Hippocampus and Prefrontal Cortex of the C58/J Mouse Model of Autism. Front Cell Neurosci 2021; 15:726501. [PMID: 34616277 PMCID: PMC8488392 DOI: 10.3389/fncel.2021.726501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) has a broad range of neurobiological characteristics, including alterations in dendritic spines, where approximately 90% of excitatory synapses occur. Therefore, changes in their number or morphology would be related to atypical brain communication. The C58/J inbred mouse strain displays low sociability, impaired communication, and stereotyped behavior; hence, it is considered among the animal models suitable for the study of idiopathic autism. Thus, this study aimed to evaluate the dendritic spine differences in the hippocampus and the prefrontal cortex of C58/J mice. We found changes in the number of spines and morphology in a brain region-dependent manner: a subtle decrease in spine density in the prefrontal cortex, higher frequency of immature phenotype spines characterized by filopodia-like length or small morphology, and a lower number of mature phenotype spines with mushroom-like or wide heads in the hippocampus. Moreover, an in silico analysis showed single nucleotide polymorphisms (SNPs) at genes collectively involved in regulating structural plasticity with a likely association with ASD, including MAP1A (Microtubule-Associated Protein 1A), GRM7 (Metabotropic Glutamate Receptor, 7), ANKRD11 (Ankyrin Repeat Domain 11), and SLC6A4 (Solute Carrier Family 6, member 4), which might support the relationship between the C58/J strain genome, an autistic-like behavior, and the observed anomalies in the dendritic spines.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Emely Maqueda-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mónica Martínez-Marcial
- Unidad de Modelos Biológicos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisol De la Fuente-Granada
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Margarita Gómez-Chavarin
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
42
|
Lee LC, Su MT, Huang HY, Cho YC, Yeh TK, Chang CY. Association of CaMK2A and MeCP2 signaling pathways with cognitive ability in adolescents. Mol Brain 2021; 14:152. [PMID: 34607601 PMCID: PMC8491411 DOI: 10.1186/s13041-021-00858-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
The glutamatergic signaling pathway is involved in molecular learning and human cognitive ability. Specific single variants (SNVs, formerly single-nucleotide polymorphisms) in the genes encoding N-methyl-d-aspartate receptor subunits have been associated with neuropsychiatric disorders by altering glutamate transmission. However, these variants associated with cognition and mental activity have rarely been explored in healthy adolescents. In this study, we screened for SNVs in the glutamatergic signaling pathway to identify genetic variants associated with cognitive ability. We found that SNVs in the subunits of ionotropic glutamate receptors, including GRIA1, GRIN1, GRIN2B, GRIN2C, GRIN3A, GRIN3B, and calcium/calmodulin-dependent protein kinase IIα (CaMK2A) are associated with cognitive function. Plasma CaMK2A level was correlated positively with the cognitive ability of Taiwanese senior high school students. We demonstrated that elevating CaMK2A increased its autophosphorylation at T286 and increased the expression of its downstream targets, including GluA1 and phosphor- GluA1 in vivo. Additionally, methyl-CpG binding protein 2 (MeCP2), a downstream target of CaMK2A, was found to activate the expression of CaMK2A, suggesting that MeCP2 and CaMK2A can form a positive feedback loop. In summary, two members of the glutamatergic signaling pathway, CaMK2A and MeCP2, are implicated in the cognitive ability of adolescents; thus, altering the expression of CaMK2A may affect cognitive ability in youth.
Collapse
Affiliation(s)
- Li-Ching Lee
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Rd., Taipei, 11677, Taiwan, Republic of China
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsing-Ying Huang
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Rd., Taipei, 11677, Taiwan, Republic of China
| | - Ying-Chun Cho
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Rd., Taipei, 11677, Taiwan, Republic of China
| | - Ting-Kuang Yeh
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Rd., Taipei, 11677, Taiwan, Republic of China. .,Institute of Marine Environment Science and Technology, National Taiwan Normal University, Taipei, Taiwan. .,Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Chun-Yen Chang
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Rd., Taipei, 11677, Taiwan, Republic of China. .,Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
43
|
Xu H, Yu ZH, Ge MJ, Shen JX, Han F, Pan C, Chen JJ, Zhu XL, Hou WY, Hou YQ, Lu YP. Estradiol attenuates chronic restraint stress-induced dendrite and dendritic spine loss and cofilin1 activation in ovariectomized mice. Horm Behav 2021; 135:105040. [PMID: 34358948 DOI: 10.1016/j.yhbeh.2021.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Ovarian hormone deprivation is associated with mood disorders, such as depression, and estradiol therapy is significantly more effective than placebos in treating major depression associated with menopause onset. However, the effect of estradiol on neuronal plasticity and its mechanisms remain to be further elucidated. In this study, behavioral assessments were used to examine the antidepressant effect of estradiol in ovariectomized (OVX) B6.Cg-TgN (Thy-YFP-H)-2Jrs transgenic mice on chronic restraint stress (CRS)-induced dendrite and dendritic spine loss; Yellow fluorescent protein (YFP) is characteristically expressed in excitatory neurons in transgenic mice, and its three-dimensional images were used to evaluate the effect of estradiol on the density of different types of dendritic spines. Quantification and distribution of cofilin1 and p-cofilin1 were determined by qPCR, Western blots, and immunohistochemistry, respectively. The results revealed that treatment with estradiol or clomipramine significantly improved depression-like behaviors. Estradiol treatment also significantly upregulated the dendritic density in all areas examined and increased the density of filopodia-type, thin-type and mushroom-type spines in the hippocampal CA1 and elevated the thin-type and mushroom-type spine density in the PFC. Consistent with these changes, estradiol treatment significantly increased the density of p-cofilin1 immunopositive dendritic spines. Thus, these data reveal a possible estradiol antidepressant mechanism, in that estradiol promoted the phosphorylation of cofilin1 and reduced the loss of dendrites and dendritic spines, which of these dendritic spines include not only immature spines such as filopodia-type, but also mature spines such as mushroom-type, and attenuated the depression-like behavior.
Collapse
Affiliation(s)
- Hui Xu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Anhui College of Traditional Chinese Medicine, No. 18 Wuxiashan West Road, Wuhu 241002, China
| | - Zong-Hao Yu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Ming-Jun Ge
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Jun-Xian Shen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Fei Han
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Chuan Pan
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Jing-Jing Chen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China; Department of Anatomy, Wannan Medical College, No. 22 Wenchang West Road, Wuhu 241002, China
| | - Wen-Yu Hou
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Yu-Qiao Hou
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu 241000, China.
| |
Collapse
|
44
|
Paredes O, López JB, Covantes-Osuna C, Ocegueda-Hernández V, Romo-Vázquez R, Morales JA. A Transcriptome Community-and-Module Approach of the Human Mesoconnectome. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1031. [PMID: 34441171 PMCID: PMC8393183 DOI: 10.3390/e23081031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Graph analysis allows exploring transcriptome compartments such as communities and modules for brain mesostructures. In this work, we proposed a bottom-up model of a gene regulatory network to brain-wise connectome workflow. We estimated the gene communities across all brain regions from the Allen Brain Atlas transcriptome database. We selected the communities method to yield the highest number of functional mesostructures in the network hierarchy organization, which allowed us to identify specific brain cell functions (e.g., neuroplasticity, axonogenesis and dendritogenesis communities). With these communities, we built brain-wise region modules that represent the connectome. Our findings match with previously described anatomical and functional brain circuits, such the default mode network and the default visual network, supporting the notion that the brain dynamics that carry out low- and higher-order functions originate from the modular composition of a GRN complex network.
Collapse
Affiliation(s)
| | | | | | | | - Rebeca Romo-Vázquez
- Computer Sciences Department, Exact Sciences and Engineering University Centre, Universidad de Guadalajara, Guadalajara 44430, Mexico; (O.P.); (J.B.L.); (C.C.-O.); (V.O.-H.)
| | - J. Alejandro Morales
- Computer Sciences Department, Exact Sciences and Engineering University Centre, Universidad de Guadalajara, Guadalajara 44430, Mexico; (O.P.); (J.B.L.); (C.C.-O.); (V.O.-H.)
| |
Collapse
|
45
|
Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22158220. [PMID: 34360985 PMCID: PMC8348801 DOI: 10.3390/ijms22158220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders can derive from a complex combination of genetic variation and environmental pressures on key developmental processes. Despite this complex aetiology, and the equally complex array of syndromes and conditions diagnosed under the heading of neurodevelopmental disorder, there are parallels in the neuropathology of these conditions that suggest overlapping mechanisms of cellular injury and dysfunction. Neuronal arborisation is a process of dendrite and axon extension that is essential for the connectivity between neurons that underlies normal brain function. Disrupted arborisation and synapse formation are commonly reported in neurodevelopmental disorders. Here, we summarise the evidence for disrupted neuronal arborisation in these conditions, focusing primarily on the cortex and hippocampus. In addition, we explore the developmentally specific mechanisms by which neuronal arborisation is regulated. Finally, we discuss key regulators of neuronal arborisation that could link to neurodevelopmental disease and the potential for pharmacological modification of arborisation and the formation of synaptic connections that may provide therapeutic benefit in the future.
Collapse
|
46
|
Ma S, Zuo Y. Synaptic modifications in learning and memory - A dendritic spine story. Semin Cell Dev Biol 2021; 125:84-90. [PMID: 34020876 DOI: 10.1016/j.semcdb.2021.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 11/15/2022]
Abstract
Synapses are specialized sites where neurons connect and communicate with each other. Activity-dependent modification of synaptic structure and function provides a mechanism for learning and memory. The advent of high-resolution time-lapse imaging in conjunction with fluorescent biosensors and actuators enables researchers to monitor and manipulate the structure and function of synapses both in vitro and in vivo. This review focuses on recent imaging studies on the synaptic modification underlying learning and memory.
Collapse
Affiliation(s)
- Shaorong Ma
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
47
|
Liu Z, Yan A, Zhao J, Yang S, Song L, Liu Z. The p75 neurotrophin receptor as a novel intermediate in L-dopa-induced dyskinesia in experimental Parkinson's disease. Exp Neurol 2021; 342:113740. [PMID: 33971218 DOI: 10.1016/j.expneurol.2021.113740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
In Parkinson's disease (PD), long-term administration of L-dopa often leads to L-dopa-induced dyskinesia (LID), a debilitating motor complication. The p75 neurotrophin receptor (p75NTR) is likely to play a critical role in the regulation of dendritic spine density and morphology and appears to be associated with neuroinflammation, which previously has been identified as a crucial mechanism in LID. While aberrant modifications of p75NTR in neurological diseases have been extensively documented, only a few studies report p75NTR dysfunction in PD, and no data are available in LID. Here, we explored the functional role of p75NTR in LID. In LID rats, we identified that p75NTR was significantly increased in the lesioned striatum. In 6-hydroxydopamine (6-OHDA)-hemilesioned rats, specific knockdown of striatal p75NTR levels achieved by viral vector injection into the striatum prevented the development of LID and increased striatal structural plasticity. By contrast, we found that in 6-OHDA-hemilesioned rats, striatal p75NTR overexpression exacerbated LID and facilitated striatal dendritic spine losses. Moreover, we observed that the immunomodulatory drug fingolimod attenuated LID without lessening the therapeutic efficacy of L-dopa and normalized p75NTR levels. Together, these data demonstrate for the first time that p75NTR plays a pivotal role in the development of LID and that p75NTR may act as a potential novel target for the management of LID.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Aijuan Yan
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jiahao Zhao
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Shuyuan Yang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China.
| |
Collapse
|
48
|
Perea Vega ML, Sanchez MS, Fernández G, Paglini MG, Martin M, de Barioglio SR. Ghrelin treatment leads to dendritic spine remodeling in hippocampal neurons and increases the expression of specific BDNF-mRNA species. Neurobiol Learn Mem 2021; 179:107409. [PMID: 33609738 DOI: 10.1016/j.nlm.2021.107409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/15/2022]
Abstract
Ghrelin (Gr) is an orexigenic peptide that acts via its specific receptor, GHSR-1a distributed throughout the brain, being mainly enriched in pituitary, cortex and hippocampus (Hp) modulating a variety of brain functions. Behavioral, electrophysiological and biochemical evidence indicated that Gr modulates the excitability and the synaptic plasticity in Hp. The present experiments were designed in order to extend the knowledge about the Gr effect upon structural synaptic plasticity since morphological and quantitative changes in spine density after Gr administration were analyzed "in vitro" and "in vivo". The results show that Gr administered to hippocampal cultures or stereotactically injected in vivo to Thy-1 mice increases the density of dendritic spines (DS) being the mushroom type highly increased in secondary and tertiary extensions. Spines classified as thin type were increased particularly in primary extensions. Furthermore, we show that Gr enhances selectively the expression of BDNF-mRNA species.
Collapse
Affiliation(s)
- M L Perea Vega
- Departamento de Farmacología, Instituto de Farmacología Experimental-IFEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - M S Sanchez
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET-Universidad Nacional de Córdoba. Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - G Fernández
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M G Paglini
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Martin
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET-Universidad Nacional de Córdoba. Córdoba, Argentina
| | - S R de Barioglio
- Departamento de Farmacología, Instituto de Farmacología Experimental-IFEC-CONICET-Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
49
|
Maiti P, Bowers Z, Bourcier-Schultz A, Morse J, Dunbar GL. Preservation of dendritic spine morphology and postsynaptic signaling markers after treatment with solid lipid curcumin particles in the 5xFAD mouse model of Alzheimer's amyloidosis. Alzheimers Res Ther 2021; 13:37. [PMID: 33557949 PMCID: PMC7871397 DOI: 10.1186/s13195-021-00769-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Synaptic failure is one of the principal events associated with cognitive dysfunction in Alzheimer's disease (AD). Preservation of existing synapses and prevention of synaptic loss are promising strategies to preserve cognitive function in AD patients. As a potent natural anti-oxidant, anti-amyloid, and anti-inflammatory polyphenol, curcumin (Cur) shows great promise as a therapy for AD. However, hydrophobicity of natural Cur limits its solubility, stability, bioavailability, and clinical utility for AD therapy. We have demonstrated that solid lipid curcumin particles (SLCP) have greater therapeutic potential than natural Cur in vitro and in vivo models of AD. In the present study, we have investigated whether SLCP has any preservative role on affected dendritic spines and synaptic markers in 5xFAD mice. METHODS Six- and 12-month-old 5xFAD and age-matched wild-type mice received oral administration of SLCP (100 mg/kg body weight) or equivalent amounts of vehicle for 2 months. Neuronal morphology, neurodegeneration, and amyloid plaque load were investigated from prefrontal cortex (PFC), entorhinal cortex (EC), CA1, CA3, and the subicular complex (SC). In addition, the dendritic spine density from apical and basal branches was studied by Golgi-Cox stain. Further, synaptic markers, such as synaptophysin, PSD95, Shank, Homer, Drebrin, Kalirin-7, CREB, and phosphorylated CREB (pCREB) were studied using Western blots. Finally, cognitive and motor functions were assessed using open-field, novel object recognition (NOR) and Morris water maze (MWM) tasks after treatment with SLCP. RESULTS We observed an increased number of pyknotic and degenerated cells in all these brain areas in 5xFAD mice and SLCP treatment partially protected against those losses. Decrease in dendritic arborization and dendritic spine density from primary, secondary, and tertiary apical and basal branches were observed in PFC, EC, CA1, and CA3 in both 6- and 12-month-old 5xFAD mice, and SLCP treatments partially preserved the normal morphology of these dendritic spines. In addition, pre- and postsynaptic protein markers were also restored by SLCP treatment. Furthermore, SLCP treatment improved NOR and cognitive function in 5xFAD mice. CONCLUSIONS Overall, these findings indicate that use of SLCP exerts neuroprotective properties by decreasing amyloid plaque burden, preventing neuronal death, and preserving dendritic spine density and synaptic markers in the 5xFAD mice.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Field Neurosciences Institute, Ascension St. Mary’s Hospital, Saginaw, MI 48604 USA
- College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48710 USA
| | - Zackary Bowers
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859 USA
| | - Ali Bourcier-Schultz
- College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48710 USA
| | - Jarod Morse
- College of Health and Human Services, Saginaw Valley State University, Saginaw, MI 48710 USA
| | - Gary L. Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Field Neurosciences Institute, Ascension St. Mary’s Hospital, Saginaw, MI 48604 USA
| |
Collapse
|
50
|
Uguagliati B, Al-Absi AR, Stagni F, Emili M, Giacomini A, Guidi S, Nyengaard JR, Bartesaghi R. Early appearance of developmental alterations in the dendritic tree of the hippocampal granule cells in the Ts65Dn model of Down syndrome. Hippocampus 2021; 31:435-447. [PMID: 33464704 DOI: 10.1002/hipo.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 12/28/2022]
Abstract
Down syndrome (DS), a genetic condition caused by triplication of chromosome 21, is characterized by alterations in various cognitive domains, including hippocampus-dependent memory functions, starting from early life stages. The major causes of intellectual disability in DS are prenatal neurogenesis alterations followed by impairment of dendritic development in early infancy. While there is evidence that the Ts65Dn mouse, the most widely used model of DS, exhibits dendritic alterations in adulthood, no studies are available regarding the onset of dendritic pathology. The goal of the current study was to establish whether this model exhibits early dendritic alterations in the hippocampus, a region whose function is severely damaged in DS. To this purpose, in Golgi-stained brains, we evaluated the dendritic arborization and dendritic spines of the granule cells of the hippocampal dentate gyrus in Ts65Dn mice aged 8 (P8) and 15 (P15) days. While P15 Ts65Dn mice exhibited a notably hypotrophic dendritic arbor and a reduced spine density, P8 mice exhibited a moderate reduction in the number of dendritic ramifications and no differences in spine density in comparison with their euploid counterparts. Both in P8 and P15 mice, spines were longer and had a longer neck, suggesting possible alterations in synaptic function. Moreover, P8 and P15 Ts65Dn mice had more thin spines and fewer stubby spines in comparison with euploid mice. Our study provides novel evidence on the onset of dendritic pathology, one of the causes of intellectual disability in DS, showing that it is already detectable in the dentate gyrus of Ts65Dn pups. This evidence strengthens the suitability of this model of DS as a tool to study dendritic pathology in DS and to test the efficacy of early therapeutic interventions aimed at ameliorating hippocampal development and, therefore, memory functions in children with DS.
Collapse
Affiliation(s)
- Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Abdel-Rahman Al-Absi
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jens Randel Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|