1
|
Levinstein MR, Budinich RC, Bonaventura J, Schatzberg AF, Zarate CA, Michaelides M. Redefining Ketamine Pharmacology for Antidepressant Action: Synergistic NMDA and Opioid Receptor Interactions? Am J Psychiatry 2025; 182:247-258. [PMID: 39810555 PMCID: PMC11872000 DOI: 10.1176/appi.ajp.20240378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Ketamine is a racemic compound and medication comprised of (S)-ketamine and (R)-ketamine enantiomers and its metabolites. It has been used for decades as a dissociative anesthetic, analgesic, and recreational drug. More recently, ketamine, its enantiomers, and its metabolites have been used or are being investigated for the treatment of refractory depression, as well as for comorbid disorders such as anxiety, obsessive-compulsive, and opioid use disorders. Despite its complex pharmacology, ketamine is referred to as an N-methyl-d-aspartate (NMDA) receptor antagonist. In this review, the authors argue that ketamine's pharmacology should be redefined to include opioid receptors and the endogenous opioid system. They also highlight a potential mechanism of action of ketamine for depression that is attributed to bifunctional, synergistic interactions involving NMDA and opioid receptors.
Collapse
Affiliation(s)
- Marjorie R. Levinstein
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Reece C. Budinich
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat
| | - Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
de Miranda AS, C B Toscano E, Venna VR, Graeff FG, Teixeira AL. Investigating novel pharmacological strategies for treatment-resistant depression: focus on new mechanisms and approaches. Expert Opin Drug Discov 2025:1-15. [PMID: 39885729 DOI: 10.1080/17460441.2025.2460674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
INTRODUCTION A substantial number of patients exhibit treatment-resistant depression (TRD), posing significant challenges to clinicians. The discovery of novel molecules or mechanisms that may underlie TRD pathogenesis and antidepressant actions is highly needed. AREAS COVERED Using the PubMed database, the authors searched for emerging evidence of novel approaches for TRD based on experimental and human studies. Herein, the authors discuss the mechanisms underlying glutamatergic antagonists, modulators of the opioid system, and tryptamine-derivate psychedelics as well as the emerging platforms to investigate novel pharmacological targets for TRD. A search for clinical trials investigating novel agents and interventions for TRD was also conducted. EXPERT OPINION The understanding of the multiple pathophysiological mechanisms involved in TRD may add further value to the effective treatment, contributing to a more personalized approach. Esketamine was approved for the treatment of TRD and novel drugs with rapid antidepressant actions such as psilocybin and buprenorphine have also been investigated as potential therapeutic strategies. Over the past decades, technological advances such as omics approaches have broadened our knowledge regarding molecular and genetic underpinnings of complex conditions like TRD. Omics approaches could open new avenues for investigating glial-mediated mechanisms, including their crosstalk with neurons, as therapeutic targets in TRD.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eliana C B Toscano
- Laboratory of Research in Pathology, Department of Pathology, Federal University of Juiz de Fora (UFJF) Medical School, Juiz de Fora, Brazil
| | - Venugopal Reddy Venna
- Department of Neurology, The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | | | - Antonio Lucio Teixeira
- Geriatric Neuropsychiatry Division, The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Qiu J, Zhu T, Qin K, Zhang W. The interaction network and potential clinical effectiveness of dimensional psychopathology phenotyping based on EMR: a Bayesian network approach. BMC Psychiatry 2025; 25:81. [PMID: 39875818 PMCID: PMC11776203 DOI: 10.1186/s12888-025-06510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
The current DSM-oriented diagnostic paradigm has introduced the issue of heterogeneity, as it fails to account for the identification of the neurological processes underlying mental illnesses, which affects the precision of treatment. The Research Domain Criteria (RDoC) framework serves as a recognized approach to addressing this heterogeneity, and several assessment and translation techniques have been proposed. Among these methods, transforming RDoC scores from electronic medical records (EMR) using Natural Language Processing (NLP) has emerged as a suitable technique, demonstrating clinical effectiveness. Numerous studies have sought to use RDoC to understand the Diagnostic and Statistical Manual of Mental Disorders (DSM) categories from a qualified perspective, but few studies have examined the distribution variations and interaction characteristics of RDoC within various DSM categories through retrospective analyses. Therefore, we employed unsupervised learning to translate five domains of eRDoC scores derived from electronic medical records (EMR) of patients diagnosed with Major Depressive Disorder (MDD), Schizophrenia (SCZ), and Bipolar Disorder (BD) at West China Hospital between 2008 and 2021. The distribution characteristics, interaction networks, and potential clinical effectiveness of RDoC domains were analyzed. Using non-parametric statistical tests, we found that MDD had the highest score in Negative Valence System (NVS) (4.1, p < 0.001), while BD exhibited the highest score in Positive Valence System (PVS) score (4.9, p < 0.001) and Arousal System (AS) (4.4, p < 0.001). SCZ demonstrated the highest scores in Cognitive Systems (CS) (5.8, p < 0.001) and Social Processes Systems (SPS) (4.6, p < 0.001). Through Bayesian network (BN) analysis, we identified relatively consistent interaction relationships among various RDoC domains (NVS → AS, NVS → CS, NVS → PVS, as well as CS → SPS; parameter range = 0.156 to 0.635, p < 0.001). Lastly, using logistic regression and Cox proportional hazards models, we demonstrated that AS was significantly associated with the length of hospital stay (-0.21, p < 0.05) and 30-day readmission risk (adjusted odds ratio [aOR] = 0.91, 95% confidence interval [CI] 0.91-0.99) to some extent. In conclusion, we suggest that the eRDoC characteristics varied in different DSM. By Bayesian Network, we found NVS and CS might be potential source in interacting with other system. Furthermore, CS, SPS and AS were associated with the length of stay and 30-days readmission, making them effective for predicting prognosis of psychiatric disorders.
Collapse
Affiliation(s)
- Jianqing Qiu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Medical Big Data Center, Sichuan University, Chengdu, China
| | - Ke Qin
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, China.
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Lee SJ, Pearson TD, Dhaynaut M, MacDonagh AC, Wey HY, Wilks MQ, Roth BL, Hooker JM, Normandin MD. Selective Mu-Opioid Receptor Imaging Using 18F-Labeled Carfentanils. J Med Chem 2025; 68:1632-1644. [PMID: 39772615 DOI: 10.1021/acs.jmedchem.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Carfentanil, a highly potent synthetic opioid, paradoxically serves as a crucial positron emission tomography (PET) imaging tool in neurobiological studies of the mu-opioid receptor (MOR) system when labeled with carbon-11 ([11C]CFN). However, its clinical research use is hindered by extreme potency and the limited availability of short-lived carbon-11 (t1/2 = 20.4 min). We present fluorine-18-labeled fluorocarfentanils ([18F]FCFNs), which can be produced at higher molar activity, allowing for lower mass doses and benefiting from the longer half-life of fluorine-18 (t1/2 = 109.8 min), facilitating broader accessibility. Using copper-mediated radiofluorination, we synthesized a small [18F]FCFN library and conducted preclinical imaging evaluations. Two candidates, o-18F-1 and p-18F-2, showed optimal brain uptake, favorable pharmacokinetics, and high MOR-specific binding. Selectivity was confirmed through in vitro binding assays and in vivo PET scans. These [18F]FCFNs are promising for accessible human brain MOR imaging.
Collapse
Affiliation(s)
- So Jeong Lee
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Torben D Pearson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Alexander C MacDonagh
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
5
|
Cole RH, Joffe ME. Mu and Delta Opioid Receptors Modulate Inhibition within the Prefrontal Cortex Through Dissociable Cellular and Molecular Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618870. [PMID: 39484533 PMCID: PMC11526863 DOI: 10.1101/2024.10.17.618870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aberrant signaling within cortical inhibitory microcircuits has been identified as a common signature of neuropsychiatric disorders. Interneuron (IN) activity is precisely regulated by neuromodulatory systems that evoke widespread changes in synaptic transmission and principal cell output. Cortical interneurons express high levels of Mu and Delta opioid receptors (MOR and DOR), positioning opioid signaling as a critical regulator of inhibitory transmission. However, we lack a complete understanding of how MOR and DOR regulate prefrontal cortex (PFC) microcircuitry. Here, we combine whole-cell patch-clamp electrophysiology, optogenetics, and viral tools to provide an extensive characterization MOR and DOR regulation of inhibitory transmission. We show that DOR activation is more effective at suppressing spontaneous inhibitory transmission in the prelimbic PFC, while MOR causes a greater acute suppression of electrically-evoked GABA release. Cell type-specific optogenetics revealed that MOR and DOR differentially regulate inhibitory transmission from parvalbumin, somatostatin, cholecystokinin, and vasoactive intestinal peptide-expressing INs. Finally, we demonstrate that DOR regulates inhibitory transmission through pre- and postsynaptic modifications to IN physiology, whereas MOR function is predominantly observed in somato-dendritic or presynaptic compartments depending on cell type.
Collapse
Affiliation(s)
- Rebecca H. Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Gao Y, Su B, Ding L, Qureshi D, Hong S, Wei J, Zeng C, Lei G, Xie J. Association of Regular Opioid Use With Incident Dementia and Neuroimaging Markers of Brain Health in Chronic Pain Patients: Analysis of UK Biobank. Am J Geriatr Psychiatry 2024; 32:1154-1165. [PMID: 38702251 DOI: 10.1016/j.jagp.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES We aimed to investigate the association of regular opioid use, compared with non-opioid analgesics, with incident dementia and neuroimaging outcomes among chronic pain patients. DESIGN The primary design is a prospective cohort study. To triangulate evidence, we also conducted a nested case-control study analyzing opioid prescriptions and a cross-sectional study analyzing neuroimaging outcomes. SETTING AND PARTICIPANTS Dementia-free UK Biobank participants with chronic pain and regular analgesic use. MEASUREMENTS Chronic pain status and regular analgesic use were captured using self-reported questionnaires and verbal interviews. Opioid prescription data were obtained from primary care records. Dementia cases were ascertained using primary care, hospital, and death registry records. Propensity score-matched Cox proportional hazards analysis, conditional logistic regression, and linear regression were applied to the data in the prospective cohort, nested case-control, and cross-sectional studies, respectively. RESULTS Prospective analyses revealed that regular opioid use, compared with non-opioid analgesics, was associated with an increased dementia risk over the 15-year follow-up (Hazard ratio [HR], 1.18 [95% confidence interval (CI): 1.08-1.30]; Absolute rate difference [ARD], 0.44 [95% CI: 0.19-0.71] per 1000 person-years; Wald χ2 = 3.65; df = 1; p <0.001). The nested case-control study suggested that a higher number of opioid prescriptions was associated with an increased risk of dementia (1 to 5 prescriptions: OR = 1.21, 95% CI: 1.07-1.37, Wald χ2 = 3.02, df = 1, p = 0.003; 6 to 20: OR = 1.27, 95% CI: 1.08-1.50, Wald χ2 = 2.93, df = 1, p = 0.003; more than 20: OR = 1.43, 95% CI: 1.23-1.67, Wald χ2 = 4.57, df = 1, p < 0.001). Finally, neuroimaging analyses revealed that regular opioid use was associated with lower total grey matter and hippocampal volumes, and higher white matter hyperintensities volumes. CONCLUSION Regular opioid use in chronic pain patients was associated with an increased risk of dementia and poorer brain health when compared to non-opioid analgesic use. These findings imply a need for re-evaluation of opioid prescription practices for chronic pain patients and, if further evidence supports causality, provide insights into strategies to mitigate the burden of dementia.
Collapse
Affiliation(s)
- Yaqing Gao
- Nuffield Department of Population Health (YG, DQ), University of Oxford, Oxford, UK
| | - Binbin Su
- School of Population Medicine and Public Health (BS), Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lei Ding
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (LD), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Danial Qureshi
- Nuffield Department of Population Health (YG, DQ), University of Oxford, Oxford, UK
| | - Shenda Hong
- National Institute of Health Data Science (SH), Peking University, Beijing, China; Institute of Medical Technology (SH), Peking University Health Science Center, Beijing, China
| | - Jie Wei
- Department of Orthopaedics (JW, CZ, GL), Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zeng
- Department of Orthopaedics (JW, CZ, GL), Xiangya Hospital, Central South University, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics (JW, CZ, GL), Xiangya Hospital, Central South University, Changsha, China.
| | - Junqing Xie
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS (JX), University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Wang H, Lyu N, Zhao Q. Case report: Dezocine's rapid and sustained antidepressant effects. Front Pharmacol 2024; 15:1411119. [PMID: 39092225 PMCID: PMC11291242 DOI: 10.3389/fphar.2024.1411119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Anhedonia and motivational impairments are cardinal features of depression, against which conventional antidepressants demonstrate limited efficacy. Preclinical investigations and extant clinical trial data substantiate the promise of opioid receptor modulators in addressing anhedonia, depression, and anxiety. While synthetic opioid agents like dezocine are conventionally employed for analgesia, their distinctive pharmacological profile has engendered interest in their potential antidepressant properties and translational applications. Herein, we present a case in which persistent bupropion treatment was ineffective. However, the incidental administration of a single low-dose intravenous injection of dezocine resulted in a rapid and sustained amelioration of depressive symptoms, particularly anhedonia and motivational deficits. Our findings posit a potentially novel role for the "legacy drug" dezocine.
Collapse
Affiliation(s)
- Han Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Nan Lyu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Qian Zhao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Oh TK, Park HY, Song IA. Investigating the association of opioid prescription with the incidence of psychiatric disorders: nationwide cohort study in South Korea. BJPsych Open 2024; 10:e122. [PMID: 38800980 PMCID: PMC11363087 DOI: 10.1192/bjo.2024.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The relationship between opioid use and the incidence of psychiatric disorders remains unidentified. AIMS This study examined the association between the incidence of psychiatric disorders and opioid use. METHOD Data for this population-based cohort study were obtained from the National Health Insurance Service of South Korea. The study included all adult patients who received opioids in 2016. The control group comprised individuals who did not receive opioids in 2016, and were selected using a 1:1 stratified random sampling procedure. Patients with a history of psychiatric disorders diagnosed in 2016 were excluded. The primary end-point was the diagnosis of psychiatric disorders, evaluated from 1 January 2017 to 31 December 2021. Psychiatric disorders included schizophrenia, mood disorders, anxiety and others. RESULTS The analysis included 3 505 982 participants. Opioids were prescribed to 1 455 829 (41.5%) of these participants in 2016. Specifically, 1 187 453 (33.9%) individuals received opioids for 1-89 days, whereas 268 376 (7.7%) received opioids for ≥90 days. In the multivariable Cox regression model, those who received opioids had a 13% higher incidence of psychiatric disorder than those who did not (hazard ratio 1.13; 95% CI 1.13-1.14). Furthermore, both those prescribed opioids for 1-89 days and for ≥90 days had 13% (hazard ratio 1.13, 95% CI 1.12-1.14) and 17% (hazard ratio 1.17, 95% CI 1.16-1.18) higher incidences of psychiatric disorders, respectively, compared with those who did not receive opioids. CONCLUSIONS This study revealed that increased psychiatric disorders were associated with opioid medication use. The association was significant among both short- and long-term opioid use.
Collapse
Affiliation(s)
- Tak Kyu Oh
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, South Korea; and Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, South Korea
| | - Hye Yoon Park
- Department of Psychiatry, Seoul National University Hospital, South Korea; and Department of Psychiatry, College of Medicine, Seoul National University, South Korea
| | - In-Ae Song
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, South Korea; and Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, South Korea
| |
Collapse
|
9
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
11
|
Dmitrzak-Węglarz M, Rybakowski J, Szczepankiewicz A, Kapelski P, Lesicka M, Jabłońska E, Reszka E, Pawlak J. Identification of shared disease marker genes and underlying mechanisms between major depression and rheumatoid arthritis. J Psychiatr Res 2023; 168:22-29. [PMID: 37871462 DOI: 10.1016/j.jpsychires.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Both depression and rheumatoid arthritis (RA) have a very high comorbidity rate. A bilateral association is estimated to increase the mutual risk and the common denominator is inflammation being observed in both diseases. Previous studies have mainly focused on assessing peripheral blood's inflammatory and pro-inflammatory cytokines levels. We aimed to extend insights into the molecular mechanisms of depression based on hub RA genes. To do so, we prioritized RA-related genes using in-silico tools. We then investigated whether RA-related genes undergo altered expression in patients with unipolar and bipolar depression without a concurrent RA diagnosis and any exponents of active inflammation. In addition, we selected a homogeneous group of patients treated with lithium (Li), which has immunomodulatory properties. The study was performed on patients with bipolar depression (BD, n = 45; Li, n = 20), unipolar depression (UD, n = 27), and healthy controls (HC, n = 22) of both sexes. To identify DEGs in peripheral blood mononuclear cells (PBMCs), we used the SurePrint G3 Microarray and GeneSpring software. We selected a list of 180 hub genes whose altered expression we analyzed using the expression microarray results. In the entire study group, we identified altered expression of 93 of the 180 genes, including 35 down-regulated (OPRM1 gene with highest FC > 3) and 58 up-regulated (TLR4 gene with highest FC > 3). In UD patients, we observed maximally up-regulated expression of the TEK gene (FC > 3), and in BD of the CXCL8 gene (FC > 5). On the other hand, in lithium-treated patients, the gene with the most reduced expression was the TRPV1 gene. The study proved that depression and RA are produced by a partially shared "inflammatory interactome" in which the opioid and angiogenesis pathways are important.
Collapse
Affiliation(s)
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poland.
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poland.
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland.
| | - Monika Lesicka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Ewa Jabłońska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland.
| |
Collapse
|
12
|
Huo Y, Cheng C, Wang S, Li L, Rong Z, Su C, Li F, Li Y, Yang L. A novel endomorphin-2/salmon calcitonin hybrid peptide with enhancing anti-allodynic and anti-anxiety effects. Peptides 2023; 170:171108. [PMID: 37778465 DOI: 10.1016/j.peptides.2023.171108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Pain, a worldwide problem with a high incidence and complex pathogenesis, has attracted the attention of pharmaceutical enterprises for the development of safer and more effective drugs. Extensive experimental and clinical evidence has demonstrated the analgesic effects of two endogenous peptides: endomorphin-2 (EM-2) and salmon calcitonin (sCT). However, EM-2 has limitations, such as poor ability to cross the blood-brain barrier (BBB) and little therapeutic effect in chronic pain due to rapid in vivo proteolysis. Herein, we propose the design of a novel hybrid peptide TEM2CT by combining EM-2, sCT16-21, and the cell-penetrating peptide HIV-1 trans-activator protein (TAT) with the aim of enhancing their analgesic effects. TEM2CT treatment attenuated nociceptive behavior in both acute and chronic pain mouse models, exhibiting increased anti-allodynic and anti-anxiety effects compared to sCT treatment. Furthermore, TEM2CT also regulated the excitability of pyramidal neurons in the anterior cingulate cortex (ACC) in spared nerve injury (SNI) model mice. The improved efficacy of this hybrid peptide provides a promising strategy for developing analgesic drugs.
Collapse
Affiliation(s)
- Yuhan Huo
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an 710032, Shaanxi, China; Student Brigade, School of Basic Medicine, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Caiyan Cheng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Saiying Wang
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Lin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Zheng Rong
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Chang Su
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi, China
| | - Fei Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Yunqing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an 710032, Shaanxi, China.
| | - Le Yang
- Department of Anatomy and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an 710032, Shaanxi, China; Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
13
|
Adzic M, Lukic I, Mitic M, Glavonic E, Dragicevic N, Ivkovic S. Contribution of the opioid system to depression and to the therapeutic effects of classical antidepressants and ketamine. Life Sci 2023:121803. [PMID: 37245840 DOI: 10.1016/j.lfs.2023.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Major depressive disorder (MDD) afflicts approximately 5 % of the world population, and about 30-50 % of patients who receive classical antidepressant medications do not achieve complete remission (treatment resistant depressive patients). Emerging evidence suggests that targeting opioid receptors mu (MOP), kappa (KOP), delta (DOP), and the nociceptin/orphanin FQ receptor (NOP) may yield effective therapeutics for stress-related psychiatric disorders. As depression and pain exhibit significant overlap in their clinical manifestations and molecular mechanisms involved, it is not a surprise that opioids, historically used to alleviate pain, emerged as promising and effective therapeutic options in the treatment of depression. The opioid signaling is dysregulated in depression and numerous preclinical studies and clinical trials strongly suggest that opioid modulation can serve as either an adjuvant or even an alternative to classical monoaminergic antidepressants. Importantly, some classical antidepressants require the opioid receptor modulation to exert their antidepressant effects. Finally, ketamine, a well-known anesthetic whose extremely efficient antidepressant effects were recently discovered, was shown to mediate its antidepressant effects via the endogenous opioid system. Thus, although opioid system modulation is a promising therapeutical venue in the treatment of depression further research is warranted to fully understand the benefits and weaknesses of such approach.
Collapse
Affiliation(s)
- Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emilija Glavonic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Ge Q, Wang Y, Zhuang Y, Li Q, Han R, Guo W, He J. Opioid-induced short-term consciousness improvement in patients with disorders of consciousness. Front Neurosci 2023; 17:1117655. [PMID: 36816138 PMCID: PMC9936155 DOI: 10.3389/fnins.2023.1117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Effective treatment to facilitate recovery from prolonged disorders of consciousness is a complex topic for the medical community. In clinical practice, we have found that a subset of patients has a short-term improvement of consciousness after general anesthesia. Methods To determine the clinical factors responsible for the consciousness improvement, we enrolled 50 patients with disorders of consciousness who underwent surgery from October 2021 to June 2022. Their states of consciousness were evaluated before surgery, within 48 h after surgery, and 3 months after surgery. Clinical-related factors and intraoperative anesthetic drug doses were collected and compared between patients with and without consciousness improvement. Independent associations between selected factors and postoperative improvement were assessed using multivariate logistical regression analyses. Results Postoperative short-term consciousness improvement was found in 44% (22/50) of patients, with significantly increased scores of auditory and visual subscales. Patients with traumatic etiology, a preoperative diagnosis of minimally conscious state, and higher scores in the auditory, visual, and motor subscales were more likely to have postoperative improvement. This short-term increase in consciousness after surgery correlated with patients' abilities to communicate in the long term. Furthermore, the amount of opioid analgesic used was significantly different between the improved and non-improved groups. Finally, analgesic dose, etiology, and preoperative diagnosis were independently associated with postoperative consciousness improvement. Discussion In conclusion, postoperative consciousness improvement is related to the residual consciousness of the patient and can be used to evaluate prognosis. Administration of opioids may be responsible for this short-term improvement in consciousness, providing a potential therapeutic approach for disorders of consciousness.
Collapse
Affiliation(s)
- Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjun Wang
- College of Anesthesiology, Shanxi Medical University, Taiyuan, China
| | - Yutong Zhuang
- Department of Neurosurgery, The Second Clinical College of Southern Medical University, Guangzhou, China
| | - Qinghua Li
- College of Anesthesiology, Shanxi Medical University, Taiyuan, China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenzhi Guo
- College of Anesthesiology, Shanxi Medical University, Taiyuan, China,Department of Anesthesiology, The Seventh Medical Center of PLA General Hospital, Beijing, China,Wenzhi Guo,
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,*Correspondence: Jianghong He,
| |
Collapse
|
15
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
16
|
Ha CM, Kim DH, Lee TH, Kim HR, Choi J, Kim Y, Kang D, Park JW, Ojeda SR, Jeong JK, Lee BJ. Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression. Mol Cells 2022; 45:537-549. [PMID: 35950455 PMCID: PMC9385569 DOI: 10.14348/molcells.2022.2051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/23/2022] Open
Abstract
Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-likelike 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.
Collapse
Affiliation(s)
- Chang Man Ha
- Brain Research Core Facilities and Global Relation Center of Research Strategy Office, Korea Brain Research Institute, Daegu 41068, Korea
| | - Dong Hee Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Han Rae Kim
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Jungil Choi
- Bioenvironmental Science & Technology Division, Korea Institute of Toxicology, Jinju 52834, Korea
| | - Yoonju Kim
- Brain Research Core Facilities and Global Relation Center of Research Strategy Office, Korea Brain Research Institute, Daegu 41068, Korea
| | - Dasol Kang
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Sergio R. Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| |
Collapse
|
17
|
The Opioid System in Depression. Neurosci Biobehav Rev 2022; 140:104800. [PMID: 35914624 PMCID: PMC10166717 DOI: 10.1016/j.neubiorev.2022.104800] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022]
Abstract
Opioid receptors are widely distributed throughout the brain and play an essential role in modulating aspects of human mood, reward, and well-being. Accumulating evidence indicates the endogenous opioid system is dysregulated in depression and that pharmacological modulators of mu, delta, and kappa opioid receptors hold potential for the treatment of depression. Here we review animal and clinical data, highlighting evidence to support: dysregulation of the opioid system in depression, evidence for opioidergic modulation of behavioural processes and brain regions associated with depression, and evidence for opioidergic modulation in antidepressant responses. We evaluate clinical trials that have examined the safety and efficacy of opioidergic agents in depression and consider how the opioid system may be involved in the effects of other treatments, including ketamine, that are currently understood to exert antidepressant effects through non-opioidergic actions. Finally, we explore key neurochemical and molecular mechanisms underlying the potential therapeutic effects of opioid system engagement, that together provides a rationale for further investigation into this relevant target in the treatment of depression.
Collapse
|
18
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
19
|
Han J, Andreu V, Langreck C, Pekarskaya EA, Grinnell SG, Allain F, Magalong V, Pintar J, Kieffer BL, Harris AZ, Javitch JA, Hen R, Nautiyal KM. Mu opioid receptors on hippocampal GABAergic interneurons are critical for the antidepressant effects of tianeptine. Neuropsychopharmacology 2022; 47:1387-1397. [PMID: 34593976 PMCID: PMC9117297 DOI: 10.1038/s41386-021-01192-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/28/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
Tianeptine is an atypical antidepressant used in Europe to treat patients who respond poorly to selective serotonin reuptake inhibitors (SSRIs). The recent discovery that tianeptine is a mu opioid receptor (MOR) agonist has provided a potential avenue for expanding our understanding of antidepressant treatment beyond the monoamine hypothesis. Thus, our studies aim to understand the neural circuits underlying tianeptine's antidepressant effects. We show that tianeptine induces rapid antidepressant-like effects in mice after as little as one week of treatment. Critically, we also demonstrate that tianeptine's mechanism of action is distinct from fluoxetine in two important aspects: (1) tianeptine requires MORs for its chronic antidepressant-like effect, while fluoxetine does not, and (2) unlike fluoxetine, tianeptine does not promote hippocampal neurogenesis. Using cell-type specific MOR knockouts we further show that MOR expression on GABAergic cells-specifically somatostatin-positive neurons-is necessary for the acute and chronic antidepressant-like responses to tianeptine. Using central infusion of tianeptine, we also implicate the ventral hippocampus as a potential site of antidepressant action. Moreover, we show a dissociation between the antidepressant-like phenotype and other opioid-like phenotypes resulting from acute tianeptine administration such as analgesia, conditioned place preference, and hyperlocomotion. Taken together, these results suggest a novel entry point for understanding what circuit dysregulations may occur in depression, as well as possible targets for the development of new classes of antidepressant drugs.
Collapse
Affiliation(s)
- Jaena Han
- Department of Biology, Columbia University, New York, NY, 10027, USA
| | - Valentine Andreu
- Department of Neuroscience, New York State Psychiatric Institute, Columbia University, New York, NY, 10032, USA
| | - Cory Langreck
- Department of Pharmacology, Columbia University, New York, NY, 10027, USA
| | - Elizabeth A Pekarskaya
- Department of Neuroscience, New York State Psychiatric Institute, Columbia University, New York, NY, 10032, USA
| | - Steven G Grinnell
- Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Florence Allain
- Department of Psychiatry, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada
| | - Valerie Magalong
- Department of Neuroscience, New York State Psychiatric Institute, Columbia University, New York, NY, 10032, USA
| | - John Pintar
- Department of Neuroscience & Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Brigitte L Kieffer
- Department of Psychiatry, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jonathan A Javitch
- Department of Pharmacology, Columbia University, New York, NY, 10027, USA
- Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - René Hen
- Department of Neuroscience, New York State Psychiatric Institute, Columbia University, New York, NY, 10032, USA.
- Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Katherine M Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
20
|
Zhang XM, Lun MH, Du W, Ma F, Huang ZQ. The κ-Opioid Receptor Agonist U50488H Ameliorates Neuropathic Pain Through the Ca2+/CaMKII/CREB Pathway in Rats. J Inflamm Res 2022; 15:3039-3051. [PMID: 35645576 PMCID: PMC9140919 DOI: 10.2147/jir.s327234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To observe the ameliorative effect of kappa opioid receptor (KOR) agonist on rats with neuropathic pain (NP) and investigate the mechanism of action of the calcium ion (Ca2+)/calcium/calmodulin-dependent protein kinase II (CaMKII)/cyclic AMP response element-binding protein (CREB) pathway. Methods A total of 40 Sprague Dawley rats were randomly divided into four groups: sham-operation group (Sham group), NP model group (NP group), NP + KOR agonist U50488H group (NU group) and NP + specific CaMKII antagonist (KN93) + U50488H group (NKU group). The thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) of each group of rats were determined. ELISA was applied to examine the changes in inflammatory factors and oxidative stress factors, and the apoptotic rate in dorsal root ganglia was observed using TUNEL staining. Ca2+ concentration, content of oxidative stress index ROS and the release of calcitonin gene-related peptide (CGRP) and N-methyl-D-aspartate receptor (NMDAR) in the dorsal root ganglia were measured by the immunofluorescence assay. Finally, Western blotting was performed to detect expression changes in the Ca2+/CaMKII/CREB pathway. Results The KOR agonist U50488H could improve the values of TWL and MWT of NP the rats, inhibit inflammatory responses and relieve oxidative stress injury. Its mechanisms of action were associated with U50488H repression of Ca2+ influx, reduction of CGRP and NMDAR releases in the dorsal root ganglia and decreases in CaMKII and CREB phosphorylations in NP rats. Conclusion The KOR agonist ameliorates NP through suppressing the activity of the Ca2+/CaMKII/CREB pathway.
Collapse
Affiliation(s)
- Xiao-Min Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, NO.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China
- Correspondence: Xiao-Min Zhang; Ze-Qing Huang Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China Email
| | - Ming-Hui Lun
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, NO.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China
| | - Wei Du
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, NO.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China
| | - Fang Ma
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, NO.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China
| | - Ze-Qing Huang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, NO.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China
- Correspondence: Xiao-Min Zhang; Ze-Qing Huang Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People’s Republic of China Email
| |
Collapse
|
21
|
Ma Y, Qin GH, Guo X, Hao N, Shi Y, Li HF, Zhao X, Li JG, Zhang C, Zhang Y. Activation of δ-opioid receptors in anterior cingulate cortex alleviates affective pain in rats. Neuroscience 2022; 494:152-166. [DOI: 10.1016/j.neuroscience.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 12/09/2022]
|
22
|
Loss of Corticostriatal Mu-Opioid Receptors in α-Synuclein Transgenic Mouse Brains. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010063. [PMID: 35054456 PMCID: PMC8781165 DOI: 10.3390/life12010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Ultrastructural, neurochemical, and molecular alterations within the striatum are associated with the onset and progression of Parkinson’s disease (PD). In PD, the dopamine-containing neurons in the substantia nigra pars compacta (SNc) degenerate and reduce dopamine-containing innervations to the striatum. The loss of striatal dopamine is associated with enhanced corticostriatal glutamatergic plasticity at the early stages of PD. However, with disease progression, the glutamatergic corticostriatal white matter tracts (WMTs) also degenerate. We analyzed the levels of Mu opioid receptors (MORs) in the corticostriatal WMTs, as a function of α-Synuclein (α-Syn) toxicity in transgenic mouse brains. Our data show an age-dependent loss of MOR expression levels in the striatum and specifically, within the caudal striatal WMTs in α-Syn tg mouse brains. The loss of MOR expression is associated with degeneration of the myelinated axons that are localized within the corticostriatal WMTs. In brains affected with late stages of PD, we detect evidence confirming the degeneration of myelinated axons within the corticostriatal WMTs. We conclude that loss of corticostriatal MOR expression is associated with degeneration of corticostriatal WMT in α-Syn tg mice, modeling PD.
Collapse
|
23
|
Li L, Li R, Shen F, Wang X, Zou T, Deng C, Wang C, Li J, Wang H, Huang X, Lu F, He Z, Chen H. Negative bias effects during audiovisual emotional processing in major depression disorder. Hum Brain Mapp 2021; 43:1449-1462. [PMID: 34888973 PMCID: PMC8837587 DOI: 10.1002/hbm.25735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Aberrant affective neural processing and negative emotional bias are trait‐marks of major depression disorders (MDDs). However, most research on biased emotional perception in depression has only focused on unimodal experimental stimuli, the neural basis of potentially biased emotional processing of multimodal inputs remains unclear. Here, we addressed this issue by implementing an audiovisual emotional task during functional MRI scanning sessions with 37 patients with MDD and 37 gender‐, age‐ and education‐matched healthy controls. Participants were asked to distinguish laughing and crying sounds while being exposed to faces with different emotional valences as background. We combined general linear model and psychophysiological interaction analyses to identify abnormal local functional activity and integrative processes during audiovisual emotional processing in MDD patients. At the local neural level, MDD patients showed increased bias activity in the ventromedial prefrontal cortex (vmPFC) while listening to negative auditory stimuli and concurrently processing visual facial expressions, along with decreased dorsolateral prefrontal cortex (dlPFC) activity in both the positive and negative visual facial conditions. At the network level, MDD exhibited significantly decreased connectivity in areas involved in automatic emotional processes and voluntary control systems during perception of negative stimuli, including the vmPFC, dlPFC, insula, as well as the subcortical regions of posterior cingulate cortex and striatum. These findings support a multimodal emotion dysregulation hypothesis for MDD by demonstrating that negative bias effects may be facilitated by the excessive ventral bottom‐up negative emotional influences along with incapability in dorsal prefrontal top‐down control system.
Collapse
Affiliation(s)
- Liyuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Fei Shen
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chijun Deng
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Chong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jiyi Li
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xinju Huang
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China.,Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
24
|
Wang HQ, Liu HT, Wang L, Min L, Chen B, Li H. Uncovering the active components, prospective targets, and molecular mechanism of Baihe Zhimu decoction for treating depression using network pharmacology-based analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114586. [PMID: 34464700 DOI: 10.1016/j.jep.2021.114586] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baihe Zhimu decoction (BZD) is a classical traditional Chinese medicinal herbal formula. It consists of two herbal medicines, Rhizoma Anemarrhenae (Zhimu), the rhizomes of Anemarrhena asphodeloides Bge. (Liliaceae), and Bulbus Lilii (Baihe), the bulbs of Lilium brownii var. Viridulum Baker (Liliaceae). BZD has been widely used in China to treat depression and verified to be effective without evident side effects. AIM OF THE STUDY The aim of this study was to elucidate the active components, potential targets, and molecular mechanism of Baihe Zhimu decoction for treating depression. MATERIALS AND METHODS In this research, a chronic unpredictable mild stress (CUMS) mice was first established to evaluate the pharmacological effects of BZD for treating depression. A component database was then constructed for BZD. High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) technique was used to identify the components in BZD and blood-absorbed components. Further screening and validation of protein targets were performed by molecule docking. The component-target binding affinity was validated by surface plasmon resonance analysis (SPR) assay. The related pathways were predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Relative proteins in the predicted pathways were finally assessed by Western blot. RESULTS The pharmacology evaluation experiment demonstrated that BZD could improve depressive-like behavior, inhibit the hippocampal secretion of pro-inflammatory cytokines and reduce neuronal apoptosis in CUMS mice model. A component database containing 163 components and a target database covering 1286 proteins were constructed. HPLC-QTOF-MS assay identified twenty-six components from BZD and ten components absorbed into rat plasma after an intragastric treatment with BZD. Next, 56 underlying targets were screened out by a virtual high-throughput screening approach. Twenty-seven of them were further screened out and confirmed by molecular docking. Afterward, a component-target network was established, and the component-protein binding affinities were validated by SPR assays. By KEGG pathway enrichment analysis, two signaling pathways PI3K/Akt and MAPK were predicted as the potential signaling cascades. Finally, Western blot showed that BZD dramatically reversed the suppression of PI3K/Akt/GSK-3β pathway and the activation of MAPK pathway in CUMS mice model. CONCLUSIONS BZD demonstrated a substantial pharmacological effect on CUMS mice model. Network pharmacology-based analysis predicted that ten blood-absorbed components can act on 27 target proteins. KEGG and Western blotting analysis suggested that BZD could exert antidepressant effects by regulating the PI3K/Akt and MAPK signaling pathways.
Collapse
Affiliation(s)
- Hai-Qiao Wang
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| | - Hong-Tao Liu
- Huantai County Psychiatric Hospital, Zibo, 256400, China.
| | - Liang Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Liang Min
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| | - Bin Chen
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| |
Collapse
|
25
|
Osman A, Zuffa S, Walton G, Fagbodun E, Zanos P, Georgiou P, Kitchen I, Swann J, Bailey A. Post-weaning A1/A2 β-casein milk intake modulates depressive-like behavior, brain μ-opioid receptors, and the metabolome of rats. iScience 2021; 24:103048. [PMID: 34585111 PMCID: PMC8450247 DOI: 10.1016/j.isci.2021.103048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
The postnatal period is critical for brain and behavioral development and is sensitive to environmental stimuli, such as nutrition. Prevention of weaning from maternal milk was previously shown to cause depressive-like behavior in rats. Additionally, loss of dietary casein was found to act as a developmental trigger for a population of brain opioid receptors. Here, we explore the effect of exposure to milk containing A1 and A2 β-casein beyond weaning. A1 but not A2 β-casein milk significantly increased stress-induced immobility in rats, concomitant with an increased abundance of Clostridium histolyticum bacterial group in the caecum and colon of A1 β-casein fed animals, brain region-specific alterations of μ-opioid and oxytocin receptors, and modifications in urinary biochemical profiles. Moreover, urinary gut microbial metabolites strongly correlated with altered brain metabolites. These findings suggest that consumption of milk containing A1 β-casein beyond weaning age may affect mood via a possible gut-brain axis mechanism. Postnatal brain development is sensitive to nutritional exposures Consumption of A1 but not A2 β-casein milk post-weaning affects mood in rats Gut microbial, biochemical, and neurochemical changes accompany mood alterations Urinary gut microbial metabolites correlate with brain metabolites
Collapse
Affiliation(s)
- Aya Osman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simone Zuffa
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gemma Walton
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Elizabeth Fagbodun
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Panos Zanos
- Department of Psychology, University of Cyprus, 1 University Avenue, 2109 Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ian Kitchen
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.,School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| |
Collapse
|
26
|
Addiction and the cerebellum with a focus on actions of opioid receptors. Neurosci Biobehav Rev 2021; 131:229-247. [PMID: 34555385 DOI: 10.1016/j.neubiorev.2021.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 01/19/2023]
Abstract
Increasing evidence suggests that the cerebellum could play a role in the higher cognitive processes involved in addiction as the cerebellum contains anatomical and functional pathways to circuitry controlling motivation and saliency. In addition, the cerebellum exhibits a widespread presence of receptors, including opioid receptors which are known to play a prominent role in synaptic and circuit mechanisms of plasticity associated with drug use and development of addiction to opioids and other drugs of abuse. Further, the presence of perineural nets (PNNs) in the cerebellum which contain proteins known to alter synaptic plasticity could contribute to addiction. The role the cerebellum plays in processes of addiction is likely complex, and could depend on the particular drug of abuse, the pattern of use, and the stage of the user within the addiction cycle. In this review, we discuss functional and structural modifications shown to be produced in the cerebellum by opioids that exhibit dependency-inducing properties which provide support for the conclusion that the cerebellum plays a role in addiction.
Collapse
|
27
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Eitan S, Madison CA, Kuempel J. The self-serving benefits of being a good host: A role for our micro-inhabitants in shaping opioids' function. Neurosci Biobehav Rev 2021; 127:284-295. [PMID: 33894242 DOI: 10.1016/j.neubiorev.2021.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Opioids are highly efficacious in their ability to relieve pain, but they are liable for abuse, dependence, and addiction. Risk factors to develop opioid use disorders (OUD) include chronic stress, socio-environment, and preexisting major depressive disorders (MDD) and posttraumatic stress disorders (PTSD). Additionally, opioids reduce gut motility, induce loss of gut barrier function, and alter the composition of the trillions of microbes hosted in the gastrointestinal tract, known as the gut microbiota. The microbiota are significant contributors to the reciprocal communication between the central nervous system (CNS) and the gut, termed the gut-brain axis. They have strong influences on their host behaviors, including the ability to cope with stress, sociability, affect, mood, and anxiety. Thus, they are implicated in the etiology of MDD and PTSD. Here we review the latest studies demonstrating that intestinal flora can, directly and indirectly, by affecting sociability levels, responses to stress, and mental state, alter the responses to opioids. It suggests that microbiota can potentially be used to increase the resilience to develop analgesic tolerance and OUD.
Collapse
Affiliation(s)
- Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA.
| | - Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| | - Jacob Kuempel
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
29
|
Wang HQ, Wang ZZ, Chen NH. The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacol Res 2021; 167:105542. [PMID: 33711432 DOI: 10.1016/j.phrs.2021.105542] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Depression has become one of the most prevalent neuropsychiatric disorders characterized by anhedonia, anxiety, pessimism, or even suicidal thoughts. Receptor theory has been pointed out to explain the pathogenesis of depression, while it is still subject to debate. Additionally, gene abnormality accounts for nearly 40-50% of depression risk, which is a significant factor contributing to the onset of depression. Accordingly, studying on receptors and their gene abnormality are critical parts of the research on internal causes of depression. This review summarizes the pathogenesis of depression from six of the most related receptors and their associated genes, including N-methyl-D-aspartate receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, glucocorticoid receptor, 5-hydroxytryptamine receptor, GABAA receptor α2, and dopamine receptor; and several "non-classic" receptors, such as metabotropic glutamate receptor, opioid receptor, and insulin receptor. These receptors have received considerable critical attention and are highly implicated in the onset of depression. We begin by providing the biological mechanisms of action of these receptors on the pathogenesis of depression. Then we review the historical and social context about these receptors. Finally, we discuss the limitations of the current state of knowledge and outline insights on future research directions, aiming to provide more novel targets and theoretical basis for the early prevention, accurate diagnosis and prompt treatment of depression.
Collapse
Affiliation(s)
- Hui-Qin Wang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
30
|
Fu X, Zhang P, Song H, Wu C, Li S, Li S, Yan C. LTBP1 plays a potential bridge between depressive disorder and glioblastoma. J Transl Med 2020; 18:391. [PMID: 33059753 PMCID: PMC7566028 DOI: 10.1186/s12967-020-02509-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most malignant tumor in human brain. Diagnosis and treatment of GBM may lead to psychological disorders such as depressive and anxiety disorders. There was no research focusing on the correlation between depressive/anxiety disorder and the outcome of GBM. Thus, the aim of this study was to investigate the possibility of depressive/anxiety disorder correlated with the outcome of GBM patients, as well as the overlapped mechanism bridge which could link depressive/anxiety disorders and GBM. Methods Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder (GAD-7) were used to investigate the psychological condition of GBM patients in our department. To further explore the potential mechanism, bioinformatic methods were used to screen out genes that could be indicators of outcome in GBM, followed by gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein–protein interaction (PPI) analysis. Further, cellular experiments were conducted to evaluate the proliferation, migration capacity of primary GBM cells from the patients. Results It was revealed that patients with higher PHQ-9 and GAD-7 scores had significantly worse prognosis than their lower-scored counterparts. Bioinformatic mining revealed that LTBP1 could be a potential genetic mechanism in both depressive/anxiety disorder and GBM. Primary GBM cells with different expression level of LTBP1 should significantly different proliferation and migration capacity. GO, KEGG analysis confirmed that extracellular matrix (ECM) was the most enriched function of LTBP1. PPI network showed the interaction of proteins altered by LTBP1. Hub genes COL1A2, COL5A1 and COL10A1, as well as mesenchymal marker CD44 and Vimentin were statistically higher expressed in LTBP1 high group; while proneural marker E-cadherin was significantly higher expressed in low LTBP1 group. Conclusion There is closely correlation between depressive/anxiety disorders and GBM. LTBP1 could be a potential bridge linking the two diseases through the regulation of ECM.
Collapse
Affiliation(s)
- Xiaojun Fu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.,Capital Medical University, Beijing, People's Republic of China
| | - Pei Zhang
- Beijing Institute of Technology, Beijing, China
| | - Hongwang Song
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chenxing Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China
| | | | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| | - Changxiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| |
Collapse
|
31
|
Voronin MV, Vakhitova YV, Seredenin SB. Chaperone Sigma1R and Antidepressant Effect. Int J Mol Sci 2020; 21:E7088. [PMID: 32992988 PMCID: PMC7582751 DOI: 10.3390/ijms21197088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
This review analyzes the current scientific literature on the role of the Sigma1R chaperone in the pathogenesis of depressive disorders and pharmacodynamics of antidepressants. As a result of ligand activation, Sigma1R is capable of intracellular translocation from the endoplasmic reticulum (ER) into the region of nuclear and cellular membranes, where it interacts with resident proteins. This unique property of Sigma1R provides regulation of various receptors, ion channels, enzymes, and transcriptional factors. The current review demonstrates the contribution of the Sigma1R chaperone to the regulation of molecular mechanisms involved in the antidepressant effect.
Collapse
Affiliation(s)
- Mikhail V. Voronin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| | | | - Sergei B. Seredenin
- Department of Pharmacogenetics, FSBI “Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia;
| |
Collapse
|
32
|
Horovitz O, Ardi Z, Ashkenazi SK, Ritov G, Anunu R, Richter-Levin G. Network Neuromodulation of Opioid and GABAergic Receptors Following a Combination of "Juvenile" and "Adult Stress" in Rats. Int J Mol Sci 2020; 21:ijms21155422. [PMID: 32751453 PMCID: PMC7432657 DOI: 10.3390/ijms21155422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Early life stress is suggested to alter behavioral responses during stressful challenges in adulthood and to exacerbate pathological symptoms that reminisce posttraumatic stress disorder (PTSD). These effects are often associated with changes in γ-Aminobutyric acid type A (GABAA) and κ opioid receptor expression and neuromodulation of the limbic system. Anxiety-like and stress coping behaviors were assessed in rats exposed to stress in adulthood on the background of previous exposure to stress in juvenility. Two weeks following behavioral assessment in adulthood, GABAAR α1 and α2 subunits and κ opioid receptor expression levels were measured in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), amygdala, and periaqueductal gray (PAG). To illustrate changes at the network level, an integrated expression profile was constructed. We found that exposure to juvenile stress affected rats’ behavior during adult stress. The combination of juvenile and adult stress significantly affected rats’ long term anxious-like behavior. Probabilities predicting model integrating the expression of GABAA α1-α2 and κ opioid receptors in different brain regions yielded highly successful classification rates. This study emphasizes the ability of exposure to stress in juvenility to exacerbate the impact of coping with stress in adulthood. Moreover, the use of integrated receptor expression network profiling was found to effectively characterize the discussed affective styles and their behavioral manifestations.
Collapse
Affiliation(s)
- Omer Horovitz
- Psychology Department, Tel-Hai Academic College, Haifa 1220800, Israel;
| | - Ziv Ardi
- Department of Behavioral Sciences, Kinneret Academic College on the Sea of Galilee, Sea of Galilee 15132, Israel
- Correspondence: ; Tel.: +972-46653803
| | - Shiri Karni Ashkenazi
- Sagol Department of Neurobiology, University of Haifa, Mount Carmel 31095, Israel; (S.K.A.); (G.R.-L.)
| | - Gilad Ritov
- The Institute for the Study of Affective Neuroscience (ISAN), Mount Carmel 31095, Israel; (G.R.); (R.A.)
| | - Rachel Anunu
- The Institute for the Study of Affective Neuroscience (ISAN), Mount Carmel 31095, Israel; (G.R.); (R.A.)
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Mount Carmel 31095, Israel; (S.K.A.); (G.R.-L.)
- The Institute for the Study of Affective Neuroscience (ISAN), Mount Carmel 31095, Israel; (G.R.); (R.A.)
- Psychology Department, University of Haifa, Mount Carmel 31095, Israel
| |
Collapse
|