1
|
Xu C, Zhu Z, Chen X, Lu M, Wang C, Zhang S, Shi L, Cheng L, Zhang X. Integrating a multi-omics strategy framework to screen potential targets in cognitive impairment-related epilepsy. Methods 2025; 237:34-44. [PMID: 40049431 DOI: 10.1016/j.ymeth.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025] Open
Abstract
Epilepsy is a prevalent neurological disorder that affects over 70 million individuals worldwide and is often associated with cognitive impairments. Despite the widespread impact of epilepsy and cognitive impairments, the genetic basis and causal relationships underlying these conditions remain uncertain, prompting us to conduct a comprehensive investigation into the molecular mechanisms involved. In this study, we utilized statistical data from the third National Health and Nutrition Examination Survey (NHANES III) to evaluate correlation and large-scale pan-phenotype genome-wide association study (GWAS) data to establish genetic correlation and causality. Leveraging multi-omics datasets, we performed a comprehensive post-analysis that included variant prioritization, gene analysis, tissue and cell type enrichment, and pathway annotation. An integrated strategy-multi-trait analysis of GWAS (MTAG), transcriptome-wide association study (TWAS), summary-data-based Mendelian Randomization (SMR), and protein quantitative trait locus (pQTL)-MR-was performed to investigate the shared genetic architecture. Based on multiple orthogonal lines of evidence, we thereby identified 40 single nucleotide polymorphisms (SNPs) and 85 genes common to both conditions. Additionally, we optimized candidate genes such as GNAQ, FADS1, and PTK2 by single-cell expression analysis and molecular pathway mechanisms, thereby highlighting potential shared genetic pathways. These findings elucidate the genetic interplay and co-occurring mechanisms between epilepsy and cognitive impairments, providing crucial insights for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Chao Xu
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150028, China; Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China.
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Minke Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China.
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Lei Shi
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150028, China.
| | - Liang Cheng
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150028, China; College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China.
| | - Xue Zhang
- Human Molecular Genetics Group, National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150028, China; Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin 150081, China; McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Wu F, Dallaire-Théroux C, Michaud É, Bergeron F, Lavoie M, Soucy JP, Dirani A, Laforce RJ. Diagnosing neurodegenerative disorders using retina as an external window: A systematic review of OCT-MRI correlations. J Alzheimers Dis 2025:13872877251331231. [PMID: 40255034 DOI: 10.1177/13872877251331231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BackgroundRecent studies have explored optical coherence tomography (OCT) and OCT-angiography (OCT-A) as biomarkers for Alzheimer's disease (AD). However, correlations between OCT/OCT-A and neurodegeneration metrics remain underexplored.ObjectiveWe performed a systematic review of OCT/OCT-A and structural brain imaging using MRI across various neurodegenerative disorders.MethodsWe searched Medline, Embase, and various other databases from January to June 2023 using keywords regarding neurodegenerative conditions and OCT/OCT-A. Out of 2962 citations. 93 articles were reviewed, and 28 met our inclusion criteria.ResultsLayer-or-region-specific retinal metrics were the most promising for non-vascular neurodegeneration, while vascular retinal parameters had the unique capacity to reflect vascular lesions. Both types of biomarkers correlated with global brain atrophy. Microstructural brain alterations best correlated with layer-specific thinning of retina.ConclusionsA better understanding of associations between retinal and brain lesions could eventually lead to the clinical application of retinal biomarkers for the early diagnosis of neurodegenerative conditions.
Collapse
Affiliation(s)
- Fei Wu
- Research Chair on Primary Progressive Aphasia - Fondation de la famille Lemaire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Caroline Dallaire-Théroux
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Faculté de médecine, Université Laval, Québec City, QC, Canada
- Division of Neuroscience, Hôpital de l'Enfant-Jésus, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Élodie Michaud
- Faculté de médecine, Université Laval, Québec City, QC, Canada
| | | | - Monica Lavoie
- Research Chair on Primary Progressive Aphasia - Fondation de la famille Lemaire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Jean-Paul Soucy
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Ali Dirani
- Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre universitaire d'ophtalmologie, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Robert Jr Laforce
- Research Chair on Primary Progressive Aphasia - Fondation de la famille Lemaire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
- Faculté de médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
3
|
García de la Garza Á, Nester C, Wang C, Mogle J, Roque N, Katz M, Derby CA, Lipton RB, Rabin L. Enhanced associations between subjective cognitive concerns and blood-based AD biomarkers using a novel EMA approach. Alzheimers Res Ther 2025; 17:82. [PMID: 40234939 PMCID: PMC11998261 DOI: 10.1186/s13195-025-01720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/15/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Subjective cognitive concerns (SCC) have emerged as important early indicators of Alzheimer's disease (AD) risk. Traditional measures of SCC rely on recall-based assessments, which may be limited in capturing real-time fluctuations in cognitive concerns. Ecological Momentary Assessment (EMA) offers a promising alternative by providing real-time data. This study aimed to link SCC assessed via EMA and traditional measures with blood-based AD biomarkers in a diverse, dementia-free, community-based sample based in the Bronx, NY. METHODS Einstein Aging Study (EAS) participants underwent in-person, recall-based assessments of SCC during an in-clinic visit. Additionally, EMA SCC assessments were collected once per day over two weeks. Linear regressions were conducted to examine the relationships between SCC variables and plasma biomarkers adjusted for demographics and mild cognitive impairment (MCI) status. RESULTS In N = 254 participants, EMA-reported SCCs demonstrated significant associations with AD biomarkers, particularly p-tau181 (β = 0.21, p = 0.001). Further, significant associations remain across both cognitive (cognitively unimpaired vs. MCI) and racial groups. In contrast, traditional SCC measures exhibited limited associations with these biomarkers. The findings highlight the added value of EMA in capturing SCCs that could indicate early ADRD risk. CONCLUSIONS EMA provides a more dynamic and potentially sensitive method for detecting early AD risk compared to traditional SCC assessments. These real-time measures could enhance early detection and clinical intervention, particularly in diverse and under-resourced populations. This study underscores the potential of EMA for broad applicability and inclusivity in monitoring AD progression and facilitating early therapeutic interventions.
Collapse
Affiliation(s)
- Ángel García de la Garza
- Division of Biostatistics, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Ave Belfer Bldg 1308B, The Bronx, NY, 10461, USA.
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, USA.
| | - Caroline Nester
- Department of Psychiatry and Human Behavior, Brown University, Providence, USA
| | - Cuiling Wang
- Division of Biostatistics, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Ave Belfer Bldg 1308B, The Bronx, NY, 10461, USA
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, USA
| | - Jacqueline Mogle
- Department of Psychology, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, USA
| | - Nelson Roque
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, USA
| | - Mindy Katz
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, USA
| | - Carol A Derby
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, USA
| | - Richard B Lipton
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, USA
| | - Laura Rabin
- Department of Psychology, The City University of New York, New York City, USA
| |
Collapse
|
4
|
Bhalala OG, Beamish J, Eratne D, Summerell P, Porter T, Laws SM, Kang MJ, Huq AJ, Chiu WH, Cadwallader C, Walterfang M, Farrand S, Evans AH, Kelso W, Churilov L, Watson R, Yassi N, Velakoulis D, Loi SM. Blood biomarker profiles in young-onset neurocognitive disorders: A cohort study. Aust N Z J Psychiatry 2025; 59:378-388. [PMID: 39825484 PMCID: PMC11924289 DOI: 10.1177/00048674241312805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Young-onset neurocognitive symptoms result from a heterogeneous group of neurological and psychiatric disorders which present a diagnostic challenge. To identify such factors, we analysed the Biomarkers in Younger-Onset Neurocognitive Disorders cohort, a study of individuals <65 years old presenting with neurocognitive symptoms for a diagnosis and who have undergone cognitive and biomarker analyses. METHODS Sixty-five participants (median age at assessment of 56 years, 45% female) were recruited during their index presentation to the Royal Melbourne Hospital Neuropsychiatry Centre, a tertiary specialist service in Melbourne, Australia, and categorized as either early-onset Alzheimer's disease (n = 18), non-Alzheimer's disease neurodegeneration (n = 23) or primary psychiatric disorders (n = 24). Levels of neurofilament light chain, glial fibrillary acidic protein and phosphorylated-tau 181, apolipoprotein E genotype and late-onset Alzheimer's disease polygenic risk scores were determined. Information-theoretic model selection identified discriminatory factors. RESULTS Neurofilament light chain, glial fibrillary acidic protein and phosphorylated-tau 181 levels were elevated in early-onset Alzheimer's disease compared with other diagnostic categories. A multi-omic model selection identified that a combination of cognitive and blood biomarkers, but not the polygenic risk score, discriminated between early-onset Alzheimer's disease and primary psychiatric disorders (area under the curve ⩾ 0.975, 95% confidence interval: 0.825-1.000). Phosphorylated-tau 181 alone significantly discriminated between early-onset Alzheimer's disease and non-Alzheimer's disease neurodegeneration causes (area under the curve = 0.950, 95% confidence interval: 0.877-1.00). DISCUSSION Discriminating between early-onset Alzheimer's disease, non-Alzheimer's disease neurodegeneration and primary psychiatric disorders causes of young-onset neurocognitive symptoms is possible by combining cognitive profiles with blood biomarkers. These results support utilizing blood biomarkers for the work-up of young-onset neurocognitive symptoms and highlight the need for the development of a young-onset Alzheimer's disease-specific polygenic risk score.
Collapse
Affiliation(s)
- Oneil G Bhalala
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jessica Beamish
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Patrick Summerell
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Matthew Jy Kang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Aamira J Huq
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Wei-Hsuan Chiu
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Claire Cadwallader
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Walterfang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Sarah Farrand
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew H Evans
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Wendy Kelso
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Leonid Churilov
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Rosie Watson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nawaf Yassi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Samantha M Loi
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Antonioni A, Raho EM, Di Lorenzo F, Manzoli L, Flacco ME, Koch G. Blood phosphorylated Tau217 distinguishes amyloid-positive from amyloid-negative subjects in the Alzheimer's disease continuum. A systematic review and meta-analysis. J Neurol 2025; 272:252. [PMID: 40047958 PMCID: PMC11885345 DOI: 10.1007/s00415-025-12996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia worldwide, and cost-effective tools to detect amyloid pathology are urgently needed. Blood-based Tau phosphorylated at threonine 217 (pTau217) seems promising, but its reliability as a proxy for cerebrospinal fluid (CSF) status and ability to identify patients within the AD spectrum remain unclear. METHODS We performed a systematic review and meta-analysis on the potential of blood pTau217 to differentiate amyloid-positive (A+) and amyloid-negative (A-) subjects. We included original studies reporting quantitative data on pTau217 concentrations in both blood and CSF in the AD continuum. The single-group meta-analysis computed the pooled pTau217 levels in blood and in CSF, separately in the A+ and A- groups, while the head-to-head meta-analysis compared the mean pTau217 concentrations in the A+ versus A- subjects, both in blood and CSF, stratifying by assessment method in both cases. RESULTS Ten studies (819 A+; 1055 A-) were included. The mean pTau217 levels resulted higher in CSF than in blood and, crucially, in A+ individuals than in A- ones, regardless of the laboratory method employed. Most importantly, all laboratory techniques reliably distinguished A+ from A- subjects, whether applied to CSF or blood samples. CONCLUSIONS These results confirm that blood-based pTau217 is a reliable marker of amyloid pathology with significant implications for clinical practice in the AD continuum. Indeed, pTau217 might be a non-invasive, scalable biomarker for early AD detection, reducing the reliance on more invasive, expansive, and less accessible methods. CLINICAL TRIAL REGISTRATION Prospero CRD42024565187.
Collapse
Affiliation(s)
- Annibale Antonioni
- Doctoral Program in Translational Neurosciences and Neurotechnologies, Department of Neuroscience and Rehabilitation, University of Ferrara, Via Ludovico Ariosto, 35, 44121, Ferrara, Italy.
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy.
- Department of Neuroscience, Ferrara University Hospital, 44124, Ferrara, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, 44124, Ferrara, Italy
| | - Francesco Di Lorenzo
- Neuropsychophysiology Lab, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy.
| | - Lamberto Manzoli
- Department of Medical and Surgical Sciences, University of Bologna, 40126, Bologna, Italy
| | - Maria Elena Flacco
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giacomo Koch
- Neuropsychophysiology Lab, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179, Rome, Italy.
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy.
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121, Ferrara, Italy.
| |
Collapse
|
6
|
Tandoro Y, Chiu HF, Tan CL, Hsieh MH, Huang YW, Yu J, Wang LS, Chan CH, Wang CK. Black raspberry supplementation on overweight and Helicobacter pylori infected mild dementia patients a pilot study. NPJ Sci Food 2025; 9:9. [PMID: 39939643 PMCID: PMC11821819 DOI: 10.1038/s41538-024-00356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. H. pylori infection and overweight have been implicated in AD via the gut-brain axis (GBA). This study aimed to determine whether supplementation of BRBs has a meaningful effect on H. pylori infection, overweight, and AD development in a clinical trial setting. We conducted a randomized placebo-controlled clinical trial in patients with mild clinical dementia who also had H. pylori infection and were overweight. The study was conducted over 10 weeks, consisting of an 8-week intervention period (25 g powder of black raspberries, BRBs, or placebo twice daily, morning and evening) and a 2-week follow-up. The primary outcomes were changes in Clinical Dementia Rating (CDR), Urea Breath Test (UBT), and Body Mass Index (BMI). Consumption of BRBs improved cognitive functions (p < 0.00001), compared to the placebo group (p > 0.05). Besides, BRBs ingestion decreased H. pylori infection and BMI (p < 0.00001 and p < 0.05 respectively) while the placebo group stayed statistically the same (p = 0.98 and p = 0.25 respectively). BRBs significantly decreased inflammatory markers, improved oxidative index, and adiponectin (p < 0.05) compared to the placebo group, while adenosine monophosphate-activated protein kinase (AMPK) and leptin did not significantly change. BRBs modulated the abundance of several fecal probiotics, particularly, Akkermansia muciniphila. Our results provided that BRBs suppressed H. pylori infection, decreased BMI, and rebalanced the gut microbiome, which could improve cognitive functions in mild dementia patients. Longer and larger randomized clinical trials of BRB interventions targeting H. pylori infection, overweight, or mild dementia are warranted to confirm the results from this pilot trial. Trial Registration: ClinicalTrials.gov identifier: NCT05680532.
Collapse
Affiliation(s)
- Yohanes Tandoro
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Faculty of Agricultural Technology, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital Ministry of Health and Welfare, Taichung, Taiwan
| | - Chei-Ling Tan
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Hong Hsieh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Huang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chi-Ho Chan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
7
|
Zhou X, Xiao Z, Wu W, Chen Y, Yuan C, Leng Y, Yao Y, Zhao Q, Hofman A, Brunner E, Ding D. Closing the gap in dementia research by community-based cohort studies in the Chinese population. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2025; 55:101465. [PMID: 39902152 PMCID: PMC11788756 DOI: 10.1016/j.lanwpc.2025.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025]
Abstract
China accounts for 1/5 of the global population and China faces a particularly heavy dementia burden due to its rapidly ageing population. Unique historical events, genetic background, sociocultural factors, lifestyle, and the COVID-19 pandemic further influence cognitive outcomes in the Chinese population. We searched PubMed, Web of Science, and Embase for community-based cohort studies related to dementia in the Chinese population, and summarized the characteristics, methodologies, and major findings published over the last 25 years from 39 cohorts. We identified critical research gaps and propose future directions, including enhancing sample representativeness, investigating China-specific risk factors, expanding exposure measurements to the whole life-span, collecting objective data, conducting administer-friendly domain-specific cognitive assessments, adopting pathological diagnostic criteria, standardizing biobank construction, verifying multi-modal biomarkers, examining social and genetic-environmental aspects, and monitoring post-COVID cognitive health, to approach high quality of dementia studies that can provide solid evidence to policy making and promote global brain health research.
Collapse
Affiliation(s)
- Xiaowen Zhou
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenxu Xiao
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Wu
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Yuntao Chen
- Division of Psychiatry, Faculty of Brain Science, UCL, London, UK
| | - Changzheng Yuan
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Yue Leng
- Department of Psychiatry and Behavioural Sciences, University of California, San Francisco, USA
| | - Yao Yao
- China Center for Health Development Studies, School of Public Health, Peking University, Beijing, China
| | - Qianhua Zhao
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Albert Hofman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Eric Brunner
- Institute of Epidemiology and Health Care, UCL, London, UK
| | - Ding Ding
- Institute of Neurology, National Clinical Research Center for Aging and Medicine, National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Boza-Calvo C, Faustin A, Zhang Y, Briggs AQ, Bernard MA, Bubu OM, Rao JA, Gurin L, Tall SO, Osorio RS, Marsh K, Shao Y, Masurkar AV. Two-Year Longitudinal Outcomes of Subjective Cognitive Decline in Hispanics Compared to Non-hispanic Whites. J Geriatr Psychiatry Neurol 2025; 38:23-31. [PMID: 39043156 DOI: 10.1177/08919887241263097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
BACKGROUND Subjective cognitive decline (SCD), considered a preclinical dementia stage, is less understood in Hispanics, a high-risk group for dementia. We investigated SCD to mild cognitive impairment (MCI) progression risk, as well as baseline and longitudinal features of depressive symptoms, SCD complaints, and objective cognitive performance among Hispanics compared to non-Hispanic Whites (NHW). METHODS Hispanic (n = 23) and NHW (n = 165) SCD participants were evaluated at baseline and 2-year follow-up. Evaluations assessed function, depressive symptoms, SCD, and objective cognitive performance. RESULTS Hispanics were at increased risk of progression to MCI (OR: 6.10, 95% CI 1.09-34.20, P = .040). Hispanic participants endorsed more depressive symptoms at baseline (P = .048) that worsened more longitudinally (OR: 3.16, 95% CI 1.18-8.51, P = .023). Hispanic participants had increased SCD complaints on the Brief Cognitive Rating Scale (BCRS) (β = .40 SE: .17, P = .023), and in specific BCRS domains: concentration (β = .13, SE: .07, P = .047), past memory (β = .13, SE: .06, P = .039) and functional abilities (β = .10, SE: .05, P = .037). In objective cognitive performance, Hispanic ethnicity associated with decline in MMSE (β = -.27, SE: .13, P = .039), MoCA (β = -.80 SE: .34, P = .032), Trails A (β = 2.75, SE: .89, P = .002), Trails B (β = 9.18, SE: 2.71, P = .001) and Guild Paragraph Recall Delayed (β = -.80 SE: .28, P = .005). Conclusions: Hispanic ethnicity associated with a significantly increased risk of 2-year progression of SCD to MCI compared to NHW. This increased risk associated with increased depressive symptoms, distinctive SCD features, and elevated amnestic and non-amnestic objective cognitive decline. This supports further research to refine the assessment of preclinical dementia in this high-risk group.
Collapse
Affiliation(s)
- Carolina Boza-Calvo
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
- NYU Alzheimer's Disease Research Center, NY, USA
| | - Arline Faustin
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yian Zhang
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Anthony Q Briggs
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mark A Bernard
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Omonigho M Bubu
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Center for Sleep and Brain Health, New York, NY, USA
| | - Julia A Rao
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Lindsey Gurin
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sakina Ouedraogo Tall
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ricardo S Osorio
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Center for Sleep and Brain Health, New York, NY, USA
| | - Karyn Marsh
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yongzhao Shao
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Arjun V Masurkar
- NYU Alzheimer's Disease Research Center, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Antonioni A, Raho EM, Manzoli L, Koch G, Flacco ME, Di Lorenzo F. Blood phosphorylated Tau181 reliably differentiates amyloid-positive from amyloid-negative subjects in the Alzheimer's disease continuum: A systematic review and meta-analysis. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70068. [PMID: 39822285 PMCID: PMC11736637 DOI: 10.1002/dad2.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Blood-based biomarkers seem promising for the diagnosis of Alzheimer's disease (AD). METHODS We performed a systematic review and meta-analysis on the potential of blood phosphorylated Tau181 (p-tau181) to differentiate amyloid-positive (A+) and amyloid-negative (A-) subjects. Two meta-analyses were conducted, showing the mean p-tau values in blood and cerebrospinal fluid (CSF) in the A+ and A- group, and the second comparing the mean p-tau concentrations in blood and CSF among A+ versus A- participants, by laboratory assessment method. RESULTS Eighteen studies (2764 A+ and 5646 A- subjects) were included. The single-group meta-analysis showed mean higher blood p-tau181 values in the A+ than in the A- group. In the head-to-head meta-analysis, blood p-tau reliably differentiated A+ patients from A- participants. DISCUSSION Regardless of the laboratory technique, blood p-tau181 reliably differentiates A+ and A- subjects. Therefore, it might have important applications for early diagnosis and inclusion in clinical trials for AD patients. Highlights The role of blood-based biomarkers in discriminating AD patients is still uncertain.Blood p-tau181 distinguishes among amyloid-positive and amyloid-negative subjects.Blood p-tau181 might allow early diagnosis and inclusion in clinical trials.
Collapse
Affiliation(s)
- Annibale Antonioni
- Doctoral Program in Translational Neurosciences and NeurotechnologiesDepartment of Neuroscience and RehabilitationUniversity of FerraraFerraraItaly
- Department of Neuroscience and RehabilitationUniversity of FerraraFerraraItaly
- Department of NeuroscienceFerrara University HospitalFerraraItaly
| | - Emanuela Maria Raho
- Department of Neuroscience and RehabilitationUniversity of FerraraFerraraItaly
| | - Lamberto Manzoli
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Giacomo Koch
- Non Invasive Brain Stimulation UnitIstituto di Ricovero e Cura a Carattere Scientifico Santa LuciaRomeItaly
- Center for Translational NeurophysiologyIstituto Italiano di TecnologiaFerraraItaly
- Section of PhysiologyDepartment of Neuroscience and RehabilitationUniversity of FerraraFerraraItaly
| | - Maria Elena Flacco
- Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation UnitIstituto di Ricovero e Cura a Carattere Scientifico Santa LuciaRomeItaly
| |
Collapse
|
10
|
Qing Y, Zheng J, Luo Y, Li S, Liu X, Yang S, Du J, Li Y. The impact of metals on cognitive impairment in the elderly and the mediating role of oxidative stress: A cross-sectional study in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117152. [PMID: 39383823 DOI: 10.1016/j.ecoenv.2024.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Cognitive impairment (CI) is a prodrome of many neurodegenerative diseases with complex and unclear pathogenesis. Metal exposure has been found to be associated with CI, but existing population studies are scarce and have the limitations of single outcome and ignoring mixed exposures. This cross-sectional study was conducted in Shanghai, China, enrolling 836 seniors aged over 60 years to investigate the relationship between combined metal exposure (Lead (Pb), cadmium (Cd), and mercury (Hg)) and CI in the elderly and the mediating effect of oxidative stress. It was found that there were significant differences in urinary Pb, Cd, Hg and blood Pb levels between the CI and normal groups. Urinary Pb and Cd levels were significantly negatively correlated with Montreal Cognitive Assessment (MoCA) score, amyloid β42 (Aβ42), and Aβ42/40, while urinary Cd, Hg and blood Hg were significantly positively correlated with phosphorylated tau protein (P-tau). Weighted quantile sum (WQS) regression indicated that combined metal exposure had a more significant effect on CI than individual exposure. Mediation modeling revealed that plasma superoxide dismutase (SOD) was involved in the effects of urinary Cd on Aβ42/40 and P-tau, with mediation effects accounting for 20 % of the total effect. This study emphasized the combined exposure to metals, and the results can help to properly understand the association between mixed metals exposure and CI in the elderly, as well as provide population data and theoretical basis for identifying early environmental risk factors and discovering potential mechanisms of CI.
Collapse
Affiliation(s)
- Ying Qing
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | | | - Yingyi Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shichun Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xiufen Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 201203, China.
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China.
| |
Collapse
|
11
|
Wang J, Huo X, Zhou H, Liu H, Li X, Lu N, Sun X. Identification of Autophagy-Related Candidate Genes in the Early Diagnosis of Alzheimer's Disease and Exploration of Potential Molecular Mechanisms. Mol Neurobiol 2024; 61:6584-6598. [PMID: 38329682 DOI: 10.1007/s12035-024-04011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
This study aimed to identify autophagy-related candidate genes for the early diagnosis of Alzheimer's disease (AD) and elucidate their potential molecular mechanisms. Differentially expressed genes (DEGs) and phenotype-associated significant module genes were obtained using the "limma" package and weighted gene co-expression network analysis (WGCNA) based on hippocampal tissue datasets from AD patients and control samples. The intersection between the list of autophagy-related genes (ATGs), DEGs, and module genes was further investigated to obtain AD-autophagy-related differential expression genes (ATDEGs). Subsequently, the least absolute shrinkage and selection operator (LASSO) algorithm was utilized to identify hub genes, and a second intersection was performed with important module genes from the protein-protein interaction (PPI) network to obtain co-hub genes. Finally, a diagnostic model was constructed by receiver operating characteristic (ROC) analysis to determine the candidate genes with high diagnostic efficacy in the external validation set. Moreover, immune infiltration analysis was performed on AD patient brain tissues and explore the correlation between candidate genes and immune cells. We further analyzed the expression level of candidate genes in the SH-SY5Y cells with Aβ25-35 (25 µM). Among the 17 identified AD-ATDEGs, ATP6V1E1 stood out with area under the curve (AUC) values of 0.869, 0.817, and 0.714 in the external validation set, underscoring its high diagnostic efficacy in both hippocampal and peripheral blood contexts for AD patients. Meanwhile, ATP6V1E1 expression was positively correlated with effector memory CD4 + T cells, while negatively correlated with natural killer T cells and activated CD4 + T cells. Results from quantitative PCR (qPCR) and immunofluorescence assays indicated a reduction in ATP6V1E1 expression, aligning with our database analysis findings. In summary, ATP6V1E1 as a candidate gene provides a new perspective for the early identification and pathogenesis of AD.
Collapse
Affiliation(s)
- Jian Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China.
- Hunan Guangxiu Medical Imaging Diagnosis Center, Changsha, China.
| | - Xinhua Huo
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Huasheng Liu
- Department of Radiology, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Xiaofeng Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Na Lu
- Reproductive and Genetic Hospital of CITIC Xiangya, Changsha, China
| | - Xuan Sun
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
12
|
Zhang Y, Bi K, Zhou L, Wang J, Huang L, Sun Y, Peng G, Wu W. Advances in Blood Biomarkers for Alzheimer's Disease: Ultra-Sensitive Detection Technologies and Impact on Clinical Diagnosis. Degener Neurol Neuromuscul Dis 2024; 14:85-102. [PMID: 39100640 PMCID: PMC11297492 DOI: 10.2147/dnnd.s471174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease has escalated into a critical public health concern, marked by its neurodegenerative nature that progressively diminishes cognitive abilities. Recognized as a continuously advancing and presently incurable condition, AD underscores the necessity for early-stage diagnosis and interventions aimed at delaying the decline in mental function. Despite the proven efficacy of cerebrospinal fluid and positron emission tomography in diagnosing AD, their broader utility is constrained by significant costs and the invasive nature of these procedures. Consequently, the innovation of blood biomarkers such as Amyloid-beta, phosphorylated-tau, total-tau et al, distinguished by their high sensitivity, minimal invasiveness, accessibility, and cost-efficiency, emerges as a promising avenue for AD diagnosis. The advent of ultra-sensitive detection methodologies, including single-molecule enzyme-linked immunosorbent assay and immunoprecipitation-mass spectrometry, has revolutionized the detection of AD plasma biomarkers, supplanting previous low-sensitivity techniques. This rapid advancement in detection technology facilitates the more accurate quantification of pathological brain proteins and AD-associated biomarkers in the bloodstream. This manuscript meticulously reviews the landscape of current research on immunological markers for AD, anchored in the National Institute on Aging-Alzheimer's Association AT(N) research framework. It highlights a selection of forefront ultra-sensitive detection technologies now integral to assessing AD blood immunological markers. Additionally, this review examines the crucial pre-analytical processing steps for AD blood samples that significantly impact research outcomes and addresses the practical challenges faced during clinical testing. These discussions are crucial for enhancing our comprehension and refining the diagnostic precision of AD using blood-based biomarkers. The review aims to shed light on potential avenues for innovation and improvement in the techniques employed for detecting and investigating AD, thereby contributing to the broader field of neurodegenerative disease research.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Linfu Zhou
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Lingtong Huang
- Department of Critical Care Units, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
13
|
Kim H, Hillis AE, Themistocleous C. Machine Learning Classification of Patients with Amnestic Mild Cognitive Impairment and Non-Amnestic Mild Cognitive Impairment from Written Picture Description Tasks. Brain Sci 2024; 14:652. [PMID: 39061392 PMCID: PMC11274603 DOI: 10.3390/brainsci14070652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Individuals with Mild Cognitive Impairment (MCI), a transitional stage between cognitively healthy aging and dementia, are characterized by subtle neurocognitive changes. Clinically, they can be grouped into two main variants, namely patients with amnestic MCI (aMCI) and non-amnestic MCI (naMCI). The distinction of the two variants is known to be clinically significant as they exhibit different progression rates to dementia. However, it has been particularly challenging to classify the two variants robustly. Recent research indicates that linguistic changes may manifest as one of the early indicators of pathology. Therefore, we focused on MCI's discourse-level writing samples in this study. We hypothesized that a written picture description task can provide information that can be used as an ecological, cost-effective classification system between the two variants. We included one hundred sixty-nine individuals diagnosed with either aMCI or naMCI who received neurophysiological evaluations in addition to a short, written picture description task. Natural Language Processing (NLP) and a BERT pre-trained language model were utilized to analyze the writing samples. We showed that the written picture description task provided 90% overall classification accuracy for the best classification models, which performed better than cognitive measures. Written discourses analyzed by AI models can automatically assess individuals with aMCI and naMCI and facilitate diagnosis, prognosis, therapy planning, and evaluation.
Collapse
Affiliation(s)
- Hana Kim
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL 33620, USA;
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | | |
Collapse
|
14
|
Mohammadi H, Ariaei A, Ghobadi Z, Gorgich EAC, Rustamzadeh A. Which neuroimaging and fluid biomarkers method is better in theranostic of Alzheimer's disease? An umbrella review. IBRO Neurosci Rep 2024; 16:403-417. [PMID: 38497046 PMCID: PMC10940808 DOI: 10.1016/j.ibneur.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Biomarkers are measured to evaluate physiological and pathological processes as well as responses to a therapeutic intervention. Biomarkers can be classified as diagnostic, prognostic, predictor, clinical, and therapeutic. In Alzheimer's disease (AD), multiple biomarkers have been reported so far. Nevertheless, finding a specific biomarker in AD remains a major challenge. Three databases, including PubMed, Web of Science, and Scopus were selected with the keywords of Alzheimer's disease, neuroimaging, biomarker, and blood. The results were finalized with 49 potential CSF/blood and 35 neuroimaging biomarkers. To distinguish normal from AD patients, amyloid-beta42 (Aβ42), plasma glial fibrillary acidic protein (GFAP), and neurofilament light (NFL) as potential biomarkers in cerebrospinal fluid (CSF) as well as the serum could be detected. Nevertheless, most of the biomarkers fairly change in the CSF during AD, listed as kallikrein 6, virus-like particles (VLP-1), galectin-3 (Gal-3), and synaptotagmin-1 (Syt-1). From the neuroimaging aspect, atrophy is an accepted biomarker for the neuropathologic progression of AD. In addition, Magnetic resonance spectroscopy (MRS), diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), tractography (DTT), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), can be used to detect AD. Using neuroimaging and CSF/blood biomarkers, in combination with artificial intelligence, it is possible to obtain information on prognosis and follow-up on the different stages of AD. Hence physicians could select the suitable therapy to attenuate disease symptoms and follow up on the efficiency of the prescribed drug.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (MUI), Isfahan, Islamic Republic of Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Islamic Republic of Iran
| | - Enam Alhagh Charkhat Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
15
|
Zeng X, Chen Y, Sehrawat A, Lee J, Lafferty TK, Kofler J, Berman SB, Sweet RA, Tudorascu DL, Klunk WE, Ikonomovic MD, Pfister A, Zetterberg H, Snitz BE, Cohen AD, Villemagne VL, Pascoal TA, Kamboh ML, Lopez OI, Blennow K, Karikari TK. Alzheimer blood biomarkers: practical guidelines for study design, sample collection, processing, biobanking, measurement and result reporting. Mol Neurodegener 2024; 19:40. [PMID: 38750570 PMCID: PMC11095038 DOI: 10.1186/s13024-024-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 05/19/2024] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aβ]40, Aβ42, Aβ42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Jihui Lee
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tara K Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Julia Kofler
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah B Berman
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert A Sweet
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dana L Tudorascu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Anna Pfister
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anne D Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M. llyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Oscar I Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.
| |
Collapse
|
16
|
Morgado B, Klafki HW, Bauer C, Waniek K, Esselmann H, Wirths O, Hansen N, Lachmann I, Osterloh D, Schuchhardt J, Wiltfang J. Assessment of immunoprecipitation with subsequent immunoassays for the blood-based diagnosis of Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-023-01751-2. [PMID: 38316685 DOI: 10.1007/s00406-023-01751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024]
Abstract
The Aβ42/40 ratio and the concentration of phosphorylated Tau181 in blood plasma represent attractive biomarkers for Alzheimer's disease. As a means for reducing potential matrix effects, which may interfere with plasma immunoassays, we have previously developed a pre-analytical sample workup by semi-automated immunoprecipitation. Here we test the compatibility of pre-analytical immunoprecipitations with automated Aβ1-40, Aβ1-42 and phosphorylated Tau181 immunoassays on the Lumipulse platform and compare the diagnostic performance of the respective immunoprecipitation immunoassay approaches with direct plasma measurements. 71 participants were dichotomized according to their Aβ42/40 ratios in cerebrospinal fluid into the diagnostic groups amyloid-positive (n = 32) and amyloid-negative (n = 39). The plasma Aβ1-42/1-40 ratio and phosphorylated Tau181 levels were determined on the Lumipulse G600II platform (Fujirebio) by direct measurements in EDTA-plasma or after Aβ- or Tau-immunoprecipitation, respectively. Pre-analytical immunoprecipitation of Aβ turned out to be compatible with the Lumipulse Aβ assays and resulted in a numerical, yet statistically not significant increase in the area under the ROC curve for plasma Aβ1-42/1-40. Additionally, we observed a significant increase in the standardised effect size (Cohen's D). Pre-analytical immunoprecipitation of Tau resulted in increased differences between the diagnostic groups in terms of median and mean phosphorylated Tau 181 levels. Furthermore, we observed a greater Cohen's d (p < 0.001) and a larger area under the ROC curve (p = 0.038) after Tau-IP. Our preliminary findings in a small, preselected sample indicate that pre-analytical immunoprecipitation may have the potential to improve the diagnostic performance of plasma biomarker immunoassays for Aβ1-42/1-40 and phosphorylated Tau181 to predict brain amyloid deposition.
Collapse
Affiliation(s)
- Barbara Morgado
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold Strasse 5, 37075, Goettingen, Germany.
| | - Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold Strasse 5, 37075, Goettingen, Germany
| | - Chris Bauer
- MicroDiscovery GmbH, Marienburger Strasse 1, 10405, Berlin, Germany
| | | | - Hermann Esselmann
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold Strasse 5, 37075, Goettingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold Strasse 5, 37075, Goettingen, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold Strasse 5, 37075, Goettingen, Germany
| | | | - Dirk Osterloh
- Roboscreen GmbH, Hohmannstrasse 7, 04129, Leipzig, Germany
| | | | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold Strasse 5, 37075, Goettingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany.
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Han K, Liang W, Geng H, Jing X, Wang X, Huo Y, Li W, Huang A, An C. The diagnostic value of cognitive assessment indicators for mild cognitive impairment (MCI). APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-10. [PMID: 38316014 DOI: 10.1080/23279095.2024.2306144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
OBJECTIVE This study aims to evaluate and analyze the standard diagnostic methods for mild cognitive impairment (MCI). METHODS This study used a prospective case-control study to examine baseline data and diagnostic indicators in a population of elderly with MCI. Based on different cognitive abilities, this study divided MCI and healthy control groups. The diagnostic indicators included CDT, MOCA, MMSE, PSQI, MBI, DST, HAMD, AD-related blood markers, and olfactory testing. The diagnostic value of each indicator was done using the ROC curve. RESULTS This study included 240 adult participants, 135 in the health group and 105 in the MCI group. A comparison of baseline data revealed statistically significant differences between the two groups regarding age, blood glucose, MMSE, CTD, MOCA, ability to perform daily living, AD-related blood indices and olfactory tests (all p < 0.05). Logistic regression analysis statistically showed that age, MOCA, and CDT were independent diagnostic factors for MCI (all p < 0.05). Combining these three indicators has the best diagnostic specificity (92.54%). AD-related blood and olfactory tests indices had only moderate diagnostic values (AUC: 0.7-0.8). CONCLUSION Age, MOCA, and CDT are good indicators for diagnosing early-stage MCI. AD-related blood indices and olfactory tests can serve as valuable adjuncts in diagnosing MCI.
Collapse
Affiliation(s)
- Keyan Han
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Wei Liang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Hao Geng
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Xinyang Jing
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Xuemeng Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Yaxin Huo
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Wei Li
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Anqi Huang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| | - Cuixia An
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Mental Disorders and Institute of Mental Health, Shijiazhuang, China
- Mental Health Center, Hebei Medical University and Hebei technical Innovation Center for Mental Health assessment and Intervention, Shijiazhuang, China
| |
Collapse
|
18
|
Li J, Yang M, Wei R, Cao Y, Fan X, Zhang S. The Predictive Ability of Blood Neurofilament Light Chain in Predicting Cognitive Decline in the Alzheimer's Disease Continuum: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2024; 97:1589-1620. [PMID: 38306045 DOI: 10.3233/jad-231080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset. Identifying candidate predictors to forecast AD dementia risk before disease onset is crucial for early diagnosis and treatment. Objective We aimed to assess the predictive ability of blood neurofilament light (NfL) chain in anticipating cognitive decline in the AD continuum. Methods We systematically searched PubMed, Web of Science, and Embase from inception until April 7, 2023. Longitudinal observational studies examining the association between baseline blood NfL and cognitive decline or clinical disease conversion were included based on inclusion/exclusion criteria. The final effect size was represented by adjusted hazard ratios (HR) or standardized beta (s.β) coefficients with a 95% confidence interval (CI). Results A total of 2,862 articles were identified, and 26 studies were included in this meta-analysis. The results indicated that baseline blood NfL could predict cognitive decline, with MMSE [s.β= -0.17, 95% CI (-0.26, -0.07)]; PACC [s.β= -0.09, 95% CI (-0.16, -0.03)]; ADAS-cog [s.β= 0.21, 95% CI (0.13, 0.29)]; CDR-SOB [s.β= 0.27, 95% CI (0.03, 0.50)]; Global cognitive composite [s.β= -0.05, 95% CI (-0.08, -0.01)]; Memory subdomain [s.β= -0.06, 95% CI (-0.09, -0.03)]; Language subdomain [s.β= -0.07, 95% CI (-0.10, -0.05)]; Executive function subdomain [s.β= -0.02, 95% CI (-0.03, -0.01)]; Visuospatial subdomain [s.β= -0.06, 95% CI (-0.08, -0.04)]. Additionally, baseline blood NfL could predict disease progression (conversion from CU/SCD/MCI to MCI/AD) in the AD continuum [Adjust HR = 1.32, 95% CI (1.12, 1.56)]. Conclusions Baseline blood NfL demonstrated predictive capabilities for global cognition and its memory, language, executive function, visuospatial subdomains decline in the AD continuum. Moreover, it exhibited the potential to predict disease progression in non-AD dementia participants.
Collapse
Affiliation(s)
- Jianhong Li
- Fujian Key Laboratory of Aptamers Technology, 900TH hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou, Fujian, China
| | - Minguang Yang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Renli Wei
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yue Cao
- Fujian Key Laboratory of Aptamers Technology, 900TH hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou, Fujian, China
| | - Xu Fan
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, 900TH hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou, Fujian, China
| |
Collapse
|
19
|
Marques-Aleixo I, Sampaio A, Bohn L, Machado F, Barros D, Ribeiro O, Carvalho J, Magalhães J. Neuropsychiatric Symptoms are Related to Blood-biomarkers in Major Neurocognitive Disorders. Curr Aging Sci 2024; 17:74-84. [PMID: 37904566 DOI: 10.2174/1874609816666230816090934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Neuropsychiatric symptoms (NPS) are highly prevalent among individuals with major neurocognitive disorders (MNCD). OBJECTIVE Here, we characterized blood biomarkers (metabolic, inflammatory, neurotrophic profiles and total antioxidant), body composition, physical fitness and quality of life (QoL) in individuals with MNCD according to NPS. METHODS The sample comprised 34 older adults (71.4% women; 74.06±6.03 yrs, with MNCD diagnosis) categorized according to 50th percentile [Low (≤12) or High (≥13)] for NPS (Neuropsychiatric Inventory Questionnaire). Sociodemographic, clinical data, body composition, anthropometric, cognitive assessment (ADAS-Cog), physical fitness (Senior Fitness Test), QoL (QoL-Alzheimer's Disease scale) were evaluated, and blood samples were collected for biochemical analysis. RESULTS Low compared to high NPS group showed higher levels of IL-6, IGF-1and neurotrophic zscore (composite of IGF-1, VEGF-1, BDNF). Additionally, low compared to high NPS group have higher QoL, aerobic fitness and upper body and lower body strength. CONCLUSION The severity of NPS seems to be related to modified neurotrophic and inflammatory outcomes, lower physical fitness, and poor QoL. Strategies to counteract NPS development may preserve the physical and mental health of individuals with MNCD..
Collapse
Affiliation(s)
- Inês Marques-Aleixo
- Interdisciplinary Research Centre for Education and Development, Lusófona University, Lisbon, Portugal
- Faculty of Psychology, Education and Sport, Lusófona University, Porto, Portugal
| | - Arnaldina Sampaio
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Lucimére Bohn
- Interdisciplinary Research Centre for Education and Development, Lusófona University, Lisbon, Portugal
- Faculty of Psychology, Education and Sport, Lusófona University, Porto, Portugal
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Flavia Machado
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Duarte Barros
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Oscár Ribeiro
- CINTESIS - Center for Health Technology and Services Research, Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| | - Joana Carvalho
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - José Magalhães
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Wang T, Yan S, Lu J. The effects of noninvasive brain stimulation on cognitive function in patients with mild cognitive impairment and Alzheimer's disease using resting-state functional magnetic resonance imaging: A systematic review and meta-analysis. CNS Neurosci Ther 2023; 29:3160-3172. [PMID: 37349974 PMCID: PMC10580344 DOI: 10.1111/cns.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE The aim of this systematic review and meta-analysis was to evaluate the efficacy of noninvasive brain stimulation (NIBS) on cognition using functional magnetic resonance imaging (fMRI) in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD), thus providing the neuroimaging mechanism of cognitive intervention. METHODS English articles published up to April 30, 2023 were searched in the PubMed, Web of Science, Embase, and Cochrane Library databases. We included randomized controlled trials where resting-state fMRI was used to observe the effect of NIBS in patients with MCI or AD. RevMan software was used to analyze the continuous variables, and SDM-PSI software was used to perform an fMRI data analysis. RESULTS A total of 17 studies comprising 258 patients in the treatment group and 256 in the control group were included. After NIBS, MCI patients in the treatment group showed hyperactivation in the right precuneus and decreased activity in the left cuneus and right supplementary motor area. In contrast, patients in the control group showed decreased activity in the right middle frontal gyrus and no hyperactivation. The clinical cognitive scores in MCI patients were significantly improved by NIBS, while not in AD. Some evidence regarding the modulation of NIBS in resting-state brain activity and functional brain networks in patients with AD was found. CONCLUSIONS NIBS could improve cognitive function in patients with MCI and AD. fMRI evaluations could be added to evaluate the contribution of specific NIBS treatment therapeutic effectiveness.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| |
Collapse
|
21
|
Gaur A, Rivet L, Mah E, Bawa KK, Gallagher D, Herrmann N, Lanctôt KL. Novel fluid biomarkers for mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2023; 91:102046. [PMID: 37647995 DOI: 10.1016/j.arr.2023.102046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Mild cognitive impairment (MCI) is a well-established prodromal stage of dementia (e.g., Alzheimer's disease) that is often accompanied by early signs of neurodegeneration. To facilitate a better characterization of the underlying pathophysiology, we assessed the available literature to evaluate potential fluid biomarkers in MCI. Peer-reviewed articles that measured cerebrospinal fluid (CSF) and/or peripheral biomarkers of neuronal injury (total-tau [T-tau], neurofilament light chain [NfL], heart-type fatty acid binding protein [HFABP], neuron-specific enolase, ubiquitin C-terminal hydrolase L1) and/or astroglial pathology (glial fibrillary acidic protein [GFAP], S100 calcium-binding protein B) in MCI and healthy controls were assessed. Group differences were summarized by standardized mean differences (SMDs) and 95% confidence intervals calculated using a random-effects model. Heterogeneity was quantified using I2. A total of 107 studies were included in the meta-analysis and 10 studies were qualitatively reviewed. In CSF, concentrations of NfL (SMD = 0.69 [0.56, 0.83]), GFAP (SMD = 0.41 [0.07, 0.75]), and HFABP (SMD = 0.57 [0.26, 0.89]) were elevated in MCI. In blood, increased concentrations of T-tau (SMD = 0.19 [0.09, 0.29]), NfL (SMD = 0.41 [0.32, 0.49]), and GFAP (SMD = 0.39 [0.23, 0.55]) were found in MCI. Heterogeneity that was identified in all comparisons was explored using meta-regression and subgroup analysis. Elevated NfL and GFAP can be detected in both CSF and peripheral blood. Monitoring these biomarkers in clinical settings may provide important insight into underlying neurodegenerative processes in MCI.
Collapse
Affiliation(s)
- Amish Gaur
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Luc Rivet
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ethan Mah
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Kritleen K Bawa
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Damien Gallagher
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON M5T 1R8, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON M5T 1R8, Canada
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
22
|
Tsiaras Y, Kiosseoglou G, Dardiotis E, Yannakoulia M, Hadjigeorgiou GM, Sakka P, Ntanasi E, Scarmeas N, Kosmidis MH. Predictive ability of the clock drawing test to detect mild cognitive impairment and dementia over time: Results from the HELIAD study. Clin Neuropsychol 2023; 37:1651-1668. [PMID: 36645823 DOI: 10.1080/13854046.2023.2167736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Objective: We investigated the diagnostic accuracy of the Clock Drawing Test (CDT) in discriminating Mild Cognitive Impairment (MCI) and dementia from normal cognition. Additionally, its clinical utility in predicting the transition from normal cognition to MCI and dementia over the course of several years was explored. Method: In total, 1037 older adults (633 women) who completed the CDT in a baseline assessment were drawn from the population-based HELIAD cohort. Among these, 848 participants were identified as cognitively normal, 142 as having MCI and 47 with dementia during the baseline assessment. Of these individuals, 565 attended the follow-up assessment (mean interval: 3.21 years). ROC curve and binary logistic regression analyses were performed. Results: The CDT exhibited good diagnostic accuracy for the discrimination between dementia and normal cognition (AUC = .879, SN = .813, SP = .778, LR+ = 3.66, LR- = .240, < .001, d = 1.655) and acceptable diagnostic accuracy for the discrimination between dementia and MCI (AUC=.761, SN= .750, SP= .689, LR+ = 2.41, LR- = .362, p < .001, d = 1.003). We found limited diagnostic accuracy, however, for the discrimination between MCI and normal cognition (AUC = .686, SN = .764, SP = .502, LR+ = 1.53, LR- = .470, p < .001, d = .685). Moreover, the CDT significantly predicted the transition from normal cognition to dementia [Exp(B)= 1.257, p = .022], as well as the transition from MCI to normal cognition [Exp(B) = 1.334, p = .023] during the longitudinal investigation. Conclusions: The CDT is a neuropsychological test with acceptable diagnostic accuracy for the discrimination of dementia from MCI and normal cognition. Furthermore, it has an important predictive value for the transition from normal cognition to dementia and from MCI to normal cognition.
Collapse
Affiliation(s)
- Yiannis Tsiaras
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Psychiatric Department, 424 General Military Hospital, Thessaloniki, Greece
| | - Grigoris Kiosseoglou
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, University of Thessaly, Volos, Greece
| | - Mary Yannakoulia
- Department of Nutrition and-Dietetics, Harokopio University, Kallithea, Greece
| | | | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Athens, Greece
| | - Eva Ntanasi
- Athens Association of Alzheimer's Disease and Related Disorders, Athens, Greece
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Τhe Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, ΝΥ, USA
| | - Mary H Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
23
|
Kamalian A, Ho SG, Patel M, Lewis A, Bakker A, Albert M, O’Brien RJ, Moghekar A, Lutz MW. Exploratory Assessment of Proteomic Network Changes in Cerebrospinal Fluid of Mild Cognitive Impairment Patients: A Pilot Study. Biomolecules 2023; 13:1094. [PMID: 37509130 PMCID: PMC10377001 DOI: 10.3390/biom13071094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Despite the existence of well-established, CSF-based biomarkers such as amyloid-β and phosphorylated-tau, the pathways involved in the pathophysiology of Alzheimer's disease (AD) remain an active area of research. (2) Methods: We measured 3072 proteins in CSF samples of AD-biomarker positive mild cognitive impairment (MCI) participants (n = 38) and controls (n = 48), using the Explore panel of the Olink proximity extension assay (PEA). We performed group comparisons, association studies with diagnosis, age, and APOE ε4 status, overrepresentation analysis (ORA), and gene set enrichment analysis (GSEA) to determine differentially expressed proteins and dysregulated pathways. (3) Results: GSEA results demonstrated an enrichment of granulocyte-related and chemotactic pathways (core enrichment proteins: ITGB2, ITGAM, ICAM1, SELL, SELP, C5, IL1A). Moreover, some of the well-replicated, differentially expressed proteins in CSF included: ITGAM, ITGB2, C1QA, TREM2, GFAP, NEFL, MMP-10, and a novel tau-related marker, SCRN1. (4) Conclusion: Our results highlight the upregulation of neuroinflammatory pathways, especially chemotactic and granulocyte recruitment in CSF of early AD patients.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Sara G. Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Megha Patel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Alexandria Lewis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Richard J. O’Brien
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (A.K.)
| | - Michael W. Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
24
|
Luz S, Haider F, De Sousa P. Machine Learning models for detection and assessment of progression in Alzheimer's disease based on blood and cerebrospinal fluid biomarkers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082653 DOI: 10.1109/embc40787.2023.10341203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Machine-learning techniques were applied to human blood plasma and cerebrospinal fluid (CSF) biomarker data related to cognitive decline in Alzheimer's Disease (AD) patients available via Alzheimer Disease Neuroimaging Initiative (ADNI) study. We observed the accuracy of AD diagnosis is greatest when protein biomarkers from cerebrospinal fluid are combined with plasma proteins using Support Vector Machines (SVM); this is not improved by adding age and sex. The area under the receiver operator characteristic (ROC) curve for our model of AD diagnosis based on a full (unbiased) set of plasma proteins was 0.94 in cross-validation and 0.82 on an external validation (test) set. Taking plasma in combination with CSF, the model reaches 0.98 area under the ROC curve on the test set. Accuracy of prediction of risk of mild cognitive impairment progressing to AD is the same for blood plasma biomarkers as for CSF and is not improved by combining them or adding age and sex as covariates.Clinical relevance- The identification of accurate and cost-effective biomarkers to screen for risk of developing AD and monitoring its progression is crucial for improved understanding of its causes and stratification of patients for treatments under development. This paper demonstrates the feasibility of AD detection and prognosis based on blood plasma biomarkers.
Collapse
|
25
|
Pan F, Huang Y, Cai X, Wang Y, Guan Y, Deng J, Yang D, Zhu J, Zhao Y, Xie F, Fang Z, Guo Q. Integrated algorithm combining plasma biomarkers and cognitive assessments accurately predicts brain β-amyloid pathology. COMMUNICATIONS MEDICINE 2023; 3:65. [PMID: 37165172 PMCID: PMC10172320 DOI: 10.1038/s43856-023-00295-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Accurate prediction of cerebral amyloidosis with easily available indicators is urgently needed for diagnosis and treatment of Alzheimer's disease (AD). METHODS We examined plasma Aβ42, Aβ40, T-tau, P-tau181, and NfL, with APOE genotypes, cognitive test scores and key demographics in a large Chinese cohort (N = 609, aged 40 to 84 years) covering full AD spectrum. Data-driven integrated computational models were developed to predict brain β-amyloid (Aβ) pathology. RESULTS Our computational models accurately predict brain Aβ positivity (area under the ROC curves (AUC) = 0.94). The results are validated in Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Particularly, the models have the highest prediction power (AUC = 0.97) in mild cognitive impairment (MCI) participants. Three levels of models are designed with different accuracies and complexities. The model which only consists of plasma biomarkers can predict Aβ positivity in amnestic MCI (aMCI) patients with AUC = 0.89. Generally the models perform better in participants without comorbidities or family histories. CONCLUSIONS The innovative integrated models provide opportunity to assess Aβ pathology in a non-invasive and cost-effective way, which might facilitate AD-drug development, early screening, clinical diagnosis and prognosis evaluation.
Collapse
Affiliation(s)
- Fengfeng Pan
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanlu Huang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Cai
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiale Deng
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Dake Yang
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Jinhang Zhu
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Yike Zhao
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhuo Fang
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China.
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
26
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Sunde AL, Alsnes IV, Aarsland D, Ashton NJ, Tovar‐Rios DA, De Santis G, Blennow K, Zetterberg H, Kjosavik SR. Preanalytical stability of plasma biomarkers for Alzheimer's disease pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12439. [PMID: 37192842 PMCID: PMC10182363 DOI: 10.1002/dad2.12439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 05/18/2023]
Abstract
Introduction Plasma tests have demonstrated high diagnostic accuracy for identifying Alzheimer's disease pathology. To facilitate the transition to clinical utility, we assessed whether plasma storage duration and temperature affect the biomarker concentrations. Methods Plasma samples from 13 participants were stored at +4°C and +18°C. Concentrations of six biomarkers were measured after 2, 4, 6, 8, 10, and 24 h by single molecule array assays. Results Phosphorylated tau 181 (p-tau181), phosphorylated tau 231 (p-tau231), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP) concentrations were unchanged both when stored at +4°C and +18°C. Amyloid-β 40 (Aβ40) and amyloid-β 42 (Aβ42) concentrations were stable for 24 h at +4°C but declined when stored at +18°C for longer than 6 h. This decline did not affect the Aβ42/Aβ40 ratio. Discussion Plasma samples can be stored for 24 h at +4°C or +18°C and result in valid assay results for p-tau181, p-tau231, Aβ42/Aβ40 ratio, GFAP, and NfL. HIGHLIGHTS Plasma samples were stored for 24 h at +4°C and +18°C, mimicking clinical practice.Concentrations for Alzheimer's disease biomarkers were measured at six time-points.p-tau181, p-tau231, NfL, and GFAP concentrations were unchanged during the experiment.Storage at +18°C affected Aβ40 and Aβ42 concentrations while storage at +4°C did not. The Aβ42/Aβ40 ratio was unaffected.These plasma tests seem suitable for use in general practice.
Collapse
Affiliation(s)
- Anita L. Sunde
- Centre for Age‐Related Medicine (SESAM)Stavanger University HospitalStavangerNorway
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | | | - Dag Aarsland
- Centre for Age‐Related Medicine (SESAM)Stavanger University HospitalStavangerNorway
- Department of Old Age PsychiatryInstitute of PsychiatryPsychology and NeuroscienceKing's CollegeLondonUK
| | - Nicholas J. Ashton
- Centre for Age‐Related Medicine (SESAM)Stavanger University HospitalStavangerNorway
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- King's College LondonInstitute of PsychiatryPsychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience Institute LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - Diego A. Tovar‐Rios
- Centre for Age‐Related Medicine (SESAM)Stavanger University HospitalStavangerNorway
- Faculty of Health SciencesUniversity of StavangerStavangerNorway
- Grupo INFERIRFacultad de IngenieríaUniversidad del ValleSantiago de CaliValle del CaucaColombia
| | - Giovanni De Santis
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Svein R. Kjosavik
- The General Practice and Care Coordination Research GroupStavanger University HospitalStavangerNorway
| |
Collapse
|
28
|
Oxidative Stress in Brain in Amnestic Mild Cognitive Impairment. Antioxidants (Basel) 2023; 12:antiox12020462. [PMID: 36830020 PMCID: PMC9952700 DOI: 10.3390/antiox12020462] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Amnestic mild cognitive impairment (MCI), arguably the earliest clinical stage of Alzheimer disease (AD), is characterized by normal activities of daily living but with memory issues but no dementia. Oxidative stress, with consequent damaged key proteins and lipids, are prominent even in this early state of AD. This review article outlines oxidative stress in MCI and how this can account for neuronal loss and potential therapeutic strategies to slow progression to AD.
Collapse
|
29
|
Wu Q, Su S, Cai C, Xu L, Fan X, Ke H, Dai Z, Fang S, Zhuo Y, Wang Q, Pan H, Gu Y, Fang J. Network Proximity-based computational pipeline identifies drug candidates for different pathological stages of Alzheimer's disease. Comput Struct Biotechnol J 2023; 21:1907-1920. [PMID: 36936813 PMCID: PMC10015208 DOI: 10.1016/j.csbj.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Despite the massive investment in Alzheimer's disease (AD), there are still no disease-modifying treatments (DMTs) for AD. One major reason is attributed to the limitation of clinical "one-size-fits-all" approach, since the same AD treatment solely based on clinical diagnosis was unlikely to achieve good clinical efficacy. In recent years, computational approaches based on multiomics data have provided an unprecedented opportunity for drug discovery since they can substantially lower the costs and boost the efficiency. In this study, we intended to identify potential drug candidates for different pathological stages of AD by computationally repurposing Food and Drug Administration (FDA) approved drugs. First, we assembled gene expression data from three different AD pathological stages, which include mild cognitive impairment (MCI) and early and late stages of AD (EAD, LAD). We next quantified the network distances between drug target networks and AD modules by utilizing a network proximity approach, and identified 193 candidates that possessed significant associations with AD. After searching for previous literature evidence, 63 out of 193 (32.6%) predicted drugs were demonstrated to exert therapeutic effects on AD. We further explored the novel mechanism of action (MOA) for these drug candidates by determining the specific brain cells they might function on based on AD patient single cell transcriptomic data. Additionally, we selected several promising candidates that could cross the blood brain barrier together with confirmed neuroprotective effects, and subsequently determined the antioxidative activity of these compounds. Experimental results showed that azathioprine decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels and improved the superoxide dismutase (SOD) activity in APP-SH-SY5Y cells. Finally, we deciphered the potential MOA of azathioprine against AD via network analysis and validated several apoptosis-related proteins (Caspase 3, Cleaved Caspase 3, Bax, Bcl2) through western blotting. In summary, this study presented an effective computational strategy utilizing omics data for AD drug repurposing, which provides a new perspective for drug discovery and development.
Collapse
Affiliation(s)
- Qihui Wu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuipu Cai
- Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, China
| | - Lina Xu
- Department of Cardiac Surgery, Qingdao Fuwai Cardiovascular Hospital, Qingdao, China
| | - Xiude Fan
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, China
- Hainan Clinical Center for Encephalopathy of Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- Corresponding author at: Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Corresponding author.
| |
Collapse
|
30
|
Associations between cardiorespiratory fitness, monocyte polarization, and exercise-related changes in mnemonic discrimination performance in older adults. Exp Gerontol 2022; 169:111973. [PMID: 36206875 DOI: 10.1016/j.exger.2022.111973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
Biological aging is accompanied by a chronic pro-inflammatory state that may facilitate losses in hippocampal-dependent mnemonic discrimination. Aerobic exercise training promotes adaptations that include improved immune competency, higher cardiorespiratory fitness, and maintenance of hippocampal function. However, it is poorly understood whether, in active older adults, baseline immune cell profiles and cardiorespiratory fitness are possible mechanisms that facilitate the long-term benefits to hippocampal dependent mnemonic discrimination performance. This within-subjects study with counterbalanced conditions aimed to investigate whether baseline monocyte polarization and cardiorespiratory fitness influenced performance in the mnemonic similarity task (MST) and related Lure Discrimination Index (LDI) score after an acute bout of exercise. Twenty-one active older adults (M = 68 ± 5 yrs) underwent baseline testing in which blood samples were collected and cardiorespiratory fitness measured. Participants then returned and completed a seated rest or moderate intensity aerobic exercise condition in which the MST was proctored prior to and 5 min after each condition. A linear mixed effects model was used in which Participant ID was a random effect and Condition (rest v. exercise), Time (pre- v post-), and order were fixed main effects. Simple linear regression models were used to determine the variance accounted for by monocyte phenotypes and cardiorespiratory fitness for LDI scores post-condition. Post-rest LDI scores were significantly lower than post-exercise LDI scores (t(20) = -2.65, p < 0.02, d = -0.57). Intermediate monocytes were significant predictors of the change in pre- to post-exercise LDI scores (F(1, 19) = 6.03, p = 0.024, R2 = 0.24) and cardiorespiratory fitness was a significant predictor of the difference between post-condition LDI scores (F(1, 19) = 6.71, p = 0.018, R2 = 0.26). Our results suggest baseline cardiorespiratory fitness and intermediate monocytes may relate to the integrity of hippocampal-dependent mnemonic discrimination performance, and possibly the degree of responsiveness to aerobic exercise interventions.
Collapse
|
31
|
Qian XH, Liu XL, Chen G, Chen SD, Tang HD. Injection of amyloid-β to lateral ventricle induces gut microbiota dysbiosis in association with inhibition of cholinergic anti-inflammatory pathways in Alzheimer's disease. J Neuroinflammation 2022; 19:236. [PMID: 36171620 PMCID: PMC9520842 DOI: 10.1186/s12974-022-02599-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease and its pathogenesis is still unclear. There is dysbiosis of gut microbiota in AD patients. More importantly, dysbiosis of the gut microbiota has been observed not only in AD patients, but also in patients with mild cognitive impairment (MCI). However, the mechanism of gut microbiota dysbiosis in AD is poorly understood. Cholinergic anti-inflammatory pathway is an important pathway for the central nervous system (CNS) regulation of peripheral immune homeostasis, especially in the gut. Therefore, we speculated that dysfunction of cholinergic anti-inflammatory pathway is a potential pathway for dysbiosis of the gut microbiota in AD. METHODS In this study, we constructed AD model mice by injecting Aβ1-42 into the lateral ventricle, and detected the cognitive level of mice by the Morris water maze test. In addition, 16S rDNA high-throughput analysis was used to detect the gut microbiota abundance of each group at baseline, 2 weeks and 4 weeks after surgery. Furthermore, immunofluorescence and western blot were used to detect alteration of intestinal structure of mice, cholinergic anti-inflammatory pathway, and APP process of brain and colon in each group. RESULTS Aβ1-42 i.c.v induced cognitive impairment and neuron damage in the brain of mice. At the same time, Aβ1-42 i.c.v induced alteration of gut microbiota at 4 weeks after surgery, while there was no difference at the baseline and 2 weeks after surgery. In addition, changes in colon structure and increased levels of pro-inflammatory factors were detected in Aβ1-42 treatment group, accompanied by inhibition of cholinergic anti-inflammatory pathways. Amyloidogenic pathways in both the brain and colon were accelerated in Aβ1-42 treatment group. CONCLUSIONS The present findings suggested that Aβ in the CNS can induce gut microbiota dysbiosis, alter intestinal structure and accelerate the amyloidogenic pathways, which were related to inhibiting cholinergic anti-inflammatory pathways.
Collapse
Affiliation(s)
- Xiao-Hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201406, China
| | - Guang Chen
- The Second Hospital of Anhui Medical University, Anhui, 230601, China
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hui-Dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Medical Center on Aging of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
32
|
Huang J. Novel brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer’s disease and mild cognitive impairment. Front Immunol 2022; 13:1010946. [PMID: 36211392 PMCID: PMC9537554 DOI: 10.3389/fimmu.2022.1010946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease with a concealed onset and continuous deterioration. Mild cognitive impairment (MCI) is the prodromal stage of AD. Molecule-based imaging with positron emission tomography (PET) is critical in tracking pathophysiological changes among AD and MCI patients. PET with novel targets is a promising approach for diagnostic imaging, particularly in AD patients. Our present review overviews the current status and applications of in vivo molecular imaging toward neuroinflammation. Although radiotracers can remarkably diagnose AD and MCI patients, a variety of limitations prevent the recommendation of a single technique. Recent studies examining neuroinflammation PET imaging suggest an alternative approach to evaluate disease progression. This review concludes that PET imaging towards neuroinflammation is considered a promising approach to deciphering the enigma of the pathophysiological process of AD and MCI.
Collapse
|
33
|
Qian XH, Liu XL, Chen SD, Tang HD. Integrating peripheral blood and brain transcriptomics to identify immunological features associated with Alzheimer’s disease in mild cognitive impairment patients. Front Immunol 2022; 13:986346. [PMID: 36159817 PMCID: PMC9501700 DOI: 10.3389/fimmu.2022.986346] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Immune system dysfunction has been proven to be an important pathological event in Alzheimer’s disease (AD). Mild cognitive impairment (MCI), as a transitional stage between normal cognitive function and AD, was an important research object for the screening of early diagnostic markers and therapeutic targets for AD. However, systematic assessment of peripheral immune system changes in MCI patients and consistent analysis with that in the CNS were still lacking. Methods Peripheral blood transcriptome data from the AddNeuroMed Cohort (n = 711) was used as a training dataset to assess the abundance of 24 immune cells through ImmuCellAI and to identify MCI-related immune signaling pathways and hub genes. The expression level of the immune hub gene was validated in peripheral blood (n = 587) and brain tissue (78 entorhinal cortex, 140 hippocampi, 91 temporal cortex, and 232 frontal cortex) validation datasets. Finally, reliable immune hub genes were applied for Gene Set Enrichment Analysis and correlation analysis of AD pathological characteristics. Results MCI patients have early changes in the abundance of various types of immune cells in peripheral blood, accompanied by significant changes in NF-kB, TNF, JAK-STAT, and MAPK signaling pathways. Five hub immune-related differentially expressed genes (NFKBIA, CD4, RELA, CASP3, and HSP90AA1) were screened by the cytoHubba plugin in Cytoscape and the least absolute shrinkage and selection operator (LASSO) regression. Their expression levels were significantly correlated with infiltration score and the abundance of monocytes, natural killer cells, Th2 T cells, T follicular helper cells, and cytotoxic T cells. After validation with independent datasets derived from peripheral blood and brain, RELA and HSP90AA1 were identified as two reliable immune hub genes in MCI patients and had consistent changes in AD. The Gene Set Enrichment Analysis (GSEA) showed that their expression levels were closely associated with Alzheimer’s disease, JAK-STAT, calcium signaling pathway, etc. In addition, the expression level of RELA was positively correlated with β- and γ-secretase activity and Braak stage. The expression level of HSP90AA1 was negatively correlated with α- and β-secretase activity. Conclusion Immune system dysfunction was an early event in AD. It provides a new target for the early diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Xiao-hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Sheng-di Chen, ; Hui-dong Tang,
| | - Hui-dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Sheng-di Chen, ; Hui-dong Tang,
| |
Collapse
|
34
|
Koper MJ, Tomé SO, Gawor K, Belet A, Van Schoor E, Schaeverbeke J, Vandenberghe R, Vandenbulcke M, Ghebremedhin E, Otto M, von Arnim CAF, Balusu S, Blaschko MB, De Strooper B, Thal DR. LATE-NC aggravates GVD-mediated necroptosis in Alzheimer's disease. Acta Neuropathol Commun 2022; 10:128. [PMID: 36057624 PMCID: PMC9441100 DOI: 10.1186/s40478-022-01432-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 12/26/2022] Open
Abstract
It has become evident that Alzheimer's Disease (AD) is not only linked to its hallmark lesions-amyloid plaques and neurofibrillary tangles (NFTs)-but also to other co-occurring pathologies. This may lead to synergistic effects of the respective cellular and molecular players, resulting in neuronal death. One of these co-pathologies is the accumulation of phosphorylated transactive-response DNA binding protein 43 (pTDP-43) as neuronal cytoplasmic inclusions, currently considered to represent limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC), in up to 70% of symptomatic AD cases. Granulovacuolar degeneration (GVD) is another AD co-pathology, which also contains TDP-43 and other AD-related proteins. Recently, we found that all proteins required for necroptosis execution, a previously defined programmed form of neuronal cell death, are present in GVD, such as the phosphorylated necroptosis executioner mixed-lineage kinase domain-like protein (pMLKL). Accordingly, this protein is a reliable marker for GVD lesions, similar to other known GVD proteins. Importantly, it is not yet known whether the presence of LATE-NC in symptomatic AD cases is associated with necroptosis pathway activation, presumably contributing to neuron loss by cell death execution. In this study, we investigated the impact of LATE-NC on the severity of necroptosis-associated GVD lesions, phosphorylated tau (pTau) pathology and neuronal density. First, we used 230 human post-mortem cases, including 82 controls without AD neuropathological changes (non-ADNC), 81 non-demented cases with ADNC, i.e.: pathologically-defined preclinical AD (p-preAD) and 67 demented cases with ADNC. We found that Braak NFT stage and LATE-NC stage were good predictors for GVD expansion and neuronal loss in the hippocampal CA1 region. Further, we compared the impact of TDP-43 accumulation on hippocampal expression of pMLKL-positive GVD, pTau as well as on neuronal density in a subset of nine non-ADNC controls, ten symptomatic AD cases with (ADTDP+) and eight without LATE-NC (ADTDP-). Here, we observed increased levels of pMLKL-positive, GVD-exhibiting neurons in ADTDP+ cases, compared to ADTDP- and controls, which was accompanied by augmented pTau pathology. Neuronal loss in the CA1 region was increased in ADTDP+ compared to ADTDP- cases. These data suggest that co-morbid LATE-NC in AD impacts not only pTau pathology but also GVD-mediated necroptosis pathway activation, which results in an accelerated neuronal demise. This further highlights the cumulative and synergistic effects of comorbid pathologies leading to neuronal loss in AD. Accordingly, protection against necroptotic neuronal death appears to be a promising therapeutic option for AD and LATE.
Collapse
Affiliation(s)
- Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Annelies Belet
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Evelien Van Schoor
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
- Laboratory for Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Schaeverbeke
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for Translational Neuropsychiatry, Department of Neuroscience, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Laboratory for Translational Neuropsychiatry, Department of Neuroscience, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Department of Geriatric Psychiatry, UZ Leuven, Leuven, Belgium
| | - Estifanos Ghebremedhin
- Institute of Anatomy - Anatomy I, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Neurology, University of Halle, Halle, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Geriatrics, Göttingen University, Göttingen, Germany
| | - Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Matthew B Blaschko
- Department of Electronics, Center for Processing Speech and Images, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
35
|
Chen L, Niu X, Wang Y, Lv S, Zhou X, Yang Z, Peng D. Plasma tau proteins for the diagnosis of mild cognitive impairment and Alzheimer's disease: A systematic review and meta-analysis. Front Aging Neurosci 2022; 14:942629. [PMID: 35959295 PMCID: PMC9358685 DOI: 10.3389/fnagi.2022.942629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDetecting plasma tau biomarkers used to be impossible due to their low concentrations in blood samples. Currently, new high-sensitivity assays made it a reality. We performed a systematic review and meta-analysis in order to test the accuracy of plasma tau protein in diagnosing Alzheimer's disease (AD) or mild cognitive impairment (MCI).MethodsWe searched PubMed, Cochrane, Embase and Web of Science databases, and conducted correlation subgroup analysis, sensitivity analysis and publication bias analysis using R Programming Language.ResultsA total of 56 studies were included. Blood t-tau and p-tau levels increased from controls to MCI to AD patients, and showed significant changes in pairwise comparisons of AD, MCI and normal cognition. P-tau217 was more sensitive than p-tau181 and p-tau231 in different cognition periods. In addition, ultrasensitive analytical platforms, immunomagnetic reduction (IMR), increased the diagnostic value of tau proteins, especially the diagnostic value of t-tau.ConclusionBoth t-tau and p-tau are suitable AD blood biomarkers, and p-tau217 is more sensitive than other tau biomarkers to differentiate MCI and AD. Detection techniques also have an impact on biomarkers' results. New ultrasensitive analytical platforms of IMR increase the diagnostic value of both t-tau and p-tau biomarkers.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, registration number: CRD42021264701.
Collapse
Affiliation(s)
- Leian Chen
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoqian Niu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuang Lv
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiao Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziyuan Yang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- *Correspondence: Dantao Peng
| |
Collapse
|
36
|
Chen H, Xiao M, He J, Zhang Y, Liang Y, Liu H, Zhang Z. Aptamer-Functionalized Carbon Nanotube Field-Effect Transistor Biosensors for Alzheimer's Disease Serum Biomarker Detection. ACS Sens 2022; 7:2075-2083. [PMID: 35816677 DOI: 10.1021/acssensors.2c00967] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blood-biomarker-based tests are highly important for the early clinical diagnosis of Alzheimer's disease (AD) and the treatment and care of AD patients, but the complex serum environment and extremely low abundance of AD blood protein biomarkers present challenges. Nanomaterials are promising for constructing highly sensitive transistor-based biosensors due to their small size. However, such biosensors are difficult to fabricate on a large scale and suffer from the lack of combined optimization of reproducibility and sensitivity in complex physiological fluids. In this work, field-effect transistor (FET) biosensors based on highly uniform semiconducting carbon nanotube (CNT) thin films are mass produced to achieve highly sensitive and selective detection of the AD core blood biomarkers of β-amyloid (Aβ). The combination of the mass-produced CNT FET sensors and oligonucleotide aptamers as efficient bioreceptors enables reliable and reproducible sub-femtomolar detection in full human serum for Aβ42 and Aβ40 peptides and has outperformed other methods reported to date. The adsorption of biological substrates to the sensor was significantly reduced by multiple blocking steps, resulting in selectivity ratios of up to 730% (Aβ40) and 800% (Aβ42). The aptamer-functionalized CNT FET biosensor exhibits a large dynamic range (>104), rapid response time (several minutes), and low variation (<10%) and can be delivered as a low-cost and rapid clinical detection technology for the early diagnosis and mass screening of AD. This platform will help bring complex laboratory-based and expensive diagnostic tools to the point of care.
Collapse
Affiliation(s)
- Hong Chen
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.,Jihua Laboratory, Foshan 528200, Guangdong China
| | - Jianping He
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Yang Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Yuqi Liang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Haiyang Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, Hunan, China.,Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.,Jihua Laboratory, Foshan 528200, Guangdong China
| |
Collapse
|
37
|
Li TR, Yao YX, Jiang XY, Dong QY, Yu XF, Wang T, Cai YN, Han Y. β-Amyloid in blood neuronal-derived extracellular vesicles is elevated in cognitively normal adults at risk of Alzheimer's disease and predicts cerebral amyloidosis. Alzheimers Res Ther 2022; 14:66. [PMID: 35550625 PMCID: PMC9097146 DOI: 10.1186/s13195-022-01010-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023]
Abstract
Background Blood biomarkers that can be used for preclinical Alzheimer’s disease (AD) diagnosis would enable trial enrollment at a time when the disease is potentially reversible. Here, we investigated plasma neuronal-derived extracellular vesicle (nEV) cargo in patients along the Alzheimer’s continuum, focusing on cognitively normal controls (NCs) with high brain β-amyloid (Aβ) loads (Aβ+). Methods The study was based on the Sino Longitudinal Study on Cognitive Decline project. We enrolled 246 participants, including 156 NCs, 45 amnestic mild cognitive impairment (aMCI) patients, and 45 AD dementia (ADD) patients. Brain Aβ loads were determined using positron emission tomography. NCs were classified into 84 Aβ− NCs and 72 Aβ+ NCs. Baseline plasma nEVs were isolated by immunoprecipitation with an anti-CD171 antibody. After verification, their cargos, including Aβ, tau phosphorylated at threonine 181, and neurofilament light, were quantified using a single-molecule array. Concentrations of these cargos were compared among the groups, and their receiver operating characteristic (ROC) curves were constructed. A subset of participants underwent follow-up cognitive assessment and magnetic resonance imaging. The relationships of nEV cargo levels with amyloid deposition, longitudinal changes in cognition, and brain regional volume were explored using correlation analysis. Additionally, 458 subjects in the project had previously undergone plasma Aβ quantification. Results Only nEV Aβ was included in the subsequent analysis. We focused on Aβ42 in the current study. After normalization of nEVs, the levels of Aβ42 were found to increase gradually across the cognitive continuum, with the lowest in the Aβ− NC group, an increase in the Aβ+ NC group, a further increase in the aMCI group, and the highest in the ADD group, contributing to their diagnoses (Aβ− NCs vs. Aβ+ NCs, area under the ROC curve values of 0.663; vs. aMCI, 0.857; vs. ADD, 0.957). Furthermore, nEV Aβ42 was significantly correlated with amyloid deposition, as well as longitudinal changes in cognition and entorhinal volume. There were no differences in plasma Aβ levels among NCs, aMCI, and ADD individuals. Conclusions Our findings suggest the potential use of plasma nEV Aβ42 levels in diagnosing AD-induced cognitive impairment and Aβ+ NCs. This biomarker reflects cortical amyloid deposition and predicts cognitive decline and entorhinal atrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01010-x.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yun-Xia Yao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xue-Yan Jiang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Qiu-Yue Dong
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian-Feng Yu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Ting Wang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yan-Ning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,School of Biomedical Engineering, Hainan University, Haikou, 570228, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China. .,National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
38
|
Lippa SM, Gill J, Brickell TA, Guedes VA, French LM, Lange RT. Blood Biomarkers Predict Future Cognitive Decline after Military-Related Traumatic Brain Injury. Curr Alzheimer Res 2022; 19:351-363. [PMID: 35362372 DOI: 10.2174/1567205019666220330144432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) has been associated with increased likelihood of late-life dementia; however, the mechanisms driving this relationship are elusive. Blood-based biomarkers may provide insight into these mechanisms and serve as useful prognostic indicators of cognitive recovery or decline following a TBI. OBJECTIVE The aim of this study was to examine blood biomarkers within one year of TBI and explore their relationship with cognitive decline. METHODS Service members and veterans (n=224) without injury (n=77), or with history of bodily injury (n=37), uncomplicated mild TBI (n=55), or more severe TBI (n=55), underwent a blood draw and neuropsychological assessment within one year of their injury as part of a case-control study. A subsample (n=87) completed follow-up cognitive assessment. RESULTS In the more severe TBI group, baseline glial fibrillary acidic protein (p=.008) and ubiquitin C-terminal hydrolase-L1 (p=.026) were associated with processing speed at baseline, and baseline ubiquitin C-terminal hydrolase-L1 predicted change in immediate (R2Δ=.244, p=.005) and delayed memory (R2Δ=.390, p=.003) over time. In the mild TBI group, higher baseline tau predicted greater negative change in perceptual reasoning (R2Δ=.188, p=.033) and executive functioning (R2Δ=.298, p=.007); higher baseline neurofilament light predicted greater negative change in perceptual reasoning (R2Δ=.211, p=.012). CONCLUSION Baseline ubiquitin C-terminal hydrolase-L1 strongly predicted memory decline in the more severe TBI group, while tau and neurofilament light strongly predicted decline in the mild TBI group. A panel including these biomarkers could be particularly helpful in identifying those at risk for future cognitive decline following TBI.
Collapse
Affiliation(s)
- Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Tracey A Brickell
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Contractor, General Dynamics Information Technology, Falls Church, VA, USA
- Centre of Excellence on Post-traumatic Stress Disorder, Ottawa, ON, Canada
| | - Vivian A Guedes
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Louis M French
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rael T Lange
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Contractor, General Dynamics Information Technology, Falls Church, VA, USA
- Centre of Excellence on Post-traumatic Stress Disorder, Ottawa, ON, Canada
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Abstract
Alzheimer’s disease (AD) is prevalent throughout the world and is the leading cause of dementia in older individuals (aged ≥ 65 years). To gain a deeper understanding of the recent literature on the epidemiology of AD and its progression, we conducted a review of the PubMed-indexed literature (2014–2021) in North America, Europe, and Asia. The worldwide toll of AD is evidenced by rising prevalence, incidence, and mortality due to AD—estimates which are low because of underdiagnosis of AD. Mild cognitive impairment (MCI) due to AD can ultimately progress to AD dementia; estimates of AD dementia etiology among patients with MCI range from 40% to 75% depending on the populations studied and whether the MCI diagnosis was made clinically or in combination with biomarkers. The risk of AD dementia increases with progression from normal cognition with no amyloid-beta (Aβ) accumulation to early neurodegeneration and subsequently to MCI. For patients with Aβ accumulation and neurodegeneration, lifetime risk of AD dementia has been estimated to be 41.9% among women and 33.6% among men. Data on progression from preclinical AD to MCI are sparse, but an analysis of progression across the three preclinical National Institute on Aging and Alzheimer’s Association (NIA-AA) stages suggests that NIA-AA stage 3 (subtle cognitive decline with AD biomarker positivity) could be useful in combination with other tools for treatment decision-making. Factors shown to increase risk include lower Mini-Mental State Examination (MMSE) score, higher Alzheimer’s Disease Assessment Scale (ADAS-cog) score, positive APOE4 status, white matter hyperintensities volume, entorhinal cortex atrophy, cerebrospinal fluid (CSF) total tau, CSF neurogranin levels, dependency in instrumental activities of daily living (IADL), and being female. Results suggest that use of biomarkers alongside neurocognitive tests will become an important part of clinical practice as new disease-modifying therapies are introduced.
Collapse
|
40
|
Ogonowski N, Salcidua S, Leon T, Chamorro-Veloso N, Valls C, Avalos C, Bisquertt A, Rentería ME, Orellana P, Duran-Aniotz C. Systematic Review: microRNAs as Potential Biomarkers in Mild Cognitive Impairment Diagnosis. Front Aging Neurosci 2022; 13:807764. [PMID: 35095478 PMCID: PMC8790149 DOI: 10.3389/fnagi.2021.807764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
The rate of progression from Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) is estimated at >10% per year, reaching up to 80-90% after 6 years. MCI is considered an indicator of early-stage AD. In this context, the diagnostic screening of MCI is crucial for detecting individuals at high risk of AD before they progress and manifest further severe symptoms. Typically, MCI has been determined using neuropsychological assessment tools such as the Montreal Cognitive Assessment (MoCA) or Mini-Mental Status Examination (MMSE). Unfortunately, other diagnostic methods are not available or are unable to identify MCI in its early stages. Therefore, identifying new biomarkers for MCI diagnosis and prognosis is a significant challenge. In this framework, miRNAs in serum, plasma, and other body fluids have emerged as a promising source of biomarkers for MCI and AD-related cognitive impairments. Interestingly, miRNAs can regulate several signaling pathways via multiple and diverse targets in response to pathophysiological stimuli. This systematic review aims to describe the current state of the art regarding AD-related target genes modulated by differentially expressed miRNAs in peripheral fluids samples in MCI subjects to identify potential miRNA biomarkers in the early stages of AD. We found 30 articles that described five miRNA expression profiles from peripheral fluid in MCI subjects, showing possible candidates for miRNA biomarkers that may be followed up as fluid biomarkers or therapeutic targets of early-stage AD. However, additional research is needed to validate these miRNAs and characterize the precise neuropathological mechanisms.
Collapse
Affiliation(s)
- Natalia Ogonowski
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), National Scientific and Technical Research Council (CONICET), Universidad de San Andrés, Buenos Aires, Argentina
| | - Stefanny Salcidua
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Faculty of Engineering and Sciences, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | - Constanza Avalos
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | | | - Miguel E. Rentería
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| |
Collapse
|
41
|
Duara R, Barker W. Heterogeneity in Alzheimer's Disease Diagnosis and Progression Rates: Implications for Therapeutic Trials. Neurotherapeutics 2022; 19:8-25. [PMID: 35084721 PMCID: PMC9130395 DOI: 10.1007/s13311-022-01185-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
The clinical presentation and the pathological processes underlying Alzheimer's disease (AD) can be very heterogeneous in severity, location, and composition including the amount and distribution of AB deposition and spread of neurofibrillary tangles in different brain regions resulting in atypical clinical patterns and the existence of distinct AD variants. Heterogeneity in AD may be related to demographic factors (such as age, sex, educational and socioeconomic level) and genetic factors, which influence underlying pathology, the cognitive and behavioral phenotype, rate of progression, the occurrence of neuropsychiatric features, and the presence of comorbidities (e.g., vascular disease, neuroinflammation). Heterogeneity is also manifest in the individual resilience to the development of neuropathology (brain reserve) and the ability to compensate for its cognitive and functional impact (cognitive and functional reserve). The variability in specific cognitive profiles and types of functional impairment may be associated with different progression rates, and standard measures assessing progression may not be equivalent for individual cognitive and functional profiles. Other factors, which may govern the presence, rate, and type of progression of AD, include the individuals' general medical health, the presence of specific systemic conditions, and lifestyle factors, including physical exercise, cognitive and social stimulation, amount of leisure activities, environmental stressors, such as toxins and pollution, and the effects of medications used to treat medical and behavioral conditions. These factors that affect progression are important to consider while designing a clinical trial to ensure, as far as possible, well-balanced treatment and control groups.
Collapse
Affiliation(s)
- Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- Departments of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Warren Barker
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
42
|
Sagües-Sesé E, Rioja J, Garzón-Maldonado FJ, Narváez M, García-Arnés JA, García-Casares N. Insulin-Related Biomarkers in Cerebrospinal Fluid in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review. J Alzheimers Dis 2022; 90:1-13. [PMID: 36093712 DOI: 10.3233/jad-220688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Glucose metabolism and insulin signaling alterations play an important role in Alzheimer's disease (AD) pathogenesis. Researchers have extensively attempted to characterize the exact pathophysiological mechanisms in the cerebrospinal fluid (CSF), as evidence concerning this fluid biomarkers is expected to enhance AD diagnosis' specificity and accuracy and serve as an early disease detection tool. There is controversy about insulin levels in the CSF relationship with mild cognitive impairment (MCI) and AD. OBJECTIVE This systematic review provides an overview of the state-of-the-art knowledge about insulin-related CSF biomarkers in AD and MCI. METHODS We performed a qualitative systematic literature review of reported data of CSF glucose, insulin, or insulin-related molecules in humans with AD or MCI, consulting the electronic databases Medline, Scopus, Web of Science, Cochrane, and BASE until May 2022. RESULTS We selected 19 studies, 10 of them reporting data on CSF insulin and 8 on insulin-related molecules like growth factors or their binding proteins. They predominantly found decreased levels of CSF insulin and increased levels of CSF insulin-related growth factors and their binding proteins. CONCLUSION Due to the studies' protocols and results heterogeneity, we recommend a larger database of clinical trials with similar characteristics for a better understanding of this relationship.
Collapse
Affiliation(s)
| | - José Rioja
- Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Centro de Investigaciones Médico-Sanitarias (CIMES), Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Francisco J Garzón-Maldonado
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Departamento de Neurología, Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain
| | - Manuel Narváez
- Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | | | - Natalia García-Casares
- Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Centro de Investigaciones Médico-Sanitarias (CIMES), Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
43
|
Nadeem MS, Kazmi I, Ullah I, Muhammad K, Anwar F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants (Basel) 2021; 11:87. [PMID: 35052591 PMCID: PMC8772758 DOI: 10.3390/antiox11010087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic (Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases. In this context, the present review describes allicin as an antioxidant, and neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways. As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied to manage the Alzheimer's disease, helps to maintain the balance of neurotransmitters in case of autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation, apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2). Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering from neurological diseases can be ameliorates by allicin administration.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Khushi Muhammad
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| |
Collapse
|
44
|
Wakasugi N, Hanakawa T. It Is Time to Study Overlapping Molecular and Circuit Pathophysiologies in Alzheimer's and Lewy Body Disease Spectra. Front Syst Neurosci 2021; 15:777706. [PMID: 34867224 PMCID: PMC8637125 DOI: 10.3389/fnsys.2021.777706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia due to neurodegeneration and is characterized by extracellular senile plaques composed of amyloid β1 - 42 (Aβ) as well as intracellular neurofibrillary tangles consisting of phosphorylated tau (p-tau). Dementia with Lewy bodies constitutes a continuous spectrum with Parkinson's disease, collectively termed Lewy body disease (LBD). LBD is characterized by intracellular Lewy bodies containing α-synuclein (α-syn). The core clinical features of AD and LBD spectra are distinct, but the two spectra share common cognitive and behavioral symptoms. The accumulation of pathological proteins, which acquire pathogenicity through conformational changes, has long been investigated on a protein-by-protein basis. However, recent evidence suggests that interactions among these molecules may be critical to pathogenesis. For example, Aβ/tau promotes α-syn pathology, and α-syn modulates p-tau pathology. Furthermore, clinical evidence suggests that these interactions may explain the overlapping pathology between AD and LBD in molecular imaging and post-mortem studies. Additionally, a recent hypothesis points to a common mechanism of prion-like progression of these pathological proteins, via neural circuits, in both AD and LBD. This suggests a need for understanding connectomics and their alterations in AD and LBD from both pathological and functional perspectives. In AD, reduced connectivity in the default mode network is considered a hallmark of the disease. In LBD, previous studies have emphasized abnormalities in the basal ganglia and sensorimotor networks; however, these account for movement disorders only. Knowledge about network abnormalities common to AD and LBD is scarce because few previous neuroimaging studies investigated AD and LBD as a comprehensive cohort. In this paper, we review research on the distribution and interactions of pathological proteins in the brain in AD and LBD, after briefly summarizing their clinical and neuropsychological manifestations. We also describe the brain functional and connectivity changes following abnormal protein accumulation in AD and LBD. Finally, we argue for the necessity of neuroimaging studies that examine AD and LBD cases as a continuous spectrum especially from the proteinopathy and neurocircuitopathy viewpoints. The findings from such a unified AD and Parkinson's disease (PD) cohort study should provide a new comprehensive perspective and key data for guiding disease modification therapies targeting the pathological proteins in AD and LBD.
Collapse
Affiliation(s)
- Noritaka Wakasugi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
45
|
Jiao B, Liu H, Guo L, Liao X, Zhou Y, Weng L, Xiao X, Zhou L, Wang X, Jiang Y, Yang Q, Zhu Y, Zhou L, Zhang W, Wang J, Yan X, Tang B, Shen L. Performance of Plasma Amyloid β, Total Tau, and Neurofilament Light Chain in the Identification of Probable Alzheimer's Disease in South China. Front Aging Neurosci 2021; 13:749649. [PMID: 34776933 PMCID: PMC8579066 DOI: 10.3389/fnagi.2021.749649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common type of dementia and has no effective treatment to date. It is essential to develop a minimally invasive blood-based biomarker as a tool for screening the general population, but the efficacy remains controversial. This cross-sectional study aimed to evaluate the ability of plasma biomarkers, including amyloid β (Aβ), total tau (t-tau), and neurofilament light chain (NfL), to detect probable AD in the South Chinese population. Methods: A total of 277 patients with a clinical diagnosis of probable AD and 153 healthy controls with normal cognitive function (CN) were enrolled in this study. The levels of plasma Aβ42, Aβ40, t-tau, and NfL were detected using ultra-sensitive immune-based assays (SIMOA). Lumbar puncture was conducted in 89 patients with AD to detect Aβ42, Aβ40, t-tau, and phosphorylated (p)-tau levels in the cerebrospinal fluid (CSF) and to evaluate the consistency between plasma and CSF biomarkers through correlation analysis. Finally, the diagnostic value of plasma biomarkers was further assessed by constructing a receiver operating characteristic (ROC) curve. Results: After adjusting for age, sex, and the apolipoprotein E (APOE) alleles, compared to the CN group, the plasma t-tau, and NfL were significantly increased in the AD group (p < 0.01, Bonferroni correction). Correlation analysis showed that only the plasma t-tau level was positively correlated with the CSF t-tau levels (r = 0.319, p = 0.003). The diagnostic model combining plasma t-tau and NfL levels, and age, sex, and APOE alleles, showed the best performance for the identification of probable AD [area under the curve (AUC) = 0.89, sensitivity = 82.31%, specificity = 83.66%]. Conclusion: Blood biomarkers can effectively distinguish patients with probable AD from controls and may be a non-invasive and efficient method for AD pre-screening.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| |
Collapse
|
46
|
Nihashi T, Sakurai K, Kato T, Iwata K, Kimura Y, Ikenuma H, Yamaoka A, Takeda A, Arahata Y, Washimi Y, Suzuki K, Bundo M, Sakurai T, Okamura N, Yanai K, Ito K, Nakamura A. Patterns of Distribution of 18F-THK5351 Positron Emission Tomography in Alzheimer's Disease Continuum. J Alzheimers Dis 2021; 85:223-234. [PMID: 34776443 DOI: 10.3233/jad-215024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is conceptualized as a biological continuum encompassing the preclinical (clinically asymptomatic but with evidence of AD pathology) and clinical (symptomatic) phases. OBJECTIVE Using 18F-THK5351 as a tracer that binds to both tau and MAO-B, we investigated the changes in 18F-THK5351 accumulation patterns in AD continuum individuals with positive amyloid PET consisting of cognitively normal individuals (CNp), amnestic mild cognitive impairment (aMCI), and AD and cognitively normal individuals (CNn) with negative amyloid PET. METHODS We studied 69 individuals (32 CNn, 11 CNp, 9 aMCI, and 17 AD) with structural magnetic resonance imaging, 11C-Pittsburgh compound-B (PIB) and 18F-THK5351 PET, and neuropsychological assessment. 18F-THK5351 accumulation was evaluated with visual analysis, voxel-based analysis and combined region of interest (ROI)-based analysis corresponding to Braak neurofibrillary tangle stage. RESULTS On visual analysis, 18F-THK5351 accumulation was increased with stage progression in the AD continuum. On voxel-based analysis, there was no statistical difference in 18F-THK5351 accumulation between CNp and CNn. However, a slight increase of the bilateral posterior cingulate gyrus in aMCI and definite increase of the bilateral parietal temporal association area and posterior cingulate gyrus/precuneus in AD were detected compared with CNn. On ROI-based analyses, 18F-THK5351 accumulation correlated positively with supratentorial 11C-PIB accumulation and negatively with the hippocampal volume and neuropsychological assessment. CONCLUSION The AD continuum showed an increase in 18F-THK5351 with stage progression, suggesting that 18F-THK5351 has the potential to visualize the severity of tau deposition and neurodegeneration in accordance with the AD continuum.
Collapse
Affiliation(s)
- Takashi Nihashi
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan.,Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Kaori Iwata
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Akiko Yamaoka
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Akinori Takeda
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Yutaka Arahata
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Yukihiko Washimi
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Keisuke Suzuki
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Masahiko Bundo
- Department of Neurosurgery, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Aoba Ward, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kazuhiko Yanai
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Aoba Ward, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kengo Ito
- National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | | |
Collapse
|