1
|
Kalva-Filho CA, Faria MH, Papoti M, Barbieri FA. Acute and cumulative effects of hypoxia exposure in people with Parkinson's disease: A scoping review and evidence map. Parkinsonism Relat Disord 2024; 118:105885. [PMID: 37872033 DOI: 10.1016/j.parkreldis.2023.105885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
Hypoxia exposure may promote neuroprotection for people with Parkinson's disease (PwPD). However, to implement hypoxia in practical settings and direct future research, it is necessary to organize the current knowledge about hypoxia responses/effects in PwPD. Thus, the present scoping review elucidates the evidence about hypoxia exposure applied to PwPD. Following the PRISMA Extension for Scoping Reviews, papers were searched in PubMed/NCBI, Web of Science, and Scopus (descriptors: Parkinson and hypoxia, mountain, or altitude). We included original articles published in English until August 12, 2023. Eight studies enrolled participants with early to moderate stages of disease. Acute responses demonstrated that PwPD exposed to normobaric hypoxia presented lower hypoxia ventilatory responses (HVR), perceptions of dyspnea, and sympathetic activations. Cumulative exposure to hypobaric hypoxia (living high; 7 days; altitude not reported) induced positive effects on motor symptoms (hypokinesia) and perceptions of PwPD (quality of life and living with illness). Normobaric hypoxia (isocapnic rebreathe, 14 days, three times/day of 5-7 min at 8-10 % of O2) improved HVR. The included studies reported no harmful effects. Although these results demonstrate the effectiveness and safety of hypoxia exposure applied to PwPD, we also discuss the methodological limitations of the selected experimental design (no randomized controlled trials), the characterization of the hypoxia doses, and the range of symptoms investigated. Thus, despite the safety of both normobaric hypoxia and hypobaric hypoxia for early to moderate levels of disease, the current literature is still incipient, limiting the use of hypoxia exposure in practical settings.
Collapse
Affiliation(s)
- Carlos A Kalva-Filho
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Bauru, SP, Brazil.
| | - Murilo Henrique Faria
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Bauru, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabio Augusto Barbieri
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Bauru, SP, Brazil
| |
Collapse
|
2
|
Neumann J, Hofmann B, Dhein S, Gergs U. Role of Dopamine in the Heart in Health and Disease. Int J Mol Sci 2023; 24:ijms24055042. [PMID: 36902474 PMCID: PMC10003060 DOI: 10.3390/ijms24055042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Dopamine has effects on the mammalian heart. These effects can include an increase in the force of contraction, and an elevation of the beating rate and the constriction of coronary arteries. Depending on the species studied, positive inotropic effects were strong, very modest, or absent, or even negative inotropic effects occurred. We can discern five dopamine receptors. In addition, the signal transduction by dopamine receptors and the regulation of the expression of cardiac dopamine receptors will be of interest to us, because this might be a tempting area of drug development. Dopamine acts in a species-dependent fashion on these cardiac dopamine receptors, but also on cardiac adrenergic receptors. We will discuss the utility of drugs that are currently available as tools to understand cardiac dopamine receptors. The molecule dopamine itself is present in the mammalian heart. Therefore, cardiac dopamine might act as an autocrine or paracrine compound in the mammalian heart. Dopamine itself might cause cardiac diseases. Moreover, the cardiac function of dopamine and the expression of dopamine receptors in the heart can be altered in diseases such as sepsis. Various drugs for cardiac and non-cardiac diseases are currently in the clinic that are, at least in part, agonists or antagonists at dopamine receptors. We define the research needs in order to understand dopamine receptors in the heart better. All in all, an update on the role of dopamine receptors in the human heart appears to be clinically relevant, and is thus presented here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
- Correspondence: ; Tel.: +49-345-557-1686; Fax: +49-345-557-1835
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Stefan Dhein
- Medizinische Fakultät, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
3
|
Janssen Daalen JM, Meinders MJ, Giardina F, Roes KCB, Stunnenberg BC, Mathur S, Ainslie PN, Thijssen DHJ, Bloem BR. Multiple N-of-1 trials to investigate hypoxia therapy in Parkinson's disease: study rationale and protocol. BMC Neurol 2022; 22:262. [PMID: 35836147 PMCID: PMC9281145 DOI: 10.1186/s12883-022-02770-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disease, for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that hypoxia-based therapy might have short- and long-term benefits in PD. We present the contours of the first study to assess the safety, feasibility and physiological and symptomatic impact of hypoxia-based therapy in individuals with PD. Methods/Design In 20 individuals with PD, we will investigate the safety, tolerability and short-term symptomatic efficacy of continuous and intermittent hypoxia using individual, double-blind, randomized placebo-controlled N-of-1 trials. This design allows for dose finding and for including more individualized outcomes, as each individual serves as its own control. A wide range of exploratory outcomes is deployed, including the Movement Disorders Society Unified Parkinson’s Disease Rating scale (MDS-UPDRS) part III, Timed Up & Go Test, Mini Balance Evaluation Systems (MiniBES) test and wrist accelerometry. Also, self-reported impression of overall symptoms, motor and non-motor symptoms and urge to take dopaminergic medication will be assessed on a 10-point Likert scale. As part of a hypothesis-generating part of the study, we also deploy several exploratory outcomes to probe possible underlying mechanisms of action, including cortisol, erythropoietin and platelet-derived growth factor β. Efficacy will be assessed primarily by a Bayesian analysis. Discussion This evaluation of hypoxia therapy could provide insight in novel pathways that may be pursued for PD treatment. This trial also serves as a proof of concept for deploying an N-of-1 design and for including individualized outcomes in PD research, as a basis for personalized treatment approaches. Trial registration ClinicalTrials.gov Identifier: NCT05214287 (registered January 28, 2022).
Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02770-7.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Federica Giardina
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Bas C Stunnenberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | | | - Philip N Ainslie
- Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Huber RS, Kim TS, Kim N, Kuykendall MD, Sherwood SN, Renshaw PF, Kondo DG. Association Between Altitude and Regional Variation of ADHD in Youth. J Atten Disord 2018; 22:1299-1306. [PMID: 25808310 PMCID: PMC5511093 DOI: 10.1177/1087054715577137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the effect of altitude on rates of ADHD. As decreased dopamine (DA) activity has been reported with ADHD and hypoxia has shown to be associated with increased DA, we hypothesized that states at higher altitudes would have lower rates of ADHD. METHOD State estimates from the 2007 National Survey of Children's Health (NSCH) report and 2010 National Survey of Children with Special Health Care Needs (NS-CSHCN) report were used to extract the percentages of youth ages 4 to 17 diagnosed with ADHD. RESULTS Both the datasets independently revealed that the prevalence of ADHD decreases with increasing altitude ( R2 = .38, p < .001; R2 = .31, p < .001), respectively. This study controlled for potential confounds (e.g., low birth weight, ethnicity, and household size). CONCLUSION These findings suggest a need for further investigation into the extent by which altitude may serve as a protective factor for ADHD.
Collapse
Affiliation(s)
- Rebekah S. Huber
- University of Utah, Salt Lake City, USA
- Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Tae-Suk Kim
- University of Utah, Salt Lake City, USA
- Catholic University of Korea, Seoul, South Korea
| | - Namkug Kim
- University of Utah, Salt Lake City, USA
- University of Ulsan, Seoul, South Korea
| | | | | | - Perry F. Renshaw
- University of Utah, Salt Lake City, USA
- Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Douglas G. Kondo
- University of Utah, Salt Lake City, USA
- Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Arns M, Swanson JM, Arnold LE. ADHD Prevalence: Altitude or Sunlight? Better Understanding the Interrelations of Dopamine and the Circadian System. J Atten Disord 2018; 22:163-166. [PMID: 26341278 DOI: 10.1177/1087054715599574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Martijn Arns
- 1 Research Institute Brainclinics, Nijmegen, The Netherlands.,2 Utrecht University, The Netherlands.,3 neuroCare group, Nijmegen, The Netherlands
| | | | | |
Collapse
|
6
|
Kim KT, Chung KJ, Lee HS, Ko IG, Kim CJ, Na YG, Kim KH. Neuroprotective effects of tadalafil on gerbil dopaminergic neurons following cerebral ischemia. Neural Regen Res 2014; 8:693-701. [PMID: 25206715 PMCID: PMC4146079 DOI: 10.3969/j.issn.1673-5374.2013.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/30/2013] [Indexed: 01/11/2023] Open
Abstract
Impairment of dopamine function, which is known to have major effects on behaviors and cognition, is one of the main problems associated with cerebral ischemia. Tadalafil, a long-acting phosphodiesterase type-5 inhibitor, is known to ameliorate neurologic impairment induced by brain injury, but not in dopaminergic regions. We investigated the neuroprotective effects of treatment with tadalafil on cyclic guanosine monophosphate level and dopamine function following cerebral ischemia. Forty adult Mongolian gerbils were randomly and evenly divided into five groups (n = 8 in each group): Sham-operation group, cerebral ischemia-induced and 0, 0.1, 1, and 10 mg/kg tadalafil-treated groups, respectively. Tadalafil dissolved in distilled water was administered orally for 7 consecutive days, starting 1 day after surgery. Cyclic guanosine monophosphate assay and immunohistochemistry were performed for thyrosine hydroxylase expression and western blot analysis for dopamine D2 receptor expression. A decrease in cyclic guanosine monophosphate level following cerebral ischemia was found with an increase in thyrosine hydroxylase activity and a decrease in dopamine D2 receptor expression in the striatum and substantia nigra region. However, treatment with tadalafil increased cyclic guanosine monophosphate expression, suppressed thyrosine hydroxylase expression and increased dopamine D2 receptor expression in the striatum and substantia nigra region in a dose-dependent manner. Tadalafil might ameliorate cerebral ischemia-induced dopaminergic neuron injury. Therefore, tadalafil has the potential as a new neuroprotective treatment strategy for cerebral ischemic injury.
Collapse
Affiliation(s)
- Kwang Taek Kim
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| | - Kyung Jin Chung
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| | - Han Sae Lee
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| | - Il Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Chang Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yong Gil Na
- Department of Urology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon 301-721, Republic of Korea
| | - Khae Hawn Kim
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| |
Collapse
|
7
|
Park EJ, Min YG, Kim GW, Cho JP, Maeng WJ, Choi SC. Pathophysiology of brain injuries in acute carbon monoxide poisoning: A novel hypothesis. Med Hypotheses 2014; 83:186-9. [DOI: 10.1016/j.mehy.2014.04.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/19/2014] [Accepted: 04/29/2014] [Indexed: 11/28/2022]
|
8
|
Kimura-Kuroiwa K, Adachi YU, Mimuro S, Obata Y, Kawamata M, Sato S, Matsuda N. The effect of aging on dopamine release and metabolism during sevoflurane anesthesia in rat striatum: an in vivo microdialysis study. Brain Res Bull 2012; 89:223-30. [PMID: 22960643 DOI: 10.1016/j.brainresbull.2012.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 11/26/2022]
Abstract
We have previously reported that halothane anesthesia increases extracellular concentrations of dopamine (DA) metabolites in rat striatum using in vivo microdialysis techniques. Aging induces many changes in the brain, including neurotransmission. However, the relationship between aging and changes in neurotransmitter release during inhalational anesthesia has not been fully investigated. The aim of the present investigation was to evaluate the effect of sevoflurane on methamphetamine (MAPT)-induced DA release and metabolism in young and middle-aged rats. Male Sprague-Dawley rats were implanted with a microdialysis probe into the right striatum. The probe was perfused with a modified Ringer's solution and 40μl of dialysate was directly injected to an HPLC every 20min. Rats were administered saline, the same volume of 2mgkg(-1) MAPT intraperitoneally, or 5μM MAPT locally perfused. After treatments, the rats were anesthetized with 1% or 3% sevoflurane for 1h. Sevoflurane anesthesia significantly increased the extracellular concentration of DA only in middle-aged rats (52-weeks-old). In young rats (8-weeks-old), sevoflurane significantly enhanced MAPT-induced DA when administered both intraperitoneally and perfused locally, whereas no significant additive interaction was found in middle-aged rats. These results suggest that aging changes DA release and metabolism in rat brains primarily by decreasing the DA transporter.
Collapse
Affiliation(s)
- Kaori Kimura-Kuroiwa
- 2nd Department of Anesthesia, Nagano Red Cross Hospital, Wakasato, Nagano, Nagano, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Fiedler KK, Kim N, Kondo DG, Renshaw PF. Cocaine use in the past year is associated with altitude of residence. J Addict Med 2012; 6:166-71. [PMID: 22531819 PMCID: PMC4586105 DOI: 10.1097/adm.0b013e31824b6c62] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Recently, increased rates of suicide in US counties at higher altitudes have been noted. Because of the documented association between cocaine use and suicide, we hypothesized that there would be a correlation between incidence of cocaine use and altitude of residence. METHODS Cocaine use data were obtained from the Substate Substance Abuse Estimates from the 1999-2001 National Surveys on Drug Use and Health. Data related to the percentages of people 12 years or older who used cocaine in the past year. Average elevation for US counties was calculated using the Shuttle Radar Topography Mission elevation data set, and subject region elevation was calculated by averaging the weighted elevations of each region's relevant counties. The correlation between elevation of a substate region and incidence of cocaine use in that region was calculated using Pearson correlation coefficients. RESULTS A significant correlation exists between mean altitude of a substate region and incidence of cocaine use in that region (r = 0.34; P < 0.0001). Regression analysis controlling for age, sex, race, education level, income, unemployment, and population density was performed. Altitude remained a significant factor (P = 0.007), whereas male sex (P = 0.008) and possessing less than a college education (P < 0.0001) were also significant predictors of self-reported cocaine use in the past year. It is important to note that cocaine use was assessed in isolation of other drugs of abuse, an additional confounding variable. CONCLUSIONS This study demonstrates a significant correlation between altitude of substate region of residence and incidence of cocaine use. It is possible that stress response due to hypoxia is responsible; however, this requires further investigation. However, because other substance use was not assessed, specificity of this association is unknown. In addition, this correlation may help explain the increased rate of suicide in areas of higher elevation.
Collapse
|
10
|
Yang KC, Ku HL, Wu CL, Wang SJ, Yang CC, Deng JF, Lee MB, Chou YH. Striatal dopamine transporter binding for predicting the development of delayed neuropsychological sequelae in suicide attempters by carbon monoxide poisoning: A SPECT study. Psychiatry Res 2011; 194:219-223. [PMID: 22044533 DOI: 10.1016/j.pscychresns.2011.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/22/2011] [Accepted: 04/14/2011] [Indexed: 11/30/2022]
Abstract
Carbon monoxide poisoning (COP) after charcoal burning results in delayed neuropsychological sequelae (DNS), which show clinical resemblance to Parkinson's disease, without adequate predictors at present. This study examined the role of dopamine transporter (DAT) binding for the prediction of DNS. Twenty-seven suicide attempters with COP were recruited. Seven of them developed DNS, while the remainder did not. The striatal DAT binding was measured by single photon emission computed tomography with (99m)Tc-TRODAT. The specific uptake ratio was derived based on a ratio equilibrium model. Using a logistic regression model, multiple clinical variables were examined as potential predictors for DNS. COP patients with DNS had a lower binding on left striatal DAT binding than patients without DNS. Logistic regression analysis showed that a combination of initial loss of consciousness and lower left striatal DAT binding predicted the development of DNS. Our data indicate that the left striatal DAT binding could help to predict the development of DNS. This finding not only demonstrates the feasibility of brain imaging techniques for predicting the development of DNS but will also help clinicians to improve the quality of care for COP patients.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital Yuanshan Branch, Yilan, Taiwan
| | - Hsiao-Lun Ku
- Department of Psychiatry, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Chia-Liang Wu
- Department of Psychiatry, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Shyh-Jen Wang
- Department of Nuclear Medicine, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Chen-Chang Yang
- Department of Toxicology, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Jou-Fang Deng
- Department of Toxicology, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Ming-Been Lee
- Department of Health, Taiwan Suicide Prevention Center, Executive Yuan, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Taiwan University and Hospital, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan; Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
11
|
Ko IG, Cho H, Kim SE, Kim JE, Sung YH, Kim BK, Shin MS, Cho S, Pak YK, Kim CJ. Hypothermia alleviates hypoxic ischemia-induced dopamine dysfunction and memory impairment in rats. Anim Cells Syst (Seoul) 2011. [DOI: 10.1080/19768354.2011.607514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
12
|
Hypothyroidism stimulates D2 receptor-mediated breathing in response to acute hypoxia and alters D2 receptors levels in carotid bodies and brain. Respir Physiol Neurobiol 2011; 180:69-78. [PMID: 22051191 DOI: 10.1016/j.resp.2011.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/16/2011] [Accepted: 10/18/2011] [Indexed: 01/11/2023]
Abstract
Hypothyroidism can depress breathing and alter dopamine D2 receptor expression and function. We hypothesized that relative to euthyroid hamsters (EH), hypothyroid hamsters (HH) contain increased D2 receptors in brain regions associated with breathing and carotid bodies (CB), and that stimulation of D2 receptors would decease ventilation more in the HH compared to the EH. Hamsters were treated with vehicle, carmoxirile (peripherally acting D2 receptor agonist), or bromocriptine (central and peripherally acting D2 receptor agonist) and breathing was evaluated during exposure to air, hypoxia, and then air. HH exhibited increased D2 receptor protein levels in the striatum and CB, but decreased levels in the paraventricular hypothalamic nucleus. Relative to vehicle, carmoxirole and bromocriptine stimulated ventilation in the HH during and following exposure to hypoxia. Only bromocriptine depressed ventilation in the EH during and after exposure to hypoxia. Thus, hypothyroidism impacts the expression of D2 receptors in the carotid body, PVN and striatum, and D2 stimulation affects ventilation remarkably differently than in EH.
Collapse
|
13
|
Sheu SY, Yao CH, Fu YT, Wang WL. Acupuncture as complementary therapy for hypoxic encephalopathy: A case study. Complement Ther Med 2010; 18:265-8. [DOI: 10.1016/j.ctim.2010.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 07/28/2010] [Accepted: 08/01/2010] [Indexed: 11/29/2022] Open
|
14
|
Hewett J, Johanson P, Sharma N, Standaert D, Balcioglu A. Function of dopamine transporter is compromised in DYT1 transgenic animal model in vivo. J Neurochem 2010; 113:228-35. [PMID: 20132487 DOI: 10.1111/j.1471-4159.2010.06590.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early onset torsion dystonia (DYT1), the most common form of hereditary primary dystonia, is caused by a mutation in the TOR1A gene, which codes for the protein, torsinA. We previously examined the effect of the human mutant torsinA on striatal dopaminergic function in a conventional transgenic mouse model of DYT1 dystonia (hMT1), in which human mutant torsinA is expressed under the cytomegalovirus promotor. Systemic administration of amphetamine did not increase dopamine (DA) release as efficiently in these mice as compared with wild-type transgenic and non-transgenic mice. We, now, studied the contribution of the DA transporter (DAT) to amphetamine-induced DA release in hMT1 transgenic mice using in vivo no-net flux microdialysis. This method applies different concentrations of DA through the microdialysis probe and measures DA concentration at the output of the probe following an equilibrium period. The slope (extraction fraction) is the measure of the DAT activity in vivo. The slope for hMT1 transgenic mice was 0.58 +/- 0.07 and for non-transgenic animals, 0.87 +/- 0.06 (p < 0.05). We further investigated the efficacy of nomifensine (a specific DAT inhibitor) in inhibiting amphetamine-induced DA release. Local application of nomifensine 80 min before the systemic application of amphetamine inhibited DA release in both transgenic mice and their non-transgenic littermates. The efficiency of the inhibition appeared to be different, with mean values of 48% for hMT1 transgenic mice versus 84% for non-transgenic littermates. Moreover, we have evaluated basal and amphetamine-induced locomotion in hMT1 transgenic mice compared with their non-transgenic littermates, using an O-maze behavioral chamber. Basal levels of locomotion in the hMT1 transgenic mice showed that they moved much less than their non-transgenic littermates (0.9 +/- 0.3 m for transgenic mice vs. 2.4 +/- 0.7 m for non-transgenic littermates, p < 0.05). This relative reduction in locomotion was also observed following amphetamine administration (48.5 +/- 6.7 m for transgenics vs. 73.7 +/- 9.8 m for non-transgenics, p < 0.05). These results support the finding that there are altered dynamics of DA release and reuptake in hMT1 transgenic mice in vivo, with DAT activity is reduced in the presence of mutant torsinA, which is consistent with behavioral consequences such as reduced locomotion and (previously described) abnormal motor phenotypes such as increased hind-base width and impaired performance on the raised-beam task. These data implies that altered DAT function may contribute to impaired DA neurotransmission and clinical symptoms in human DYT1 dystonia.
Collapse
Affiliation(s)
- Jeff Hewett
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Sugimura M, Hirose Y, Hanamoto H, Okada K, Boku A, Morimoto Y, Taki K, Niwa H. Influence of acute progressive hypoxia on cardiovascular variability in conscious spontaneously hypertensive rats. Auton Neurosci 2008; 141:94-103. [PMID: 18599365 PMCID: PMC2941824 DOI: 10.1016/j.autneu.2008.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 05/21/2008] [Accepted: 05/23/2008] [Indexed: 11/30/2022]
Abstract
The purpose of this study is to examine the influence of acute progressive hypoxia on cardiovascular variability and striatal dopamine (DA) levels in conscious, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). After preparation for measurement, the inspired oxygen concentration of rats was decreased to 10% within 5 min (descent stage), maintained at 10% for 10 min (fixed stage), and then elevated back to 20% over 5 min (recovery stage). The systolic blood pressure (SBP) and heart rate (HR) variability at each stage was calculated to evaluate the autonomic nervous system response using the wavelet method. Striatal DA during each stage was measured using in vivo microdialysis. We found that SHR showed a more profound hemodynamic response to progressive hypoxia as compared to WKY. Cardiac parasympathetic activity in SHR was significantly inhibited by acute progressive hypoxia during all stages, as shown by the decrease in the high frequency band of HR variability (HR-HF), along with transient increase in sympathetic activity during the early hypoxic phase. This decrease in the HR-HF continued even when SBP was elevated. Striatal DA levels showed the transient similar elevation in both groups. These findings suggest that acute progressive hypoxic stress in SHR inhibits cardiac parasympathetic activity through reduction of baroreceptor reflex sensitivity, with potentially severe deleterious effects on circulation, in particular on HR and circulatory control. Furthermore, it is thought that the influence of acute progressive hypoxia on striatal DA levels is similar in SHR and WKY.
Collapse
Affiliation(s)
- Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu K, Lin Y, Xiang L, Yu P, Su L, Mao L. Comparative study of change in extracellular ascorbic acid in different brain ischemia/reperfusion models with in vivo microdialysis combined with on-line electrochemical detection. Neurochem Int 2008; 52:1247-55. [DOI: 10.1016/j.neuint.2008.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 01/04/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
|
18
|
Schlenker EH. In hamsters the D1 receptor antagonist SCH23390 depresses ventilation during hypoxia. Brain Res 2008; 1187:146-53. [PMID: 18036574 PMCID: PMC2196443 DOI: 10.1016/j.brainres.2007.10.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 10/16/2007] [Accepted: 10/19/2007] [Indexed: 11/16/2022]
Abstract
During exposure of animals to hypoxia, brain and blood dopamine levels increase stimulating dopaminergic receptors which influence the integrated ventilatory response to low oxygen. The purpose of the present study is to test the hypothesis that in conscious hamsters, systemic antagonism of D(1) receptors would depress their breathing in air and in response to hypoxic and hypercapnic challenges. Nine male hamsters were treated with saline or 0.25 mg/kg SCH-23390 (SCH), a D(1) receptor antagonist that crosses the blood-brain barrier. Ventilation was determined using the barometric method, and oxygen consumption and CO(2) production were evaluated utilizing the flow-through method. During exposure to air, SCH decreased frequency of breathing. During exposure to hypoxia (10% oxygen in nitrogen), relative to saline, SCH-treated hamsters decreased minute ventilation by decreasing tidal volume and oxygen consumption but not CO(2) production. During exposure to hypercapnia (5% CO(2) in 95% O(2)), frequency of breathing was decreased with SCH, but there was no significant effect on minute ventilation. Relative to saline treatment body temperature was lower in SCH-treated hamsters by 0.6 degrees C. These results demonstrate that in hamsters D(1) receptors can modulate control of ventilation in air and during hypoxia and hypercapnic exposures. Whether D(1) receptors located centrally or on carotid bodies modulate these effects is not clear from this study.
Collapse
Affiliation(s)
- Evelyn H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St. Vermillion, SD 57069, USA.
| |
Collapse
|
19
|
Schlenker EH. In hamsters dopamine D2 receptors affect ventilation during and following intermittent hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:674-80. [PMID: 17884646 PMCID: PMC2083261 DOI: 10.1016/j.cbpa.2007.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/17/2007] [Accepted: 08/22/2007] [Indexed: 11/23/2022]
Abstract
We tested the hypothesis that in golden Syrian hamsters (Mesocricetus auratus) carotid body dopaminergic D2 receptors modulate ventilation in air, during exposure to intermittent hypoxia (IH) and reoxygenation. Ventilation was evaluated using the barometric method and CO2 production was determined using the flow through method. Hamsters (n=8) received either subcutaneous injections of vehicle, haloperidol (0.5 mg/kg) or domperidone (0.5 mg/kg). Ventilatory and metabolic variables were determined 30 min following injections, after each of 5 bouts of 5 min of 10% oxygen interspersed by normoxia (IH), and 15, 30, 45 and 60 min following IH when hamsters were exposed to air. Haloperidol, but not domperidone decreased body temperature in hamsters. Neither treatment affected CO2 production. Vehicle-treated hamsters exhibited ventilatory long-term facilitation (VLTF) following IH. Haloperidol or domperidone decreased ventilation in air, during IH and eliminated VLTF due to changes in tidal volume and not frequency of breathing. Thus, in hamsters D2 receptors are involved in control of body temperature and ventilation during and following IH.
Collapse
Affiliation(s)
- Evelyn H Schlenker
- Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA.
| |
Collapse
|
20
|
Hernández LF, Segovia G, Mora F. Chronic treatment with a dopamine uptake blocker changes dopamine and acetylcholine but not glutamate and GABA concentrations in prefrontal cortex, striatum and nucleus accumbens of the awake rat. Neurochem Int 2007; 52:457-69. [PMID: 17881090 DOI: 10.1016/j.neuint.2007.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/08/2007] [Accepted: 08/12/2007] [Indexed: 11/19/2022]
Abstract
The present study was aimed to investigate the effects of a chronic treatment with the dopamine uptake blocker nomifensine on the in vivo extracellular concentrations of dopamine, acetylcholine, glutamate and GABA in the prefrontal cortex, striatum and nucleus accumbens. Male Wistar rats received intraperitoneal (i.p.) daily injections of nomifensine (10 mg/kg) or saline for 22 days. Microdialysis experiments were performed on days 1, 8, 15 and 22 of treatment to evaluate the effects of the injection of nomifensine or saline. Motor activity of the animals was monitored during microdialysis experiments. Injections of nomifensine increased extracellular concentration of dopamine in striatum and nucleus accumbens, but not in prefrontal cortex. Acetylcholine concentrations in striatum but not in nucleus accumbens were increased by nomifensine on days 15 and 22 of treatment. In prefrontal cortex, nomifensine increased acetylcholine levels without differences among days. No changes were found on glutamate and GABA concentrations in the three areas studied. Injections of nomifensine also increased spontaneous motor activity and stereotyped behaviour without differences among days. These results show that systemic chronic treatment with a dopamine uptake blocker produces differential effects on extracellular concentrations of dopamine and acetylcholine, but not glutamate and GABA, in different areas of the brain.
Collapse
Affiliation(s)
- L F Hernández
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
21
|
Adachi YU, Yamada S, Satomoto M, Higuchi H, Watanabe K, Kazama T, Mimuro S, Sato S. Isoflurane anesthesia inhibits clozapine- and risperidone-induced dopamine release and anesthesia-induced changes in dopamine metabolism was modified by fluoxetine in the rat striatum: an in vivo microdialysis study. Neurochem Int 2007; 52:384-91. [PMID: 17719143 DOI: 10.1016/j.neuint.2007.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Accepted: 07/17/2007] [Indexed: 11/24/2022]
Abstract
Previously, we have reported that halothane anesthesia increases the extracellular concentrations of dopamine (DA) metabolites in the rat striatum using in vivo microdialysis techniques, and we have suggested that volatile anesthetics affect DA release and metabolism in various ways. The present investigation assesses the effect of isoflurane, widely used in clinical anesthesia, on DA release and metabolism. A microdialysis probe was implanted in the striatum of male Sprague-Dawley rats (n=5-7 per group). After recovery, the probe was perfused with modified Ringer's solution and 40 microl of dialysate were injected into a high performance liquid chromatograph every 20 min. The rats were given saline or the same volume of 10 mg kg(-1) clozapine, risperidone, fluoxetine or citalopram. After the pharmacological treatment, the rats were anesthetized with 1.0% or 2.5% isoflurane for 1h. The data were analyzed using two-way analysis of variance (ANOVA). For each drug with significant (p<0.05) drug-time interactions, the statistical analysis included one-way ANOVA and Newman-Keuls post hoc comparisons. A high concentration of isoflurane (2.5%) anesthesia increased the extracellular concentration of DA metabolites during emergence from anesthesia. The levels of DA metabolites increased in an isoflurane concentration-dependent manner. Isoflurane attenuated DA release induced by clozapine and risperidone. Fluoxetine, but not citalopram, antagonized the isoflurane-induced increase in metabolites. The results of current investigation suggest that isoflurane enhances presynaptic DA metabolism, and that the oxidation of DA might be partially modulated by the activities of the dopaminergic-serotonergic pathway at a presynaptic site in the rat striatum.
Collapse
Affiliation(s)
- Yushi U Adachi
- Intensive Care Unit of University Hospital, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Orset C, Parrot S, Sauvinet V, Cottet-Emard JM, Pequignot JM, Denoroy L. NMDA receptors inhibit the mild hypoxia-induced dopamine efflux in the rat striatum. Synapse 2006; 59:458-61. [PMID: 16523475 DOI: 10.1002/syn.20260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cyrille Orset
- Laboratoire de Neuropharmacologie, Institut Fédératif des Neurosciences de Lyon (IFR 19), Faculté de Pharmacie, Université Claude Bernard, Lyon, France
| | | | | | | | | | | |
Collapse
|
23
|
Cavallini S, Marti M, Marino S, Selvatici R, Beani L, Bianchi C, Siniscalchi A. Effects of chemical ischemia in cerebral cortex slices. Focus on nitric oxide. Neurochem Int 2005; 47:482-90. [PMID: 16135390 DOI: 10.1016/j.neuint.2005.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
Superfused rat cerebral cortex slices were submitted to a continuous electrical (5 Hz) stimulation and treated with sodium azide (1-10 mM) in the presence of 2 mM 2-deoxyglucose ("chemical ischemia"). Presynaptic cholinergic activity, evaluated as acetylcholine release, was inhibited depending on the sodium azide concentrations and on the length of application (5-30 min). Following a 5-min treatment with 10 mM sodium azide, acetylcholine release was reduced to 45+/-2.3%; simultaneously, there was a 15- and 10-fold increase in glutamate and nitric oxide effluxes, respectively. After restoring normal superfusion conditions, acetylcholine release recovered to 70+/-3.1% of the controls; the N-methyl-D-aspartate receptor antagonist MK-801 (10 microM) as well as the nitric oxide scavengers, haemoglobin (20 microM) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (150 microM), improved the recovery in presynaptic activity, showing that both glutamate and nitric oxide play detrimental roles in chemical ischemia. On the other hand, the post-ischemic recovery was worsened by the guanylylcyclase inhibitor 1H-[l,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (10 microM), suggesting that the activation of such a pathway plays a neuroprotective role and that the nitric oxide-induced harmful effects depend on different mechanisms. Chemical ischemia-evoked nitric oxide efflux partly derived from its calcium-dependent endogenous synthesis, since both the intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (1 mM), and the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (100 microM), substantially prevented sodium azide effects. Nitric oxide efflux was only weakly reduced by MK-801 and was not modified by either the L-type calcium channel blocker, nifedipine (10 microM) or the N-type calcium channel blocker omega-conotoxin (0.5 microM), thus suggesting a prevailing intracellular calcium-dependence of nitric oxide production, although a partial extracellular calcium source cannot be ruled out. These findings show that sodium azide plus 2-deoxyglucose treatment is a useful protocol to induce brain ischemia in vitro and underline the involvement of nitric oxide in the complex events following the ischemic insult.
Collapse
Affiliation(s)
- S Cavallini
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|