1
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
2
|
Rashad S, Al-Mesitef S, Mousa A, Zhou Y, Ando D, Sun G, Fukuuchi T, Iwasaki Y, Xiang J, Byrne SR, Sun J, Maekawa M, Saigusa D, Begley TJ, Dedon PC, Niizuma K. Translational response to mitochondrial stresses is orchestrated by tRNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580389. [PMID: 38405984 PMCID: PMC10888749 DOI: 10.1101/2024.02.14.580389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitochondrial stress and dysfunction play important roles in many pathologies. However, how cells respond to mitochondrial stress is not fully understood. Here, we examined the translational response to electron transport chain (ETC) inhibition and arsenite induced mitochondrial stresses. Our analysis revealed that during mitochondrial stress, tRNA modifications (namely f5C, hm5C, queuosine and its derivatives, and mcm5U) dynamically change to fine tune codon decoding, usage, and optimality. These changes in codon optimality drive the translation of many pathways and gene sets, such as the ATF4 pathway and selenoproteins, involved in the cellular response to mitochondrial stress. We further examined several of these modifications using targeted approaches. ALKBH1 knockout (KO) abrogated f5C and hm5C levels and led to mitochondrial dysfunction, reduced proliferation, and impacted mRNA translation rates. Our analysis revealed that tRNA queuosine (tRNA-Q) is a master regulator of the mitochondrial stress response. KO of QTRT1 or QTRT2, the enzymes responsible for tRNA-Q synthesis, led to mitochondrial dysfunction, translational dysregulation, and metabolic alterations in mitochondria-related pathways, without altering cellular proliferation. In addition, our analysis revealed that tRNA-Q loss led to a domino effect on various tRNA modifications. Some of these changes could be explained by metabolic profiling. Our analysis also revealed that utilizing serum deprivation or alteration with Queuine supplementation to study tRNA-Q or stress response can introduce various confounding factors by altering many other tRNA modifications. In summary, our data show that tRNA modifications are master regulators of the mitochondrial stress response by driving changes in codon decoding.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shadi Al-Mesitef
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Abdulrahman Mousa
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Ando
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, Tohoku university Graduate school of Medicine, Sendai, Japan
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Tomoko Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yuko Iwasaki
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Jingdong Xiang
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Codomax Inc, 17 Briden St STE 219, Worcester, MA 01605
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, Albany, NY, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Gottschalk CG, Whelan R, Peterson D, Roy A. Detection of Elevated Level of Tetrahydrobiopterin in Serum Samples of ME/CFS Patients with Orthostatic Intolerance: A Pilot Study. Int J Mol Sci 2023; 24:ijms24108713. [PMID: 37240059 DOI: 10.3390/ijms24108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a multisystem chronic illness characterized by severe muscle fatigue, pain, dizziness, and brain fog. Many patients with ME/CFS experience orthostatic intolerance (OI), which is characterized by frequent dizziness, light-headedness, and feeling faint while maintaining an upright posture. Despite intense investigation, the molecular mechanism of this debilitating condition is still unknown. OI is often manifested by cardiovascular alterations, such as reduced cerebral blood flow, reduced blood pressure, and diminished heart rate. The bioavailability of tetrahydrobiopterin (BH4), an essential cofactor of endothelial nitric oxide synthase (eNOS) enzyme, is tightly coupled with cardiovascular health and circulation. To explore the role of BH4 in ME/CFS, serum samples of CFS patients (n = 32), CFS patients with OI only (n = 10; CFS + OI), and CFS patients with both OI and small fiber polyneuropathy (n = 12; CFS + OI + SFN) were subjected to BH4 ELISA. Interestingly, our results revealed that the BH4 expression is significantly high in CFS, CFS + OI, and CFS + OI + SFN patients compared to age-/gender-matched controls. Finally, a ROS production assay in cultured microglial cells followed by Pearson correlation statistics indicated that the elevated BH4 in serum samples of CFS + OI patients might be associated with the oxidative stress response. These findings suggest that the regulation of BH4 metabolism could be a promising target for understanding the molecular mechanism of CFS and CFS with OI.
Collapse
Affiliation(s)
- Carl Gunnar Gottschalk
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Simmaron Research and Development Laboratory, Chemistry Building, University of Wisconsin-Milwaukee, 3210 N Cramer Street, Suite # 214, Milwaukee, WI 53211, USA
| | - Ryan Whelan
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| | - Daniel Peterson
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Sierra Internal Medicine, 920 Incline Way, Incline Village, NV 89451, USA
| | - Avik Roy
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Simmaron Research and Development Laboratory, Chemistry Building, University of Wisconsin-Milwaukee, 3210 N Cramer Street, Suite # 214, Milwaukee, WI 53211, USA
| |
Collapse
|
4
|
Cronin SJF, Yu W, Hale A, Licht-Mayer S, Crabtree MJ, Korecka JA, Tretiakov EO, Sealey-Cardona M, Somlyay M, Onji M, An M, Fox JD, Turnes BL, Gomez-Diaz C, da Luz Scheffer D, Cikes D, Nagy V, Weidinger A, Wolf A, Reither H, Chabloz A, Kavirayani A, Rao S, Andrews N, Latremoliere A, Costigan M, Douglas G, Freitas FC, Pifl C, Walz R, Konrat R, Mahad DJ, Koslov AV, Latini A, Isacson O, Harkany T, Hallett PJ, Bagby S, Woolf CJ, Channon KM, Je HS, Penninger JM. Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539795. [PMID: 37214873 PMCID: PMC10197517 DOI: 10.1101/2023.05.08.539795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ashley Hale
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Simon Licht-Mayer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Joanna A Korecka
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marco Sealey-Cardona
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Mate Somlyay
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Jesse D Fox
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Bruna Lenfers Turnes
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Carlos Gomez-Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88037-100, Brazil
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD); Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingen Str. 13, 1200 Vienna, Austria
| | - Alexandra Wolf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Harald Reither
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Antoine Chabloz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Anoop Kavirayani
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nick Andrews
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Neurosurgery Department, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Michael Costigan
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roger Walz
- Center for Applied Neurocience, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Neurology Division, Internal Medicine Department, University Hospital of UFSC, Florianópolis, Brazil
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Don J Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Andrey V Koslov
- Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingen Str. 13, 1200 Vienna, Austria
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88037-100, Brazil
| | - Ole Isacson
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum 7D, Karolinska Institute, Solna, Sweden
| | - Penelope J Hallett
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Stefan Bagby
- Department of Biology and Biochemistry and the Milner Centre for Evolution, University of Bath, Bath, UK
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Majkutewicz I. Dimethyl fumarate: A review of preclinical efficacy in models of neurodegenerative diseases. Eur J Pharmacol 2022; 926:175025. [DOI: 10.1016/j.ejphar.2022.175025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
|
6
|
Physical-Exercise-Induced Antioxidant Effects on the Brain and Skeletal Muscle. Antioxidants (Basel) 2022; 11:antiox11050826. [PMID: 35624690 PMCID: PMC9138070 DOI: 10.3390/antiox11050826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Erythroid-related nuclear factor 2 (NRF2) and the antioxidant-responsive-elements (ARE) signaling pathway are the master regulators of cell antioxidant defenses, playing a key role in maintaining cellular homeostasis, a scenario in which proper mitochondrial function is essential. Increasing evidence indicates that the regular practice of physical exercise increases cellular antioxidant defenses by activating NRF2 signaling. This manuscript reviewed classic and ongoing research on the beneficial effects of exercise on the antioxidant system in both the brain and skeletal muscle.
Collapse
|
7
|
Pradhan N, Singh C, Singh A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2197-2222. [PMID: 34596729 DOI: 10.1007/s00210-021-02161-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Coenzyme Q10 (ubiquinone or CoQ10) is a lipid molecule that acts as an electron mobile carrier of the electron transport chain and also contains antioxidant properties. Supplementation of CoQ10 has been very useful to treat mitochondrial diseases. CoQ10 along with its synthetic analogue, idebenone, is used largely to treat various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Friedreich's ataxia and additional brain disease condition like autism, multiple sclerosis, epilepsy, depression, and bipolar disorder, which are related to mitochondrial impairment. In this article, we have reviewed numerous physiological functions of CoQ10 and the rationale for its use in clinical practice in different brain disorders.
Collapse
Affiliation(s)
- Nilima Pradhan
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
8
|
Ambekar T, Pawar J, Rathod R, Patel M, Fernandes V, Kumar R, Singh SB, Khatri DK. Mitochondrial quality control: Epigenetic signatures and therapeutic strategies. Neurochem Int 2021; 148:105095. [PMID: 34111479 DOI: 10.1016/j.neuint.2021.105095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
Mitochondria are semi-autonomous organelle staging a crucial role in cellular stress response, energy metabolism and cell survival. Maintaining mitochondrial quality control is very important for its homeostasis. Pathological conditions such as oxidative stress and neurodegeneration, disrupt this quality control, and involvement of genetic and epigenetic materials in this disruption have been reported. These regulatory factors trigger mitochondrial imbalance, as seen in many neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and Huntington's disease. The dynamic regulatory pathways i.e. mitophagy, biogenesis, permeability pore transitioning, fusion-fission are affected as a consequence and have been reviewed in this article. Moreover, several epigenetic mechanisms such as DNA methylation and histone modulation participating in such neurological disorders have also been discussed. Apart from it, therapeutic approaches targeting mitochondrial quality control have been tremendously explored showing ameliorative effects for these diseases, and have been discussed here with a novel perspective.
Collapse
Affiliation(s)
- Tanuja Ambekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Jyoti Pawar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Ramdev Rathod
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Monica Patel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
9
|
Fanet H, Capuron L, Castanon N, Calon F, Vancassel S. Tetrahydrobioterin (BH4) Pathway: From Metabolism to Neuropsychiatry. Curr Neuropharmacol 2021; 19:591-609. [PMID: 32744952 PMCID: PMC8573752 DOI: 10.2174/1570159x18666200729103529] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022] Open
Abstract
Tetrahydrobipterin (BH4) is a pivotal enzymatic cofactor required for the synthesis of serotonin, dopamine and nitric oxide. BH4 is essential for numerous physiological processes at periphery and central levels, such as vascularization, inflammation, glucose homeostasis, regulation of oxidative stress and neurotransmission. BH4 de novo synthesis involves the sequential activation of three enzymes, the major controlling point being GTP cyclohydrolase I (GCH1). Complementary salvage and recycling pathways ensure that BH4 levels are tightly kept within a physiological range in the body. Even if the way of transport of BH4 and its ability to enter the brain after peripheral administration is still controversial, data showed increased levels in the brain after BH4 treatment. Available evidence shows that GCH1 expression and BH4 synthesis are stimulated by immunological factors, notably pro-inflammatory cytokines. Once produced, BH4 can act as an anti- inflammatory molecule and scavenger of free radicals protecting against oxidative stress. At the same time, BH4 is prone to autoxidation, leading to the release of superoxide radicals contributing to inflammatory processes, and to the production of BH2, an inactive form of BH4, reducing its bioavailability. Alterations in BH4 levels have been documented in many pathological situations, including Alzheimer's disease, Parkinson's disease and depression, in which increased oxidative stress, inflammation and alterations in monoaminergic function are described. This review aims at providing an update of the knowledge about metabolism and the role of BH4 in brain function, from preclinical to clinical studies, addressing some therapeutic implications.
Collapse
Affiliation(s)
- H. Fanet
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - L. Capuron
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - N. Castanon
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - F. Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - S. Vancassel
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| |
Collapse
|
10
|
Kraft VN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, Brandner S, Daniels JD, Schmitt-Kopplin P, Hauck SM, Stockwell BR, Hadian K, Schick JA. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS CENTRAL SCIENCE 2020; 6:41-53. [PMID: 31989025 PMCID: PMC6978838 DOI: 10.1021/acscentsci.9b01063] [Citation(s) in RCA: 810] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 05/03/2023]
Abstract
Ferroptosis is an iron-dependent form of regulated cell death linking iron, lipid, and glutathione levels to degenerative processes and tumor suppression. By performing a genome-wide activation screen, we identified a cohort of genes antagonizing ferroptotic cell death, including GTP cyclohydrolase-1 (GCH1) and its metabolic derivatives tetrahydrobiopterin/dihydrobiopterin (BH4/BH2). Synthesis of BH4/BH2 by GCH1-expressing cells caused lipid remodeling, suppressing ferroptosis by selectively preventing depletion of phospholipids with two polyunsaturated fatty acyl tails. GCH1 expression level in cancer cell lines stratified susceptibility to ferroptosis, in accordance with its expression in human tumor samples. The GCH1-BH4-phospholipid axis acts as a master regulator of ferroptosis resistance, controlling endogenous production of the antioxidant BH4, abundance of CoQ10, and peroxidation of unusual phospholipids with two polyunsaturated fatty acyl tails. This demonstrates a unique mechanism of ferroptosis protection that is independent of the GPX4/glutathione system.
Collapse
Affiliation(s)
- Vanessa
A. N. Kraft
- Institute
of Molecular Toxicology and Pharmacology, Genetics and Cellular Engineering
Group, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Carla T. Bezjian
- Department
of Chemistry, Columbia University, 550 West 120th Street, MC4846, New York, New York 10027, United States
| | - Susanne Pfeiffer
- Institute
of Molecular Toxicology and Pharmacology, Genetics and Cellular Engineering
Group, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Larissa Ringelstetter
- Institute
of Molecular Toxicology and Pharmacology, Assay Development and Screening
Platform, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Constanze Müller
- Research
Unit Analytical BioGeoChemistry, HelmholtzZentrum
Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Fereshteh Zandkarimi
- Department
of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Juliane Merl-Pham
- Research
Unit Protein Science, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Xuanwen Bao
- Institute
of Radiation Biology, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Natasa Anastasov
- Institute
of Radiation Biology, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Johanna Kössl
- Institute
of Molecular Toxicology and Pharmacology, Genetics and Cellular Engineering
Group, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Stefanie Brandner
- Institute
of Molecular Toxicology and Pharmacology, Assay Development and Screening
Platform, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Jacob D. Daniels
- Department
of Pharmacology, Columbia University, New York, New York 10027, United States
| | - Philippe Schmitt-Kopplin
- Research
Unit Analytical BioGeoChemistry, HelmholtzZentrum
Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Stefanie M. Hauck
- Research
Unit Protein Science, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Brent R. Stockwell
- Department
of Chemistry, Columbia University, 550 West 120th Street, MC4846, New York, New York 10027, United States
- Department
of Biological Sciences, Columbia University, New York, New York 10027, United States
- E-mail:
| | - Kamyar Hadian
- Institute
of Molecular Toxicology and Pharmacology, Assay Development and Screening
Platform, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
- E-mail:
| | - Joel A. Schick
- Institute
of Molecular Toxicology and Pharmacology, Genetics and Cellular Engineering
Group, HelmholtzZentrum Muenchen, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
- E-mail:
| |
Collapse
|
11
|
Naringin Exhibits Neuroprotection Against Rotenone-Induced Neurotoxicity in Experimental Rodents. Neuromolecular Med 2020; 22:314-330. [PMID: 31916219 DOI: 10.1007/s12017-019-08590-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is accompanied with the loss of dopaminergic neurons in the substantia nigra pars compacta which subsequently leads to a reduction in the dopamine level in the striatum. The flavonoids are gaining critical attention in the management of PD due to the toxic effects of the synthetic drugs. Naringin, a potent flavonoid, exerts neuroprotective activity against experimental animal models of PD. It also exhibits protective activity against rotenone-induced neurotoxicity in cell line studies. Therefore, the present study was designed to evaluate the therapeutic potential of naringin against rotenone-induced animal model of PD. The rotenone was injected through intracerebroventricular route into substantia nigra pars compacta (SNpc) to induce PD-like manifestations in the male rats. The behavioral deficits of the animals due to dopaminergic toxicity were evaluated in actophotometer, OFT, bar catalepsy, narrow beam walk, rota-rod, grip strength and foot print analysis. Naringin-attenuated rotenone-induced behavioral abnormalities in the experimental rats. Further, naringin reduced the rotenone-induced dopaminergic toxicity in striatum and SNpc the animals. At the sub-cellular level, naringin attenuated the rotenone-induced decrease in the mitochondrial function, integrity and bioenergetics in the SNpc of the animals. Furthermore, naringin reduced the rotenone-induced mitochondria-dependent apoptosis in the rat SNpc. However, Trigonelline significantly abolished the therapeutic effects of naringin on behavioral, biochemical and molecular observations in rotenone-induced PD-like animals. These observations indicate that naringin may exert neuroprotective activity against rotenone-induced toxicity in the animals possibly through Nrf2-mediated pathway. Thus, it can be presumed that naringin could be an alternative option in the management of PD.
Collapse
|
12
|
Zhou Y, Wu J, Sheng R, Li M, Wang Y, Han R, Han F, Chen Z, Qin ZH. Reduced Nicotinamide Adenine Dinucleotide Phosphate Inhibits MPTP-Induced Neuroinflammation and Neurotoxicity. Neuroscience 2018; 391:140-153. [PMID: 30195055 DOI: 10.1016/j.neuroscience.2018.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/03/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022]
Abstract
It is generally believed that oxidative stress and neuroinflammation are implicated in the pathogenesis of Parkinson's disease (PD). Reduced nicotinamide adenine dinucleotide phosphate (NADPH) has been demonstrated to have potent neuroprotective effects against oxidative stress. In the present research, we investigated if NADPH could offer neuroprotection by inhibiting glia-mediated neuroinflammation induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mechanism contributing to PD pathogenesis. The current data demonstrated that MPTP/MPP+ increased levels of reactive oxygen species (ROS), activated glial cells, and inflammasome proteins in the substantia nigra (SNpc), in addition to inducing the nuclear translocation of nuclear factor-κB (NF-κB) and phosphorylation of p38 MAPK. These responses were inhibited by supplementation of exogenous NADPH. Moreover, NADPH effectively decreased MPP+-induced excessive production of ROS, p38 phosphorylation and inflammatory protein of Cyclooxygenase2 (COX2) in cultured microglial BV-2 cells in vitro studies. Similarly, the p38 MAPK inhibitor SB203580 suppressed the upregulation of MPP+-induced p38 phosphorylation and COX2 protein levels. Co-culture of neuronal cells with MPP+-primed BV-2 cells increased the levels of tumor necrosis factor-alpha (TNF-α) and induced cell death of neuronal cells. These effects were diminished by TNF-α neutralizing antibody and NADPH. NADPH reduced motor dysfunction and the loss of dopaminergic (DA) cells induced by MPTP. Therefore, the present study demonstrates that NADPH protects DA neurons by inhibiting oxidative stress and glia-mediated neuroinflammation both in vitro and in vivo, thus suggesting a potential of clinical application for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Junchao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Feng Han
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
13
|
Gamal M, Moawad J, Rashed L, Morcos MA, Sharawy N. Possible involvement of tetrahydrobiopterin in the disturbance of redox homeostasis in sepsis - Induced brain dysfunction. Brain Res 2018; 1685:19-28. [PMID: 29428597 DOI: 10.1016/j.brainres.2018.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Tetrahydrobiopterin (BH4) is an essential co-factor that regulates nitric oxide (NO) and reactive oxygen species (ROS) production by nitric oxide synthases (NOS). In this study, we evaluated the effects of sepsis on BH4 level and redox status in the brain by using the rat model of sepsis-induced by cecal ligation and puncture (CLP) and examined whether BH4 and/or acetyl-L-carnitine (ALC) could prevent the neuronal apoptosis and neurological changes induced by sepsis. MATERIAL AND METHOD Male albino rats were randomly and blindly divided into 8 groups: sham, sham + BH4, sham + ALC, sham +BH4+ ALC, CLP, CLP + BH4, CLP + ALC, and CLP+BH4+ ALC. We measured neurological indicators, brain levels of BH4, guanosine triphosphate cyclohydrolase (GTPCH), sepiapterin reductase (SR) and dihydropteridine reductase (DHPR) genes expression (Essential enzymes in BH4 biosynthesis and recycling pathways). We investigated also brain redox status and both endothelial and inducible NOS expressions. RESULTS Brain of septic rats demonstrated a reduced BH4 bioavailability, downregulation of BH4 synthetic enzymes, increased production of hydrogen peroxide and impaired antioxidant enzymes activities. Treatments with BH4 and/or ALC increased BH4 level, upregulated BH4 synthetic enzymes expressions, and attenuated oxidative-induced neuronal apoptosis. CONCLUSION Our results suggest that BH4 and/or ALC might protect the brain against oxidative stress induced neuronal apoptosis by restoring bioavailability of BH4 and upregulating of BH4 synthetic enzymes in the brain during sepsis.
Collapse
Affiliation(s)
- Maha Gamal
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jackline Moawad
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mary Attia Morcos
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt; Cairo University Hospitals, Cairo, Egypt.
| |
Collapse
|
14
|
2-Pentadecyl-2-Oxazoline Reduces Neuroinflammatory Environment in the MPTP Model of Parkinson Disease. Mol Neurobiol 2018; 55:9251-9266. [PMID: 29656363 DOI: 10.1007/s12035-018-1064-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Current pharmacological management of Parkinson disease (PD) does not provide for disease modification, but addresses only symptomatic features. Here, we explore a new approach to neuroprotection based on the use of 2-pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of the fatty acid amide signaling molecule palmitoylethanolamide (PEA), in an experimental model of PD. Daily oral treatment with PEA-OXA (10 mg/kg) significantly reduced behavioral impairments and neuronal cell degeneration of the dopaminergic tract induced by four intraperitoneal injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on 8-week-old male C57 mice. Moreover, PEA-OXA treatment prevented dopamine depletion, increased tyrosine hydroxylase and dopamine transporter activities, and decreased α-synuclein aggregation in neurons. PEA-OXA treatment also diminished nuclear factor-κB traslocation, cyclooxygenase-2, and inducible nitric oxide synthase expression and through upregulation of the nuclear factor E2-related factor 2 pathway, induced activation of Mn-superoxide dismutase and heme oxygenase-1. Further, PEA-OXA modulated microglia and astrocyte activation and preserved microtubule-associated protein-2 alterations. In conclusion, pharmacological activation of nuclear factor E2-related factor 2 pathways with PEA-OXA may be effective in the future therapy of PD.
Collapse
|
15
|
Campolo M, Casili G, Biundo F, Crupi R, Cordaro M, Cuzzocrea S, Esposito E. The Neuroprotective Effect of Dimethyl Fumarate in an MPTP-Mouse Model of Parkinson's Disease: Involvement of Reactive Oxygen Species/Nuclear Factor-κB/Nuclear Transcription Factor Related to NF-E2. Antioxid Redox Signal 2017; 27:453-471. [PMID: 28006954 PMCID: PMC5564046 DOI: 10.1089/ars.2016.6800] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM Oxidative stress plays a key role in Parkinson disease (PD), and nuclear transcription factor related to NF-E2 (Nrf-2) is involved in neuroprotection against PD. The aim of the present study was to investigate a role for nuclear factor-κB (NF-κB)/Nrf-2 in the neurotherapeutic action of dimethyl fumarate (DMF) in a mouse model of PD and in vitro in SHSY-5Y cells. RESULTS Daily oral gavage of DMF (10, 30, and 100 mg/kg) significantly reduced neuronal cell degeneration of the dopaminergic tract and behavioral impairments induced by four injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Moreover, treatment with DMF prevented dopamine depletion, increased tyrosine hydroxylase and dopamine transporter activities, and also reduced the number of α-synuclein-positive neurons. Furthermore, DMF treatment upregulated the Nrf-2 pathway, increased NeuN+/Nrf-2+ cell number in the striatum, induced activation of manganese superoxide dismutase and heme oxygenase-1, and regulated glutathione levels. Moreover, DMF reduced interleukin 1 levels, cyclooxygenase 2 activity, and nitrotyrosine neuronal nitrite oxide synthase expression. This treatment also modulated microglia activation, restored nerve growth factor levels, and preserved microtubule-associated protein 2 alterations. The protective effects of DMF treatment, via Nrf-2, were confirmed in in vitro studies, through inhibition of Nrf-2 by trigonelline. INNOVATION These findings demonstrate that DMF, both in a mouse model of PD and in vitro, provides, via regulation of the NF-κB/Nrf-2 pathway, novel cytoprotective modalities that further augment the natural antioxidant response in neurodegenerative and inflammatory disease models. CONCLUSION These results support the thesis that DMF may constitute a promising therapeutic target for the treatment of PD. Antioxid. Redox Signal. 27, 453-471.
Collapse
Affiliation(s)
- Michela Campolo
- 1 Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina , Messina, Italy
| | - Giovanna Casili
- 1 Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina , Messina, Italy
| | - Flavia Biundo
- 1 Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina , Messina, Italy
| | - Rosalia Crupi
- 1 Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina , Messina, Italy
| | - Marika Cordaro
- 1 Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina , Messina, Italy
| | - Salvatore Cuzzocrea
- 1 Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina , Messina, Italy .,2 Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine , St. Louis, Missouri
| | - Emanuela Esposito
- 1 Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina , Messina, Italy
| |
Collapse
|
16
|
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 2017; 23:5-22. [PMID: 27873462 PMCID: PMC6492703 DOI: 10.1111/cns.12655] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Elham Amini
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Zahurin Mohamed
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Raymond Azman Ali
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | | | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
17
|
Yeung PKK, Lai AKW, Son HJ, Zhang X, Hwang O, Chung SSM, Chung SK. Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease. Neurobiol Aging 2016; 50:119-133. [PMID: 27960106 DOI: 10.1016/j.neurobiolaging.2016.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
Fungicide exposure causes degeneration of dopaminergic neurons and contributes to Parkinson's disease (PD). Benomyl inhibits enzymes responsible for detoxifying the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde. Aldose reductase (AR) is known as tetrahydrobiopterin (BH4) reductase that generates BH4, a cofactor for tyrosine hydroxylase (TH) involved in dopamine synthesis. AR also acts as an aldehyde reductase involved in detoxifying 3,4-dihydroxyphenylacetaldehyde. In PD patients, the level of AR is significantly lower in the cerebellum. To determine if AR deficiency contributes to PD, AR wild-type (AR+/+) and knockout (AR-/-) mice were administrated with 1-methyl-4-phenyl -1,2,3,6- tetrahydropyridine (MPTP). The MPTP-treated AR-/- mice showed more severe behavioral deficits and brain damage than that of AR+/+ mice. Contrary to expectation, under normal or MPTP-treated condition, AR-/- mice showed a significant elevation of BH4 and dopamine in the midbrain, suggesting that either AR does not contribute to BH4 production, or other BH4 synthetic pathways are induced. The AR-/- brain showed upregulation of peroxynitrite, inducible nitric oxide synthase and downregulation of antioxidant enzymes, Cu/Zn superoxide dismutase (SOD) and peroxiredoxin 2 (Prx2), which indicate an increase in oxidative stress. In line with the animal data, pretreating the SH-SY5Y cells with AR inhibitors (Fidarestat or Epalrestat) before MPP+ treatment, increased severe cell death and mitochondrial fragmentation with downregulation of SOD were observed when compared to the MPP+ treatment alone. Cycloxygenase 2 (COX2), which can lead to the oxidation of dopamine, was upregulated in AR-/- brains. Autophagic proteins, beclin-1 and LC3B were also downregulated. The loss of dopaminergic neurons was associated with activation of p-ERK1/2. These findings suggest that AR plays an important role in protecting dopaminergic neuron against neurotoxic metabolites in PD.
Collapse
Affiliation(s)
- Patrick K K Yeung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Angela K W Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Hyo Jin Son
- Department of Biochemistry, University of Ulsan College of Medicine, Seoul, Korea
| | - Xu Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Onyou Hwang
- Department of Biochemistry, University of Ulsan College of Medicine, Seoul, Korea
| | - Stephen S M Chung
- Division of Science and Technology, United International College, Zhuhai, Guandong, China
| | - Sookja K Chung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
18
|
Cartocci V, Servadio M, Trezza V, Pallottini V. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior? J Cell Physiol 2016; 232:281-286. [DOI: 10.1002/jcp.25488] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Veronica Cartocci
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Michela Servadio
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Viviana Trezza
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| | - Valentina Pallottini
- Department of Science; Biomedical and Biotechnology Section; University Roma Tre; Rome Italy
| |
Collapse
|
19
|
Lee KM, Lee Y, Chun HJ, Kim AH, Kim JY, Lee JY, Ishigami A, Lee J. Neuroprotective and anti-inflammatory effects of morin in a murine model of Parkinson's disease. J Neurosci Res 2016; 94:865-78. [PMID: 27265894 DOI: 10.1002/jnr.23764] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by loss of dopaminergic neurons in the substantia nigra (SN). Although the causes of PD are not understood, evidence suggests that oxidative stress, mitochondrial dysfunction, and inflammation are associated with its pathogenesis. Morin (3,5,7,2',4'-pentahydroxyflavone) is a flavonol found in wine and many herbs and fruits. Previous studies have suggested that morin prevents oxidative damage and inflammation and ameliorates mitochondrial dysfunction. The present study describes the neuroprotective effects of morin in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, and we report the results of our investigation into its neuroprotective mechanism in primary neurons and astrocytes. In the mouse model, morin pretreatment ameliorated motor dysfunction, protected against dopaminergic neuronal losses in SN and striatum, and alleviated MPTP-induced astrocyte activation. In vitro studies revealed that morin protected primary cultured neurons against 1-methyl-4-phenylpyridine (MPP(+) )-mediated reactive oxygen species production and mitochondrial membrane potential (MMP) disruption. In addition, morin effectively reduced MPP(+) -induced astroglial activation and nuclear translocation of nuclear factor-κB in primary cultured astrocytes. These results indicate that morin acts via multiple neuroprotective mechanisms in our mouse model and suggest that morin be viewed as a potential treatment and preventative for PD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyung Moon Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| | - Yujeong Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| | - Hye Jeong Chun
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| | - Ah Hyun Kim
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| | - Ju Yeon Kim
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| | - Joo Yeon Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
20
|
Ainslie GR, Gibson KM, Vogel KR. mTOR, Autophagy, Aminoacidopathies, and Human Genetic Disorders. MOLECULES TO MEDICINE WITH MTOR 2016:143-166. [DOI: 10.1016/b978-0-12-802733-2.00010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Athar M, Lone MY, Khedkar VM, Jha PC. Pharmacophore model prediction, 3D-QSAR and molecular docking studies on vinyl sulfones targeting Nrf2-mediated gene transcription intended for anti-Parkinson drug design. J Biomol Struct Dyn 2015. [PMID: 26222438 DOI: 10.1080/07391102.2015.1077343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite intense research efforts towards clinical and molecular causes of Parkinson disease (PD), the etiology of disease still remains unclear. However, recent studies have provided ample evidences that the oxidative stress is the key player that contributes a lot to dopaminergic (DAergic) neurodegeneration in brain. It is due to the discrepancy of antioxidant defence system of which nuclear factor erythroid 2-related factor 2 (Nrf2) signalling is of central contour. In the current study, potent heme oxygenase-1 agonists (Nrf2 signalling regulator), vinyl sulfones, were selected and an optimal pharmacophore model was brought forth which was examined using a decoy set by atom-based 3D-QSAR. The best four-feature model consists of two hydrogen bond acceptors and two aromatic rings, which has the highest correlation coefficient, R(2) = .71 and [Formula: see text] = .73 in QSAR. These ligands were further studied for molecular docking with Nrf2-keap protein to gain insight into the major binding motifs followed by analysing pharmacokinetic properties to evaluate their bioavailability dominance. From this study, it is concluded that vinyl sulfones could be ideal compounds for targeting Nrf2 pathway which in turn halt the PD progression. Hence, these can be considered as potential leads for drug development against the same.
Collapse
Affiliation(s)
- Mohd Athar
- a CCG@cug Lab, School of Chemical Sciences , Central University of Gujarat , Gandhinagar 382030 , Gujarat , India
| | - Mohsin Yousuf Lone
- a CCG@cug Lab, School of Chemical Sciences , Central University of Gujarat , Gandhinagar 382030 , Gujarat , India
| | - Vijay M Khedkar
- b School of Health Sciences, Discipline of Pharmaceutical Sciences , University of KwaZulu-Natal , Westville, Durban 4000 , South Africa
| | - Prakash Chandra Jha
- a CCG@cug Lab, School of Chemical Sciences , Central University of Gujarat , Gandhinagar 382030 , Gujarat , India
| |
Collapse
|
22
|
Park JH, Choi JW, Ju EJ, Pae AN, Park KD. Antioxidant and Anti-Inflammatory Activities of a Natural Compound, Shizukahenriol, through Nrf2 Activation. Molecules 2015; 20:15989-6003. [PMID: 26364630 PMCID: PMC6332350 DOI: 10.3390/molecules200915989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/18/2015] [Accepted: 08/28/2015] [Indexed: 11/21/2022] Open
Abstract
Imbalance in the antioxidant defense system leads to detrimental consequences, such as neurological disorders. The Nrf2 signaling is known as a main pathway involved in cellular defense system. Nrf2 is a transcription factor that regulates oxidative stress response by inducing expression of various antioxidant enzyme genes. In this study, we screened several pure natural compounds for Nrf2 activator. Among them, shizukahenriol (SZH), isolated from Chloranthus henryi, activated Nrf2, and induced expression of the Nrf2-dependent antioxidant enzymes HO-1, GCLC, and GCLM in BV-2 microglial cells. This natural compound was also effective in suppressing production of inflammatory molecules NO, TNF-α, and inhibition of NF-κB p65 translocation to the nucleus in a dose-dependent manner. We also examined whether SZH rescued the microglial cells from oxidative stress-induced cell death. Pretreatment with SZH dose-dependently attenuated H2O2-induced cytotoxicity in BV-2 microglial cells. These results suggested SZH as a potential neuroprotective agent for neurological disorders.
Collapse
Affiliation(s)
- Jong-Hyun Park
- Center for Neuro-Medicine, Korea Institute of Science and Technology, Seoul 136-791, Korea.
| | - Ji Won Choi
- Center for Neuro-Medicine, Korea Institute of Science and Technology, Seoul 136-791, Korea.
- Department of Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | - Eun Ji Ju
- Center for Neuro-Medicine, Korea Institute of Science and Technology, Seoul 136-791, Korea.
- Department of Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | - Ae Nim Pae
- Center for Neuro-Medicine, Korea Institute of Science and Technology, Seoul 136-791, Korea.
- Department of Biological Chemistry, University of Science and Technology, Daejeon 305-350, Korea.
| | - Ki Duk Park
- Center for Neuro-Medicine, Korea Institute of Science and Technology, Seoul 136-791, Korea.
- Department of Biological Chemistry, University of Science and Technology, Daejeon 305-350, Korea.
| |
Collapse
|
23
|
Fernández-Moriano C, González-Burgos E, Gómez-Serranillos MP. Mitochondria-Targeted Protective Compounds in Parkinson's and Alzheimer's Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:408927. [PMID: 26064418 PMCID: PMC4429198 DOI: 10.1155/2015/408927] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022]
Abstract
Mitochondria are cytoplasmic organelles that regulate both metabolic and apoptotic signaling pathways; their most highlighted functions include cellular energy generation in the form of adenosine triphosphate (ATP), regulation of cellular calcium homeostasis, balance between ROS production and detoxification, mediation of apoptosis cell death, and synthesis and metabolism of various key molecules. Consistent evidence suggests that mitochondrial failure is associated with early events in the pathogenesis of ageing-related neurodegenerative disorders including Parkinson's disease and Alzheimer's disease. Mitochondria-targeted protective compounds that prevent or minimize mitochondrial dysfunction constitute potential therapeutic strategies in the prevention and treatment of these central nervous system diseases. This paper provides an overview of the involvement of mitochondrial dysfunction in Parkinson's and Alzheimer's diseases, with particular attention to in vitro and in vivo studies on promising endogenous and exogenous mitochondria-targeted protective compounds.
Collapse
Affiliation(s)
- Carlos Fernández-Moriano
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Elena González-Burgos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
24
|
Gremmels H, Bevers LM, Fledderus JO, Braam B, van Zonneveld AJ, Verhaar MC, Joles JA. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells. Eur J Pharmacol 2015; 751:67-72. [PMID: 25595727 DOI: 10.1016/j.ejphar.2015.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023]
Abstract
Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric oxide synthase (eNOS)-mediated reactive oxygen species production contributes to oleic acid (OA)-induced oxidative stress in endothelial cells, due to eNOS uncoupling. We measured reactive oxygen species production and eNOS activity in cultured endothelial cells (bEnd.3) in the presence of OA bound to bovine serum albumin, using the CM-H2DCFDA assay and the L-arginine/citrulline conversion assay, respectively. OA induced a concentration-dependent increase in reactive oxygen species production, which was inhibited by the mitochondrial complex II inhibitor thenoyltrifluoroacetone (TTFA). OA had little effect on eNOS activity when stimulated by a calcium-ionophore, but decreased both basal and insulin-induced eNOS activity, which was restored by TTFA. Pretreatment of bEnd.3 cells with tetrahydrobiopterin (BH4) prevented OA-induced reactive oxygen species production and restored inhibition of eNOS activity by OA. Elevation of OA levels leads to both impairment in receptor-mediated stimulation of eNOS and to production of mitochondrial-derived reactive oxygen species and hence endothelial dysfunction.
Collapse
Affiliation(s)
- Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lonneke M Bevers
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost O Fledderus
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Branko Braam
- Department of Medicine, Division of Nephrology and Immunology, University of Alberta Hospital, Edmonton, Canada; Department of Physiology, University of Alberta, Edmonton, Canada
| | - Anton Jan van Zonneveld
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Golpich M, Rahmani B, Mohamed Ibrahim N, Dargahi L, Mohamed Z, Raymond AA, Ahmadiani A. Preconditioning as a potential strategy for the prevention of Parkinson's disease. Mol Neurobiol 2014; 51:313-30. [PMID: 24696268 DOI: 10.1007/s12035-014-8689-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/23/2014] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. A numerous of cellular processes including oxidative stress, mitochondrial dysfunction, and accumulation of α-synuclein aggregates are considered to contribute to the pathogenesis of Parkinson's disease. A further understanding of the cellular and molecular mechanisms involved in the pathophysiology of PD is crucial for developing effective diagnostic, preventative, and therapeutic strategies to cure this devastating disorder. Preconditioning (PC) is assumed as a natural adaptive process whereby a subthreshold stimulus can promote protection against a subsequent lethal stimulus in the brain as well as in other tissues that affords robust brain tolerance facing neurodegenerative insults. Multiple lines of evidence have demonstrated that preconditioning as a possible neuroprotective technique may reduce the neural deficits associated with neurodegenerative diseases such as PD. Throughout the last few decades, a lot of efforts have been made to discover the molecular determinants involved in preconditioning-induced protective responses; although, the accurate mechanisms underlying this "tolerance" phenomenon are not fully understood in PD. In this review, we will summarize pathophysiology and current therapeutic approaches in PD and discuss about preconditioning in PD as a potential neuroprotective strategy. Also the role of gene reprogramming and mitochondrial biogenesis involved in the preconditioning-mediated neuroprotective events will be highlighted. Preconditioning may represent a promising therapeutic weapon to combat neurodegeneration.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
26
|
Woo SY, Kim JH, Moon MK, Han SH, Yeon SK, Choi JW, Jang BK, Song HJ, Kang YG, Kim JW, Lee J, Kim DJ, Hwang O, Park KD. Discovery of vinyl sulfones as a novel class of neuroprotective agents toward Parkinson's disease therapy. J Med Chem 2014; 57:1473-87. [PMID: 24467268 DOI: 10.1021/jm401788m] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the etiology of Parkinson's disease (PD) remains elusive, recent studies suggest that oxidative stress contributes to the cascade leading to dopaminergic (DAergic) neurodegeneration. The Nrf2 signaling is the main pathway responsible for cellular defense system against oxidative stress. Nrf2 is a transcription factor that regulates environmental stress response by inducing expression of antioxidant enzyme genes. We have synthesized novel vinyl sulfone derivatives. They exhibited a broad range of activities in inducing HO-1, whose gene expression is under the control of Nrf2. Among them, compound 12g was confirmed to activate Nrf2 and induce expression of the Nrf2-dependent antioxidant enzymes NQO1, GCLC, GLCM, and HO-1, at both mRNA and protein levels in DAergic neuronal cells. This was accompanied by protection of DAergic neurons in both in vitro and MPTP-induced in vivo models of PD. In addition, compound 12g effectively resulted in attenuation of the PD-associated behavioral deficits in the mouse model.
Collapse
Affiliation(s)
- Seo Yeon Woo
- Center for Neuro-Medicine, Brain Science Institute, and ‡Doping Control Center, Korea Institute of Science and Technology , Seoul, 136-791, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yu L, Vásquez-Vivar J, Jiang R, Luo K, Derrick M, Tan S. Developmental susceptibility of neurons to transient tetrahydrobiopterin insufficiency and antenatal hypoxia-ischemia in fetal rabbits. Free Radic Biol Med 2014; 67:426-36. [PMID: 24316196 PMCID: PMC3945116 DOI: 10.1016/j.freeradbiomed.2013.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 01/13/2023]
Abstract
Tetrahydrobiopterin (BH4) is important for normal brain development as congenital BH4 deficiencies manifest movement disorders at various childhood ages. BH4 transitions from very low levels in fetal brains to higher "adult" levels postnatally, with the highest levels in the thalamus. Maternal supplementation with the BH4 precursor sepiapterin reduces postnatal motor deficits and perinatal deaths after 40-min fetal hypoxia-ischemia (HI) at 70% gestation, suggesting that brain BH4 is important in improving function after HI. We tested the hypothesis that the intrinsically low concentrations of BH4 made fetal neurons vulnerable to added insults. Brains were obtained from naïve fetal rabbits or after 40-min HI, at 70% (E22) and 92% gestation (E29). Neuronal cultures were prepared from basal ganglia, cortex, and thalamus, regions with different intrinsic levels of BH4. Cultures were grown with or without added BH4 for 48h. Cell survival and mitochondrial function were determined by flow cytometry. At E22, thalamic cells had the lowest survival rate in a BH4-free milieu, in both control and HI groups, whereas BH4 supplementation ex vivo increased neuronal survival only in HI cells. Neuronal survival was similar in all regions without BH4 at E29. BH4 supplementation increased cell survival and cells with intact mitochondrial membrane potential, from basal ganglia and cortex, but not thalamus. After E29 HI, however, the benefit of BH4 was limited to cortical neurons. We conclude that BH4 is important for fetal neuronal survival after HI especially in the premature thalamus. Supplementation of BH4 has a greater benefit at an earlier gestational age.
Collapse
Affiliation(s)
- Lei Yu
- Department of Pediatrics, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| | - Jeannette Vásquez-Vivar
- Department of Biophysics and Free Radical Research Center & Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee WI 53226
| | - Rugang Jiang
- Department of Pediatrics, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| | - Kehuan Luo
- Department of Pediatrics, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| | - Matthew Derrick
- Department of Pediatrics, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| | - Sidhartha Tan
- Department of Pediatrics, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201
| |
Collapse
|
28
|
Dewapriya P, Himaya S, Li YX, Kim SK. Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson’s disease. Food Chem 2013; 141:1147-57. [DOI: 10.1016/j.foodchem.2013.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 10/27/2022]
|
29
|
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal 2013; 11:34. [PMID: 23683503 PMCID: PMC3693914 DOI: 10.1186/1478-811x-11-34] [Citation(s) in RCA: 461] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/10/2013] [Indexed: 01/15/2023] Open
Abstract
: Parkinson's disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability.In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD.
Collapse
Affiliation(s)
- Johannes Meiser
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Daniel Weindl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| |
Collapse
|
30
|
Bisaglia M, Greggio E, Beltramini M, Bubacco L. Dysfunction of dopamine homeostasis: clues in the hunt for novel Parkinson's disease therapies. FASEB J 2013; 27:2101-10. [PMID: 23463698 DOI: 10.1096/fj.12-226852] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder and, at present, has no cure. Both environmental and genetic factors have been implicated in the etiology of the disease; however, the pathogenic pathways leading to neuronal degeneration are still unclear. Parkinson's disease is characterized by the preferential death of a subset of neurons in the mesencephalon that use dopamine as neurotransmitter for synaptic communication. Dopamine is a highly reactive molecule that can lead to cytotoxicity if not properly stored and metabolized. Targeting any of the pathways that tightly control this neurotransmitter holds great therapeutic expectations. In this article we present a comprehensive overview of the cellular pathways that control dopamine fate and discuss potential therapeutic approaches to counteract or slow Parkinson's disease onset and progression.
Collapse
Affiliation(s)
- Marco Bisaglia
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, Padua, Italy.
| | | | | | | |
Collapse
|
31
|
Lee KS, Lee JK, Kim HG, Kim HR. Differential Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on Motor Behavior and Dopamine Levels at Brain Regions in Three Different Mouse Strains. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:89-97. [PMID: 23440908 PMCID: PMC3579110 DOI: 10.4196/kjpp.2013.17.1.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 12/28/2012] [Accepted: 01/08/2012] [Indexed: 11/15/2022]
Abstract
Developing an animal model for a specific disease is very important in the understanding of the underlying mechanism of the disease and allows testing of newly developed new drugs before human application. However, which of the plethora of experimental animal species to use in model development can be perplexing. Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a very well known method to induce the symptoms of Parkinson's disease in mice. But, there is very limited information about the different sensitivities to MPTP among mouse strains. Here, we tested three different mouse strains (C57BL/6, Balb-C, and ICR) as a Parkinsonian model by repeated MPTP injections. In addition to behavioral analysis, endogenous levels of dopamine and tetrahydrobiopterin in mice brain regions, such as striatum, substantia nigra, and hippocampus were directly quantified by liquid chromatography-tandem mass spectrometry. Repeated administrations of MPTP significantly affected the moving distances and rearing frequencies in all three mouse strains. The endogenous dopamine concentrations and expression levels of tyrosine hydroxylase were significantly decreased after the repeated injections, but tetrahydrobiopterin did not change in analyzed brain regions. However, susceptibilities of the mice to MPTP were differed based on the degree of behavioral change, dopamine concentration in brain regions, and expression levels of tyrosine hydroxylase, with C57BL/6 and Balb-C mice being more sensitive to the dopaminergic neuronal toxicity of MPTP than ICR mice.
Collapse
Affiliation(s)
- Keun-Sung Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 330-714, Korea
| | | | | | | |
Collapse
|
32
|
Kim HR, Kim TH, Hong SH, Kim HG. Direct detection of tetrahydrobiopterin (BH4) and dopamine in rat brain using liquid chromatography coupled electrospray tandem mass spectrometry. Biochem Biophys Res Commun 2012; 419:632-7. [PMID: 22382017 DOI: 10.1016/j.bbrc.2012.02.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
A simple and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of tetrahydrobiopterin (BH4) and dopamine in rat brain using epsilon-acetamidocaproic acid (AACA) as an internal standard. Proteins in the samples were precipitated with acetonitrile and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 × 100 mm, i.d., 3 μm) column using a mixture of 10mM ammonium formate in acetonitrile/water (75:25, v/v) as the mobile phase at a flow rate of 300 μl/min. Quantification was performed on a triple quadrupole mass spectrometer employing electrospray ionization with the operating conditions as multiple reaction monitoring (MRM) and positive ion mode from m/z 242.1 → 166.0 for BH4, m/z 154.1 → 90.0 for dopamine and m/z 174.1 → 114.0 for AACA (IS). The total chromatographic run time was for 5.5 min. The method was validated for the analysis of samples: the limit of detection was 10 ng/g. The calibration curve was linear between 10-2000 ng/g for BH4 (r(2)=0.995) and 10-5000 ng/g for dopamine (r(2)=0.997) in the rat brain. Thus, good correlated LC-ESI/MS/MS results were obtained and found to be a powerful tool for the quantitative analysis of BH4 and dopamine in the rat brain.
Collapse
Affiliation(s)
- Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, San 29, Anseo-dong, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | | | | | | |
Collapse
|
33
|
Kwak SS, Suk J, Choi JH, Yang S, Kim JW, Sohn S, Chung JH, Hong YH, Lee DH, Ahn JK, Min H, Fu YM, Meadows GG, Joe CO. Autophagy induction by tetrahydrobiopterin deficiency. Autophagy 2011; 7:1323-34. [PMID: 21795851 PMCID: PMC3242797 DOI: 10.4161/auto.7.11.16627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 01/13/2023] Open
Abstract
Tetrahydrobiopterin (BH₄) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH₄ deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH₄-deficient Spr(-/-) mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH₄ synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr(-/-) mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr(-/-) mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr(-/-) mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pah(enu2) mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH₄ deficiency.
Collapse
Affiliation(s)
- Sang Su Kwak
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jana S, Sinha M, Chanda D, Roy T, Banerjee K, Munshi S, Patro BS, Chakrabarti S. Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:663-73. [DOI: 10.1016/j.bbadis.2011.02.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/31/2010] [Accepted: 02/25/2011] [Indexed: 11/24/2022]
|
35
|
Involvement of induction and mitochondrial targeting of orphan nuclear receptor Nur77 in 6-OHDA-induced SH-SY5Y cell death. Neurochem Int 2010; 56:620-6. [DOI: 10.1016/j.neuint.2010.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/21/2009] [Accepted: 01/13/2010] [Indexed: 11/22/2022]
|
36
|
Abdulwahid Arif I, Ahmad Khan H. Environmental toxins and Parkinson's disease: putative roles of impaired electron transport chain and oxidative stress. Toxicol Ind Health 2010; 26:121-128. [PMID: 20207656 DOI: 10.1177/0748233710362382] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite recent advancements in the biomedical fields, the etiology and pathogenesis of Parkinson's disease (PD) is still poorly understood, though the crucial roles of oxidative stress and impaired mitochondrial respiration have been suggested in the development of PD. The oxidative modification of the proteins of mitochondrial electron transport chain alters their normal function leading to the state of energy crisis in neurons. Exposure of environmental chemicals such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone in mouse produces the symptoms akin to PD and therefore these neurotoxins are commonly used in experimental studies on PD. Another environmental toxin, paraquat (a commonly used herbicide) has also been implicated with the onset of PD. The neurotoxicity of these chemicals is accompanied by the blockade of electron flow from NADH dehydrogenase to coenzyme Q. The agents with the ability to improve mitochondrial respiration and ATP production have been shown to exert beneficial effects in PD patients as well as in the animal models of PD. This review summarizes the current research implicating the impairment of mitochondrial respiratory chain and the role of environmental toxins in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ibrahim Abdulwahid Arif
- Environmental Analysis Unit, Prince Sultan Research Chair for Environment and Wildlife, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
37
|
Zhang S, Ding JH, Zhou F, Wang ZY, Zhou XQ, Hu G. Iptakalim ameliorates MPP+-induced astrocyte mitochondrial dysfunction by increasing mitochondrial complex activity besides opening mitoK(ATP) channels. J Neurosci Res 2009; 87:1230-9. [PMID: 19006086 DOI: 10.1002/jnr.21931] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In addition to the established role of the mitochondrion in energy metabolism, regulation of cell death has been regarded as a major function of this organelle. Our previous studies have demonstrated that iptakalim (IPT), a novel ATP-sensitive potassium channel (K(ATP) channel) opener, protects against 1-methyl-4-phenyl-pyridinium ion (MPP+)-induced astrocyte apoptosis via mitochondria and mitogen-activated protein kinase signal pathways. The present study aimed to investigate whether IPT can protect astrocyte mitochondria against MPP+-induced mitochondrial dysfunction. We showed that treatment with IPT could ameliorate the inhibitory effect of MPP+ on mitochondrial respiration and ATP production by using mitochondrial complex I-supported substrates. IPT could also inhibit the increased production of mitochondrial reactive oxygen species (ROS) and the release of cytochrome c from mitochondria induced by MPP+. However, mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel blocker 5-hydroxydecanoate (5-HD) could partly abolish all of the above effects of IPT. Because mitochondrial complex dysfunction impairs mitochondrial respiration and ATP production, a further experiment was undertaken to study the effects of IPT on the activity of mitochondrial complex (COX) I and COX IV. It was found that IPT inhibited the decrease in mitochondrial COX I and COX IV activity induced by MPP+, but 5-HD failed to abolish these effects. Taken together, these findings suggest that IPT may protect astrocyte mitochondrial function by regulating complex activity in addition to opening mitoK(ATP) channels.
Collapse
Affiliation(s)
- Shu Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Lim JH, Kim SS, Boo DH, No H, Kang BY, Kim EM, Hwang O, Choi HJ. Protective effect of bromocriptine against BH4-induced Cath.a cell death involving up-regulation of antioxidant enzymes. Neurosci Lett 2009; 451:185-9. [PMID: 19146917 DOI: 10.1016/j.neulet.2008.12.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/26/2008] [Accepted: 12/25/2008] [Indexed: 11/29/2022]
Abstract
Previously, we suggested that tetrahydrobiopterin (BH4), an obligatory cofactor for dopamine synthesis, as an intrinsic contributor to dopaminergic neuron vulnerability. The BH4 toxicity is observed in dopamine-producing cells, including Cath.a cells, but not in non-dopaminergic cells. Furthermore, the dopaminergic cell death induced by BH4 is apoptotic in nature and involves oxidative stress, similar to that observed in Parkinson's disease. Accordingly, various antioxidants have been found to protect dopaminergic cells from BH4. This study was undertaken to evaluate protective effects of the dopamine receptor agonist bromocriptine on BH4-induced Cath.a cell death, because bromocriptine has been reported to be an antioxidant with a neuroprotective activity. In the presence of bromocriptine, the increase in LDH activity and mitochondrial cytochrome c release induced by BH4 were significantly abolished. This cytoprotective effect was phosphatidylinositol 3-kinase (PI3K)/Akt pathway-dependent. In addition, bromocriptine was found to up-regulate the expressions of nuclear factor-E2-related factor-2 and antioxidant enzymes including NAD(P)H quinone oxidoreductase 1. Our findings show that bromocriptine stimulates antioxidant defense mechanisms in Cath.a cells and suggest a potential use of bromocriptine as a neuroprotectant.
Collapse
Affiliation(s)
- Ju Hee Lim
- Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bi J, Jiang B, Hao S, Zhang A, Dong Y, Jiang T, An L. Catalpol attenuates nitric oxide increase via ERK signaling pathways induced by rotenone in mesencephalic neurons. Neurochem Int 2008; 54:264-70. [PMID: 19111870 DOI: 10.1016/j.neuint.2008.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/14/2008] [Accepted: 12/02/2008] [Indexed: 11/29/2022]
Abstract
Catalpol has been shown to rescue neurons from kinds of damage in vitro and in vivo in previous reports. However, the effect of catalpol on the nitric oxide (NO) system via MAPKs signaling pathway of mesencephalic neurons largely remains to be verified. The current study examined that whether catalpol modulated NO and iNOS increase by rotenone in primary mesencephalic neurons and investigated its underlying signaling pathways. Present results indicated that catalpol inhibited primary mesencephalic neurons from apoptosis by morphological assay, immunocytochemistry and flow cytometric evaluation. Moreover, the ERK signaling pathway plays an important role in NO-mediated degeneration of neuron. The current results suggest that catalpol is a potential agent for the prevention of neurons apoptosis by regulating NO and iNOS increase in ERK-mediated neurodegenerative disorders.
Collapse
Affiliation(s)
- Jing Bi
- Dalian University of Technology, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Choi EJ, Han JH, Lee CS. Prostaglandin analogue misoprostol attenuates neurotoxin 1-methyl-4-phenylpyridinium-induced mitochondrial damage and cell death in differentiated PC12 cells. Brain Res Bull 2008; 77:293-300. [PMID: 18602972 DOI: 10.1016/j.brainresbull.2008.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 06/08/2008] [Accepted: 06/09/2008] [Indexed: 12/01/2022]
Abstract
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The present study assessed the preventive effect of a prostaglandin E(1) analogue misoprostol against the toxicity of parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) with respect to the mitochondria-mediated cell death process and oxidative stress. MPP(+) induced the nuclear damage, the changes in the mitochondrial membrane permeability, the formation of reactive oxygen species and the depletion of GSH, which leads to cell death in differentiated PC12 cells. Misoprostol prevented the toxic effect of MPP(+). Treatment with misoprostol significantly attenuated the MPP(+)-induced mitochondrial membrane permeability change that leads to the increase in pro-apoptotic Bax and Cytochrome c levels, and subsequent caspase-3 activation. The protective effect of misoprostol may be supported by the inhibitory effect of prostaglandin E(1) on the MPP(+) toxicity. Misoprostol significantly attenuated another parkinsonian neurotoxin rotenone-induced cell death. The results show that misoprostol may prevent the MPP(+) toxicity by suppressing the mitochondrial membrane permeability change that leads to the Cytochrome c release and caspase-3 activation. The preventive effect seems to be ascribed to the inhibitory effect on the formation of reactive oxygen species and depletion of GSH.
Collapse
Affiliation(s)
- Eun Joo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | | | | |
Collapse
|
41
|
Choi DH, Kim EM, Son HJ, Joh TH, Kim YS, Kim D, Flint Beal M, Hwang O. A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J Neurochem 2008; 106:405-15. [PMID: 18397366 DOI: 10.1111/j.1471-4159.2008.05399.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously demonstrated that the active form of matrix metalloproteinase-3 (actMMP-3) is released from dopamine(DA)rgic neurons undergoing apoptosis. Herein, whether actMMP-3 might be generated intracellularly, and if so, whether it is involved in apoptosis of DArgic neurons itself was investigated in primary cultured DArgic neurons of wild-type, MMP-3 knockout animals, and CATH.a cells. During apoptosis, gene expression of MMP-3 is induced, specifically among the various classes of MMPs, generating the proform (55 kDa) which is subsequently cleaved to the catalytically active actMMP-3 (48 kDa) involving a serine protease. Intracellular actMMP-3 activity is directly linked to apoptotic signaling in DArgic cells: (i) Pharmacologic inhibition of enzymatic activity, repression of gene expression by siRNA, and gene deficiency all lead to protection; (ii) pharmacologic inhibition causes attenuation of DNA fragmentation and caspase 3 activation, the indices of apoptosis; and (iii) inhibition of the pro-apoptotic enzyme c-Jun N-terminal protein kinase leads to repression of MMP-3 induction. Under the cell stress condition, MMP-3 is released as actMMP-3 rather than the proform (proMMP-3), and catalytically active MMP-3 added to the medium does not cause cell death. Thus, actMMP-3 seems to have a novel intracellular role in apoptotic DArgic cells and this finding provides an insight into the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Dong Hee Choi
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang W, Tiffany-Castiglioni E. Paraquat-induced apoptosis in human neuroblastoma SH-SY5Y cells: involvement of p53 and mitochondria. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:289-299. [PMID: 18253895 DOI: 10.1080/15287390701738467] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The herbicide paraquat is a suspected etiologic factor in the development of Parkinson's disease (PD). Paraquat was therefore used to reproduce Parkinsonian syndromes in lab animals, in which it produces dopaminergic pathogenesis. However, the factors or mechanisms by which paraquat kills dopaminergic neurons are not fully understood. Based on reported evidence that paraquat increases p53 protein levels and inhibits mitochondrial function, it was hypothesized that paraquat induces cell death in dopaminergic neurons through a mechanism in which p53 and mitochondrial apoptotic pathway are linked. To explore this possibility, dopaminergic SY5Y cells were treated with paraquat for 48 h and p53 responses were investigated, as well as biomarkers of the mitochondrial intrinsic pathway of apoptosis. Paraquat significantly increased protein levels of p53 and one of its target genes, Bax. By 24 h, paraquat decreased mitochondrial complex I activity and mitochondrial transmembrane potential and induced the release of cytochrome c from mitochondria. In addition, paraquat increased the activities of caspases 9 and 3. Finally, nuclear condensation and DNA fragmentation occurred 48 h after treatment. The decrease of mitochondrial functions, the release of cytochrome c, the increase of caspase 9 and 3 activities, and DNA damage that were produced by paraquat were inhibited by a specific p53 inhibitor, pifithrin-alpha. These findings support the conclusion that paraquat produced apoptosis in SY5Y cells through the mitochondrial intrinsic pathway associated with p53.
Collapse
Affiliation(s)
- Wonsuk Yang
- Department of Integrative Biosciences and Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA
| | | |
Collapse
|
43
|
Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007; 208:1-25. [PMID: 17720159 PMCID: PMC3707134 DOI: 10.1016/j.expneurol.2007.07.004] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 07/02/2007] [Accepted: 07/05/2007] [Indexed: 12/11/2022]
Abstract
Most acute and chronic neurodegenerative conditions are accompanied by neuroinflammation; yet the exact nature of the inflammatory processes and whether they modify disease progression is not well understood. In this review, we discuss the key epidemiological, clinical, and experimental evidence implicating inflammatory processes in the progressive degeneration of the dopaminergic (DA) nigrostriatal pathway and their potential contribution to the pathophysiology of Parkinson's disease (PD). Given that interplay between genetics and environment are likely to contribute to risk for development of idiopathic PD, recent data showing interactions between products of genes linked to heritable PD that function to protect DA neurons against oxidative or proteolytic stress and inflammation pathways will be discussed. Cellular mechanisms activated or enhanced by inflammatory processes that may contribute to mitochondrial dysfunction, oxidative stress, or apoptosis of dopaminergic (DA) neurons will be reviewed, with special emphasis on tumor necrosis factor (TNF) and interleukin-1-beta (IL-1beta) signaling pathways. Epigenetic factors which have the potential to trigger neuroinflammation, including environmental exposures and age-associated chronic inflammatory conditions, will be discussed as possible 'second-hit' triggers that may affect disease onset or progression of idiopathic PD. If inflammatory processes have an active role in nigrostriatal pathway degeneration, then evidence should exist to indicate that such processes begin in the early stages of disease and that they contribute to neuronal dysfunction and/or hasten neurodegeneration of the nigrostriatal pathway. Therapeutically, if anti-inflammatory interventions can be shown to rescue nigral DA neurons from degeneration and lower PD risk, then timely use of anti-inflammatory therapies should be investigated further in well-designed clinical trials for their ability to prevent or delay the progressive loss of nigral DA neurons in genetically susceptible populations.
Collapse
Affiliation(s)
- Malú G Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | | | | |
Collapse
|
44
|
Singh S, Dikshit M. Apoptotic neuronal death in Parkinson's disease: Involvement of nitric oxide. ACTA ACUST UNITED AC 2007; 54:233-50. [PMID: 17408564 DOI: 10.1016/j.brainresrev.2007.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/31/2007] [Accepted: 02/02/2007] [Indexed: 12/15/2022]
Abstract
Apoptosis of nigral dopaminergic neurons by various mechanisms is an emerging phenomenon involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Both extrinsic and intrinsic pathways seems to be involved in death of nigral neurons, intrinsic pathway however, seems to be more important due to the energy crisis. Apoptosis by intrinsic pathway is executed by several initiators and effector caspases, which have been found activated in PD patients, experimental models as well as in neuronal cultures. Nitric oxide (NO) seems to be a central molecule due to its ability to modulate both pro and antiapoptotic phenomenon. The review focuses on the diverse extrinsic and intrinsic factors, signaling pathways and their modulation by NO leading to the death of dopaminergic neurons.
Collapse
Affiliation(s)
- Sarika Singh
- Division of Toxicology, Central Drug Research Institute, Lucknow-226001, India
| | | |
Collapse
|
45
|
Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol 2007; 150:963-76. [PMID: 17339843 PMCID: PMC2013918 DOI: 10.1038/sj.bjp.0707167] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/12/2006] [Accepted: 01/11/2007] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting mainly the elderly, although a small proportion of PD patients develop the illness at a much younger age. In the former group, idiopathic PD patients, the causes of the illness have been the subject of longstanding debate with environmental toxins, mitochondrial dysfunction, abnormal protein handling and oxidative stress being suggested. One problem has been that the epidemiology of PD has offered few clues to provide evidence for a single major causative factor. Comparatively recently it has been found that in both patients and experimental models of PD in animals neuroinflammation appears to be a ubiquitous finding. These cases present with all of the classical features of inflammation including phagocyte activation, increased synthesis and release of proinflammatory cytokines and complement activation. Although this process is vital for normal function and protection in both the CNS, as in the periphery, it is postulated that in the aetiology of PD this process may spiral out of control with over activation of microglia, over production of cytokines and other proinflammatory mediators as well as the release of destructive molecules such as reactive oxygen species. Given that dopaminergic neurons in the substantia nigra are relatively vulnerable to 'stress' and the region has a large population of microglia in comparison to other CNS structures, these events may easily trigger neurodegeneration. These factors are examined in this review along with a consideration of the possible use of anti-inflammatory drugs in PD.
Collapse
Affiliation(s)
- P S Whitton
- 1Department of Pharmacology, The School of Pharmacy, London, UK.
| |
Collapse
|