1
|
Norden M, Kanarik M, Laugus K, O’Leary A, Liiver K, Tõnissaar M, Shimmo R, Harro J. Serotonin release by parachloroamphetamine in rats with high and low sociability: High prefrontal release capacity in sociable females. J Psychopharmacol 2024; 38:1016-1024. [PMID: 39318038 PMCID: PMC11528974 DOI: 10.1177/02698811241283710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
BACKGROUND Social behaviour is the expression of one of the most generally accepted independent dimensions of personality. Serotonergic neurotransmission has been implicated in typical social response and drugs that promote serotonin (5-hydroxytryptamine (5-HT)) release have prosocial effects. By using the social interaction test, we have previously demonstrated sociability as a temperamental trait in male Wistar rats. AIMS To assess sociability in male rats of the Sprague-Dawley strain and in female rats of both Wistar and Sprague-Dawley strain, and extracellular levels of 5-HT in rats with high and low sociability (high sociability (HS)- and low sociability (LS)-rats). METHODS Social interaction test conducted with different weight-matched partners was used to assess sociability, and in vivo, microdialysis was performed before and after administration of a low dose (2 mg/kg) of parachloroamphetamine (PCA) in the prefrontal cortex, dorsamedial striatum and ventral tegmental area. RESULTS Similarly to male Wistar rats, female Wistars and Sprague-Dawley rats of both sexes displayed trait-wise sociability. Male Wistar HS-rats had lower extracellular levels of 5-HT in prefrontal cortex at baseline and after administration of PCA, and higher PCA-induced increase of extracellular 5-HT in ventral tegmental area. In dorsomedial striatum, PCA elicited a comparable increase in extracellular dopamine in HS- and LS-rats, but higher release of 5-HT in HS-rats. Comparison of PCA-induced 5-HT release in prefrontal cortex of male and female Sprague-Dawley rats revealed a larger 5-HT response in female HS-rats. CONCLUSIONS 5-HT release potential is higher in rats with high expression of sociability trait, whereas some regionally variable differences may be related to relative contributions of social motivation and anxiety in shaping social behaviour.
Collapse
Affiliation(s)
- Marianna Norden
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Karita Laugus
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Aet O’Leary
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Kristi Liiver
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Margus Tõnissaar
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Domingos LB, Müller HK, da Silva NR, Filiou MD, Nielsen AL, Guimarães FS, Wegener G, Joca S. Repeated cannabidiol treatment affects neuroplasticity and endocannabinoid signaling in the prefrontal cortex of the Flinders Sensitive Line (FSL) rat model of depression. Neuropharmacology 2024; 248:109870. [PMID: 38401791 DOI: 10.1016/j.neuropharm.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Delayed therapeutic responses and limited efficacy are the main challenges of existing antidepressant drugs, thereby incentivizing the search for new potential treatments. Cannabidiol (CBD), non-psychotomimetic component of cannabis, has shown promising antidepressant effects in different rodent models, but its mechanism of action remains unclear. Herein, we investigated the antidepressant-like effects of repeated CBD treatment on behavior, neuroplasticity markers and lipidomic profile in the prefrontal cortex (PFC) of Flinders Sensitive Line (FSL), a genetic animal model of depression, and their control counterparts Flinders Resistant Line (FRL) rats. Male FSL animals were treated with CBD (10 mg/kg; i.p.) or vehicle (7 days) followed by Open Field Test (OFT) and the Forced Swimming Test (FST). The PFC was analyzed by a) western blotting to assess markers of synaptic plasticity and cannabinoid signaling in synaptosome and cytosolic fractions; b) mass spectrometry-based lipidomics to investigate endocannabinoid levels (eCB). CBD attenuated the increased immobility observed in FSL, compared to FRL in FST, without changing the locomotor behavior in the OFT. In synaptosomes, CBD increased ERK1, mGluR5, and Synaptophysin, but failed to reverse the reduced CB1 and CB2 levels in FSL rats. In the cytosolic fraction, CBD increased ERK2 and decreased mGluR5 expression in FSL rats. Surprisingly, there were no significant changes in eCB levels in response to CBD treatment. These findings suggest that CBD effects in FSL animals are associated with changes in synaptic plasticity markers involving mGluR5, ERK1, ERK2, and synaptophysin signaling in the PFC, without increasing the levels of endocannabinoids in this brain region.
Collapse
Affiliation(s)
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | | | | | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Piao J, Wang Y, Zhang T, Zhao J, Lv Q, Ruan M, Yu Q, Li B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023; 28:6992. [PMID: 37836833 PMCID: PMC10574116 DOI: 10.3390/molecules28196992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Yingwei Wang
- Changchun Zhuoyi Biological Co., Ltd., Changchun 130616, China;
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qin Yu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun 130041, China
| |
Collapse
|
4
|
Wang J, Ding L, Yu X, Wu F, Zhang J, Chen P, Qian S, Wang M. Tryptophan improves antioxidant capability and meat quality by reducing responses to stress in nervous Hu sheep. Meat Sci 2023; 204:109267. [PMID: 37392733 DOI: 10.1016/j.meatsci.2023.109267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
In sheep, the effect of tryptophan (Trp) on behavioural traits that are associated with temperament and any effects on production traits is unknown. The hypothesis of this study is that the supplementation of Trp would improve temperament by enhancing serotonin production, which is beneficial to meat production subsequently in sheep. Twelve ewes that had the lowest and 12 ewes that had the highest behavioural responses to human contact were selected into the calm and the nervous groups respectively. Then, the ewes from each group were equally assigned into two treatments that were treated with the basal diet and the diet with extra 90 mg/kg/d Trp for 30 d. The temperament traits, the growth performance, the biochemicals that are related to health the slaughter performance and meat quality were measured at the end of feeding experiment. The findings in this study suggested the Hu sheep with calm temperament would experience less stress during production, resulting in less oxidative stress, better growth performance, slaughter traits and carcass traits, compared to the nervous sheep. Meanwhile, the dietary supplementation of Trp reduced stress responses by enhancing production of 5-HT in sheep from the nervous group which is beneficial to improve the production traits that mentioned above.
Collapse
Affiliation(s)
- Jiasheng Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Luoyang Ding
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, Xinjiang, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Feifan Wu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Peigen Chen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuhan Qian
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
5
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
6
|
Kalinichenko LS, Kornhuber J, Müller CP. Individual differences in inflammatory and oxidative mechanisms of stress-related mood disorders. Front Neuroendocrinol 2019; 55:100783. [PMID: 31415777 DOI: 10.1016/j.yfrne.2019.100783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Emotional stress leads to the development of peripheral disorders and is recognized as a modifiable risk factor for psychiatric disorders, particularly depression and anxiety. However, not all individuals develop the negative consequences of emotional stress due to different stress coping strategies and resilience to stressful stimuli. In this review, we discuss individual differences in coping styles and the potential mechanisms that contribute to individual vulnerability to stress, such as parameters of the immune system and oxidative state. Initial differences in inflammatory and oxidative processes determine resistance to stress and stress-related disorders via the alteration of neurotransmitter content in the brain and biological fluids. Differences in coping styles may serve as possible predictors of resistance to stress and stress-related disorders, even before stressful conditions. The investigation of natural variabilities in stress resilience may allow the development of new methods for preventive medicine and the personalized treatment of stress-related conditions.
Collapse
Affiliation(s)
- L S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - J Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - C P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Hvilsom AST, Lillethorup TP, Iversen P, Doudet DJ, Wegener G, Landau AM. Cortical and striatal serotonin transporter binding in a genetic rat model of depression and in response to electroconvulsive stimuli. Eur Neuropsychopharmacol 2019; 29:493-500. [PMID: 30826156 DOI: 10.1016/j.euroneuro.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Depression is a debilitating mental illness and two thirds of patients respond insufficiently to conventional antidepressants. Electroconvulsive therapy (ECT) remains the most effective treatment to alleviate drug-refractory depression, however the neurobiological mechanisms are mostly unknown. The serotonergic system plays an important role in depression and alterations in the serotonin transporter (SERT) are seen both in depression and response to antidepressant pharmacotherapies. The first aim of this study was to investigate SERT density in a genetic rat model of depression, Flinders Sensitive Line (FSL), compared to control Flinders Resistant Line (FRL) and Sprague-Dawley (SD) rats. The second aim was to investigate SERT density in response to electroconvulsive stimuli (ECS), an animal model of ECT. Female rats of each strain were treated with ECS or sham (ear-clip placement with no current) for 10 days before brains were removed, frozen and cut into 20 µm thick sections. SERT density was measured in striatal and cortical regions by quantitative in vitro autoradiography using the SERT-radioligand, [3H]-DASB. Higher SERT density was observed in FSL rats compared to SD rats by 36-48% in motor cortex and striatum under sham conditions. In response to ECS, SD rats displayed a significant effect of treatment, whereas no changes were observed in FRL and FSL rats. Increased SERT binding in FSL rats compared to SD supports a dysfunction of the serotonergic system in depression. The increased SERT density after ECS, seen in SD rats but not FSL rats, suggests a different mechanism of action between depressive-like rats and controls.
Collapse
Affiliation(s)
- Anna Sophie Thue Hvilsom
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
| | - Thea P Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
| | - Peter Iversen
- Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
| | - Doris J Doudet
- Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark; Department of Medicine/Neurology, University of British Columbia, Canada
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Centre for Pharmaceutical Excellence, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark.
| |
Collapse
|
8
|
Rouine J, Callaghan CK, O'Mara SM. Opioid modulation of depression: A focus on imaging studies. PROGRESS IN BRAIN RESEARCH 2018; 239:229-252. [PMID: 30314568 DOI: 10.1016/bs.pbr.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Depression is the leading cause of disability worldwide, with over 300 million people affected. Almost all currently available antidepressant treatments target monoamine neurotransmitter systems and have a delayed onset of action up to several weeks that can be associated with low rates of treatment response. The endogenous opioid system has been identified as a potential target for the development of novel antidepressants due to its high opioid receptor concentrations in central limbic areas that are also implicated in physiological processes including regulation of mood and emotion. Genetic depletion, pharmacological manipulation, and preclinical models have been widely used to characterize the role of opioid transmission in depressive states. Neuroimaging studies have been carried out in clinical populations to investigate opioid transmission in mood and emotion in an attempt to identify those regional anatomical and functional brain changes that are associated with depression. Great insight has been provided into the cerebral structural and functional changes associated with depression but there remains a need to tie the functional theories of depression to anatomical localization and further neuroimaging studies are best placed to do this.
Collapse
Affiliation(s)
- Jennifer Rouine
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| | - Charlotte K Callaghan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
9
|
Oberholzer I, Möller M, Holland B, Dean OM, Berk M, Harvey BH. Garcinia mangostana Linn displays antidepressant-like and pro-cognitive effects in a genetic animal model of depression: a bio-behavioral study in the Flinders Sensitive Line rat. Metab Brain Dis 2018; 33:467-480. [PMID: 29101602 DOI: 10.1007/s11011-017-0144-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
Abstract
There is abundant evidence for both disorganized redox balance and cognitive deficits in major depressive disorder (MDD). Garcinia mangostana Linn (GM) has anti-oxidant activity. We studied the antidepressant-like and pro-cognitive effects of raw GM rind in Flinders Sensitive Line (FSL) rats, a genetic model of depression, following acute and chronic treatment compared to a reference antidepressant, imipramine (IMI). The chemical composition of the GM extract was analysed for levels of α- and γ-mangostin. The acute dose-dependent effects of GM (50, 150 and 200 mg/kg po), IMI (20 mg/kg po) and vehicle were determined in the forced swim test (FST) in FSL rats, versus Flinders Resistant Line (FRL) control rats. Locomotor testing was conducted using the open field test (OFT). Using the most effective dose above coupled with behavioral testing in the FST and cognitive assessment in the novel object recognition test (nORT), a fixed dose 14-day treatment study of GM was performed and compared to IMI- (20 mg/kg/day) and vehicle-treated animals. Chronic treated animals were also assessed with respect to frontal cortex and hippocampal monoamine levels and accumulation of malondialdehyde. FSL rats showed significant cognitive deficits and depressive-like behavior, with disordered cortico-hippocampal 5-hydroxyindole acetic acid (5-HIAA) and noradrenaline (NA), as well as elevated hippocampal lipid peroxidation. Acute and chronic IMI treatment evoked pronounced antidepressant-like effects. Raw GM extract contained 117 mg/g and 11 mg/g α- and γ-mangostin, respectively, with acute GM demonstrating antidepressant-like effects at 50 mg/kg/day. Chronic GM (50 mg/kg/d) displayed significant antidepressant- and pro-cognitive effects, while demonstrating parity with IMI. Both behavioral and monoamine assessments suggest a more prominent serotonergic action for GM as opposed to a noradrenergic action for IMI, while both IMI and GM reversed hippocampal lipid peroxidation in FSL animals. Concluding, FSL rats present with cognitive deficits and depressive-like behaviors that are reversed by acute and chronic GM treatment, similar to that of IMI.
Collapse
Affiliation(s)
- Inge Oberholzer
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa
| | - Marisa Möller
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa
| | - Brendan Holland
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, 3220, Australia
| | - Olivia M Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, P.O. Box 291, Geelong, 3220, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, 3052, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, 3052, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, P.O. Box 291, Geelong, 3220, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Brian H Harvey
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Internal box 16, Potchefstroom, 2520, South Africa.
| |
Collapse
|
10
|
The α2C-adrenoceptor antagonist, ORM-10921, exerts antidepressant-like effects in the Flinders Sensitive Line rat. Behav Pharmacol 2018; 28:9-18. [PMID: 27749317 DOI: 10.1097/fbp.0000000000000261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Depression involves deficits in monoaminergic neurotransmission. Differential roles for α2A, B and C subtypes of the α2-adrenoceptor (AR) are evident, with selective α2C-AR antagonists purported to have antidepressant and procognitive properties. However, this has not been demonstrated in a genetic animal model of depression. The role of the α2C-AR in modulating two key depression-related behaviours in the Flinders Sensitive Line (FSL) rat was studied using a dose-response analysis following subcutaneous administration with the selective α2C-AR antagonist ORM-10921 (0.03; 0.3 mg/kg), the nonselective α2-AR antagonist idazoxan (3 mg/kg), or vehicle once daily for 14 days. Behaviour in the novel object recognition test, forced swim test (FST) and locomotor activity test was assessed. To ratify the validity of the FSL model, the reference tricyclic antidepressant imipramine (15 mg/kg, intraperitoneally) was used as a comparator drug in the FST. FSL rats demonstrated significantly increased immobility and recognition memory deficits versus Flinders Resistant Line controls, with imipramine significantly reversing said immobility. Similarly, ORM-10921 at both doses but not idazoxan significantly reversed immobility in the FST as well as attenuated cognitive deficits in FSL animals. We conclude that selective α2C-AR antagonism has potential as a novel therapeutic strategy in the treatment of depression and cognitive dysfunction.
Collapse
|
11
|
Du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B. Gene expression related to serotonergic and glutamatergic neurotransmission is altered in the flinders sensitive line rat model of depression: Effect of ketamine. Synapse 2016; 71:37-45. [PMID: 27589698 DOI: 10.1002/syn.21940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/11/2022]
Abstract
Major depressive disorder (MDD) is associated with dysfunctional serotonergic and glutamatergic neurotransmission, and the genetic animal model of depression Flinders Sensitive Line (FSL) rats display alterations in these systems relatively to their control strain Flinders Resistant Line (FRL). However, changes on transcript level related to serotonergic and glutamatergic signaling have only been sparsely studied in this model. The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has fast-onset antidepressant properties, and recent data implicate serotonergic neurotransmission in ketamine's antidepressant-like activities in rodents. Here, we investigated the transcript levels of 40 genes involved in serotonergic and glutamatergic neurotransmission in FSL and FRL rats in response to a single dose of ketamine (15 mg/kg; 90 min prior to euthanization). Using real-time quantitative polymerase chain reaction, we studied the effect of ketamine in the hippocampus, whereas strain differences were investigated in both hippocampus and frontal cortex. The expression of genes involved in serotonergic and glutamatergic neurotransmission were unaffected by a single dose of ketamine in the hippocampus. Relative to FRL rats, FSL rats displayed enhanced hippocampal transcript levels of 5-ht2c , and P11, whereas the expression was reduced for 5-ht2a , Nr2a, and Mglur2. In the frontal cortex, we found higher transcript levels of 5-ht2c and Mglur2, whereas the expression of 5-ht2a was reduced in FSL rats. Thus, ketamine is not associated with hippocampal alterations in serotonergic or glutamatergic genes at 90 min after an antidepressant dose. Furthermore, FSL rats display serotonergic and glutamatergic abnormalities on gene expression level that partly may resemble findings in MDD patients.
Collapse
Affiliation(s)
- Kristian Gaarn Du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark.,Lundbeck US LLC, 215 College Rd, Paramus, New Jersey
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| |
Collapse
|
12
|
Eskelund A, Budac DP, Sanchez C, Elfving B, Wegener G. Female Flinders Sensitive Line rats show estrous cycle-independent depression-like behavior and altered tryptophan metabolism. Neuroscience 2016; 329:337-48. [DOI: 10.1016/j.neuroscience.2016.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/28/2023]
|
13
|
Long-term characterization of the Flinders Sensitive Line rodent model of human depression: Behavioral and PET evidence of a dysfunctional entorhinal cortex. Behav Brain Res 2016; 300:11-24. [DOI: 10.1016/j.bbr.2015.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
|
14
|
α2-adrenoceptor binding in Flinders-sensitive line compared with Flinders-resistant line and Sprague-Dawley rats. Acta Neuropsychiatr 2015; 27:345-52. [PMID: 25903810 DOI: 10.1017/neu.2015.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Disturbances in the noradrenergic system, including alterations in the densities of α2-adrenoceptors, are posited to be involved in the pathophysiology of depression. In this study, we investigate the binding of α2-adrenoceptors in regions relevant to depression in an animal model of depression. METHODS Using in vitro autoradiography techniques and the selective α2-ligand, [3H]RX 821002, we investigated the density of α2-adrenoceptors in female Flinders-sensitive line (FSL) rats, a validated model of depression, and in two traditional control groups - female Flinders-resistant line (FRL) and Sprague-Dawley (SD) rats. RESULTS The α2-adrenoceptor density was increased in most regions of the FSL rat brain when compared with SD rats (10% across regions). Moreover, the α2-adrenoceptor density was further increased in the FRL rats compared with both FSL (10% across regions) and SD rats (24% across regions). CONCLUSIONS The increase in α2-adrenoceptor binding in cortical regions in the FSL strain compared with the SD control strain is in accord with α2-adrenoceptor post-mortem binding data in suicide victims with untreated major depression. However, the differences in binding observed in the two control groups were unexpected and suggest the need for further studies in a larger cohort of animals of both sexes.
Collapse
|
15
|
Blanchard H, Chang L, Rezvani AH, Rapoport SI, Taha AY. Brain Arachidonic Acid Incorporation and Turnover are not Altered in the Flinders Sensitive Line Rat Model of Human Depression. Neurochem Res 2015; 40:2293-303. [PMID: 26404538 DOI: 10.1007/s11064-015-1719-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 11/25/2022]
Abstract
Brain serotonergic signaling is coupled to arachidonic acid (AA)-releasing calcium-dependent phospholipase A2. Increased brain serotonin concentrations and disturbed serotonergic neurotransmission have been reported in the Flinders Sensitive Line (FSL) rat model of depression, suggesting that brain AA metabolism may be elevated. To test this hypothesis, (14)C-AA was intravenously infused to steady-state levels into control and FSL rats derived from the same Sprague-Dawley background strain, and labeled and unlabeled brain phospholipid and plasma fatty acid concentrations were measured to determine the rate of brain AA incorporation and turnover. Brain AA incorporation and turnover did not differ significantly between controls and FSL rats. Compared to controls, plasma unesterified docosahexaenoic acid was increased, and brain phosphatidylinositol AA and total lipid linoleic acid and n-3 and n-6 docosapentaenoic acid were significantly decreased in FSL rats. Several plasma esterified fatty acids differed significantly from controls. In summary, brain AA metabolism did not change in FSL rats despite reported increased levels of serotonin concentrations, suggesting possible post-synaptic dampening of serotonergic neurotransmission involving AA.
Collapse
Affiliation(s)
- Helene Blanchard
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Amir H Rezvani
- Department of Psychiatric and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, RMI North, Room 3162, Davis, CA, USA.
| |
Collapse
|
16
|
Landau AM, Phan JA, Iversen P, Lillethorup TP, Simonsen M, Wegener G, Jakobsen S, Doudet DJ. Decreased in vivo α2 adrenoceptor binding in the Flinders Sensitive Line rat model of depression. Neuropharmacology 2015; 91:97-102. [DOI: 10.1016/j.neuropharm.2014.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 11/27/2022]
|
17
|
Medial Forebrain Bundle Deep Brain Stimulation has Symptom-specific Anti-depressant Effects in Rats and as Opposed to Ventromedial Prefrontal Cortex Stimulation Interacts With the Reward System. Brain Stimul 2015; 8:714-23. [PMID: 25819024 DOI: 10.1016/j.brs.2015.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In recent years, deep brain stimulation (DBS) has emerged as a promising treatment option for patients suffering from treatment-resistant depression (TRD). Several stimulation targets have successfully been tested in clinical settings, including the subgenual cingulum (Cg25) and the medial forebrain bundle (MFB). MFB-DBS has led to remarkable results, surpassing the effect of previous targets in terms of response latency and number of responders. However, the question remains as to which mechanisms underlie this difference. OBJECTIVE/HYPOTHESIS The aim of the present study was to thoroughly study the anti-depressant effect of MFB-DBS in the Flinders sensitive line (FSL) rat model of depression as well as to investigate whether MFB-DBS and Cg25-DBS operate through the same neurobiological circuits. METHODS FSL and control rats received bilateral high-frequency stimulation to the MFB at the level of the lateral hypothalamus, while being subjected to a variety of depression- and anxiety-related behavioral paradigms. To further compare the effects of MFB-DBS and Cg25-DBS on reward-related behavior, animals were stimulated in either the MFB or ventromedial prefrontal cortex (vmPFC, rodent analog to Cg25), while being tested in the intra-cranial self-stimulation paradigm. RESULTS A marked symptom-specific anti-depressant effect of MFB-DBS was demonstrated. The ICSS-paradigm revealed that MFB-DBS, as opposed to vmPFC-DBS interacts with the reward system. CONCLUSION Our data suggest that MFB-DBS and Cg25-DBS do not operate via the same neurobiological circuits. This differentiation might be of interest when selecting patients for either Cg25- or MFB-DBS.
Collapse
|
18
|
Brand SJ, Moller M, Harvey BH. A Review of Biomarkers in Mood and Psychotic Disorders: A Dissection of Clinical vs. Preclinical Correlates. Curr Neuropharmacol 2015; 13:324-68. [PMID: 26411964 PMCID: PMC4812797 DOI: 10.2174/1570159x13666150307004545] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 11/23/2022] Open
Abstract
Despite significant research efforts aimed at understanding the neurobiological underpinnings of mood (depression, bipolar disorder) and psychotic disorders, the diagnosis and evaluation of treatment of these disorders are still based solely on relatively subjective assessment of symptoms as well as psychometric evaluations. Therefore, biological markers aimed at improving the current classification of psychotic and mood-related disorders, and that will enable patients to be stratified on a biological basis into more homogeneous clinically distinct subgroups, are urgently needed. The attainment of this goal can be facilitated by identifying biomarkers that accurately reflect pathophysiologic processes in these disorders. This review postulates that the field of psychotic and mood disorder research has advanced sufficiently to develop biochemical hypotheses of the etiopathology of the particular illness and to target the same for more effective disease modifying therapy. This implies that a "one-size fits all" paradigm in the treatment of psychotic and mood disorders is not a viable approach, but that a customized regime based on individual biological abnormalities would pave the way forward to more effective treatment. In reviewing the clinical and preclinical literature, this paper discusses the most highly regarded pathophysiologic processes in mood and psychotic disorders, thereby providing a scaffold for the selection of suitable biomarkers for future studies in this field, to develope biomarker panels, as well as to improve diagnosis and to customize treatment regimens for better therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Brian H Harvey
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
19
|
Borrow AP, Cameron NM. Estrogenic mediation of serotonergic and neurotrophic systems: implications for female mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:13-25. [PMID: 24865152 DOI: 10.1016/j.pnpbp.2014.05.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/17/2023]
Abstract
Clinical research has demonstrated a significant sex difference in the occurrence of depressive disorders. Beginning at pubertal onset, women report a higher incidence of depression than men. Women are also vulnerable to the development of depressive disorders such as premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression. These disorders are associated with reproductive stages involving changes in gonadal hormone levels. Specifically, female depression and female affective behaviors are influenced by estradiol levels. This review argues two major mechanisms by which estrogens influence depression and depressive-like behavior: through interactions with neurotrophic factors and through an influence on the serotonergic system. In particular, estradiol increases brain derived neurotrophic factor (BDNF) levels within the brain, and alters serotonergic expression in a receptor subtype-specific manner. We will take a regional approach, examining these effects of estrogens in the major brain areas implicated in depression. Finally, we will discuss the gaps in our current knowledge of the effects of estrogens on female depression, and the potential utility for estrogen receptor modulators in treatment for this disorder.
Collapse
|
20
|
Serotonin 1A receptors and sexual behavior in a genetic model of depression. Pharmacol Biochem Behav 2014; 121:82-7. [DOI: 10.1016/j.pbb.2013.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/01/2013] [Accepted: 12/07/2013] [Indexed: 11/20/2022]
|
21
|
Knapp DJ, Daws LC, Overstreet DH. Behavioral Characteristics of Pharmacologically Selected Lines of Rats: Relevance to Depression. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjns.2014.43026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Shrestha SS, Pine DS, Luckenbaugh DA, Varnäs K, Henter ID, Innis RB, Mathé AA, Svenningsson P. Antidepressant effects on serotonin 1A/1B receptors in the rat brain using a gene x environment model. Neurosci Lett 2013; 559:163-8. [PMID: 24287374 DOI: 10.1016/j.neulet.2013.11.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/04/2013] [Accepted: 11/19/2013] [Indexed: 01/13/2023]
Abstract
A gene-environment (GxE) interaction is implicated in both the pathophysiology and treatment of major depressive disorder (MDD). This study modeled the effects of genetic vulnerability by using the Flinders sensitive line (FSL), a rat model of depression and its control counterpart-the Flinders resistant line (FRL). The effects of environmental vulnerability (e.g., early-life stress) were modeled by using maternal separation. Rats (n=105) were drawn from four groups reflecting experimental crossing of strain (FSL vs. FRL) and early-life stress (high vs. low) to assess the effects of two antidepressants (escitalopram or nortriptyline) compared to vehicle. Quantitative in vitro autoradiography was performed using [(125)I]MPPI (5-HT1A) and [(125)I]CYP (5-HT1B) in prefrontal cortex (PFC) and hippocampus. Stringent, Bonferroni-corrected statistical analyses showed significant strain-by-rearing-by-treatment (three-way) interactions in PFC 5-HT1A and hippocampal 5-HT1B receptors. Either vulnerability reduced serotonergic binding; no additive effects were associated with the two vulnerabilities. Both antidepressants increased hippocampal 5-HT1B receptor binding; however, only nortriptyline selectively increased PFC 5-HT1A receptor binding. Taken together, our findings demonstrate that antidepressant effects on the serotonergic system are shaped by a GxE interaction that depends on antidepressant class and brain region.
Collapse
Affiliation(s)
- Stal Saurav Shrestha
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Daniel S Pine
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - David A Luckenbaugh
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Saul MC, Stevenson SA, Gammie SC. Sexually dimorphic, developmental, and chronobiological behavioral profiles of a mouse mania model. PLoS One 2013; 8:e72125. [PMID: 23967278 PMCID: PMC3742520 DOI: 10.1371/journal.pone.0072125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/09/2013] [Indexed: 01/12/2023] Open
Abstract
Bipolar disorders are heritable psychiatric conditions often abstracted by separate animal models for mania and depression. The principal mania models involve transgenic manipulations or treatment with stimulants. An additional approach involves analysis of naturally occurring mania models including an inbred strain our lab has recently characterized, the Madison (MSN) mouse strain. These mice show a suite of behavioral and neural genetic alterations analogous to manic aspects of bipolar disorders. In the current study, we extended the MSN strain's behavioral phenotype in new directions by examining in-cage locomotor activity. We found that MSN activity presentation is sexually dimorphic, with MSN females showing higher in-cage activity than MSN males. When investigating development, we found that MSN mice display stable locomotor hyperactivity already observable when first assayed at 28 days postnatal. Using continuous monitoring and analysis for 1 month, we did not find evidence of spontaneous bipolarism in MSN mice. However, we did find that the MSN strain displayed an altered diurnal activity profile, getting up earlier and going to sleep earlier than control mice. Long photoperiods were associated with increased in-cage activity in MSN, but not in the control strain. The results of these experiments reinforce the face validity of the MSN strain as a complex mania model, adding sexual dimorphism, an altered diurnal activity profile, and seasonality to the suite of interesting dispositional phenomena related to mania seen in MSN mice.
Collapse
Affiliation(s)
- Michael C Saul
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
24
|
Overstreet DH, Wegener G. The flinders sensitive line rat model of depression--25 years and still producing. Pharmacol Rev 2013; 65:143-55. [PMID: 23319547 DOI: 10.1124/pr.111.005397] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Approximately 25 years have passed since the first publication suggesting the Flinders sensitive line (FSL) rat as an animal model of depression. At least 6 years of research on these rats was completed before that seminal paper, and there has been a steady stream of publications (130+) over the years. The present review will focus on several issues not previously covered in earlier reviews, summarize the several lines of ongoing investigations, and propose a novel mechanism that accounts for a number of previously unexplained observations. A key observation in the FSL rat relates to the antidepressant (AD)-like effects of known and putative antidepressants. The FSL rat typically exhibits an AD-like effect in behavioral tests for AD-like activity following chronic (14 days) treatment, although some studies have found AD-like effects after fewer days of treatment. In other observations, exaggerated swim test immobility in the FSL rat has been found to have a maternal influence, as shown by cross-fostering studies and observations of maternal behavior; the implications of this finding are still to be determined. Ongoing or recently completed studies have been performed in the laboratories of Marko Diksic of Canada, Aleksander Mathé of Sweden, Gregers Wegener of Denmark, Brian Harvey of South Africa, Paul Pilowsky and Rod Irvine of Australia, and Gal Yadid of Israel. Jennifer Loftis of Portland, Oregon, and Lynette Daws of San Antonio, Texas, have been working with the FSL rats in the United States. A puzzling feature of the FSL rat is its sensitivity to multiple chemicals, and its greater sensitivity to a variety of drugs with different mechanisms of action. It has been recently shown that each of these drugs feeds through G protein-coupled receptors to potassium-gated channels. Thus, an abnormality in the potassium channel could underlie the depressed-like behavior of the FSL rats.
Collapse
Affiliation(s)
- David H Overstreet
- Center for Alcohol Studies & Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | | |
Collapse
|
25
|
Saul MC, Gessay GM, Gammie SC. A new mouse model for mania shares genetic correlates with human bipolar disorder. PLoS One 2012; 7:e38128. [PMID: 22675514 PMCID: PMC3366954 DOI: 10.1371/journal.pone.0038128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/04/2012] [Indexed: 11/18/2022] Open
Abstract
Bipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary rodent models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain termed Madison (MSN) that naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a novel genome enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21–22, 12q24, 16q24, and 17q25. Using a functional network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.
Collapse
Affiliation(s)
- Michael C Saul
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | |
Collapse
|
26
|
Skelin I, Kovačević T, Sato H, Diksic M. The opposite effect of a 5-HT1B receptor agonist on 5-HT synthesis, as well as its resistant counterpart, in an animal model of depression. Brain Res Bull 2012; 88:477-86. [PMID: 22542420 DOI: 10.1016/j.brainresbull.2012.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 01/29/2023]
Abstract
Flinders Sensitive Line (FSL) rat is as an animal model of depression with altered parameters of the serotonergic (5-HT) system function (5-HT synthesis rates, tissue concentrations, release, receptor density and affinity), as well as an altered sensitivity of these parameters to different 5-HT based antidepressants. The effects of acute and chronic treatments with the 5-HT(1B) agonist, CP-94253 on 5-HT synthesis, in the FSL rats and the Flinders Resistant Line (FRL) controls were measured using α-[(14)C]methyl-L-tryptophan (α-MTrp) autoradiography. CP-94253 (5mg/kg), or an adequate volume of saline, was injected i.p. as a single dose in the acute experiment or delivered via the subcutaneously implanted osmotic minipump (5 mg/kg/day for 14 days) in the chronic experiment. The acute treatment with CP-94253 significantly decreased the 5-HT synthesis in both the FRL and FSL rats, with a more widespread effect in the FRL rats. Chronic treatment with CP-94253 significantly decreased 5-HT synthesis in the FRL rats, while 5-HT synthesis in the FSL rats was significantly increased throughout the brain. In both the acute and chronic experiment, the FRL rats had higher brain 5-HT synthesis rates, relative to the FSL rats. The shift in the direction of the treatment effect from acute to chronic, using the 5-HT(1B) agonist, CP-94253, on 5-HT synthesis in the FSL model of depression, with an opposite effect on the control FRL rats, suggests the differential adaptation of the 5-HT system in the FSL and FRL rats to chronic stimulation of 5-HT(1B) receptors.
Collapse
Affiliation(s)
- Ivan Skelin
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, and Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Que., Canada H3A 2B4
| | | | | | | |
Collapse
|
27
|
Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. J Affect Disord 2012; 136:386-92. [PMID: 22166399 DOI: 10.1016/j.jad.2011.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Depression is characterized by inflammation and cell-mediated immune (CMI) activation and autoimmune reactions directed against a multitude of self-epitopes. There is evidence that the inflammatory response in depression causes dysfunctions in the metabolism of 5-HT, e.g. lowering the 5-HT precursor tryptophan, and upregulating 5-HT receptor mRNA. This study has been undertaken to examine autoimmune activity directed against 5-HT in relation to CMI activation and inflammation. METHODS 5-HT antibodies were examined in major depressed patients (n=109) versus normal controls (n=35) in relation to serum neopterin and lysozyme, and plasma pro-inflammatory cytokines (PIC), i.e. interleukin-1 (IL-1) and tumor necrosis factor-α (TNFα). Severity of depression was assessed with the Hamilton Depression Rating Scale (HDRS) and severity of fatigue and somatic symptoms with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. RESULTS The incidence of anti-5-HT antibody activity was significantly higher in depressed patients (54.1%), and in particular in those with melancholia (82.9%), than in controls (5.7%). Patients with positive 5-HT antibodies showed increased serum neopterin and lysozyme, and plasma TNFα and IL-1; higher scores on the HDRS and FF scales, and more somatic symptoms, including malaise and neurocognitive dysfunctions. There was a significant association between autoimmune activity to 5-HT and the number of previous depressive episodes. DISCUSSION The autoimmune reactions directed against 5-HT might play a role in the pathophysiology of depression and the onset of severe depression. The strong association between autoimmune activity against 5-HT and inflammation/CMI activation is explained by multiple, reciprocal pathways between these factors. Exposure to previous depressive episodes increases the incidence of autoimmune activity directed against 5-HT, which in turn may increase the likelihood to develop new depressive episodes. These findings suggest that sensitization (kindling) and staging of depression are in part based on progressive autoimmune responses.
Collapse
|
28
|
Kovačević T, Skelin I, Minuzzi L, Rosa-Neto P, Diksic M. Reduced metabotropic glutamate receptor 5 in the Flinders Sensitive Line of rats, an animal model of depression: an autoradiographic study. Brain Res Bull 2012; 87:406-12. [PMID: 22310150 DOI: 10.1016/j.brainresbull.2012.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 01/18/2012] [Indexed: 01/15/2023]
Abstract
Depression is a brain disorder and there is still only a partial understanding of its underlying pathophysiology. Antidepressant medications with a fast onset have not yet been developed. In addition to the monoaminergic systems, the brain glutaminergic system has been implicated in the etiology of depression. Animal studies of depression have gained importance because they permit a more invasive manipulation of the subjects than human studies. In the present study, we measured the densities of the brain regional metabotropic glutaminergic receptor 5 (mGluR5) in the Flinders Sensitive Line (FSL) rat model of depression and two groups of control rats, the Flinders Resistant Line (FRL) and Sprague Dawley (SPD), the parent strain for both the FSL and FRL rats. The FSL rats showed lower densities of mGluR5 in many brain regions compared to either the SPD and/or FRL rats. In addition, the densities in the FRL rats were larger than in the SPD rats, suggesting possible problems in using FRL rats as controls. The presented data suggest that mGluR5 is lower in animal models of depression which could be related to the cognitive and emotional dysfunctions in the FSL rat model of depression and could be relevant to a better understanding of depression in humans.
Collapse
Affiliation(s)
- Tomislav Kovačević
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
29
|
Pivac N, Diksic M. The lumped constant of α-methyl-l-tryptophan is not influenced by drugs acting through serotonergic system. Neurochem Int 2011; 58:826-32. [PMID: 21414366 PMCID: PMC3151344 DOI: 10.1016/j.neuint.2011.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 11/24/2022]
Abstract
Lumped constant (LC) is a constant used to convert brain trapping constant of α-methyl-l-tryptophan (using α-(14)C-methyl-l-tryptophan) into the constant for conversion of tryptophan into serotonin (5-hydroxytryptamine, 5-HT), which can be then used with certain assumptions in the calculation of the brain regional 5-HT synthesis rate. The aim of the present study was to investigate the acute effects of two drugs on the regional stability of the LC and possible effect on its value. Drugs used were a selective 5-HT reuptake inhibitor, fluoxetine, and a drug that releases 5-HT and inhibits 5-HT uptake, d,l-fenfluramine. The values of the LC from those experiments were compared with the value of LC obtained in the saline treated rats. KT is the constant for tryptophan conversion into 5-HT, which was measured by an autoradiographic method in more than twenty brain regions, using labelled tryptophan ((14)C-Trp) as tracer, after the fraction incorporated into proteins was removed. The trapping constant K(α) for α-methyl-l-tryptophan was also measured autoradiographically in a separate group of rats. All measurements were done in drug and saline (control) treated rats. The regional LC constants were calculated as the ratios between KT and K(α). Statistical evaluation showed that the regional values in each of these three sets were normally distributed, and that the three sets of LC values calculated as the mean of logarithmic differences (saline 0.450 ± 0.055; fluoxetine 0.429 ± 0.091; d,l-fenfluramine 0.48 ± 0.09) did not differ significantly. The overall weighted mean value of the LC from all three sets of measurements was 0.452 ± 0.041, and this value was not significantly different from the LC value of 0.42 ± 0.07, i.e. value obtained in our previous studies. These results showed the unaltered LC value in discrete rat brain regions after treatment with fluoxetine or d,l-fenfluramine, and confirmed that the numerical value of the LC used in our previous studies was not altered by treatment with drugs affecting 5-HT transmission and 5-HT synthesis rate.
Collapse
Affiliation(s)
| | - Mirko Diksic
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, and Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, CANADA
| |
Collapse
|
30
|
Sarkisova K, van Luijtelaar G. The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression [corrected]. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:854-76. [PMID: 21093520 DOI: 10.1016/j.pnpbp.2010.11.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 09/28/2010] [Accepted: 11/09/2010] [Indexed: 01/02/2023]
Abstract
A great number of clinical observations show a relationship between epilepsy and depression. Idiopathic generalized epilepsy, including absence epilepsy, has a genetic basis. The review provides evidence that WAG/Rij rats can be regarded as a valid genetic animal model of absence epilepsy with comorbidity of depression. WAG/Rij rats, originally developed as an animal model of human absence epilepsy, share many EEG and behavioral characteristics resembling absence epilepsy in humans, including the similarity of action of various antiepileptic drugs. Behavioral studies indicate that WAG/Rij rats exhibit depression-like symptoms: decreased investigative activity in the open field test, increased immobility in the forced swimming test, and decreased sucrose consumption and preference (anhedonia). In addition, WAG/Rij rats adopt passive strategies in stressful situations, express some cognitive disturbances (reduced long-term memory), helplessness, and submissiveness, inability to make choice and overcome obstacles, which are typical for depressed patients. Elevated anxiety is not a characteristic (specific) feature of WAG/Rij rats; it is a characteristic for only a sub-strain of WAG/Rij rats susceptible to audiogenic seizures. Interestingly, WAG/Rij rats display a hyper-response to amphetamine similar to anhedonic depressed patients. WAG/Rij rats are sensitive only to chronic, but not acute, antidepressant treatments, suggesting that WAG/Rij rats fulfill a criterion of predictive validity for a putative animal model of depression. However, more and different antidepressant drugs still await evaluation. Depression-like behavioral symptoms in WAG/Rij rats are evident at baseline conditions, not exclusively after stress. Experiments with foot-shock stress do not point towards higher stress sensitivity at both behavioral and hormonal levels. However, freezing behavior (coping deficits) and blunted response of 5HT in the frontal cortex to uncontrollable sound stress, increased c-fos expression in the terminal regions of the meso-cortico-limbic brain systems and greater DA response of the mesolimbic system to forced swim stress suggest that WAG/Rij rats are vulnerable to some, but not to all types of stressors. We propose that genetic absence epileptic WAG/Rij rats have behavioral depression-like symptoms, are vulnerable to stress and might represent a model of chronic low-grade depression (dysthymia). Both 5HT and DAergic abnormalities detected in the brain of WAG/Rij rats are involved in modulation of vulnerability to stress and provocation of behavioral depression-like symptoms. The same neurotransmitter systems modulate SWDs as well. Recent studies suggest that the occurrence and repetition of absence seizures are a precipitant of depression-like behavior. Whether the neurochemical changes are primary to depression-like behavioral alterations remains to be determined. In conclusion, the WAG/Rij rats can be considered as a genetic animal model for absence epilepsy with comorbidity of dysthymia. This model can be used to investigate etiology, pathogenic mechanisms and treatment of a psychiatric comorbidity, such as depression in absence epilepsy, to reveal putative genes contributing to comorbid depressive disorder, and to screen novel psychotropic drugs with a selective and/or complex (dual) action on both pathologies.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerov str. 5a, Moscow 117485, Russia.
| | | |
Collapse
|
31
|
Acute desipramine treatment reduces regional serotonin synthesis rates, while chronic treatment elevates rates, in a rat model of depression: An autoradiographic study. Neurochem Int 2011; 58:759-66. [DOI: 10.1016/j.neuint.2011.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/15/2011] [Accepted: 02/25/2011] [Indexed: 11/18/2022]
|
32
|
Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R. The new '5-HT' hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:702-21. [PMID: 21185346 DOI: 10.1016/j.pnpbp.2010.12.017] [Citation(s) in RCA: 490] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/07/2010] [Accepted: 12/16/2010] [Indexed: 02/07/2023]
Abstract
This paper reviews the body of evidence that not only tryptophan and consequent 5-HT depletion, but also induction of indoleamine 2,3-dioxygenase (IDO) and the detrimental effects of tryptophan catabolites (TRYCATs) play a role in the pathophysiology of depression. IDO is induced by interferon (IFN)γ, interleukin-6 and tumor necrosis factor-α, lipopolysaccharides and oxidative stress, factors that play a role in the pathophysiology of depression. TRYCATs, like kynurenine and quinolinic acid, are depressogenic and anxiogenic; activate oxidative pathways; cause mitochondrial dysfunctions; and have neuroexcitatory and neurotoxic effects that may lead to neurodegeneration. The TRYCAT pathway is also activated following induction of tryptophan 2,3-dioxygenase (TDO) by glucocorticoids, which are elevated in depression. There is evidence that activation of IDO reduces plasma tryptophan and increases TRYCAT synthesis in depressive states and that TDO activation may play a role as well. The development of depressive symptoms during IFNα-based immunotherapy is strongly associated with IDO activation, increased production of detrimental TRYCATs and lowered levels of tryptophan. Women show greater IDO activation and TRYCAT production following immune challenge than men. In the early puerperium, IDO activation and TRYCAT production are associated with the development of affective symptoms. Clinical depression is accompanied by lowered levels of neuroprotective TRYCATs or increased levels or neurotoxic TRYCATs, and lowered plasma tryptophan, which is associated with indices of immune activation and glucocorticoid hypersecretion. Lowered tryptophan and increased TRYCATs induce T cell unresponsiveness and therefore may exert a negative feedback on the primary inflammatory response in depression. It is concluded that activation of the TRYCAT pathway by IDO and TDO may be associated with the development of depressive symptoms through tryptophan depletion and the detrimental effects of TRYCATs. Therefore, the TRYCAT pathway should be a new drug target in depression. Direct inhibitors of IDO are less likely to be useful drugs than agents, such as kynurenine hydroxylase inhibitors; drugs which block the primary immune response; compounds that increase the protective effects of kynurenic acid; and specific antioxidants that target IDO activation, the immune and oxidative pathways, and 5-HT as well.
Collapse
Affiliation(s)
- M Maes
- Maes Clinics @ TRIA, Piyavate Hospital, 998 Rimklongsamsen Road, Bangkok 10310, Thailand.
| | | | | | | | | |
Collapse
|
33
|
Jaehne EJ, Majumder I, Salem A, Irvine RJ. Increased effects of 3,4-methylenedioxymethamphetamine (ecstasy) in a rat model of depression. Addict Biol 2011; 16:7-19. [PMID: 20192951 DOI: 10.1111/j.1369-1600.2009.00196.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is associated with increases in core body temperature (T(C)) and depressive mood states in users. Flinders Sensitive Line (FSL) rats represent a rat model of depression originally bred from Sprague-Dawley (SD) rats. They are more sensitive to both muscarinic and serotonergic agonists and have altered thermoregulatory responses to various drugs. To examine the link between MDMA and depression, eight FSL and eight SD rats were administered saline and 5 and 7.5 mg/kg MDMA. Immediately following administration, rats were confined to an area with an ambient temperature (T(A)) of 30 ± 1°C for 30 minutes before being allowed access to a thermal gradient for four hours. The brains were removed one week after final dose of MDMA and concentrations of serotonin and dopamine were measured. Treatment with MDMA at both doses led to a higher T(C) in the FSL rats than the SD rats at high T(A) (P < 0.01). Fatalities due to hyperthermia occurred in the FSL rats after both doses, whereas all but one of the SD rats recovered well. Heart rate was also much higher after MDMA in the FSL rats throughout the experiments. The FSL rats showed significant decreases in all transmitters measured (P < 0.05). These differences between strains were not accounted for by altered blood or brain concentrations of MDMA. The results indicate that the FSL rats may be more susceptible to developing MDMA-induced hyperthermia and possible damage to the brain. These findings may be of importance to human users of MDMA who also have depression.
Collapse
|
34
|
Kanemaru K, Nishi K, Diksic M. AGN-2979, an inhibitor of tryptophan hydroxylase activation, does not affect serotonin synthesis in Flinders Sensitive Line rats, a rat model of depression, but produces a significant effect in Flinders Resistant Line rats. Neurochem Int 2009; 55:529-35. [PMID: 19463878 PMCID: PMC2778282 DOI: 10.1016/j.neuint.2009.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/25/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
The neurotransmitter, serotonin, is involved in several brain functions, including both normal, physiological functions, and pathophysiological functions. Alterations in any of the normal parameters of serotonergic neurotransmission can produce several different psychiatric disorders, including major depression. In many instances, brain neurochemical variables are not able to be studied properly in humans, thus making the use of good animal models extremely valuable. One of these animal models is the Flinders Sensitive Line (FSL) of rats, which has face, predictive and constructive validities in relation to human depression. The objective of this study was to quantify the effect of the tryptophan hydroxylase (TPH) activation inhibitor, AGN-2979, on the FSL rats (rats with depression-like behaviour), and compare it to the effect on the Flinders Resistant Line (FRL) of rats used as the control rats. The effect was evaluated by measuring changes in regional serotonin synthesis in the vehicle treated rats (FSL-VEH and FRL-VEH) relative to those measured in the AGN-2979 treated rats (FSL-AGN and FRL-AGN). Regional serotonin synthesis was measured autoradiographically in more than 30 brain regions. The measurements were performed using alpha-[(14)C]methyl-l-tryptophan as the tracer. The results indicate that AGN-2979 did not produce a significant reduction of TPH activity in the AGN-2979 group relative to the vehicle group (a reduction would have been observed if there had been an activation of TPH by the experimental setup) in the FSL rats. On the other hand, there was a highly significant reduction of synthesis in the FRL rats treated by AGN-2979, relative to the vehicle group. Together, the results demonstrate that in the FSL rats, AGN-2979 does not affect serotonin synthesis. This suggests that there was no activation of TPH in the FSL rats during the experimental procedure, but such activation did occur in the FRL rats. Because of this finding, it could be hypothesized that TPH in the FSL rats cannot be easily activated. This may contribute to the development of depressive-like symptoms in the FSL rats ("depressed" rats), as they cannot easily modulate their need for elevated amounts of this neurotransmitter, and possibly other neurotransmitters. Further, because these rats represent a very good model of human depression, one can hypothesize that humans who do not have readily activated TPH may be more prone to develop depression.
Collapse
Affiliation(s)
| | | | - Mirko Diksic
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Kanemaru K, Diksic M. The Flinders Sensitive Line of rats, a rat model of depression, has elevated brain glucose utilization when compared to normal rats and the Flinders Resistant Line of rats. Neurochem Int 2009; 55:655-61. [DOI: 10.1016/j.neuint.2009.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/12/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
|
36
|
Kovačević T, Skelin I, Diksic M. Chronic fluoxetine treatment has a larger effect on the density of a serotonin transporter in the Flinders Sensitive Line (FSL) rat model of depression than in normal rats. Synapse 2009; 64:231-40. [DOI: 10.1002/syn.20721] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Kokras N, Antoniou K, Dalla C, Bekris S, Xagoraris M, Ovestreet DH, Papadopoulou-Daifoti Z. Sex-related differential response to clomipramine treatment in a rat model of depression. J Psychopharmacol 2009; 23:945-56. [PMID: 18755816 DOI: 10.1177/0269881108095914] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Research in affective disorders is often performed without considering sex differences, although women are predominantly affected. Consequently, the potential sex-dependent action of antidepressants remains elusive. We investigated whether Flinders sensitive line (FSL) of rats, a model of depression, would present sex-differentiated responses to antidepressant treatment. FSL and Sprague-Dawley rats were treated with clomipramine 10 mg/kg/day for 14 days. Subsequently, they were subjected to either a single session of the forced swim test or an estimation of serotonergic function in the prefrontal cortex, hippocampus, amygdala and hypothalamus. Male FSL displayed increased immobility duration, decreased active behaviours, increased serotonin tissue levels and a reduced serotonin turnover rate in most brain areas studied. Female FSL showed a distinct profile, consisting of decreased immobility latency, increased climbing duration, limited serotonergic deviations and no difference in the serotonin turnover rate in comparison with controls. Interestingly, despite baseline differences, clomipramine treatment reversed all relevant behavioural responses and increased the serotonin turnover rate in both sexes. However, the latter effect was remarkably more pronounced in females. It is concluded that, in this animal model of depression, chronic clomipramine treatment attenuated baseline sex differences in the phenotype while maintaining or intensifying the sex differentiation in the serotonergic endophenotype.
Collapse
Affiliation(s)
- N Kokras
- Department of Experimental Pharmacology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
38
|
Kokras N, Antoniou K, Polissidis A, Papadopoulou-Daifoti Z. Antidepressants induce regionally discrete, sex-dependent changes in brain's glutamate content. Neurosci Lett 2009; 464:98-102. [PMID: 19666087 DOI: 10.1016/j.neulet.2009.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/21/2009] [Accepted: 08/04/2009] [Indexed: 01/07/2023]
Abstract
Growing evidence suggests the involvement of glutamate in mood disorders and in the response to antidepressants. However, there is no information regarding a hypothesized sex-dependent glutamatergic modulation following treatment in animal models of depression. We comparatively assayed in male and female Flinders and control Sprague-Dawley rats glutamate and aspartate tissue levels in the prefrontal cortex, hippocampus and nucleus accumbens following 14-day treatment with either 10mg/kg clomipramine or mirtazapine, intraperitoneally. Clomipramine increased cortical glutamate in both sexes and hippocampal glutamate only in female Flinders rodents. Mirtazapine had no effect on cortical glutamate content but increased hippocampal glutamate in both Flinders sexes. Neither mirtazapine nor clomipramine altered glutamate levels in the nucleus accumbens. There were no any significant differences in aspartate levels. However, in control male SD rats clomipramine and mirtazapine significantly decreased cortical aspartate levels. Our results indicate that two different types of established antidepressants induce a brain region-specific effect on glutamate content. This effect is also characterized by sex-dependent differences mainly in the hippocampus, highlighting a differentiated response of glutamate to distinct antidepressants.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of Experimental Pharmacology, Medical School, University of Athens, 75 Mikras Asias st, 11527 Athens, Greece
| | | | | | | |
Collapse
|
39
|
Singh M, Zimmerman MB, Beltz TG, Johnson AK. Affect-related behaviors in mice misexpressing the RNA editing enzyme ADAR2. Physiol Behav 2009; 97:446-54. [PMID: 19361536 PMCID: PMC2778280 DOI: 10.1016/j.physbeh.2009.03.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 03/10/2009] [Accepted: 03/19/2009] [Indexed: 11/22/2022]
Abstract
Misediting of the serotonin (5HT) 2C receptor (5HT(2C)R) has been implicated in both depression and anxiety. The adenosine deaminases that act on double stranded RNAs (ADARs) are reported to modify the 5HT(2C)R by RNA editing. Transgenic mice misexpressing the RNA editing enzyme ADAR2 show an adult onset obese phenotype due to chronic hyperphagia, but little more than this is known about the behavior of these animals. The present experiments examined whether affect-associated behaviors are also altered in ADAR2 transgenic mice. Age- and weight-matched transgenic mice misexpressing ADAR2 were tested for signs of behavioral despair with the forced swim (FST) and tail suspension (TST) tests, and for anxiety by evaluating spontaneous exploration in a novel environment and by elevated plus maze performance. Plasma corticosterone was also determined by radioimmunoassay. Transgenic mice of both sexes displayed indications of increased behavioral despair on first exposures to the TST and the FST. Behavioral despair persisted in ADAR2 mice in that it was also observed in the FST in tests administered 24 h and 1 week following the initial TST and FST. ADAR2 transgenic mice also displayed behaviors associated with anxiety as indicated by decreased entry into the open arms in an elevated plus maze test. Both sexes of ADAR2 transgenic mice displayed elevated plasma corticosterone. Taken together, the results suggest that ADAR2 transgenic mice represent a novel rodent model of endogenous behavioral despair and anxiety accompanied by elevated hypothalamo-pituitary adrenal axis activity.
Collapse
Affiliation(s)
- Minati Singh
- Department of Psychology, University of Iowa, Iowa City, IA 52242
| | | | - Terry G. Beltz
- Department of Psychology, University of Iowa, Iowa City, IA 52242
| | - Alan Kim Johnson
- Department of Psychology, University of Iowa, Iowa City, IA 52242
- Department of Integrative Physiology, University of Iowa, Iowa City, IA 52242
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242
- Department of Cardiovascular Center, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
40
|
Nishi K, Kanemaru K, Diksic M. A genetic rat model of depression, Flinders sensitive line, has a lower density of 5-HT(1A) receptors, but a higher density of 5-HT(1B) receptors, compared to control rats. Neurochem Int 2009; 54:299-307. [PMID: 19121358 PMCID: PMC2656411 DOI: 10.1016/j.neuint.2008.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/29/2008] [Accepted: 12/08/2008] [Indexed: 11/25/2022]
Abstract
Deficiencies in brain serotonergic neurotransmission, which is in part associated with the alteration of brain serotonin (5-HT) receptors, have been proposed as part of a neurochemical imbalance in affective disorders, including depression. The drugs used for the treatment of these disorders generally act through and/or on the serotonergic system. Different animal models of depression have provided researchers with tools to obtain a better understanding of drug actions and possibilities to obtain insight into the neurochemical bases of these disorders. The measurements of the 5-HT(1A) and 5-HT(1B) receptor densities in a rat model of depression, Flinders sensitive line (FSL) rats, and comparisons with Sprague-Dawley (SPD) and Flinders resistant line (FRL) rats, are reported here. The receptor sites were quantified by autoradiography in more than 25 distinct brain regions known to have relatively large densities of respective sites. Some brain regions (e.g., dental gyrus, septal nucleus) were divided into several parts, according to previously known subdivisions, because of a substantial heterogeneity of these receptors. The densities in the FSL rats ("depressed" rats) were compared statistically to those in the SPD rats. In addition, comparisons were made to the densities in the FRL rats (rats not showing depressive symptoms). Comparisons were performed with the SPD and FRL rats because both of these strains have been used as control animals in studies of FSL rats. The results show that the densities of 5-HT(1A) receptors are not significantly different between the FSL and SPD rats, but they are significantly different from the FRL rats. 5-HT(1A) receptor density is significantly higher in the FRL rats than the SPD rats. The 5-HT(1B) receptors were significantly greater in the FSL rats than in either the SPD or FRL rats. In addition, the FRL rats have 5-HT(1B) receptor densities significantly lower in many brain regions than the SPD rats. The data presented here, in addition to previously reported differences in regional synthesis between these strains and the effect of acute citalopram on synthesis, suggest that SPD rats are likely a more appropriate control than FRL rats, when studies of FSL rats are performed with drugs acting directly or indirectly on, or through, the brain serotonergic system. However, comparisons, particularly of neurochemical and/or biological parameters in FRL rats, may reveal new insight into the alterations of 5-HT neurotransmission in this animal model of depression and possibly human depression, as well as the elevation of symptoms with treatments. The data also suggest that there could be a different fraction of 5-HT(1A) receptors in high and low affinity states in these strains, as well as the possibility of different intracellular signalling.
Collapse
Affiliation(s)
| | | | - Mirko Diksic
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
41
|
Wiehager S, Beiderbeck DI, Gruber SH, El-Khoury A, Wamsteeker J, Neumann ID, Petersén Å, Mathé AA. Increased levels of cocaine and amphetamine regulated transcript in two animal models of depression and anxiety. Neurobiol Dis 2009; 34:375-80. [DOI: 10.1016/j.nbd.2009.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 01/25/2023] Open
|
42
|
Kanemaru K, Nishi K, Hasegawa S, Diksic M. Chronic citalopram treatment elevates serotonin synthesis in flinders sensitive and flinders resistant lines of rats, with no significant effect on Sprague-Dawley rats. Neurochem Int 2009; 54:363-71. [PMID: 19418630 PMCID: PMC2722755 DOI: 10.1016/j.neuint.2009.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of citalopram on regional 5-hydroxytryptamine (serotonin, 5-HT) synthesis, one of the most important presynaptic parameters of serotonergic neurotransmission, was studied. Sprague-Dawley (SPD) rats were used as the controls, and Flinders Resistant Line (FRL) rats were used as auxiliary controls, to hopefully obtain a better understanding of the effects of citalopramon Flinders Sensitive Line (FSL; "depressed") rats. Regional 5-HT synthesis was evaluated using a radiographic method with a labelled tryptophan analog tracer. In each strain of rats, the animals were treated with citalopram (10 mg/(kg day)) or saline for 14 days. The groups consisted of between fourteen and twenty rats. There were six groups of rats with citalopram (CIT) and saline (SAL) groups in each of the strains (SPD-AL, SPD-IT, FRL-AL, FRL-IT, FSL-AL and FSL-IT). A two-factor analysis of variance was used to evaluate the effect of the treatment c., SPD-SAL relative to SPD-CIT) followed by planned comparisons to evaluate the effect in each brain region. In addition, the planned comparison with appropriate contrast was used to evaluate a relative effects in SPD relative to FSL and FRL, and FSL relative to FRL groups. A statistical analysis was first performed in the a priori selected regions, because we had learned, from previous work, that it was possible to select the brain regions in which neurochemical variables had been altered by the disorder and subsequent antidepressant treatments. The results clearly show that citalopram treatment does not have an overall effect on synthesis in the control SPD rats; there was no significant (p > 0.05) difference between the SPD-SAL and SPD-CIT rats. In "depressed" FSL rats, citalopram produced a significant (p < 0.05) elevation of synthesis in seventeen out of thirty-four regions, with a significant (p < 0.05) reduction in the dorsal and median raphe. In the FRL rats, there was a significant (p < 0.05) elevation in the synthesis in twenty-two out of thirty-four brain regions, with a reduction in the dorsal raphe. In addition to these regions magnus raphe was different in the SPD and FSL groups, but it was on the statistical grounds identified as an outlier. There were significant changes produced in the FSL and FRL rats in thirteen out of seventeen a priori selected brain regions, while in the SPD rats, citalopram produced significant changes in only four out of seventeen a priori selected regions. The statistical evaluation also revealed that changes produced by citalopram in the FSL and FRL rats were significantly greater than those in the SPD rats and that there was no significant difference between the effect produced in the FSL and FRL rats. The presented results suggest that in "depressed" FSL rats, the antidepressant citalopram elevates 5-HT synthesis, which probably in part relates to the reported improved in behaviour with citalopram.
Collapse
Affiliation(s)
- Kazuya Kanemaru
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|
43
|
Green P, Anyakoha N, Yadid G, Gispan-Herman I, Nicolaou A. Arachidonic acid-containing phosphatidylcholine species are increased in selected brain regions of a depressive animal model: implications for pathophysiology. Prostaglandins Leukot Essent Fatty Acids 2009; 80:213-20. [PMID: 19342208 DOI: 10.1016/j.plefa.2009.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/09/2009] [Accepted: 02/20/2009] [Indexed: 11/21/2022]
Abstract
The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression. Following recent findings that the brain fatty acid composition of FSL is characterised by increased arachidonic acid (AA), we used electrospray tandem mass spectrometry and (1)H-NMR to examine lipid species in different brain areas. Cholesterol and sphingolipids were increased in the hypothalamus of the FSL rats. Furthermore, arachidonic acid-containing phosphatidylcholine (AA-PC) species were elevated with PC16:0/20:4, PC18:1/20:4 and PC18:0/20:4 (p<0.003) increased in the hypothalamus and striatum. In contrast, there was a decrease in some docosahexaenoic acid (DHA)-containing species, specifically PC18:1/22:6 (p<0.003) in the striatum and PE18:1/22:6 (p<0.004) in the prefrontal cortex. Since no significant differences were observed in the erythrocyte fatty acid concentrations, dietary or environmental causes for these observations are unlikely. The increase in AA-PC species which in this animal model may be associated with altered neuropathy target esterase activity, an enzyme involved in membrane PC homeostasis, may contribute to the depressive phenotype of the FSL rats.
Collapse
Affiliation(s)
- Pnina Green
- Laboratory for the Study of Fatty Acids, Felsenstein Medical Research Centre, Beilinson Campus, Sackler School of Medicine, Tel Aviv University, Petah Tiqwa 49100, Israel
| | | | | | | | | |
Collapse
|
44
|
Nishi K, Kanemaru K, Hasegawa S, Watanabe A, Diksic M. Both acute and chronic buspirone treatments have different effects on regional 5-HT synthesis in Flinders Sensitive Line rats (a rat model of depression) than in control rats. Neurochem Int 2009; 54:205-14. [PMID: 19084042 PMCID: PMC2693024 DOI: 10.1016/j.neuint.2008.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/02/2008] [Accepted: 10/30/2008] [Indexed: 11/19/2022]
Abstract
The main objective of this investigation was to evaluate the effects of buspirone, a 5-HT(1A) agonist with some partial agonist properties and also an antidepressant, on regional 5-HT synthesis in Flinders Sensitive Line (FSL) rats ("depressed"), and to compare the effects to the Flinders Resistant Line (FRL) control rats (not "depressed"). In addition results were compared to those previously reported in normal Sprague-Dawley (SPD) rats (normal control). Serotonin synthesis in both FSL and FRL rats was measured following acute and chronic treatments with buspirone. Both of these strains were derived from the SPD rats. No direct comparison was done between the FSL saline and FRL saline groups, or the FSL buspirone and FRL buspirone groups, because the objective of the studies was to evaluate effects of buspirone in these two strains. The results show that acute treatment with buspirone elevates 5-HT synthesis throughout the brain in the FRL rats. In the FSL rats, there were reductions in some brain regions (e.g., dorsal and median raphe, amygdala, anterior olfactory nucleus, substantia nigra reticulate), while in other regions, there were increases in the synthesis observed (e.g., frontal, parietal, visual and somatosensory cortices, ventral hippocampus). In 20 out of the 30 brain regions investigated in the FSL rats, there was no significant change in the synthesis following acute buspirone treatment. During the chronic treatment, buspirone produced a significant reduction of 5-HT synthesis in 15 out of 30 brain regions in the FRL rats. In the FSL rats, buspirone produced a significant elevation of the synthesis in 10 out of 30 brain regions. In both the FSL and FRL rats, buspirone produced rather different effects than those reported previously for SPD (normal) rats. The acute effect in the FSL rats was somewhat similar to the effect reported previously for the SPD rats, while in the FRL rats, the acute buspirone treatment produced an effect observed previously in treatments with 5-HT(1A) antagonists suggesting an action of buspirone as partial agonist in FRL rats. The data suggest that with respect to 5-HT synthesis, FRL rats differ from SPD rats (a natural control; normal rats) and, as such, indicate that when the effects related to the serotonergic system (e.g., influence of serotonergic drugs) are studied in the FSL rats and compared to those in the FRL rats, any conclusions drawn may not reflect differences relative to a normal rat.
Collapse
Affiliation(s)
| | | | | | | | - Mirko Diksic
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Kanemaru K, Hasegawa S, Nishi K, Diksic M. Acute citalopram has different effects on regional 5-HT synthesis in FSL, FRL, and SDP rats: an autoradiographic evaluation. Brain Res Bull 2008; 77:214-20. [PMID: 18674602 PMCID: PMC2783878 DOI: 10.1016/j.brainresbull.2008.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/02/2008] [Accepted: 07/04/2008] [Indexed: 11/21/2022]
Abstract
In this study, we measured the effect of an acute treatment of citalopram on 5-hydroxytryptamine (5-HT) synthesis in a genetic rat model of depression, the Flinders Sensitive Line (FSL) rats, their counterparts, the Flinders Resistant Line (FRL) rats, and outbred Sprague-Dawley (SPD) rats, using the alpha-[(14)C]methyl-l-tryptophan (alpha-MTrp) autoradiographic method. A comparison of 5-HT synthesis in the FSL rats treated with citalopram (FSL-CTP) and those treated with saline (FSL-SAL) indicate that citalopram reduces global 5-HT synthesis in the FSL rats, as well as in all the brain areas investigated. The reduced synthesis was also observed in the dorsal raphe (DR) nucleus and the median raphe (MR) nucleus. The comparison of the synthesis between the citalopram-treated SPD rats (SPD-CTP) and the saline-treated SPD rats (SPD-SAL) revealed a global increase of 5-HT synthesis in the SPD-CTP group, as well as an increase in some terminal areas, but a reduction in the DR and the MR. In contrast to the reduction throughout the brain in the FSL rats, the FRL rats treated with citalopram (FRL-CTP), when compared to the saline group (FRL-SAL), showed a global increase of 5-HT synthesis, as well as in most of the terminal areas and in the DR and the MR. The reduction of 5-HT synthesis throughout the brain in the FSL rats is likely, in part, a result of reported supersensitivity of the 5-HT(1A) receptors. Comparing changes in the SPD, FRL, and FSL rats treated with citalopram to their respective controls (saline-treated rats), the FSL rats treated acutely with citalopram were the only rats that exhibited lower 5-HT synthesis rates in all of the limbic areas, the basal ganglia, and the neocortices. This may be related to the pathophysiological basis of depressive characteristics in FSL rats. The citalopram treatment produced unexpected results in the FRL rats: 5-HT synthesis was elevated not only in most of the terminal areas, but also in the cell body areas, the DR and MR. The increase of 5-HT synthesis throughout the brain in the FRL rats is likely, in part, a result of the reported subsensitivity of the 5-HT(1A) receptors, and possibly other sites through which 5-HT synthesis could be controlled (e.g., 5-HT(1B)). In addition differences in intracellular signaling could be at least in part responsible for these differences.
Collapse
Affiliation(s)
| | | | | | - Mirko Diksic
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Matrisciano F, Caruso A, Orlando R, Marchiafava M, Bruno V, Battaglia G, Gruber SHM, Melchiorri D, Tatarelli R, Girardi P, Mathè AA, Nicoletti F. Defective group-II metaboropic glutamate receptors in the hippocampus of spontaneously depressed rats. Neuropharmacology 2008; 55:525-531. [PMID: 18590921 DOI: 10.1016/j.neuropharm.2008.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/06/2008] [Accepted: 05/18/2008] [Indexed: 12/21/2022]
Abstract
Spontaneously depressed flinders sensitive line (FSL) rats showed a reduced expression of mGlu2/3 metabotropic glutamate receptors in the hippocampus, as compared to "non-depressed" flinders resistant line (FRL) rats. No changes in mGlu2/3 receptor protein levels were found in other brain regions, including the amygdala, hypothalamus, and cerebral cortex. Biochemical analysis of receptor signalling supported the reduction of mGlu2/3 receptors in the hippocampus of FSL rats. Accordingly, the selective mGlu2/3 receptor agonist, LY379268 (1microM) reduced forskolin-stimulated cAMP formation by 56% and 32% in hippocampal slices from FRL and FSL rats, respectively. In addition, LY379268 enhanced 3,5-dihydroxyphenylglycine-stimulated inositol phospholipid hydrolysis from 65% to 215% in hippocampal slices from FRL rats, whereas it was inactive in slices from FRL rats. We also examined the behavioural response of FSL rats to systemic injection of LY379268 (0.5mg/kg, i.p., once a day for 1-21 days) by measuring the immobility time in the forced swim test, which is known to be increased in these rats. LY379268 was administered alone or combined with the classical antidepressant, chlorimipramine (10mg/kg, i.p.). LY379268 alone had no effect at any of the selected time-points, whereas chlorimipramine alone reduced the immobility time only after 21 days of treatment. In contrast, when combined with LY379268, chlorimipramine reduced the immobility time during the first 14 days of treatment. These data support the view that mGlu2/3 receptors might be involved in the pathophysiology of depressive disorders, and that pharmacological activation of these receptors may shorten the latency of antidepressant medication.
Collapse
Affiliation(s)
- F Matrisciano
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Anisman H, Merali Z, Stead JDH. Experiential and genetic contributions to depressive- and anxiety-like disorders: clinical and experimental studies. Neurosci Biobehav Rev 2008; 32:1185-206. [PMID: 18423590 DOI: 10.1016/j.neubiorev.2008.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 12/31/2007] [Accepted: 02/23/2008] [Indexed: 10/22/2022]
Abstract
Stressful events have been implicated in the precipitation of depression and anxiety. These disorders may evolve owing to one or more of an array of neuronal changes that occur in several brain regions. It seems likely that these stressor-provoked neurochemical alterations are moderated by genetic determinants, as well as by a constellation of experiential and environmental factors. Indeed, animal studies have shown that vulnerability to depressive-like behaviors involve mechanisms similar to those associated with human depression (e.g., altered serotonin, corticotropin releasing hormone and their receptors, growth factors), and that the effects of stressors are influenced by previous stressor experiences, particularly those encountered early in life. These stressor effects might reflect sensitization of neuronal functioning, phenotypic changes of processes that lead to neurochemical release or receptor sensitivity, or epigenetic processes that modify expression of specific genes associated with stressor reactivity. It is suggested that depression is a life-long disorder, which even after effective treatment, has a high rate of re-occurrence owing to sensitized processes or epigenetic factors that promote persistent alterations of gene expression.
Collapse
Affiliation(s)
- Hymie Anisman
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| | | | | |
Collapse
|
48
|
Overstreet DH, Stemmelin J, Griebel G. Confirmation of antidepressant potential of the selective beta3 adrenoceptor agonist amibegron in an animal model of depression. Pharmacol Biochem Behav 2008; 89:623-6. [PMID: 18358519 DOI: 10.1016/j.pbb.2008.02.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/01/2008] [Accepted: 02/19/2008] [Indexed: 11/30/2022]
Abstract
The involvement of the noradrenergic system, particularly the beta1 and beta2 receptors, in depressive disorders has been frequently shown. Recently, however, it has been shown that the beta3 receptor may also contribute since amibegron (SR58611A), a selective beta3 receptor agonist, has antidepressant-like effects. The present experiment sought to confirm the antidepressant potential of amibegron by studying its effects in an animal model of depression, the Flinders Sensitive Line (FSL) rat. The FSL rat is innately highly immobile in the forced swim test and exhibits a decrease in immobility after chronic, not acute antidepressant treatment. FSL rats were treated for 14 consecutive days with amibegron (0.3, 1.0, or 3.0 mg/kg), fluoxetine (5 mg/kg) or desipramine (5 mg/kg) as positive controls, and vehicle, while the control strain, the Flinders Resistant Line (FRL) rats, was given either vehicle or 1.0 mg/kg amibegron. About 23-25 h after the last injection the rats were tested in the forced swim test. All doses of amibegron and the two active controls, fluoxetine and desipramine, significantly reduced immobility in the FSL rats. Thus, amibegron had a selective antidepressant-like effect in this study, confirming its antidepressant potential.
Collapse
Affiliation(s)
- David H Overstreet
- Department of Psychiatry & Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | | | | |
Collapse
|
49
|
Hildreth CM, Padley JR, Pilowsky PM, Goodchild AK. Impaired serotonergic regulation of heart rate may underlie reduced baroreflex sensitivity in an animal model of depression. Am J Physiol Heart Circ Physiol 2008; 294:H474-80. [DOI: 10.1152/ajpheart.01009.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serotonin (5-HT) is crucial to normal reflex vagal modulation of heart rate (HR). Reduced baroreflex sensitivity [spontaneous baroreflex sensitivity (sBRS)] and HR variability (HRV) reflect impaired neural, particularly vagal, control of HR and are independently associated with depression. In conscious, telemetered Flinders-Sensitive Line (FSL) rats, a well-validated animal model of depression, we tested the hypothesis that cardiovascular regulatory abnormalities are present and associated with deficient serotonergic control of reflex cardiovagal function. In FSL rats and control Flinders-Resistant (FRL) and Sprague-Dawley (SD) rat strains, diurnal measurements of HR, arterial pressure (AP), activity, sBRS, and HRV were made. All strains had normal and similar diurnal variations in HR, AP, and activity. In FRL rats, HR was elevated, contributing to the reduced HRV and sBRS in this strain. In FSL rats, sBRS and high-frequency power HRV were reduced during the night, indicating reduced reflex cardiovagal activity. The ratio of low- to high-frequency bands of HRV was increased in FSL rats, suggesting a relative predominance of cardiac sympathetic and/or reflex activity compared with FRL and SD rats. These data show that conscious FSL rats have cardiovascular regulatory abnormalities similar to depressed humans. Acute changes in HR, AP, temperature, and sBRS in response to 8-hydroxy-2-(di- n-propylamino)tetralin, a 5-HT1A, 5-HT1B, and 5-HT7 receptor agonist, were also determined. In FSL rats, despite inducing an exaggerated hypothermic effect, 8-hydroxy-2-(di- n-propylamino)tetralin did not decrease HR and AP or improve sBRS, suggesting impaired serotonergic neural control of cardiovagal activity. These data suggest that impaired serotonergic control of cardiac reflex function could be one mechanism linking reduced sBRS to increased cardiac risk in depression.
Collapse
|
50
|
Einat H. Different behaviors and different strains: Potential new ways to model bipolar disorder. Neurosci Biobehav Rev 2007; 31:850-7. [PMID: 17307253 DOI: 10.1016/j.neubiorev.2006.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 12/19/2006] [Accepted: 12/20/2006] [Indexed: 02/04/2023]
Abstract
The state of animal models for bipolar disorder (BPD) is deficient, creating a major problem in the research related to this devastating disorder and in our ability to translate molecular findings to the clinic. An ideal model, a "bipolar animal" is most likely unattainable as long as we do not fully understand the biological basis of the disorder, and no models are currently available to reflect the cycling nature of the disease. Yet, additional, better and more practical models need to be developed to support research efforts in the field. The present paper suggests two approaches for the development of new models. The first approach, recently introduced in the literature, is based on modeling different facets of the disease with an attempt to create a test battery that will cover a number of BPD-related behaviors. Whereas each separate model may not have strong validity when used alone, additional strength may come when certain models are combined. One example for modeling a facet of the disorder is brought showing that aggressive behavior in resident mice can be ameliorated by the dissimilar mood stabilizers lithium and valproate suggesting a possible use of the model as part of the battery, representing the aggressive facet of mania. The second approach is based on identifying behavioral differences between existing strains of animals and identifying strains that may have a behavioral phenotype that resembles aspects of BPD. A similar approach has been used previously to model other psychiatric disorders and can be utilized for BPD research. An example of this possible approach is shown with the Black Swiss mice strain that appears to have more manic-like behaviors compared to other strains. Both approaches will not culminate to an ideal, all encompassing model of BPD but may provide useful and relatively uncomplicated tools for research of the disorder.
Collapse
Affiliation(s)
- Haim Einat
- University of Minnesota, College of Pharmacy, 376 Kirby Plaza, 1208 Kirby Drive, Duluth, MN 55812, USA.
| |
Collapse
|