1
|
Bame X, Hill RA. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. Nat Commun 2024; 15:6979. [PMID: 39143079 PMCID: PMC11324877 DOI: 10.1038/s41467-024-51016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the brain. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expands concurrently with a change in subcellular partitioning towards the distal processes. These changes are followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion take 3 days. Oligodendrocyte mitochondria are stationary over days while OPC mitochondrial motility is modulated by animal arousal state within minutes. Aged OPCs also display decreased mitochondrial size, volume fraction, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.
Collapse
Affiliation(s)
- Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
2
|
Bame X, Hill RA. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570104. [PMID: 38106204 PMCID: PMC10723275 DOI: 10.1101/2023.12.05.570104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the central nervous system. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expanded concurrently with a change in subcellular partitioning towards the distal processes. These changes were followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion took 3 days. Oligodendrocyte mitochondria were stationary over days while OPC mitochondrial motility was modulated by animal arousal state within minutes. Aged OPCs also displayed decreased mitochondrial size, content, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.
Collapse
Affiliation(s)
- Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
3
|
Li S, Sheng ZH. Oligodendrocyte-derived transcellular signaling regulates axonal energy metabolism. Curr Opin Neurobiol 2023; 80:102722. [PMID: 37028201 PMCID: PMC10225329 DOI: 10.1016/j.conb.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
The unique morphology and functionality of central nervous system (CNS) neurons necessitate specialized mechanisms to maintain energy metabolism throughout long axons and extensive terminals. Oligodendrocytes (OLs) enwrap CNS axons with myelin sheaths in a multilamellar fashion. Apart from their well-established function in action potential propagation, OLs also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes consisting of proteins, lipids, and RNAs. OL-derived metabolic support is crucial for the maintenance of axonal integrity; its dysfunction has emerged as an important player in neurological disorders that are associated with axonal energy deficits and degeneration. In this review, we discuss recent advances in how these transcellular signaling pathways maintain axonal energy metabolism in health and neurological disorders.
Collapse
Affiliation(s)
- Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA. https://twitter.com/@sunan_li
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
4
|
Köhler S, Winkler U, Junge T, Lippmann K, Eilers J, Hirrlinger J. Gray and white matter astrocytes differ in basal metabolism but respond similarly to neuronal activity. Glia 2023; 71:229-244. [PMID: 36063073 DOI: 10.1002/glia.24268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes are a heterogeneous population of glial cells in the brain, which adapt their properties to the requirements of the local environment. Two major groups of astrocytes are protoplasmic astrocytes residing in gray matter as well as fibrous astrocytes of white matter. Here, we compared the energy metabolism of astrocytes in the cortex and corpus callosum as representative gray matter and white matter regions, in acute brain slices taking advantage of genetically encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP. Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+ redox ratio, and a lower cytosolic concentration of ATP compared to cortical astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased extracellular concentrations of K+ , typical correlates of neuronal activity, induced a more reduced NADH/NAD+ redox ratio. While application of glutamate decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+ and glutamate was observed in astrocytes in the corpus callosum. Finally, strong intrinsic neuronal activity provoked by application of bicuculline and withdrawal of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state as well as a slight reduction of [ATP] in gray and white matter astrocytes. In summary, the metabolism of astrocytes in cortex and corpus callosum shows distinct basal properties, but qualitatively similar responses to neuronal activity, probably reflecting the different environment and requirements of these brain regions.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Tabea Junge
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Kristina Lippmann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
5
|
Brier MR, Blazey T, Raichle ME, Morris JC, Benzinger TLS, Vlassenko AG, Snyder AZ, Goyal MS. Increased white matter glycolysis in humans with cerebral small vessel disease. NATURE AGING 2022; 2:991-999. [PMID: 37118084 PMCID: PMC10155263 DOI: 10.1038/s43587-022-00303-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/03/2022] [Indexed: 04/30/2023]
Abstract
White matter lesions in cerebral small vessel disease are related to ischemic injury and increase the risk of stroke and cognitive decline. Pathological changes due to cerebral small vessel disease are increasingly recognized outside of discrete lesions, but the metabolic alterations in nonlesional tissue has not been described. Aerobic glycolysis is critical to white matter myelin homeostasis and repair. In this study, we examined cerebral metabolism of glucose and oxygen as well as blood flow in individuals with and without cerebral small vessel disease using multitracer positron emission tomography. We show that glycolysis is relatively elevated in nonlesional white matter in individuals with small vessel disease relative to healthy, age-matched controls. On the other hand, in young healthy individuals, glycolysis is relatively low in areas of white matter susceptible to lesion formation. These results suggest that increased white matter glycolysis is a marker of pathology associated with small vessel disease.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marcus E Raichle
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrei G Vlassenko
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Manu S Goyal
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Viessmann O, Tian Q, Bernier M, Polimeni JR. Static and dynamic BOLD fMRI components along white matter fibre tracts and their dependence on the orientation of the local diffusion tensor axis relative to the B 0-field. J Cereb Blood Flow Metab 2022; 42:1905-1919. [PMID: 35650710 PMCID: PMC9536127 DOI: 10.1177/0271678x221106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies have reported functional MRI (fMRI) activation within cerebral white matter (WM) using blood-oxygenation-level-dependent (BOLD) contrast. Many blood vessels in WM run parallel to the fibre bundles, and other studies observed dependence of susceptibility contrast-based measures of blood volume on the local orientation of the fibre bundles relative to the magnetic field or B0 axis. Motivated by this, we characterized the dependence of gradient-echo BOLD fMRI on fibre orientation (estimated by the local diffusion tensor) relative to the B0 axis to test whether the alignment between bundles and vessels imparts an orientation dependence on resting-state BOLD fluctuations in the WM. We found that the baseline signal level of the T2*-weighted data is 11% higher in voxels containing fibres parallel to B0 than those containing perpendicular fibres, consistent with a static influence of either fibre or vessel orientation on local T2* values. We also found that BOLD fluctuations in most bundles exhibit orientation effects expected from oxygenation changes, with larger amplitudes from voxels containing perpendicular fibres. Different magnitudes of this orientation effect were observed across the major WM bundles, with inferior fasciculus, corpus callosum and optic radiation exhibiting 14-19% higher fluctuations in voxels containing perpendicular compared to parallel fibres.
Collapse
Affiliation(s)
- Olivia Viessmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Michaël Bernier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Polykretis P. Advanced glycation end-products as potential triggering factors of self-reactivity against myelin antigens in Multiple Sclerosis. Med Hypotheses 2021; 157:110702. [PMID: 34666261 DOI: 10.1016/j.mehy.2021.110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022]
Abstract
Multiple Sclerosis (MS) is a demyelinating autoimmune disease in which autoreactive T lymphocytes infiltrate the central nervous system (CNS) and react against antigens derived from proteins of the myelin sheath. The reason why T lymphocytes recognize certain myelin antigens as exogenous, activating the autoimmune response, remains unknown and represents the key to understand the pathogenesis of MS. Neurons are characterized by an elevated glycolytic metabolism. Methylglyoxal (MG) is a highly reactive α-oxoaldehyde spontaneously formed as a by-product of glycolysis, and it reacts with proteins, nucleotides and phospholipids forming stable adducts called advanced glycation end-products (AGEs). Several studies demonstrate that MG-derived AGEs accumulate in the plasma and brain of MS patients. Furthermore, there are evidences that post-myelinated oligodendrocytes, the myelin-forming glial cells, increase their glycolytic metabolism to maintain their survival and functions, likely explaining the progressive accumulation of MG in MS lesions. The hypothesis proposed here is that the MG-derived AGEs, accumulated on the proteins composing the myelin sheath, are responsible for the altered antigen presentation process, mimicking exogenous antigens and triggering the autoimmune response. If this hypothesis will be experimentally confirmed a new pathogenic mechanism of MS will be identified.
Collapse
Affiliation(s)
- Panagis Polykretis
- Institute of Applied Physics "Nello Carrara", National Research Council, Via Madonna Del Piano 10, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
8
|
Mitochondria in Myelinating Oligodendrocytes: Slow and Out of Breath? Metabolites 2021; 11:metabo11060359. [PMID: 34198810 PMCID: PMC8226700 DOI: 10.3390/metabo11060359] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Myelin is a lipid-rich membrane that wraps around axons and facilitates rapid action potential propagation. In the brain, myelin is synthesized and maintained by oligodendrocytes. These cells have a high metabolic demand that requires mitochondrial ATP production during the process of myelination, but they rely less on mitochondrial respiration after myelination is complete. Mitochondria change in morphology and distribution during oligodendrocyte development. Furthermore, the morphology and dynamic properties of mitochondria in mature oligodendrocytes seem different from any other brain cell. Here, we first give a brief introduction to oligodendrocyte biology and function. We then review the current knowledge on oligodendrocyte metabolism and discuss how the available data on mitochondrial morphology and mobility as well as transcriptome and proteome studies can shed light on the metabolic properties of oligodendrocytes.
Collapse
|
9
|
Heterogeneity of Astrocytes in Grey and White Matter. Neurochem Res 2019; 46:3-14. [PMID: 31797158 DOI: 10.1007/s11064-019-02926-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood-brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.
Collapse
|
10
|
Roth AD, Núñez MT. Oligodendrocytes: Functioning in a Delicate Balance Between High Metabolic Requirements and Oxidative Damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 949:167-181. [PMID: 27714689 DOI: 10.1007/978-3-319-40764-7_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of the metabolic interactions between myelinating glia and the axons they ensheath has blossomed into an area of research much akin to the elucidation of the role of astrocytes in tripartite synapses (Tsacopoulos and Magistretti in J Neurosci 16:877-885, 1996). Still, unlike astrocytes, rich in cytochrome-P450 and other anti-oxidative defense mechanisms (Minn et al. in Brain Res Brain Res Rev 16:65-82, 1991; Wilson in Can J Physiol Pharmacol. 75:1149-1163, 1997), oligodendrocytes can be easily damaged and are particularly sensitive to both hypoxia and oxidative stress, especially during their terminal differentiation phase and while generating myelin sheaths. In the present review, we will focus in the metabolic complexity of oligodendrocytes, particularly during the processes of differentiation and myelin deposition, and with a specific emphasis in the context of oxidative stress and the intricacies of the iron metabolism of the most iron-loaded cells of the central nervous system (CNS).
Collapse
Affiliation(s)
- Alejandro D Roth
- Department of Biology, Faculty of Science, University of Chile, Santiago, Chile.
| | - Marco T Núñez
- Department of Biology, Faculty of Science, University of Chile, Santiago, Chile
| |
Collapse
|
11
|
Rao VTS, Khan D, Cui QL, Fuh SC, Hossain S, Almazan G, Multhaup G, Healy LM, Kennedy TE, Antel JP. Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions. PLoS One 2017; 12:e0182372. [PMID: 28792512 PMCID: PMC5549710 DOI: 10.1371/journal.pone.0182372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022] Open
Abstract
Within the microenvironment of multiple sclerosis lesions, oligodendrocytes are subject to metabolic stress reflecting effects of focal ischemia and inflammation. Previous studies have shown that under optimal conditions in vitro, the respiratory activity of human adult brain-derived oligodendrocytes is lower and more predominantly glycolytic compared to oligodendrocytes differentiated in vitro from post natal rat brain oligodendrocyte progenitor cells. In response to sub-lethal metabolic stress, adult human oligodendrocytes reduce overall energy production rate impacting the capacity to maintain myelination. Here, we directly compare the metabolic profiles of oligodendrocytes derived from adult rat brain with oligodendrocytes newly differentiated in vitro from oligodendrocyte progenitor cells obtained from the post natal rat brain, under both optimal culture and metabolic stress (low/no glucose) conditions. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. Our findings indicate that under optimal conditions, adult rat oligodendrocytes preferentially use glycolysis whereas newly differentiated post natal rat oligodendrocytes, and the oligodendrocyte progenitor cells from which they are derived, mainly utilize oxidative phosphorylation to produce ATP. Metabolic stress increases the rate of ATP production via oxidative phosphorylation and significantly reduces glycolysis in adult oligodendrocytes. The rate of ATP production was relatively unchanged in newly differentiated post natal oligodendrocytes under these stress conditions, while it was significantly reduced in oligodendrocyte progenitor cells. Our study indicates that both age and maturation influence the metabolic profile under optimal and stressed conditions, emphasizing the need to consider these variables for in vitro studies that aim to model adult human disease.
Collapse
Affiliation(s)
- Vijayaraghava T. S. Rao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Damla Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shih-Chieh Fuh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shireen Hossain
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Luke M. Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E. Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack P. Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Szutowicz A, Bielarczyk H, Zyśk M, Dyś A, Ronowska A, Gul-Hinc S, Klimaszewska-Łata J. Early and Late Pathomechanisms in Alzheimer's Disease: From Zinc to Amyloid-β Neurotoxicity. Neurochem Res 2017; 42:891-904. [PMID: 28039593 PMCID: PMC5357490 DOI: 10.1007/s11064-016-2154-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022]
Abstract
There are several systemic and intracerebral pathologic conditions, which limit provision and utilization of energy precursor metabolites in neuronal cells. Energy deficits cause excessive depolarization of neuronal cells triggering glutamate-zinc evoked excitotoxic cascade. The intracellular zinc excess hits several intraneuronal targets yielding collapse of energy balance and impairment functional and structural impairments cholinergic neurons. Disturbances in metabolism of acetyl-CoA, which is a direct precursor for energy, acetylcholine, N-acetyl-L-aspartate and acetylated proteins synthesis, play an important role in these pathomechanisms. Disruption of brain homeostasis activates slow accumulation of amyloid-β 1-42 , which extra and intracellular oligomeric deposits disrupt diverse transporting and signaling processes in all membrane structures of the cell. Both neurotoxic signals may combine aggravating detrimental effects on neuronal cell. Different neuroglial and neuronal cell types may display differential susceptibility to similar pathogenic insults depending on specific features of their energy and functional parameters. This review, basing on findings gained from cellular and animal models of Alzheimer's disease, discusses putative energy/acetyl-CoA dependent mechanism in early and late stages of neurodegeneration.
Collapse
Affiliation(s)
- Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland.
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Marlena Zyśk
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| | - Joanna Klimaszewska-Łata
- Department of Laboratory Medicine, Medical University of Gdańsk, Ul. Dębinki 7, 80-211, Gdansk, Poland
| |
Collapse
|
13
|
Wetzels S, Wouters K, Schalkwijk CG, Vanmierlo T, Hendriks JJA. Methylglyoxal-Derived Advanced Glycation Endproducts in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020421. [PMID: 28212304 PMCID: PMC5343955 DOI: 10.3390/ijms18020421] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). The activation of inflammatory cells is crucial for the development of MS and is shown to induce intracellular glycolytic metabolism in pro-inflammatory microglia and macrophages, as well as CNS-resident astrocytes. Advanced glycation endproducts (AGEs) are stable endproducts formed by a reaction of the dicarbonyl compounds methylglyoxal (MGO) and glyoxal (GO) with amino acids in proteins, during glycolysis. This suggests that, in MS, MGO-derived AGEs are formed in glycolysis-driven cells. MGO and MGO-derived AGEs can further activate inflammatory cells by binding to the receptor for advanced glycation endproducts (RAGE). Recent studies have revealed that AGEs are increased in the plasma and brain of MS patients. Therefore, AGEs might contribute to the inflammatory status in MS. Moreover, the main detoxification system of dicarbonyl compounds, the glyoxalase system, seems to be affected in MS patients, which may contribute to high MGO-derived AGE levels. Altogether, evidence is emerging for a contributing role of AGEs in the pathology of MS. In this review, we provide an overview of the current knowledge on the involvement of AGEs in MS.
Collapse
Affiliation(s)
- Suzan Wetzels
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 Maastricht, The Netherlands.
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Kristiaan Wouters
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 Maastricht, The Netherlands.
| | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Jerome J A Hendriks
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| |
Collapse
|
14
|
Cai L, Stevenson J, Peng C, Xin R, Rastogi R, Liu K, Geng X, Gao Z, Ji X, Rafols JA, Ji Z, Ding Y. Adjuvant therapies using normobaric oxygen with hypothermia or ethanol for reducing hyperglycolysis in thromboembolic cerebral ischemia. Neuroscience 2016; 318:45-57. [PMID: 26794589 DOI: 10.1016/j.neuroscience.2016.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/25/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Normobaric oxygen (NBO), ethanol (EtOH), and therapeutic hypothermia (TH) delivered alone or in combination have neuroprotective properties after acute stroke. We used an autologous thromboembolic rat stroke model to assess the additive effects of these treatments for reducing the deleterious effects of hyperglycolysis post-stroke in which reperfusion is induced with recombinant tissue plasminogen activator (rt-PA). METHODS Sprague-Dawley rats were subjected to middle cerebral artery (MCA) occlusion with an autologous embolus. One hour after occlusion, rt-PA was administered alone or with NBO (60%), EtOH (1.0 g/kg), TH (33 °C), either singly or in combination. Infarct volume and neurological deficit were assessed at 24h after rt-PA-induced reperfusion with or without other treatments. The extent of hyperglycolysis, as determined by cerebral glucose and lactate levels was evaluated at 3 and 24h after rt-PA administration. At the same time points, expressions of glucose transporter 1 (Glut1), glucose transporter 3 (Glut3), phosphofructokinase1 (PFK-1), and lactate dehydrogenase were (LDH) measured by Western blotting. RESULTS Following rt-PA in rats with thromboembolic stroke, NBO combined with TH or EtOH most effectively decreased infarct volume and neurological deficit. As compared to rt-PA alone, EtOH or TH but not NBO monotherapies significantly reduced post-stroke hyperglycolysis. The increased utilization of glucose and production of lactate post-stroke was prevented most effectively when NBO was combined with either EtOH or TH after reperfusion with rt-PA, as shown by the significantly decreased Glut1, Glut3, PFK-1, and LDH levels. CONCLUSIONS In a rat thromboembolic stroke model, both EtOH and TH used individually offer neuroprotection after the administration of rt-PA. While NBO monotherapy does not appear to be effective, it significantly potentiates the efficacy of EtOH and TH. The similar neuroprotection and underlying mechanisms pertaining to the attenuation of hyperglycolysis provided by EtOH or TH in combination with NBO suggest a possibility of substituting EtOH for TH. Thus a combination of NBO and EtOH, which are widely available and easily used, could become a novel and effective neuroprotective strategy in the clinical setting.
Collapse
Affiliation(s)
- L Cai
- China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Stevenson
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - C Peng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Xin
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Radiology, Luhe Hospital, Capital Medical University, Beijing, China
| | - R Rastogi
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - K Liu
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - X Geng
- China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Z Gao
- Cerebral Vascular Diseases Research Institute, Capital Medical University, Beijing, China
| | - X Ji
- Cerebral Vascular Diseases Research Institute, Capital Medical University, Beijing, China
| | - J A Rafols
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Z Ji
- China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China.
| | - Y Ding
- China-America Institute of Neuroscience, Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
15
|
Morland C, Pettersen MN, Hassel B. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium. Neurotoxicology 2016; 54:34-43. [PMID: 26994581 DOI: 10.1016/j.neuro.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 02/01/2023]
Abstract
Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia.
Collapse
Affiliation(s)
- Cecilie Morland
- Norwegian Defence Research Establishment, Kjeller, Norway; Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | | | - Bjørnar Hassel
- Norwegian Defence Research Establishment, Kjeller, Norway; Department of Complex Neurology and Neurohabilitation, Oslo University Hospital and The University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. Lactate is always the end product of glycolysis. Front Neurosci 2015; 9:22. [PMID: 25774123 PMCID: PMC4343186 DOI: 10.3389/fnins.2015.00022] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022] Open
Abstract
Through much of the history of metabolism, lactate (La−) has been considered merely a dead-end waste product during periods of dysoxia. Congruently, the end product of glycolysis has been viewed dichotomously: pyruvate in the presence of adequate oxygenation, La− in the absence of adequate oxygenation. In contrast, given the near-equilibrium nature of the lactate dehydrogenase (LDH) reaction and that LDH has a much higher activity than the putative regulatory enzymes of the glycolytic and oxidative pathways, we contend that La− is always the end product of glycolysis. Cellular La− accumulation, as opposed to flux, is dependent on (1) the rate of glycolysis, (2) oxidative enzyme activity, (3) cellular O2 level, and (4) the net rate of La− transport into (influx) or out of (efflux) the cell. For intracellular metabolism, we reintroduce the Cytosol-to-Mitochondria Lactate Shuttle. Our proposition, analogous to the phosphocreatine shuttle, purports that pyruvate, NAD+, NADH, and La− are held uniformly near equilibrium throughout the cell cytosol due to the high activity of LDH. La− is always the end product of glycolysis and represents the primary diffusing species capable of spatially linking glycolysis to oxidative phosphorylation.
Collapse
Affiliation(s)
- Matthew J Rogatzki
- Department of Health and Human Performance, University of Wisconsin-Platteville Platteville, WI, USA
| | - Brian S Ferguson
- Department of Biomedical Sciences, University of Missouri Columbia, MO, USA
| | - Matthew L Goodwin
- Department of Orthopaedics, and Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | | |
Collapse
|
17
|
Fatty acids in energy metabolism of the central nervous system. BIOMED RESEARCH INTERNATIONAL 2014; 2014:472459. [PMID: 24883315 PMCID: PMC4026875 DOI: 10.1155/2014/472459] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/29/2014] [Accepted: 03/29/2014] [Indexed: 12/13/2022]
Abstract
In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.
Collapse
|
18
|
Amaral AI, Meisingset TW, Kotter MR, Sonnewald U. Metabolic aspects of neuron-oligodendrocyte-astrocyte interactions. Front Endocrinol (Lausanne) 2013; 4:54. [PMID: 23717302 PMCID: PMC3651962 DOI: 10.3389/fendo.2013.00054] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/24/2013] [Indexed: 11/26/2022] Open
Abstract
Whereas astrocytes have been in the limelight of scientific interest in brain energy metabolism for a while, oligodendrocytes are still waiting for a place on the metabolic stage. We propose to term the interaction of oligodendrocytes with astrocytes and neurons: NOA (neuron-oligodendrocyte-astrocyte) interactions. One of the reasons to find out more about metabolic interactions between oligodendrocytes, neurons, and astrocytes is to establish markers of healthy oligodendrocyte metabolism that could be used for the diagnosis and assessment of white matter disease. The vesicular release of glutamate in the white matter has received considerable attention in the past. Oligodendrocyte lineage cells express glutamate receptors and glutamate toxicity has been implicated in diseases affecting oligodendrocytes such as hypoxic-ischaemic encephalopathy, inflammatory diseases and trauma. As oligodendrocyte precursor cells vividly react to injury it is also important to establish whether cells recruited into damaged areas are able to regenerate lost myelin sheaths or whether astrocytic scarring occurs. It is therefore important to consider metabolic aspects of astrocytes and oligodendrocytes separately. The present review summarizes the limited evidence available on metabolic cycles in oligodendrocytes and so hopes to stimulate further research interests in this important field.
Collapse
Affiliation(s)
- Ana I. Amaral
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| | - Tore W. Meisingset
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Mark R. Kotter
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
- *Correspondence: Ursula Sonnewald, Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, PO Box 8905, MTFS, 7491 Trondheim, Norway. e-mail:
| |
Collapse
|
19
|
Morland C, Nordengen K, Gundersen V. Valproate causes reduction of the excitatory amino acid aspartate in nerve terminals. Neurosci Lett 2012; 527:100-4. [DOI: 10.1016/j.neulet.2012.08.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 08/10/2012] [Accepted: 08/23/2012] [Indexed: 10/28/2022]
|
20
|
Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Möbius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012; 485:517-21. [PMID: 22622581 DOI: 10.1038/nature11007] [Citation(s) in RCA: 1071] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 03/02/2012] [Indexed: 11/09/2022]
Abstract
Oligodendrocytes, the myelin-forming glial cells of the central nervous system, maintain long-term axonal integrity. However, the underlying support mechanisms are not understood. Here we identify a metabolic component of axon-glia interactions by generating conditional Cox10 (protoheme IX farnesyltransferase) mutant mice, in which oligodendrocytes and Schwann cells fail to assemble stable mitochondrial cytochrome c oxidase (COX, also known as mitochondrial complex IV). In the peripheral nervous system, Cox10 conditional mutants exhibit severe neuropathy with dysmyelination, abnormal Remak bundles, muscle atrophy and paralysis. Notably, perturbing mitochondrial respiration did not cause glial cell death. In the adult central nervous system, we found no signs of demyelination, axonal degeneration or secondary inflammation. Unlike cultured oligodendrocytes, which are sensitive to COX inhibitors, post-myelination oligodendrocytes survive well in the absence of COX activity. More importantly, by in vivo magnetic resonance spectroscopy, brain lactate concentrations in mutants were increased compared with controls, but were detectable only in mice exposed to volatile anaesthetics. This indicates that aerobic glycolysis products derived from oligodendrocytes are rapidly metabolized within white matter tracts. Because myelinated axons can use lactate when energy-deprived, our findings suggest a model in which axon-glia metabolic coupling serves a physiological function.
Collapse
Affiliation(s)
- Ursula Fünfschilling
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In addition to their role in providing myelin for rapid impulse propagation, the glia that ensheath long axons are required for the maintenance of normal axon transport and long-term survival. This presumably ancestral function seems to be independent of myelin membrane wrapping. Here, I propose that ensheathing glia provide trophic support to axons that are metabolically isolated, and that myelin itself might cause such isolation. This glial support of axonal integrity may be relevant for a number of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Klaus-Armin Nave is at the Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Herrmann-Rein-Strasse 3, D-37075 Goettingen, Germany.
| |
Collapse
|
22
|
Kashem MA, Etages HD, Kopitar-Jerala N, McGregor IS, Matsumoto I. Differential protein expression in the corpus callosum (body) of human alcoholic brain. J Neurochem 2009; 110:486-95. [DOI: 10.1111/j.1471-4159.2009.06141.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Kashem MA, Sarker R, Des Etages H, Machaalani R, King N, McGregor IS, Matsumoto I. Comparative proteomics in the corpus callosal sub-regions of postmortem human brain. Neurochem Int 2009; 55:483-90. [PMID: 19433127 DOI: 10.1016/j.neuint.2009.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 12/13/2022]
Abstract
The corpus callosum (CC) is a single anatomical region with homologous cytoarchitecture and divided into four sub-regions such as the rostrum, the genu, the body and the splenium. Neuroimaging analysis revealed that susceptibility to clinical neurological diseases of these sub-regions is variable, indicating biochemical and physiological heterogenecity. To understand the biochemical make up of these regions, we compared the protein expression of these three sub-regional areas [the genu, the body and the splenium (n=9)] through 2D proteomics, which is a high-throughput global protein expression analysis technique. Normative proteomic comparison of gels, and analysis of spectra revealed that 17 (identified as 7 proteins), 35 (identified as 20 proteins) and 39 (identified as 21 proteins) protein spots were differentially expressed in the genu vs. the body, the genu vs. the splenium and the body vs. the splenium, respectively. These results suggest that the sub-regions of the CC differ at the level of protein expression. Identified proteins of the different groups belong to several functional classes such as cytoskeletal, metabolic, signaling, oxidative stress and calcium regulation. Interestingly, oxidative stress defense and glucose metabolic pathways of the splenium are quite different from the genu which might be correlated to region specific vulnerability of neuronal illness. Protein expression maps of these regions can be used as a reference source for future studies to investigate the molecular basis of functional differences and degree of pathogenesis of various neurodegenerative diseases of the CC.
Collapse
|
24
|
Beasley CL, Dwork AJ, Rosoklija G, Mann JJ, Mancevski B, Jakovski Z, Davceva N, Tait AR, Straus SK, Honer WG. Metabolic abnormalities in fronto-striatal-thalamic white matter tracts in schizophrenia. Schizophr Res 2009; 109:159-66. [PMID: 19272755 PMCID: PMC4169119 DOI: 10.1016/j.schres.2009.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
The anterior limb of the internal capsule (ALIC) is the major white matter tract providing reciprocal connections between the frontal cortex, striatum and thalamus. Mounting evidence suggests that this tract may be affected in schizophrenia, with brain imaging studies reporting reductions in white matter volume and density, changes in fractional anisotropy and reduced asymmetry. However, the molecular correlates of these deficits are currently unknown. The aim of this study was to identify alterations in protein and metabolite levels in the ALIC in schizophrenia. Samples were obtained post-mortem from individuals with schizophrenia (n=15) and non-psychiatric controls (n=13). Immunoreactivity for the myelin-associated protein myelin basic protein (MBP), and the axonal-associated proteins phosphorylated neurofilament and SNAP-25 was measured by enzyme-linked immunoadsorbent assay (ELISA). Metabolite concentrations were quantified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. Levels of myelin- or axonal-associated proteins did not differ between groups. Overall differences in metabolite concentrations were observed between the two groups (MANOVA F=2.685, p=0.036), with post-hoc tests revealing lower lactate (19%) and alanine (24%) levels in the schizophrenia group relative to controls. Observed changes in lactate and alanine levels indicate metabolic abnormalities within the ALIC in schizophrenia.
Collapse
Affiliation(s)
- Clare L. Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J. Dwork
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA,Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA,Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Gorazd Rosoklija
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA,Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA,Macedonian Academy of Sciences and Arts, University “SS. Cyril and Methodius,” Skopje, Macedonia
| | - J. John Mann
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA,Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Branislav Mancevski
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA,Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Zlatko Jakovski
- Institute for Forensic Medicine, University “SS. Cyril and Methodius,” Skopje, Macedonia
| | - Natasa Davceva
- Institute for Forensic Medicine, University “SS. Cyril and Methodius,” Skopje, Macedonia
| | - Andrew R. Tait
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - William G. Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
High-affinity choline uptake and acetylcholine-metabolizing enzymes in CNS white matter. A quantitative study. Neurochem Int 2008; 53:193-8. [PMID: 18674580 DOI: 10.1016/j.neuint.2008.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 06/08/2008] [Accepted: 06/24/2008] [Indexed: 11/22/2022]
Abstract
The presence of nicotinic and muscarinic receptors suggests the occurrence of cholinergic neurotransmission in white matter; however no quantitative information exists on acetylcholine formation and breakdown in white matter. We compared white structures of pig brain (fimbria, corpus callosum, pyramidal tracts, and occipital white matter) to gray structures (temporal, parietal and cerebellar cortices, hippocampus, and caudate) and found that sodium-dependent, high-affinity choline uptake in white structures was 25-31% of that in hippocampus. White matter choline acetyltransferase activity was 10-50% of the hippocampal value; the highest activity was found in fimbria. Acetylcholine esterase activity in white structures was 20-25% of that in hippocampus. The caudate, which is rich in cholinergic interneurons, gave values for all three parameters that were 2.8-4 times higher than in hippocampus. The results suggest a certain capacity for cholinergic neurotransmission in central nervous white matter. The white matter activity of pyruvate dehydrogenase, which provides acetyl-CoA for acetylcholine synthesis, ranged between 33 and 50% of the hippocampal activity; the activity in the caudate was similar to that in hippocampus and the other gray structures, which was true also for other enzymes of glucose metabolism: hexokinase, phosphoglucomutase, and glucose-6-phosphate dehydrogenase. Acetylcholine esterase activity in white matter was inhibited by the nerve agent soman, which may help explain the reported deleterious effect of soman on white matter. Further, this finding suggests that acetylcholine esterase inhibitors used in Alzheimer's disease may have an effect in white matter.
Collapse
|
26
|
Hertz L. Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 2008; 55:289-309. [PMID: 18639906 DOI: 10.1016/j.neuropharm.2008.05.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 12/27/2022]
Abstract
In cerebral ischemia survival of neurons, astrocytes, oligodendrocytes and endothelial cells is threatened during energy deprivation and/or following re-supply of oxygen and glucose. After a brief summary of characteristics of different cells types, emphasizing the dependence of all on oxidative metabolism, the bioenergetics of focal and global ischemia is discussed, distinguishing between events during energy deprivation and subsequent recovery attempt after re-circulation. Gray and white matter ischemia are described separately, and distinctions are made between mature and immature brains. Next comes a description of bioenergetics in individual cell types in culture during oxygen/glucose deprivation or exposure to metabolic inhibitors and following re-establishment of normal aerated conditions. Due to their expression of NMDA and non-NMDA receptors neurons and oligodendrocytes are exquisitely sensitive to excitotoxicity by glutamate, which reaches high extracellular concentrations in ischemic brain for several reasons, including failing astrocytic uptake. Excitotoxicity kills brain cells by energetic exhaustion (due to Na(+) extrusion after channel-mediated entry) combined with mitochondrial Ca(2+)-mediated injury and formation of reactive oxygen species. Many (but not all) astrocytes survive energy deprivation for extended periods, but after return to aerated conditions they are vulnerable to mitochondrial damage by cytoplasmic/mitochondrial Ca(2+) overload and to NAD(+) deficiency. Ca(2+) overload is established by reversal of Na(+)/Ca(2+) exchangers following Na(+) accumulation during Na(+)-K(+)-Cl(-) cotransporter stimulation or pH regulation, compensating for excessive acid production. NAD(+) deficiency inhibits glycolysis and eventually oxidative metabolism, secondary to poly(ADP-ribose)polymerase (PARP) activity following DNA damage. Hyperglycemia can be beneficial for neurons but increases astrocytic death due to enhanced acidosis.
Collapse
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, PR China.
| |
Collapse
|