1
|
Huang CY, Zuo MT, Qi XJ, Gong MD, Xu WB, Meng SY, Long JY, Li PS, Sun ZL, Zheng XF, Liu ZY. Hypoxia tolerance determine differential gelsenicine-induced neurotoxicity between pig and mouse. BMC Med 2025; 23:156. [PMID: 40075370 PMCID: PMC11905507 DOI: 10.1186/s12916-025-03984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Gelsemium elegans (G. elegans) is widely recognized as one of the most toxic plants globally, particularly harmful to humans. Some reports indicate that it is non-toxic to pigs and even has a growth-promoting effect; however, the underlying reasons for this paradox remain unclear. METHODS Gelsenicine is the main toxic component of G. elegans. This study characterized gelsenicine-induced toxicity using electrophysiological recordings, molecular dynamic simulations, c-Fos immunostaining, and multi-omics technologies. Additionally, we conducted a comprehensive analysis comparing the toxic effects of gelsenicine across various animal species through examinations of tissue distribution, blood gas analysis, metabonomics, and behavioral tests. RESULTS We demonstrated that gelsenicine-induced hypoxia leads to respiratory depression in mice by enhancing the effect of gamma-aminobutyric acid (GABA) on GABA receptors (GABARs). Glycine significantly ameliorated hypoxia and improved the survival of gelsenicine-poisoned mice. Under gelsenicine-induced hypoxic conditions, N-methyl-D-aspartate (NMDA) receptor function and mitochondrial energy metabolism processes were perturbed, resulting in neuronal excitotoxicity. Finally, we confirmed that pigs could tolerate hypoxia and were resistant to gelsenicine toxicity due to high concentrations of circulating glycine and low levels of NMDA receptors (NMDARs) in the hippocampus. CONCLUSIONS These findings suggest that hypoxic protection should be considered as a potential therapeutic strategy for gelsenicine poisoning. Our study contributes to preventing potential risks posed by G. elegans poisoning to human and animal health.
Collapse
Affiliation(s)
- Chong-Yin Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Xue-Jia Qi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Meng-Die Gong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Wen-Bo Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Si-Yu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Jiang-Yu Long
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Pi-Shun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Xiao-Feng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Byun KA, Lee SY, Oh S, Batsukh S, Jang JW, Lee BJ, Rheu KM, Li S, Jeong MS, Son KH, Byun K. Fermented Fish Collagen Attenuates Melanogenesis via Decreasing UV-Induced Oxidative Stress. Mar Drugs 2024; 22:421. [PMID: 39330302 PMCID: PMC11433465 DOI: 10.3390/md22090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Excessive melanogenesis leads to hyperpigmentation-related cosmetic problems. UV exposure increases oxidative stress, which promotes melanogenesis-related signal pathways such as the PKA, microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2) pathways. Glycine is a source of endogenous antioxidants, including glutathione. Fermented fish collagen (FC) contains glycine; thus, we evaluated the effect of FC on decreasing melanogenesis via decreasing oxidative stress. The glycine receptor (GlyR) and glycine transporter-1 (GlyT1) levels were decreased in UV-irradiated keratinocytes; however, the expression levels of these proteins increased upon treatment with FC. The FC decreased oxidative stress, as indicated by the decreasing expression of NOX1/2/4, increased expression of GSH/GSSG, increased SOD activity, and decreased 8-OHdG expression in UV-irradiated keratinocytes. Administration of conditioned media from FC-treated keratinocytes to melanocytes led to decreased p38, PKC, MITF, TRP1, and TRP2 expression. These changes induced by the FC were also observed in UV-irradiated animal skin. FC treatment increased the expression of GlyR and GlyT, which was accompanied by decreased oxidative stress in the UV-irradiated skin. Moreover, the FC negatively regulated the melanogenesis signaling pathways, leading to decreased melanin content in the UV-irradiated skin. In conclusion, FC decreased UV-induced oxidative stress and melanogenesis in melanocytes and animal skin. FC could be used in the treatment of UV-induced hyperpigmentation problems.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- LIBON Inc., Incheon 22006, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jong-Won Jang
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Bae-Jin Lee
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea
| | | | - Sichao Li
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea
| | - Min-Seok Jeong
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Chen Q, Li L, Xu L, Yang B, Huang Y, Qiao D, Yue X. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med 2024; 138:207-227. [PMID: 37338605 DOI: 10.1007/s00414-023-03039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and β-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and β-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.
Collapse
Affiliation(s)
- Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingyue Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Guo B, Song H, Fan J, Wang B, Chen L, Hu Q, Yin Y. The NR2B-targeted intervention alleviates the neuronal injuries at the sub-acute stage of cerebral ischemia: an exploration of stage-dependent strategy against ischemic insults. Exp Brain Res 2023; 241:2735-2750. [PMID: 37845379 DOI: 10.1007/s00221-023-06717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/30/2023] [Indexed: 10/18/2023]
Abstract
Stroke is reported to be the second leading cause of death worldwide, among which ischemic stroke has fourfold greater incidence than intracerebral hemorrhage. Excitotoxicity induced by NMDAR plays a central role in ischemic stroke-induced neuronal death. However, intervention targeted NMDARs against ischemic stroke has failed, which may result from the complex composition of NMDARs and the dynamic changes of their subunits. In this current study, the levels of NR1, NR2A and NR2B subunits of NMDARs were observed upon different time points during the reperfusion after 1 h ischemia with the western blot assay. It was found that the changes of NR1 subunit were only detected after ischemia 1 h/reperfusion 1 day (1 d). While, the changes of NR2A and NR2B subunits may last to ischemia 1 h/reperfusion 7 day(7 d), indicating that NR2subunits may be a potential target for ischemia-reperfusion injuries at the sub-acute stage of ischemic stroke. Simultaneously, mitochondrial injuries in neurons were investigated with transmission electron microscopy (TEM), and mitochondrial dysfunction was evaluated with mitochondrial membrane proteins oxidative respiratory chain complex and OCR. When the antagonist of NMDARs was used before ischemic exposure, the neuronal mitochondrial dysfunction was alleviated, suggesting that these aberrant deviations of NMDARs from basal levels led to mitochondrial dysfunction. Furthermore, when the antagonist of NR2B was administrated intracerebroventricularly at the sub-acute cerebral ischemia, the volume of cerebral infarct region was decreased and the neural functions were improved. To sum up, the ratio of NR2B-containing NMDARs is vital for mitochondrial homeostasis and then neuronal survival. NR2B-targeted intervention should be chosen at the sub-acute stage of cerebral ischemia.
Collapse
Affiliation(s)
- Bei Guo
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China
| | - Huimeng Song
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China
| | - Jiahui Fan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China
| | - Bin Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China
| | - Lingyi Chen
- John Bapst Memorial High School, Bangor, CA, USA
| | - Qiandai Hu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China
| | - Yanling Yin
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China.
| |
Collapse
|
5
|
Wang H, Ni X, Dong W, Qin W, Xu L, Jiang Y. Accurately quantified plasma free glycine concentration as a biomarker in patients with acute ischemic stroke. Amino Acids 2023; 55:385-402. [PMID: 36697969 DOI: 10.1007/s00726-023-03236-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
We developed a hollow fiber centrifugal ultrafiltration (HFCF-UF) method to study the change of plasma levels of free glycine (Gly) in patients with acute ischemic stroke (AIS). Twenty-four patients with AIS confirmed by diffusion-weighted imaging (DWI) were enrolled. During the study period, the patients did not receive any supplemental amino acids therapy that could affect the obtained results. Our results showed that although AIS patients adopted different methods of treatment (thrombolytic and non-thrombolytic), the clinical NIHSS score of AIS showed a downward trend whereas Gly concentration showed increased trend. Moreover, plasma free Gly concentration was positively correlated with ASPECTS score. The correlation between Gly levels and infarct volume showed a statistical significance. That is to say, higher Gly level predicted smaller infarct size. Thus, the change of free Gly level in plasma could be considered as a potential biomarker of AIS.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaoyu Ni
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Weichong Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Weiman Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Lei Xu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| | - Ye Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
6
|
Liu Y, Xie L, Gao M, Zhang R, Gao J, Sun J, Chai Q, Wu T, Liang K, Chen P, Wan Q, Kong B. Super-Assembled Periodic Mesoporous Organosilica Frameworks for Real-Time Hypoxia-Triggered Drug Release and Monitoring. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50246-50257. [PMID: 34637262 DOI: 10.1021/acsami.1c15067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hypoxia, induced by inadequate oxygen supply, is a key indication of various major illnesses, which necessitates the need to develop new nanoprobes capable of sensing hypoxia environments for the targeted system monitoring and drug delivery. Herein, we report a hypoxia-responsive, periodic mesoporous organosilica (PMO) nanocarrier for repairing hypoxia damage. β-cyclodextrin (β-CD) capped azobenzene functionalization on the PMO surface could be effectively cleaved by azoreductase under a hypoxia environment. Moreover, the nanosystem is equipped with fluorescence resonance energy transfer (FRET) pair (tetrastyrene derivative (TPE) covalently attached to the PMO framework as the donor and Rhodamine B (RhB) in the mesopores as the receptor) for intracellular visualization and tracking of drug release in real-time. The design of intelligent nanocarriers capable of simultaneous reporting and treating of hypoxia conditions highlights a great potential in the biomedical domain.
Collapse
Affiliation(s)
- Yingnan Liu
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, 308 Ningxia Street, Qingdao 266071, P. R. China
| | - Lei Xie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Meng Gao
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Runhao Zhang
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, P. R. China
| | - Jiangdong Sun
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, P. R. China
| | - Qingdong Chai
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, 308 Ningxia Street, Qingdao 266071, P. R. China
| | - Tong Wu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
7
|
Licari C, Tenori L, Giusti B, Sticchi E, Kura A, De Cario R, Inzitari D, Piccardi B, Nesi M, Sarti C, Arba F, Palumbo V, Nencini P, Marcucci R, Gori AM, Luchinat C, Saccenti E. Analysis of Metabolite and Lipid Association Networks Reveals Molecular Mechanisms Associated with 3-Month Mortality and Poor Functional Outcomes in Patients with Acute Ischemic Stroke after Thrombolytic Treatment with Recombinant Tissue Plasminogen Activator. J Proteome Res 2021; 20:4758-4770. [PMID: 34473513 PMCID: PMC8491161 DOI: 10.1021/acs.jproteome.1c00406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Here, we present
an integrated multivariate, univariate, network
reconstruction and differential analysis of metabolite–metabolite
and metabolite–lipid association networks built from an array
of 18 serum metabolites and 110 lipids identified and quantified through
nuclear magnetic resonance spectroscopy in a cohort of 248 patients,
of which 22 died and 82 developed a poor functional outcome within
3 months from acute ischemic stroke (AIS) treated with intravenous
recombinant tissue plasminogen activator. We explored differences
in metabolite and lipid connectivity of patients who did not develop
a poor outcome and who survived the ischemic stroke from the related
opposite conditions. We report statistically significant differences
in the connectivity patterns of both low- and high-molecular-weight
metabolites, implying underlying variations in the metabolic pathway
involving leucine, glycine, glutamine, tyrosine, phenylalanine, citric,
lactic, and acetic acids, ketone bodies, and different lipids, thus
characterizing patients’ outcomes. Our results evidence the
promising and powerful role of the metabolite–metabolite and
metabolite–lipid association networks in investigating molecular
mechanisms underlying AIS patient’s outcome.
Collapse
Affiliation(s)
- Cristina Licari
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.,Atherothrombotic Diseases Center, Careggi Hospital, Florence, Largo Brambilla 3, Florence 50134, Italy.,Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Viale Pieraccini 6, Firenze 50139, Italy
| | - Elena Sticchi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Ada Kura
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.,Atherothrombotic Diseases Center, Careggi Hospital, Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Rosina De Cario
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Domenico Inzitari
- Stroke Unit, Careggi University Hospital, Florence 50134, Italy.,Institute of Neuroscience, Italian National Research Council (CNR), Via Madonna del Piano, 10, Sesto Fiorentino, Florence 50019, Italy
| | | | - Mascia Nesi
- Stroke Unit, Careggi University Hospital, Florence 50134, Italy
| | - Cristina Sarti
- NEUROFARBA Department, Neuroscience Section, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Francesco Arba
- Department of Neurology, Careggi University Hospital, Largo Brambilla 3, Florence 50134, Italy
| | - Vanessa Palumbo
- Stroke Unit, Careggi University Hospital, Florence 50134, Italy
| | | | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.,Atherothrombotic Diseases Center, Careggi Hospital, Florence, Largo Brambilla 3, Florence 50134, Italy.,Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Viale Pieraccini 6, Firenze 50139, Italy
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.,Atherothrombotic Diseases Center, Careggi Hospital, Florence, Largo Brambilla 3, Florence 50134, Italy.,Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Viale Pieraccini 6, Firenze 50139, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, the Netherlands
| |
Collapse
|
8
|
Zitkute V, Kvietkauskas M, Maskoliunaite V, Leber B, Ramasauskaite D, Strupas K, Stiegler P, Schemmer P. Melatonin and Glycine Reduce Uterus Ischemia/Reperfusion Injury in a Rat Model of Warm Ischemia. Int J Mol Sci 2021; 22:8373. [PMID: 34445081 PMCID: PMC8394613 DOI: 10.3390/ijms22168373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) remains a significant problem to be solved in uterus transplantation (UTx). Melatonin and glycine have been shown to possess direct cytoprotective activities, mainly due to their antioxidative and anti-inflammatory properties. The aim of this study was to investigate the protective effects of melatonin and glycine and their combination on IRI in a rat model of warm ischemia. In this study, Sprague-Dawley rats were assigned to eight groups, including sham and IRI (n = 80). Melatonin and glycine alone or their combination were administered prior to 1 h of uterus ischemia followed by 1 h of reperfusion. Melatonin (50 mg/kg) was administered via gavage 2 h before IRI and glycine in an enriched diet for 5 days prior to intervention. Uterus IRI was estimated by histology, including immunohistochemistry, and biochemical tissue analyses. Histology revealed that uterus IRI was significantly attenuated by pretreatment with melatonin (p = 0.019) and glycine (p = 0.044) alone as well as their combination (p = 0.003). Uterus IRI led to increased myeloperoxidase expression, which was significantly reduced by melatonin (p = 0.004), glycine (p < 0.001) or their combination (p < 0.001). The decline in superoxide dismutase activity was significantly reduced in the melatonin (p = 0.027), glycine (p = 0.038) and combined treatment groups (p = 0.015) when compared to the IRI control group. In conclusion, melatonin, glycine and their combination significantly reduced oxidative stress-induced cell damage after IRI in a small animal warm ischemia model, and, therefore, clinical studies are required to evaluate the protective effects of these well-characterized substances in uterus IRI.
Collapse
Affiliation(s)
- Viktorija Zitkute
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (V.Z.); (M.K.); (P.S.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania; (V.M.); (D.R.); (K.S.)
| | - Mindaugas Kvietkauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (V.Z.); (M.K.); (P.S.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania; (V.M.); (D.R.); (K.S.)
| | - Vygante Maskoliunaite
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania; (V.M.); (D.R.); (K.S.)
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, P. Baublio 5, 08406 Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (V.Z.); (M.K.); (P.S.); (P.S.)
| | - Diana Ramasauskaite
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania; (V.M.); (D.R.); (K.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania; (V.M.); (D.R.); (K.S.)
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (V.Z.); (M.K.); (P.S.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (V.Z.); (M.K.); (P.S.); (P.S.)
| |
Collapse
|
9
|
10-O-(N N-Dimethylaminoethyl)-Ginkgolide B Methane-Sulfonate (XQ-1H) Ameliorates Cerebral Ischemia Via Suppressing Neuronal Apoptosis. J Stroke Cerebrovasc Dis 2021; 30:105987. [PMID: 34273708 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The 10-O-(N N-dimethylaminoethyl)-ginkgolide B methane-sulfonate (XQ-1H) is an effective novel drug for the treatment of ischemic cerebrovascular disease derived from Ginkgolide B, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, whether XQ-1H exerts neuroprotective effect via regulating neuronal apoptosis and the underlying mechanism remain to be elucidated. MATERIALS AND METHODS This study was aimed to investigate the neuroprotective effect of XQ-1H in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and the oxygen glucose deprivation/reoxygenation (OGD/R) induced neuronal apoptosis on pheochromocytoma (PC-12) cells. RESULTS The results showed that administration of XQ-1H at different dosage (7.8, 15.6, 31.2 mg/kg) reduced the brain infarct and edema, attenuated the neuro-behavioral dysfunction, and improved cell morphology in brain tissue after MCAO/R in rats. Moreover, incubation with XQ-1H (1 µM, 3 µM, 10 µM, 50 µM, 100 µM) could increase the cell viability, and showed no toxic effect to PC-12 cells. XQ-1H at following 1 µM, 10 µM, 100 µM decreased the lactate dehydrogenase (LDH) activity and suppressed the cell apoptosis in PC-12 cells exposed to OGD/R. In addition, XQ-1H treatment could significantly inhibit caspase-3 activation both in vivo and in vitro, reciprocally modulate the expression of apoptosis related proteins, bcl-2, and bax via activating PI3K/Akt signaling pathway. For mechanism verification, LY294002, the inhibitor of PI3K/Akt pathway was introduced the expressions of bcl-2 and phosphorylated Akt were down-regulated, the expression of bax was up-regulated, indicating that XQ-1H could alleviate the cell apoptosis through activating the PI3K/Akt pathway. CONCLUSIONS Our findings demonstrated that XQ-1H treatment could provide a neuroprotective effect against ischemic stroke induced by cerebral ischemia/reperfusion injury in vivo and in vitro through regulating neuronal survival and inhibiting apoptosis. The findings of the study confirmed that XQ-1H could be develop as a potential drug for treatment of cerebral ischemic stroke.
Collapse
|
10
|
Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Li Q, Jin R, Zhang S, Sun X, Wu J. Transient receptor potential vanilloid four channels modulate inhibitory inputs through differential regulation of GABA and glycine receptors in rat retinal ganglion cells. FASEB J 2020; 34:14521-14538. [PMID: 32892440 DOI: 10.1096/fj.201902937rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel is widely distributed in the retina. Activation of the TRPV4 channel enhances excitatory signaling from bipolar cells to retinal ganglion cells (RGCs), thereby increasing RGC firing rate and membrane excitability. In this study, we investigated the effect of TRPV4 channel activation on the miniature inhibitory postsynaptic current (mIPSC) in rat RGCs. Our results showed that perfusion with HC-067047, a TRPV4-channel antagonist, significantly reduced the amplitude of RGC mIPSCs. Extracellular application of the TRPV4 channel agonist GSK1016790A (GSK101) enhanced the frequency and amplitude of mIPSCs in ON- and OFF-type RGCs; pre-application of HC-067047 blocked the effect of GSK101 on mIPSCs. Furthermore, TRPV4 channels were able to enhance the frequency and amplitude of glycine receptor (GlyR)-mediated mIPSCs and inhibit the frequency of type A γ-aminobutyric acid receptor (GABAA R)-mediated mIPSCs. Upon intracellular administration or intravitreal injection of GSK101, TRPV4 channel activation reduced the release of presynaptic glycine and enhanced the function and expression of postsynaptic GlyRs; however, it inhibited presynaptic release of GABA, but did not affect postsynaptic GABAA Rs. Our study results provide insight regarding the effect of TRPV4 channel activation on RGCs and offer a potential interventional target for retinal diseases involving TRPV4 channels.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ruiri Jin
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenghai Zhang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinghuai Sun
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
12
|
Lei X, Zhang C. Predicting metabolite-disease associations based on KATZ model. BioData Min 2019; 12:19. [PMID: 31673292 PMCID: PMC6815005 DOI: 10.1186/s13040-019-0206-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/12/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Increasing numbers of evidences have illuminated that metabolites can respond to pathological changes. However, identifying the diseases-related metabolites is a magnificent challenge in the field of biology and medicine. Traditional medical equipment not only has the limitation of its accuracy but also is expensive and time-consuming. Therefore, it's necessary to take advantage of computational methods for predicting potential associations between metabolites and diseases. RESULTS In this study, we develop a computational method based on KATZ algorithm to predict metabolite-disease associations (KATZMDA). Firstly, we extract data about metabolite-disease pairs from the latest version of HMDB database for the materials of prediction. Then we take advantage of disease semantic similarity and the improved disease Gaussian Interaction Profile (GIP) kernel similarity to obtain more reliable disease similarity and enhance the predictive performance of our proposed computational method. Simultaneously, KATZ algorithm is applied in the domains of metabolomics for the first time. CONCLUSIONS According to three kinds of cross validations and case studies of three common diseases, KATZMDA is worth serving as an impactful measuring tool for predicting the potential associations between metabolites and diseases.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi’an, 710119 Shaanxi China
| | - Cheng Zhang
- School of Computer Science, Shaanxi Normal University, Xi’an, 710119 Shaanxi China
| |
Collapse
|
13
|
Antioxidative Property and Molecular Mechanisms Underlying Geniposide-Mediated Therapeutic Effects in Diabetes Mellitus and Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7480512. [PMID: 31089416 PMCID: PMC6476013 DOI: 10.1155/2019/7480512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Geniposide, an iridoid glucoside, is a major component in the fruit of Gardenia jasminoides Ellis (Gardenia fruits). Geniposide has been experimentally proved to possess multiple pharmacological actions involving antioxidative stress, anti-inflammatory, antiapoptosis, antiangiogenesis, antiendoplasmic reticulum stress (ERS), etc. In vitro and in vivo studies have further identified the value of geniposide in a spectrum of preclinical models of diabetes mellitus (DM) and cardiovascular disorders. The antioxidative property of geniposide should be attributed to the result of either the inhibition of numerous pathological processes or the activation of various proteins associated with cell survival or a combination of both. In this review, we will summarize the available knowledge on the antioxidative property and protective effects of geniposide in DM and cardiovascular disease in the literature and discuss antioxidant mechanisms as well as its potential applications in clinic.
Collapse
|
14
|
Glycine supplementation to breast-fed piglets attenuates post-weaning jejunal epithelial apoptosis: a functional role of CHOP signaling. Amino Acids 2018; 51:463-473. [DOI: 10.1007/s00726-018-2681-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
|
15
|
Mohammad Alizadeh E, Mahdavi M, Jenani Fard F, Chamani S, Farajdokht F, Karimi P. Metformin protects PC12 cells against oxygen-glucose deprivation/reperfusion injury. Toxicol Mech Methods 2018; 28:622-629. [DOI: 10.1080/15376516.2018.1486495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Majid Mahdavi
- Department of Biology, University of Tabriz, Tabriz, Iran
| | | | | | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Lushnikova I, Maleeva G, Skibo G. Glycine receptors are involved in hippocampal neuronal damage caused by oxygen-glucose deficiency. Cell Biol Int 2018; 42:1423-1431. [PMID: 30022566 DOI: 10.1002/cbin.11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/13/2018] [Indexed: 11/07/2022]
Abstract
Glycine receptors (GlyRs) belong to the family of ligand-gated cys-loop receptors and effectuate fast inhibitory neurotransmission in central nervous system (CNS). They are involved in numerous physiological processes, such as movement, respiration, and processing of sensory information, as well as in regulation of neuronal excitability in different brain regions. GlyRs play important role in the maintenance of excitatory/inhibitory balance in the hippocampus and participate in the development of various brain pathologies. In the present study, we have examined a surface expression of GlyRs by pyramidal neurons and astrocytes in control and after 30 min of oxygen-glucose deprivation (OGD) in the organotypic culture of hippocampal slices. Our investigation has demonstrated a decrease in GlyR-positive staining associated with pyramidal neurons and relative stability of GlyRs expression at the surface of astrocytes 4 hs after OGD. These data indicate that GlyRs dysfunction may represent a significant additional factor leading to enhanced neuronal damage induced by OGD. Pharmacological modulation of GlyRs is a promising venue of research for the correction of negative consequences of oxygen-glucose deficiency.
Collapse
Affiliation(s)
- Iryna Lushnikova
- Department of Cytology, O.O.Bogomoletz Institute of Physiology, National Academy of Sciences, Kiev, Ukraine
| | - Galyna Maleeva
- Aix-Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Galyna Skibo
- Department of Cytology, O.O.Bogomoletz Institute of Physiology, National Academy of Sciences, Kiev, Ukraine
| |
Collapse
|
17
|
Xu W, Zhang Y, Yu Y, Li B, Liu J, Wang P, Wu H, Liu Q, Wei Z, Xiao H, Wang Z. Dose-dependent target diversion of Danhong injection on the Glu-GLT-1/Gly-GlyRα dynamic balance module of cerebral ischemia. Pharmacol Res 2018; 135:80-88. [PMID: 30031913 DOI: 10.1016/j.phrs.2018.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Function-oriented modular structure analysis is a great challenge in module-based pharmacological studies. A strategy to uncover target-target interaction (TTI) and dynamic balance regularity (DBR) was established to discover the structural factors influencing modular functions and explore the mechanism of Danhong injection (DHI) in treating cerebral ischemia. The dose-related metabolic features of DHI intervention were investigated using metabolomics and modular pharmacology. The findings indicated that Glu/Gly was a biomarker and Glu-GLT-1/Gly-GlyRα was the core unit regulated by DHI. Gly and Glu displayed opposite patterns and functional roles, representing intra-modular balance. GlyRα was identified as the upstream target and GLT-1 as the downstream target by inhibiting or activating GlyRα, indicating that DHI has two dose-dependent regulatory modes. GlyRα was the major target at low doses, while GLT-1 was activated as the dominant target as doses accumulated. Our study reveals that target-target interaction and dynamic balance regularity are the key factors influencing modular functions, which is a promising breakthrough for module-based pharmacological studies.
Collapse
Affiliation(s)
- Wenjuan Xu
- School of Life Sciences, Research Center for Chinese Medical Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongli Wu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ziyi Wei
- School of Life Sciences, Research Center for Chinese Medical Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongbin Xiao
- School of Life Sciences, Research Center for Chinese Medical Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
18
|
Zhu S, Huang M, Feng G, Miao Y, Wu H, Zeng M, Lo YM. Gelatin versus its two major degradation products, prolyl-hydroxyproline and glycine, as supportive therapy in experimental colitis in mice. Food Sci Nutr 2018; 6:1023-1031. [PMID: 29983966 PMCID: PMC6021736 DOI: 10.1002/fsn3.639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Gelatin is an anti-inflammatory dietary component, and its predominant metabolites entering circulation are prolyl-hydroxyproline (Pro-Hyp) and glycine. We evaluated the protective effects of orally administered gelatin, glycine, and Pro-Hyp 10:3:0.8 (w/w/w) against dextran sodium sulfate (DSS)-induced colitis in mice. According to clinical, histological, and biochemical parameters, they exhibited significant activities in the order of gelatin < glycine < Pro-Hyp. Gelatin prevented the DSS-induced increase in interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the colon, rather than in peripheral blood. Glycine and Pro-Hyp attenuated the DSS-induced rise in colonic IL-6 and TNF-α, as well as peripheral IL-1β, IL-6, and TNF-α. Hematologic results show the attenuation of DSS-induced leukocytosis and lymphocytosis by glycine and Pro-Hyp, rather than gelatin. These findings suggest that glycine and Pro-Hyp constitute the material basis for gelatin's anticolitis efficacy, and they have better anticolitis activities and distinct mechanisms of action when ingested as free compounds than as part of gelatin.
Collapse
Affiliation(s)
- Suqin Zhu
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong ProvinceChina
| | - Min Huang
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong ProvinceChina
| | - Guangxin Feng
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong ProvinceChina
| | - Yu Miao
- Department of Clinical LaboratoryThe Affiliated Hospital of Qingdao UniversityQingdaoShandong ProvinceChina
| | - Haohao Wu
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong ProvinceChina
| | - Mingyong Zeng
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong ProvinceChina
| | - Yangming Martin Lo
- College of Biological Science and EngineeringFuzhou UniversityFujianChina
| |
Collapse
|
19
|
Abstract
Ischemic stroke is a sudden loss of brain function due to the reduction of blood flow. Brain tissues cease to function with subsequent activation of the ischemic cascade. Metabolomics and lipidomics are modern disciplines that characterize the metabolites and lipid components of a biological system, respectively. Because the pathogenesis of ischemic stroke is heterogeneous and multifactorial, it is crucial to establish comprehensive metabolomic and lipidomic approaches to elucidate these alterations in this disease. Fortunately, metabolomic and lipidomic studies have the distinct advantages of identifying tissue/mechanism-specific biomarkers, predicting treatment and clinical outcome, and improving our understanding of the pathophysiologic basis of disease states. Therefore, recent applications of these analytical approaches in the early diagnosis of ischemic stroke were discussed. In addition, the emerging roles of metabolomics and lipidomics on ischemic stroke were summarized, in order to gain new insights into the mechanisms underlying ischemic stroke and in the search for novel metabolite biomarkers and their related pathways.
Collapse
|
20
|
Zhang Y, Su W, Zhang Q, Xu J, Liu H, Luo J, Zhan L, Xia Z, Lei S. Glycine Protects H9C2 Cardiomyocytes from High Glucose- and Hypoxia/Reoxygenation-Induced Injury via Inhibiting PKC β2 Activation and Improving Mitochondrial Quality. J Diabetes Res 2018; 2018:9502895. [PMID: 29850613 PMCID: PMC5904807 DOI: 10.1155/2018/9502895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/29/2018] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients with diabetes are more vulnerable to myocardial ischemia reperfusion injury (IRI), which is involved in PKCβ2 activation and mitochondrial dysfunction. Glycine has been documented as a cytoprotective agent to attenuate diabetes-related abnormalities and reduce myocardial IRI, but the underlying mechanisms are still unclear. We determined whether glycine could attenuate high glucose- (HG-) and hypoxia/reoxygenation- (H/R-) induced injury by inhibiting PKCβ2 activation and improving mitochondrial quality in cultured H9C2 cells. METHODS H9C2 cells were either exposed to low glucose (LG) or HG conditions with or without treatment of glycine or CGP53353 (a selective inhibitor of PKCβ2) for 48 h, then subjected to 4 h of hypoxia followed by 2 h of reoxygenation (H/R). Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential (MMP), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration were detected using corresponding commercial kits. Mitochondrial quality control-related proteins (LC-3II, Mfn-2, and Cyt-C) and PKCβ2 activation were detected by Western blot. RESULTS HG stimulation significantly decreased cell viability and SOD activity and increased LDH release, MDA production, and PKCβ2 activation as compared to LG group, all of which changes were further increased by H/R insult. Glycine or CGP53353 treatment significantly reduced the increase of LDH release, MDA production, PKCβ2 activation, and Cyt-C expression and the decrease of cell viability, SOD activity, MMP, Mfn-2 expression, and LC-3II/LC-3I ratio induced by HG and H/R stimulation. CONCLUSIONS Supplementary glycine protects H9C2 cells from HG- and H/R-induced cellular injury by suppressing PKCβ2 activation and improving mitochondria quality.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wating Su
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiongxia Zhang
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinjin Xu
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huimin Liu
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Luo
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Zhan
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoqing Lei
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Identification of risk genes associated with myocardial infarction based on the recursive feature elimination algorithm and support vector machine classifier. Mol Med Rep 2017; 17:1555-1560. [PMID: 29138828 PMCID: PMC5780094 DOI: 10.3892/mmr.2017.8044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to identify risk genes in myocardial infarction. Microarray data GSE34198, containing data from the peripheral blood of 49 myocardial infarction samples and 48 corresponding control samples, were downloaded from the Gene Expression Omnibus database to screen the differentially expressed genes (DEGs). The DEGs were used to construct a protein-protein interaction (PPI) network of patient samples, from which the feature genes were identified using the neighboring score method. The recursive feature elimination (RFE) algorithm was employed to select the risk genes among feature genes, which were subsequently applied to perform a support vector machine (SVM) classifier to identify the specific signature in myocardial infarction samples. Another dataset, GSE61144, was also downloaded to verify the efficacy of the classifier. A total of 724 downregulated and 483 upregulated DEGs were screened in patient samples compared with control samples in the GSE34198 dataset. The PPI network of myocardial infarction was comprised of 1,083 nodes (genes) and 46,363 lines (connections). Using the neighborhood scoring method, the top 100 feature genes in myocardial infarction samples were identified as the disease feature genes, which distinguish the myocardial infarction samples from the control samples. The RFE algorithm screened 15 risk genes, which were employed to construct a SVM classifier with an average precision of 88% to the patient sample following visualization by a confusion matrix. The predictive precision of the classifier on another microarray dataset, GSE61144, was 0.92, with an average true positive of 0.9278 and an average false positive of 0.2361. A-kinase-anchoring protein 12 (AKAP12) and glycine receptor α2 (GLRA2) were two risk genes in the SVM classifier. Therefore, AKAP12 and GLRA2 exert potential roles in the development of myocardial infarction, potentially by influencing cardiac contractility and protecting against ischemia-reperfusion injury, which may provide clues in developing potential diagnostic biomarkers or therapeutic targets for myocardial infarction.
Collapse
|
22
|
Gao XJ, Xie GN, Liu L, Fu ZJ, Zhang ZW, Teng LZ. Sesamol attenuates oxidative stress, apoptosis and inflammation in focal cerebral ischemia/reperfusion injury. Exp Ther Med 2017; 14:841-847. [PMID: 28673008 DOI: 10.3892/etm.2017.4550] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/21/2016] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to evaluate the therapeutic potential of sesamol treatment on focal ischemia/reperfusion (I/R) injury in the rat brain. The results demonstrated that pretreatment with sesamol seven days prior to focal cerebral I/R injury had significant positive effects, including improvements in neurological deficits (P<0.05), and a reduction in malondialdehyde content and elevation of antioxidant levels (superoxide dismutase, glutathione and glutatione peroxidase; both P<0.05). Furthermore, levels of B cell lymphoma-2 (Bcl-2)-associated X protein and caspase-3 were significantly downregulated, whereas the level of Bcl-2 was effectively increased. Conversely, the mRNA expression of proinflammatory cytokines were significantly reduced in focal cerebral I/R injury rats upon sesamol intervention. Therefore, the beneficial effects of sesamol on cerebral I/R injury may be due to the reduction of oxidative stress, inhibition of apoptosis and inflammation. The findings of the present study suggest that sesamol supplementation may serve as potent adjuvant in the treatment of focal cerebral ischemia/reperfusion injury due to its neuroprotective effects.
Collapse
Affiliation(s)
- Xiu-Juan Gao
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Guan-Nan Xie
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Lei Liu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Zhi-Jian Fu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zong-Wang Zhang
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Liang-Zhu Teng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
23
|
Cui HJ, Liu S, Yang R, Fu GH, Lu Y. N-stearoyltyrosine protects primary cortical neurons against oxygen-glucose deprivation-induced apoptosis through inhibiting anandamide inactivation system. Neurosci Res 2017; 123:8-18. [PMID: 28499834 DOI: 10.1016/j.neures.2017.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022]
Abstract
N-stearoylthrosine (NST), a synthesized anandamide (AEA) analogue, plays a neuroprotective role in neurodegenerative diseases and cerebrovascular diseases. Several studies have demonstrated that the endocannabinoids systems (ECS) are involved in the neuroprotective effects against cerebral ischemic injury. Oxygen-glucose deprivation (OGD)-induced neuronal injury elevated the levels of endocannabinoids and activated ECS. This research was conducted to investigate the neuroprotective effect of NST against OGD-induced neuronal injury in cultured primary cortical neurons and the potential mechanism involved. Cortical neurons were treated with NST at indicate concentrations for 30min prior to injury and OGD injured neurons were incubated with normal conditions for 0-24h. The best neuroprotective effect of NST against OGD-induced injury occurred at 10μM. All data indicated that the neuroprotective effect of NST against OGD-induced injury resulted from blocking anandamide membrane transporter (AMT) (IC50=11.74nM) and inhibiting fatty acid amide hydrolase activity (FAAH) (IC50=16.54nM). Our findings demonstrated that NST has an important role in cerebral ischemic injury pathological progression through activating cannabinoid receptors by inhibiting AEA inactivation system. These data suggested a potential role for NST in the therapeutic consideration of cerebral ischemic injury. However, inhibition of AEA inactivation system may provide a neuroprotective effect during cerebral ischemic injury.
Collapse
Affiliation(s)
- Heng-Jing Cui
- Department of Pharmacy, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Sha Liu
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Rui Yang
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Guo-Hui Fu
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yang Lu
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
24
|
Bourti Y, Saller F, Bianchini EP, Pautus S, Duong van Huyen JP, Marie AL, Tran NT, Molina TJ, Taverna M, Lerolle N, Borgel D. Antithrombin is not protective against renal ischaemia-reperfusion injury. Thromb Haemost 2017; 117:422-425. [PMID: 27786339 DOI: 10.1160/th16-06-0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/06/2016] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Delphine Borgel
- Delphine Borgel, INSERM UMR-S 1176, 80, rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France, Tel.: +33 1 49595646, Fax: +33 1 46719472, E-mail:
| |
Collapse
|
25
|
Chen Y, Li Y, Xu H, Li G, Ma Y, Pang YJ. MORIN MITIGATES OXIDATIVE STRESS, APOPTOSIS AND INFLAMMATION IN CEREBRAL ISCHEMIC RATS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:348-355. [PMID: 28573251 PMCID: PMC5446461 DOI: 10.21010/ajtcam.v14i2.36] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Morin is a flavanoid which exhibits potent antioxidant activity in various oxidative stress related diseases. The current study was attempted to scrutinize the preclinical bio-efficacy of morin on focal ischemia. Methods: The animal model of focal cerebral ischemic injury was done by midbrain carotid artery occlusion (MCAO) method, followed by Morin (30mg/kg) administration for seven days. Results: The outcome of the study showed that treatment with morin displayed positive effects in reducing the focal cerebral ischemia. This effect was evident with the improvements in neurological deficits, reduction in MDA content and elevation of antioxidant levels (SOD, GSH and Gpx). Furthermore, protein expression of Bax and caspase-3 were effectively down-regulated, whilst the expression of Bcl-2 was significantly elevated. On the other hand, the mRNA expression of proinflammatory cytokines was significantly reduced in focal cerebral ischemic rats upon morin intervention. Conclusion: Thus, the beneficial effects of morin on cerebral ischemia assault may result from the reduction of oxidative stress, inhibition of apoptosis and inflammation. The neuroprotective effects of morin supplement may serve as potent adjuvant in the amelioration of ischemic stroke.
Collapse
Affiliation(s)
- Yanrong Chen
- Department of Neurology, Binzhou city central hospital, Binzhou, Shandong 251700, China
| | - Yanke Li
- Department of Neurology, Binzhou city central hospital, Binzhou, Shandong 251700, China
| | - Huali Xu
- Department of Neurology, Binzhou city central hospital, Binzhou, Shandong 251700, China
| | - Gang Li
- Department of Neurology, Binzhou city central hospital, Binzhou, Shandong 251700, China
| | - Yunxia Ma
- Department of Neurology, Binzhou city central hospital, Binzhou, Shandong 251700, China
| | - Yu Jun Pang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
26
|
Lu Y, Zhu X, Li J, Fang R, Wang Z, Zhang J, Li K, Li X, Bai H, Yang Q, Ben J, Zhang H, Chen Q. Glycine prevents pressure overload induced cardiac hypertrophy mediated by glycine receptor. Biochem Pharmacol 2017; 123:40-51. [PMID: 27836671 DOI: 10.1016/j.bcp.2016.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
|
27
|
Glycine increases preimplantation development of mouse oocytes following vitrification at the germinal vesicle stage. Sci Rep 2016; 6:37262. [PMID: 27845423 PMCID: PMC5109034 DOI: 10.1038/srep37262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/26/2016] [Indexed: 11/08/2022] Open
Abstract
Ice-free cryopreservation, referred to as vitrification, is receiving increased attention in the human and animal assisted reproduction. However, it introduces the detrimental osmotic stress by adding and removing high contents of cryoprotectants. In this study, we evaluated the effects of normalizing cell volume regulation by adding glycine, an organic osmolyte, during vitrification of mouse germinal vesicle stage oocyte and/or subsequent maturation on its development. The data showed that glycine supplementation in either vitrification/thawing or maturation medium significantly improved the cytoplasmic maturation of MII oocytes manifested by spindle assembly, chromosomal alignment, mitochondrial distribution, euploidy rate, and blastocyst development following fertilization in vitro, compared to the control without glycine treatment. Furthermore, glycine addition during both vitrification/thawing and maturation further enhanced the oocyte quality demonstrated by various markers, including ATP contents and embryo development. Lastly, the effect of anti-apoptosis was also observed when glycine was added during vitrification. Our result suggests that reducing osmotic stress induced by vitrification could improve the development of vitrified mouse oocyte.
Collapse
|
28
|
Shi X, Yu W, Yang T, Liu W, Zhao Y, Sun Y, Chai L, Gao Y, Dong B, Zhu L. Panax notoginseng saponins provide neuroprotection by regulating NgR1/RhoA/ROCK2 pathway expression, in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:301-312. [PMID: 27288754 DOI: 10.1016/j.jep.2016.06.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/29/2016] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponins (PNS) extracted from a traditional Chinese herbal medicine, Panax notoginseng (Burkill) F.H. Chen (Araliaceae), which has been extensively used in treating coronary heart disease, ischemic cerebrovascular disease and hemorrhagic disorders in China over hundreds of years. AIMS OF THE STUDY This study explored whether panax notoginseng saponins (PNS) provided neuroprotective effects by inhibiting the expressions of NgR1, RhoA, and ROCK2 following middle cerebral artery occlusion in rats and oxygen-glucose deprivation/reoxygenation (OGD/R) injury in SH-SY5Y cells. MATERIALS AND METHODS 2,3,5-Triphenyltetrazolium chloride staining was used to determine successful middle cerebral artery occlusion establishment in sham-operated and operated Sprague-Dawley rats 1 day after injury. The rats were randomly separated into sham, model, NEP1-40, PNS, and NEP1-40 plus PNS (N+P) groups. After 7 days of treatment, body mass and neurological deficit scores were analyzed. Tissues were harvested and analyzed by hematoxylin-eosin staining and immunohistochemical analysis, western blotting, and quantitative real-time PCR (qRT-PCR). The optimal drug concentration of NEP1-40 and PNS on SH-SY5Y cells exposed to OGD/R injury was determined by CCK8 analysis. qRT-PCR was used to measure mRNA expression profiles of NgR1, RhoA, and ROCK2 in SH-SY5Y cells subjected to OGD/R. RESULTS The results showed that MCAO surgery successfully produced an infarct, and the PNS, NEP1-40, and N+P groups exhibited increased body mass and ameliorated neurological deficits compared with the model group. NEP1-40 treatment markedly reduced NgR1 and RhoA overexpression when compared to the model group, although there was no significant difference in ROCK2 expression. PNS and N+P treatment significantly decreased NgR1, RhoA, and ROCK2 overexpression compared with the model group. However, N+P treatment did not result in a synergistic effect, as assessed by immunohistochemistry, western blotting, and qRT-PCR. Following optimal administration of PNS (160μg/ml) and NEP1-40 (10ng/ml) on SH-SY5Y cells exposed to OGD/R injury, cell viability in the NEP1-40, PNS, and N+P groups significantly increased compared with the model group, as assessed by CCK8 analysis. Additionally, NgR1, RhoA, and ROCK2 mRNA expression profiles were significantly less in the NEP1-40, PNS, and N+P groups compared with the model group. CONCLUSION PNS provided neuroprotective effects in a rat model of cerebral ischemia and SH-SY5Y cells exposed to oxygen/glucose deprivation injury by inhibiting the overexpression of NgR1, RhoA, and ROCK2.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/enzymology
- Brain/pathology
- Cell Hypoxia
- Cell Line, Tumor
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- Glucose/deficiency
- Humans
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/prevention & control
- Male
- Neurons/drug effects
- Neurons/enzymology
- Neurons/pathology
- Neuroprotective Agents/isolation & purification
- Neuroprotective Agents/pharmacology
- Nogo Receptor 1/genetics
- Nogo Receptor 1/metabolism
- Panax notoginseng/chemistry
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Saponins/isolation & purification
- Saponins/pharmacology
- Signal Transduction/drug effects
- Time Factors
- rho-Associated Kinases/genetics
- rho-Associated Kinases/metabolism
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Xiaowei Shi
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Yu
- Department of pediatrics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Yang
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Liu
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Dong
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
29
|
Weinberg JM, Bienholz A, Venkatachalam MA. The role of glycine in regulated cell death. Cell Mol Life Sci 2016; 73:2285-308. [PMID: 27066896 PMCID: PMC4955867 DOI: 10.1007/s00018-016-2201-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023]
Abstract
The cytoprotective effects of glycine against cell death have been recognized for over 28 years. They are expressed in multiple cell types and injury settings that lead to necrosis, but are still not widely appreciated or considered in the conceptualization of cell death pathways. In this paper, we review the available data on the expression of this phenomenon, its relationship to major pathophysiologic pathways that lead to cell death and immunomodulatory effects, the hypothesis that it involves suppression by glycine of the development of a hydrophilic death channel of molecular dimensions in the plasma membrane, and evidence for its impact on disease processes in vivo.
Collapse
Affiliation(s)
- Joel M Weinberg
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Room 1560, MSRB II, Ann Arbor, MI, 48109-0676, USA.
| | - Anja Bienholz
- Department of Nephrology, University Duisburg-Essen, 45122, Essen, Germany
| | - M A Venkatachalam
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, 78234, USA
| |
Collapse
|
30
|
Zhang B, Song C, Feng B, Fan W. Neuroprotection by triptolide against cerebral ischemia/reperfusion injury through the inhibition of NF-κB/PUMA signal in rats. Ther Clin Risk Manag 2016; 12:817-24. [PMID: 27307742 PMCID: PMC4888863 DOI: 10.2147/tcrm.s106012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Triptolide, an active compound extracted from the Chinese herb thunder god vine (Tripterygium wilfordii Hook F.), has potent antitumor activity. Recently, triptolide was found to have protective effects against acute cerebral ischemia/reperfusion (I/R) injury through inhibition of cell apoptosis. However, the regulatory mechanism of the effect remains unclear. We hypothesize that the regulatory mechanisms of triptolide are mediated by nuclear factor κB (NF-κB) and p53-upregulated-modulator-of-apoptosis signal inhibition. To verify this hypothesis, we occluded the middle cerebral artery in male rats to establish focal cerebral I/R model. The rats received triptolide or vehicle at the onset of reperfusion following middle cerebral artery occlusion. At 24 hours after reperfusion, neurological deficits, infarct volume, and cell apoptosis were evaluated. The expression levels of NF-κBp65, PUMA, and caspase-3 were determined by Western blot. Real-time polymerase chain reaction was used to determine the levels of NF-κBp65 mRNA, PUMA mRNA, and caspase-3 mRNA. NF-κB activity was determined by electrophoretic mobility shift assay. Apoptotic cells were detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. In I/R group, neurological deficit scores, cerebral infarct volume, expression of NF-κBp65, PUMA, caspase-3, NF-κB activity, and TUNEL-positive cells were found to be increased at 24 hours after I/R injury. The I/R/triptolide rats showed significantly better neurological deficit scores, decreased neural apoptosis, and reduced cerebral infarct volume. In addition, the expression of NF-κBp65, PUMA, caspase-3, and NF-κB activity was suppressed in the I/R/triptolide rats. These results indicate that the neuroprotective effects of triptolide during acute cerebral I/R injury are possibly related to the inhibition of apoptosis through suppression of NF-κB/PUMA signaling pathway.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neurology, The Third Hospital of Liaocheng, Liaocheng, Shandong, People's Republic of China
| | - Cunfeng Song
- Department of Neurology, The Third Hospital of Liaocheng, Liaocheng, Shandong, People's Republic of China
| | - Bo Feng
- Department of Neurology, The Third Hospital of Liaocheng, Liaocheng, Shandong, People's Republic of China
| | - Weibing Fan
- Department of Neurology, The Third Hospital of Changsha, Changsha, Hunan, People's Republic of China
| |
Collapse
|
31
|
Yu ZH, Cai M, Xiang J, Zhang ZN, Zhang JS, Song XL, Zhang W, Bao J, Li WW, Cai DF. PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:8-19. [PMID: 26805466 DOI: 10.1016/j.jep.2016.01.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongxinluo (TXL), a compound prescription, is formulated according to the collateral disease doctrine of traditional Chinese medicine, and is widely used for the treatment of cardio-cerebrovascular diseases in China. AIM OF THE STUDY We aimed to investigate the neuroprotective effect of TXL on focal cerebral ischemia and reperfusion injury in rats by attenuating its brain damage and neuronal apoptosis, and to assess the potential role of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in this protection. MATERIALS AND METHODS Adult Male Sprague-Dawley rats (n=120) were randomly divided into 5 groups: sham, cerebral ischemia and reperfusion (I/R), cerebral ischemia and reperfusion plus TXL (1.6g/kg/day) (TXL1.6), TXL1.6 plus LY294002 and dimethyl sulfoxide (DMSO) (TXL1.6+LY294002), TXL1.6 plus DMSO (TXL1.6+vehicle). Prior to the grouping, TXL1.6 was selected to be the optimal dose of TXL by evaluating the neurological deficits score of five group rats (Sham, I/R, TXL0.4, TXL0.8 and TXL1.6, n=30) at 0, 1, 3, 5, and 7 days after reperfusion. Rats, being subjected to middle cerebral artery occlusion (MCAO) for 90min followed by 24h reperfusion, were the cerebral ischemia/reperfusion models. At 24h after reperfusion, cerebral infarct area was measured via tetrazolium staining and neuronal damage was showed by Nissl staining. The double staining of Terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) staining and immunofluorescence labeling with NeuN, was performed to evaluate neuronal apoptosis. Proteins involved in PI3K/Akt pathway were detected by Western blot. RESULTS The results showed that TXL markedly improved neurological function, reduced cerebral infarct area, decreased neuronal damage, and significantly attenuated neuronal apoptosis, while these effects were eliminated by inhibition of PI3K/Akt with LY294002. We also found that TXL up-regulated the expression levels of p-PDK1, p-Akt, p-c-Raf, p-BAD and down-regulated Cleaved caspase 3 expression notably, which were partially reversed by LY294002. Additionally, the increment of p-PTEN level on which LY294002 had little effect was also detected in response to TXL treatment. CONCLUSIONS These findings demonstrated that TXL provided neuroprotection against cerebral ischemia/reperfusion injury and neuronal apoptosis, and this effect was mediated partly by activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Zhong-Hai Yu
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Zhen-Nian Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jing-Si Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Xiao-Ling Song
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jie Bao
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Wen-Wei Li
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ding-Fang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
32
|
Liu C, Du Q, Zhang X, Tang Z, Ji H, Li Y. Clematichinenoside Serves as a Neuroprotective Agent Against Ischemic Stroke: The Synergistic Action of ERK1/2 and cPKC Pathways. Front Cell Neurosci 2016; 9:517. [PMID: 26793066 PMCID: PMC4709476 DOI: 10.3389/fncel.2015.00517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/23/2015] [Indexed: 12/18/2022] Open
Abstract
There are numerous evidences suggesting that inhibition of apoptosis of neurons play a critical role in preventing the damage and even death of neurons after brain ischemia/reperfusion, which shows therapeutic potential for clinical treatment of brain injury induced by stroke. In this study, we aimed to investigate the neuroprotective effect of Clematichinenoside (AR) and its underlying mechanisms. MCAO mode was performed in rats and OGD/R model in primary cortical neurons to investigate the neuroprotective effect of AR. The rate of apoptotic cells was measured using TUNEL assay in cerebral cortex and flow cytometric assay in cortical neurons. Apoptosis-related proteins such as bcl-2, bcl-xl, and bax and the phosphorylation of ERK1/2, cPKC, p90RSK, and CREB in ischemic penumbra were assayed by western blot. Furthermore, we made a thorough inquiry about how these proteins play roles in the anti-apoptotic mechanism using targets-associated inhibitors step by step. The results revealed that AR could activate both ERK1/2 and cPKC which resulted in p90RSK phosphorylation and translocation into the nucleus. Moreover, CREB, a downstream target of p90RSK, was phosphorylated and then bound to cAMP-regulated enhancer (CRE) to activate apoptosis-related genes, and finally ameliorate ischemic stroke through preventing neuron death. In conclusion, these data strongly suggest that AR could be used as an effective neuroprotective agent to protect against ischemic stroke after cerebral I/R injury through regulating both ERK1/2 and cPKC mediated p90RSK/CREB apoptotic pathways.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University Nanjing, China
| | - Qianming Du
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University Nanjing, China
| | - Xu Zhang
- Department of Combine Traditional Chinese and Western Medicine, College of Clinical Medicine, Chengdu University of TCM Chengdu, China
| | - Zhichao Tang
- State Key Laboratory of Natural Medicines, Department of Pharmacochemistry, China Pharmaceutical University Nanjing, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University Nanjing, China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University Nanjing, China
| |
Collapse
|
33
|
Simões RV, Muñoz-Moreno E, Carbajo RJ, González-Tendero A, Illa M, Sanz-Cortés M, Pineda-Lucena A, Gratacós E. In Vivo Detection of Perinatal Brain Metabolite Changes in a Rabbit Model of Intrauterine Growth Restriction (IUGR). PLoS One 2015. [PMID: 26208165 PMCID: PMC4514800 DOI: 10.1371/journal.pone.0131310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Intrauterine growth restriction (IUGR) is a risk factor for abnormal neurodevelopment. We studied a rabbit model of IUGR by magnetic resonance imaging (MRI) and spectroscopy (MRS), to assess in vivo brain structural and metabolic consequences, and identify potential metabolic biomarkers for clinical translation. Methods IUGR was induced in 3 pregnant rabbits at gestational day 25, by 40–50% uteroplacental vessel ligation in one horn; the contralateral horn was used as control. Fetuses were delivered at day 30 and weighted. A total of 6 controls and 5 IUGR pups underwent T2-w MRI and localized proton MRS within the first 8 hours of life, at 7T. Changes in brain tissue volumes and respective contributions to each MRS voxel were estimated by semi-automated registration of MRI images with a digital atlas of the rabbit brain. MRS data were used for: (i) absolute metabolite quantifications, using linear fitting; (ii) local temperature estimations, based on the water chemical shift; and (iii) classification, using spectral pattern analysis. Results Lower birth weight was associated with (i) smaller brain sizes, (ii) slightly lower brain temperatures, and (iii) differential metabolite profile changes in specific regions of the brain parenchyma. Specifically, we found estimated lower levels of aspartate and N-acetylaspartate (NAA) in the cerebral cortex and hippocampus (suggesting neuronal impairment), and higher glycine levels in the striatum (possible marker of brain injury). Our results also suggest that the metabolic changes in cortical regions are more prevalent than those detected in hippocampus and striatum. Conclusions IUGR was associated with brain metabolic changes in vivo, which correlate well with the neurostructural changes and neurodevelopment problems described in IUGR. Metabolic parameters could constitute non invasive biomarkers for the diagnosis and abnormal neurodevelopment of perinatal origin.
Collapse
Affiliation(s)
- Rui V. Simões
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Emma Muñoz-Moreno
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Rodrigo J. Carbajo
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Anna González-Tendero
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Miriam Illa
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Magdalena Sanz-Cortés
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Antonio Pineda-Lucena
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Eduard Gratacós
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Huang J, Kodithuwakku ND, He W, Zhou Y, Fan W, Fang W, He G, Wu Q, Chu S, Li Y. The neuroprotective effect of a novel agent N2 on rat cerebral ischemia associated with the activation of PI3K/Akt signaling pathway. Neuropharmacology 2015; 95:12-21. [PMID: 25725335 DOI: 10.1016/j.neuropharm.2015.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is the third leading cause of death and the main reason for severe disabilities in the world today. N2, 4 - (2 - (1H - imidazol - 1 - yl) ethoxy) - 3 - methoxybenzoic acid is considered as a novel potent agent for cerebral ischemia due to its effect in preventing neuronal cell death after ischemic stroke. In the present study, we investigated the post-ischemic neuroprotective effect of N2 and its underlying mechanisms. Using a MCAO rat model, we found that N2 reversed brain infarct size, reduced cerebral edema and decreased the neurological deficit score significantly. Moreover, N2 diminished TUNEL positive cells, down-regulated bax expression and up-regulated bcl-2 expression notably. In addition, we evaluated the oxygen glucose deprivation/reoxygenation (OGD/R) injury induced neuron cell death in rat primary cortical neuron and assessed the neuroprotective effect of our drug. N2 increased cell viability, ameliorated neuron cell injury by decreasing LDH activity, and inhibited cell apoptotic rate while suppressed apoptotic signaling via inhibiting the bax expression, and elevating the bcl-2 expression. Furthermore, the neuroprotective effect of N2 was associated with the PI3K/Akt pathway which was proved by the use of PI3K inhibitor LY294002. The combination of our findings disclosed that N2 can be used as an effective neuroprotective agent for ischemic stroke due to its significant effect on preventing neuronal cell death after cerebral ischemia both in vivo and in vitro and the effectiveness was dose dependent.
Collapse
Affiliation(s)
- Jinru Huang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Nandani Darshika Kodithuwakku
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yi Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenxiang Fan
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Guangwei He
- Hefei Yigong Medicine Co., Ltd., Hefei, Jiangsu, PR China
| | - Qiang Wu
- Hefei Yigong Medicine Co., Ltd., Hefei, Jiangsu, PR China
| | - Shaoxing Chu
- Hefei Yigong Medicine Co., Ltd., Hefei, Jiangsu, PR China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
35
|
Wang H, Guo W, Liu H, Zeng R, Lu M, Chen Z, Xiao Q. Inhibition of inflammatory mediator release from microglia can treat ischemic/hypoxic brain injury. Neural Regen Res 2014; 8:1157-68. [PMID: 25206410 PMCID: PMC4107605 DOI: 10.3969/j.issn.1673-5374.2013.13.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/22/2013] [Indexed: 01/20/2023] Open
Abstract
Interleukin-1α and interleukin-1β aggravate neuronal injury by mediating the inflammatory reaction following ischemic/hypoxic brain injury. It remains unclear whether interleukin-1α and interleukin-1β are released by microglia or astrocytes. This study prepared hippocampal slices that were subsequently subjected to oxygen and glucose deprivation. Hematoxylin-eosin staining verified that neurons exhibited hypoxic changes. Results of enzyme-linked immunosorbent assay found that interleukin-1α and interleukin-1β participated in this hypoxic process. Moreover, when hypoxic injury occurred in the hippocampus, the release of interleukin-1α and interleukin-1β was mediated by the P2X4 receptor and P2X7 receptor. Immunofluorescence staining revealed that during ischemia/hypoxia, the P2X4 receptor, P2X7 receptor, interleukin-1α and interleukin-1β expression was detectable in rat hippocampal microglia, but only P2X4 receptor and P2X7 receptor expression was detected in astrocytes. Results suggested that the P2X4 receptor and P2X7 receptor, respectively, mediated interleukin-1α and interleukin-1β released by microglia, resulting in hippocampal ischemic/hypoxic injury. Astrocytes were activated, but did not synthesize or release interleukin-1α and interleukin-1β.
Collapse
Affiliation(s)
- Huaibo Wang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Weitao Guo
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | | | - Rong Zeng
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Mingnan Lu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Ziqiu Chen
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| | - Qixian Xiao
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China
| |
Collapse
|
36
|
Oxysophoridine Protects Against Focal Cerebral Ischemic Injury by Inhibiting Oxidative Stress and Apoptosis in Mice. Neurochem Res 2013; 38:2408-17. [DOI: 10.1007/s11064-013-1153-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/11/2022]
|
37
|
Liu DM, Wang ZH, Liu L, Zhang XM, Lou FL. Acetylpuerarin increases cell viability and reduces apoptosis in rat hippocampal neurons following oxygen‑glucose deprivation/reperfusion. Mol Med Rep 2013; 8:1453-9. [PMID: 24026460 DOI: 10.3892/mmr.2013.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/30/2013] [Indexed: 11/06/2022] Open
Abstract
The effects of acetylpuerarin treatment following oxygen-glucose deprivation/reperfusion (OGD/R) were examined in rat hippocampal neurons in vitro and compared with the effects of acetylpuerarin in normoxic cells to confirm acetylpuerarin's potential neuroprotective effects, including apoptosis inhibition. Wistar rat embryo hippocampal cells (day 18, E18) cultured for 8 days were subjected to 3 h OGD treatment, followed by reperfusion for 12, 24 or 36 h. For each time interval, a group of cells was left untreated (OGD/R-only groups) and treated with 0.1, 0.4 and 1.6 µM acetylpuerarin (OGD/R+acetylpuerarin). Neuron viability, apoptosis and caspase-8 and -3 activities were assessed by the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 4',6-diamidino-2-phenylindole (DAPI) and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL) and spectrophotometric assays, respectively. Fas-ligand (Fas-L), Fas-associated death domain (FADD) and tumor necrosis factor-α (TNF-α) were determined by western blot analysis. Compared with control cells, OCD/R+acetylpuerarin cells treated with 0.1, 0.4 and 1.6 µM doses showed a concentration-dependent increase in hippocampal cell survival and viability by 69.93 ± 2.28%, 81.49 ± 2.13% and 85.28 ± 2.38% at 12 h, 68.59 ± 3.02%, 77.85 ± 2.84% and 85.64 ± 4.39% at 24 h and 69.70 ± 1.70%, 77.21 ± 3.21% and 83.90 ± 2.12% at 36 h (P<0.05). Furthermore, OCD/R+acetylpuerarin cells exhibited a dose-dependent decrease in caspase-8 and -3 activation, TUNEL and DAPI-positive neurons and Fas-L, FADD and TNF-α expression. In conclusion, acetylpuerarin protects against OGD/R-induced neuronal apoptosis predominantly in the first 24 h following ischemia, which may be useful in mediating neuronal apoptosis in ischemic stroke patients.
Collapse
Affiliation(s)
- Dong-Mei Liu
- School of Nursing, Shandong University, Jinan, Shandong 250012, P.R. China
| | | | | | | | | |
Collapse
|
38
|
Luo Y, Yang X, Zhao S, Wei C, Yin Y, Liu T, Jiang S, Xie J, Wan X, Mao M, Wu J. Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons. Neurochem Int 2013; 63:826-31. [PMID: 23770272 DOI: 10.1016/j.neuint.2013.06.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/21/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022]
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous mediator, has been shown to have protective effects against neuronal damage caused by brain ischemia. In this study, we explored the potential effects of H2S on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal apoptosis and the possible mechanisms. We find that sodium hydrosulfide (NaHS, a donator of H2S) prevents OGD/R-induced intracellular reactive oxygen species (ROS) elevation and activation of caspase-3 in cultured mouse cortical neurons. The pretreatment of N-acetyl-l-cysteine (NAC, an ROS scavenger) also prevents OGD/R-induced activation of caspase-3. Both NaHS and NAC counteract OGD/R-induced decline in mitochondria membrane potential (MMP). Additionally, NaHS, NAC or N-Acetyl-Asp-Glu-Val-Asp-CHO (DEVD-CHO, a caspase-3 inhibitor), is shown to significantly inhibit OGD/R-induced neuronal apoptosis. These data suggest that H2S can protect against OGD/R-induced neuronal apoptosis through improving mitochondria dysfunction and suppressing an ROS-activated caspase-3 signaling pathway.
Collapse
Affiliation(s)
- Yougen Luo
- The Research Center of Neurodegenerative Diseases and Aging, Medical College of Jinggangshan University, Ji'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|