1
|
Abimbola SO, Konstantinou C, Xeni C, Charisiadis P, Makris KC. An anti-inflammatory response of an organic food intervention by reducing pesticide exposures in children of Cyprus: A cluster-randomized crossover trial. ENVIRONMENTAL RESEARCH 2024; 252:118710. [PMID: 38493848 DOI: 10.1016/j.envres.2024.118710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Organic food consumption in children has been shown to reduce the body burden of chemical pesticides. However, there is little evidence of human health benefits associated with the consumption of organic foods. The objectives were to i) determine the effectiveness of an organic food intervention treatment in reducing the magnitude of an inflammation biomarker (C-reactive protein, CRP) in children (10-12 years) and ii) assess the association between the urinary biomarkers of exposure to pesticides and CRP. This work was part of the ORGANIKO cluster-randomized cross-over trial entailing a 40-day organic food treatment in healthy children. Urinary biomarkers of exposure to pesticides and inflammation (CRP) were measured using tandem mass spectrometry and ELISA immunoassay, respectively. Linear mixed-effect regression models of CRP were used to account for the effect and duration of organic food treatment. Multiple comparisons were handled using Benjamini-Hochberg correction. Results supported an anti-inflammatory effect of organic food treatment in children, albeit with mixed results, depending on the creatinine adjustment method; biomarker levels were divided by urinary creatinine (method a1), or urinary creatinine was used as a fixed effect variable (a2). In the a1 method, a time-dependent reduction for creatinine-adjusted CRP (β = -0.019; 95% CI: -0.031, -0.006; q = 0.045) was observed during the organic food intervention period. A statistically significant association (β = 0.104; 95% CI: 0.035, 0.173; q = 0.045) was found between the biomarker of pyrethroids exposure (3-PBA) and CRP inflammatory biomarker, but not for 6-CN. In the a2 method, similar trend of time-dependent reduction for creatinine-adjusted CRP (β = -0.008; 95% CI: -0.021, 0.004; p = 0.197) was observed during the organic food intervention period, but did not reach statistical significance (q > 0.05); the associations of pyrethroid and neonicotinoid biomarkers with CRP were not statistically significant (q > 0.05). More studies are warranted to sufficiently understand the potential anti-inflammatory response of an organic food treatment.
Collapse
Affiliation(s)
- Samuel Olushola Abimbola
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus.
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Christina Xeni
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Pantelis Charisiadis
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
2
|
Ommati MM, Nozhat Z, Sabouri S, Kong X, Retana-Márquez S, Eftekhari A, Ma Y, Evazzadeh F, Juárez-Rojas L, Heidari R, Wang HW. Pesticide-Induced Alterations in Locomotor Activity, Anxiety, and Depression-like Behavior Are Mediated through Oxidative Stress-Related Autophagy: A Persistent Developmental Study in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11205-11220. [PMID: 38708789 DOI: 10.1021/acs.jafc.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Samira Sabouri
- College of Animal Science and Veterinary, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Fatemeh Evazzadeh
- Department of Psychology, Science & Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Lizbeth Juárez-Rojas
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
3
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Izumi Y, O'Dell KA, Zorumski CF. The herbicide glyphosate inhibits hippocampal long-term potentiation and learning through activation of pro-inflammatory signaling. Sci Rep 2023; 13:18005. [PMID: 37865669 PMCID: PMC10590375 DOI: 10.1038/s41598-023-44121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
Glyphosate, a herbicide marketed as Roundup, is widely used but there are concerns this exposure could impair cognitive function. In the CA1 region of rat hippocampal slices, we investigated whether glyphosate alters synaptic transmission and long-term potentiation (LTP), a cellular model of learning and memory. Our hypothesis is that glyphosate alters neuronal function and impairs LTP induction via activation of pro-inflammatory processes. Roundup depressed excitatory synaptic potentials(EPSPs) in a dose-dependent manner with complete suppression at 2000 mg/L. At concentrations ≤ 20 mg/L Roundup did not affect basal transmission, but 4 mg/L Roundup administered for 30 min inhibited LTP induction. Acute administration of 10-100 μM glyphosate also inhibited LTP induction. Minocycline, an inhibitor of microglial activation, and TAK-242, an inhibitor of toll-like receptor 4 (TLR4), both overcame the inhibitory effects of 100 µM glyphosate. Similarly, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS), a different TLR4 antagonist, overcame the inhibitory effects. In addition, ISRIB (integrated stress response inhibitor) and quercetin, an inhibitor of endoplasmic reticulum stress, overcame the inhibitory effects. We also observed that in vivo glyphosate injection (16.9 mg/kg i.p.) impaired one-trial inhibitory avoidance learning. This learning deficit was overcome by TAK-242. These observations indicate that glyphosate can impair cognitive function through pro-inflammatory signaling in microglia.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Kazuko A O'Dell
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Cattani D, Pierozan P, Zamoner A, Brittebo E, Karlsson O. Long-Term Effects of Perinatal Exposure to a Glyphosate-Based Herbicide on Melatonin Levels and Oxidative Brain Damage in Adult Male Rats. Antioxidants (Basel) 2023; 12:1825. [PMID: 37891904 PMCID: PMC10604376 DOI: 10.3390/antiox12101825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Concerns have been raised regarding the potential adverse health effects of the ubiquitous herbicide glyphosate. Here, we investigated long-term effects of developmental exposure to a glyphosate-based herbicide (GBH) by analyzing serum melatonin levels and cellular changes in the striatum of adult male rats (90 days old). Pregnant and lactating rats were exposed to 3% GBH (0.36% glyphosate) through drinking water from gestational day 5 to postnatal day 15. The offspring showed reduced serum melatonin levels (43%) at the adult age compared with the control group. The perinatal exposure to GBH also induced long-term oxidative stress-related changes in the striatum demonstrated by increased lipid peroxidation (45%) and DNA/RNA oxidation (39%) together with increased protein levels of the antioxidant enzymes, superoxide dismutase (SOD1, 24%), glutamate-cysteine ligase (GCLC, 58%), and glutathione peroxidase 1 (GPx1, 31%). Moreover, perinatal GBH exposure significantly increased the total number of neurons (20%) and tyrosine hydroxylase (TH)-positive neurons (38%) in the adult striatum. Mechanistic in vitro studies with primary rat pinealocytes exposed to 50 µM glyphosate demonstrated a decreased melatonin secretion partially through activation of metabotropic glutamate receptor 3 (mGluR3), while higher glyphosate levels (100 or 500 µM) also reduced the pinealocyte viability. Since decreased levels of the important antioxidant and neuroprotector melatonin have been associated with an increased risk of developing neurodegenerative disorders, this demonstrates the need to consider the melatonin hormone system as a central endocrine-related target of glyphosate and other environmental contaminants.
Collapse
Affiliation(s)
- Daiane Cattani
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, 114 18 Stockholm, Sweden; (D.C.); (P.P.)
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden;
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis 88040-970, Brazil;
| | - Paula Pierozan
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, 114 18 Stockholm, Sweden; (D.C.); (P.P.)
| | - Ariane Zamoner
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis 88040-970, Brazil;
| | - Eva Brittebo
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden;
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, 114 18 Stockholm, Sweden; (D.C.); (P.P.)
| |
Collapse
|
6
|
Sakkaki S, Cresto N, Chancel R, Jaulmes M, Zub E, Blaquière M, Sicard P, Maurice T, Ellero-Simatos S, Gamet-Payrastre L, Marchi N, Perroy J. Dual-Hit: Glyphosate exposure at NOAEL level negatively impacts birth and glia-behavioural measures in heterozygous shank3 mutants. ENVIRONMENT INTERNATIONAL 2023; 180:108201. [PMID: 37769447 DOI: 10.1016/j.envint.2023.108201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
The omnipresence of environmental contaminants represents a health danger with ramifications for adverse neurological trajectories. Here, we tested the dual-hit hypothesis that continuous exposure to non-observable adverse effect level (NOAEL) glyphosate from pre-natal to adulthood represents a risk factor for neurological-associated adaptations when in the presence of the heterozygote or homozygote mutation of the Shank3 synaptic gene. Ultrasound analysis of pregnant dams revealed patterns of pre-natal mortality with effects dependent on wild-type, Shank3ΔC/+, or Shank3ΔC/ΔC genotypes exposed to NOAEL glyphosate (GLY) compared to unexposed conditions. The postnatal survival rate was negatively impacted, specifically in Shank3ΔC/+ exposed to GLY. Next, the resulting six groups of pups were tracked into adulthood and analyzed for signs of neuroinflammation and neurological adaptions. Sholl's analysis revealed cortical microgliosis across groups exposed to GLY, with Shank3ΔC/+ mice presenting the most significant modifications. Brain tissues were devoid of astrocytosis, except for the perivascular compartment in the cortex in response to GLY. Distinct behavioral adaptations accompanied these cellular modifications, as locomotion and social preference were decreased in Shank3ΔC/+ mice exposed to GLY. Notably, GLY exposure from weaning did not elicit glial or neurological adaptations across groups, indicating the importance of pre-natal contaminant exposure. These results unveil the intersection between continuous pre-natal to adulthood environmental input and a pre-existing synaptic mutation. In an animal model, NOAEL GLY predominantly impacted Shank3ΔC/+ mice, compounding an otherwise mild phenotype compared to Shank3ΔC/ΔC. The possible relevance of these findings to neurodevelopmental risk is critically discussed, along with avenues for future research.
Collapse
Affiliation(s)
- Sophie Sakkaki
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Noemie Cresto
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Raphaël Chancel
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Maé Jaulmes
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emma Zub
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marine Blaquière
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Pierre Sicard
- PhyMedExp, INSERM, CNRS, CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | | - Nicola Marchi
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
7
|
Golomb BA, Han JH. Adverse effect propensity: A new feature of Gulf War illness predicted by environmental exposures. iScience 2023; 26:107363. [PMID: 37554469 PMCID: PMC10405325 DOI: 10.1016/j.isci.2023.107363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
A third of 1990-1 Gulf-deployed personnel developed drug/chemical-induced multisymptom illness, "Gulf War illness" (GWI). Veterans with GWI (VGWI) report increased drug/exposure adverse effects (AEs). Using previously collected data from a case-control study, we evaluated whether the fraction of exposures that engendered AEs ("AE Propensity") is increased in VGWI (it was); whether AE Propensity is related to self-rated "chemical sensitivity" (it did); and whether specific exposures "predicted" AE Propensity (they did). Pesticides and radiation exposure were significant predictors, with copper significantly "protective"-in the total sample (adjusted for GWI-status) and separately in VGWI and controls, on multivariable regression. Mitochondrial impairment and oxidative stress (OS) underlie AEs from many exposures irrespective of nominal specific mechanism. We hypothesize that mitochondrial toxicity and interrelated OS from pesticides and radiation position people on the steep part of the curve of mitochondrial impairment and OS versus symptom/biological disruption, amplifying impact of new exposures. Copper, meanwhile, is involved in critical OS detoxification processes.
Collapse
Affiliation(s)
- Beatrice A. Golomb
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jun Hee Han
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Izumi Y, O'Dell KA, Zorumski CF. The herbicide glyphosate inhibits hippocampal long-term potentiation and learning through activation of pro-inflammatory signaling. RESEARCH SQUARE 2023:rs.3.rs-2883114. [PMID: 37214918 PMCID: PMC10197752 DOI: 10.21203/rs.3.rs-2883114/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Glyphosate, a herbicide marketed under the trade name Roundup, is now widely used, in part because genetically modified organism plants that are resistant to this agent have been developed. Environmental or dietary exposure to glyphosate is omnipresent and there are concerns this exposure could impair cognitive function in addition to carcinogenicity. Methods Using hippocampal slices from juvenile male rats, we investigated whether glyphosate alters synaptic transmission and induction of long-term potentiation (LTP), a cellular model of learning and memory. Our hypothesis is that glyphosate alters neuronal function and impairs LTP induction via activation of pro-inflammatory processes, because increases in pro-inflammatory cytokines and neuroinflammation have been reported following glyphosate exposure. LTP was induced by delivery of 100 Hz x 1 sec high frequency stimulation (HFS) of the Schaffer collateral pathway and excitatory synaptic potentials (EPSPs) were monitored 60 min after HFS. Resulsts We first tested effects of Roundup on basal synaptic function and LTP induction. Roundup depressed EPSPs in a dose-dependent manner. Basal synaptic transmission was completely suppressed by 2000 ppm. At concentrations ≤ 20 ppm Roundup did not affect basal transmission, but 4 ppm Roundup administered 30 min before HFS inhibited LTP induction. We also observed that acute administration of 10-100 μM glyphosate inhibits LTP induction. Minocycline, an inhibitor of microglial activation, and TAK-242, an inhibitor of toll-like receptor 4 (TLR4), both overcame the inhibitory effects of 100M glyphosate. Similarly, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) overcame the inhibitory effects. In addition, ISRIB (integrated stress response inhibitor) and quercetin, an inhibitor of endoplasmic reticulum stress, allowed LTP induction in the presence of glyphosate. We also observed that in vivo glyphosate injection (16.9 mg/kg i.p.) impaired one-trial inhibitory avoidance learning. This learning deficit was overcome by TAK-242. Conclusion While Roundup inhibits LTP induction, these observations indicate that glyphosate alone, the major ingredient of Roundup, can impair cognitive function through pro-inflammatory signaling in microglia. Manipulation of pro-inflammatory signaling could be a useful strategy to prevent cognitive impairment after exposure to a glyphosate-based herbicide (GBH).
Collapse
|
9
|
Haroun RAH, Abdel-Aziz N, Saad S. The protective effect of N-acetyl cysteine against selenium toxicity and gamma irradiation in rats. Drug Chem Toxicol 2023; 46:482-490. [PMID: 35361025 DOI: 10.1080/01480545.2022.2058010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
N-acetyl cysteine (NAC) is a nutritional supplement and greatly applied as an antioxidant in vivo and in vitro. Therefore, this study aimed to assess the metabolic and antioxidant protective effect of NAC against selenium (Se) toxicity and gamma irradiation in rats by measuring biochemical and molecular parameters. This study was conducted on sixty rats divided into six equal different groups; control, NAC, Rad, Se, Rad + NAC, and Se + NAC groups. Oxidative/nitrosative makers (LPO, NO, and NOS), antioxidants status markers (GSH, GPx, and SOD), liver metabolic markers (LDH, SDH, and ATP), and plasma metabolic markers (Glucose, total cholesterol, and total proteins) were measured using commercial colorimetric kits while plasma corticosterone concentration was measured using commercial ELISA kit. Also, Levels of NR3C1 and Glut-2 genes expression using reverse transcription-quantitative polymerase chain reaction were done. Our results revealed that Se toxicity and gamma irradiation induced significant increases in oxidative/nitrosative stress markers and a significant decrease in antioxidant status markers in the liver and adrenal tissues. Moreover, metabolic disorders were recorded as manifested by elevation of plasma ALT, Albumin, glucose and cholesterol, and decrease in protein levels associated with a significant increase in corticosterone concentration. This was also accompanied by a significant decrease in SDH activity and ATP production in the hepatic tissue. Molecular analysis showed a marked increase in NR3C1 mRNA and decrease in Glut-2 mRNA in liver tissue. However, NAC supplementation attenuated the changes induced by these toxins. Finally, we could conclude that, oral supplementation of NAC can modulate the metabolic disturbances and has protective effects in rats exposed to Se toxicity and gamma irradiation.
Collapse
Affiliation(s)
| | - Nahed Abdel-Aziz
- Radiation Biology Department, NCRRT, Atomic Energy Authority, Cairo, Egypt
| | - Soha Saad
- Department of Biochemistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Adewale OO, Adebisi OA, Ojurongbe TA, Adekomi DA, Babatunde IO, Adebayo EO. Xylopia aethiopica suppresses markers of oxidative stress, inflammation, and cell death in the brain of Wistar rats exposed to glyphosate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60946-60957. [PMID: 37042920 DOI: 10.1007/s11356-023-26470-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
The herbicide "Roundup" is used extensively in agriculture to control weeds. However, by translocation, it can be deposited in plants, their proceeds, and the soil, thus provoking organ toxicities in exposed individuals. Neurotoxicity among others is one of the side effects of roundup which has led to an increasing global concern about the contamination of food by herbicides. Xylopia aethiopica is known to have medicinal properties due to its antioxidative and anti-inflammatory properties, and it is hypothesized to neutralize roundup-induced neurotoxicity. Thirty-six (36) Wistar rats were used for this study. The animals were shared equally into six groups with six rats each. Glyphosate administration to three of the six groups was done orally and for 1 week. Either Xylopia aethiopica or vitamin C was co-administered to two of the three groups and also administered to two other groups and the final group served as the control. Our studies demonstrated that glyphosate administration led to a significant decrease in antioxidants such as catalase, superoxide dismutase, glutathione, and glutathione peroxidase. We also observed a significant increase in inflammatory markers such as tumor necrosis factor-α, interleukin 6, C-reactive protein, and immunohistochemical expression of caspase-3, cox-2, and p53 proteins (p < 0.05). However, Xylopia aethiopica co-administration with glyphosate was able to ameliorate the aforementioned changes when compared to the control (p < 0.05). Degenerative changes were also observed in the cerebellum, hippocampus, and cerebral cortex upon glyphosate administration. These changes were not observed in the groups treated with Xylopia aethiopica and vitamin C. Taken together, Xylopia aethiopica could possess anti-oxidative and anti-inflammatory properties that could be used in combating glyphosate neurotoxicity.
Collapse
Affiliation(s)
- Omowumi Oyeronke Adewale
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria.
| | - Oluwaseun Abraham Adebisi
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Taiwo A Ojurongbe
- Department of Statistics, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Damilare Adedayo Adekomi
- Department of Anatomy, Faculty of Basic Medical Sciences, Osun State University, Osogbo, Nigeria
| | - Isaac Olawale Babatunde
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Emmanuel O Adebayo
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| |
Collapse
|
11
|
Ruíz-Arias MA, Medina-Díaz IM, Bernal-Hernández YY, Agraz-Cibrián JM, González-Arias CA, Barrón-Vivanco BS, Herrera-Moreno JF, Verdín-Betancourt FA, Zambrano-Zaragoza JF, Rojas-García AE. Hematological indices as indicators of inflammation induced by exposure to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19466-19476. [PMID: 36239889 PMCID: PMC9561311 DOI: 10.1007/s11356-022-23509-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Pesticide toxicity, both acute and chronic, is a global public health concern. Pesticides are involved in abnormal inflammatory responses by interfering with the normal physiology and metabolic status of cells. In this regard, inflammatory indices aggregate index of systemic inflammation (AISI), monocyte-to-high-density lipoprotein ratio, monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte platelet ratio (NLPR), neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, systemic immune inflammation index, and systemic inflammation response index (SIRI) have been used as predictive markers of inflammatory status in several diseases and also in acute poisoning events. This study aimed to determine systemic inflammation indices and their relationship with pesticide exposure from urban sprayers in 302 individuals categorized into three groups (reference group and moderate and high exposure groups). The data suggest that the AISI, MLR, NLPR, and SIRI indices were significantly higher in the exposed groups compared with the reference group. In conclusion, this study proposes that inflammation indices warrant further attention in order to assess their value as early biomarkers of acute and chronic pesticide intoxication.
Collapse
Affiliation(s)
- Miguel Alfonso Ruíz-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
- Programa de Doctorado en Ciencias Biológico Agropecuarias. Área de Ciencias Ambientales. Universidad Autónoma de Nayarit, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Francisco Alberto Verdín-Betancourt
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - José Francisco Zambrano-Zaragoza
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, Tepic, 63000, Nayarit, México.
| |
Collapse
|
12
|
Shermon S, Goldfinger M, Morris A, Harper B, Leder A, Santella AJ, Krishnamachari B. Effect of modifiable risk factors in Parkinson's disease: A case-control study looking at common dietary factors, toxicants, and anti-inflammatory medications. Chronic Illn 2022; 18:849-859. [PMID: 34494887 DOI: 10.1177/17423953211039789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate how common modifiable exposures, including dietary factors, select toxicants, and anti-inflammatory medications, may affect Parkinson's disease. METHODS Using surveys, a case-control study was conducted at a medical center, comparing Parkinson's disease patients (N = 149) and healthy controls (N = 105). Subjects reported exposure to red meats, vegetables, alcohol, tobacco, anti-inflammatory medications, and pesticides. The relationship between exposures and Parkinson's disease diagnosis was analyzed by logistic regression to generate odds ratio and 95% confidence interval. RESULTS Consuming red meat "sometimes" or "always" was positively associated with Parkinson's disease as compared to eating red meats "rarely" or "never"; (odds ratio = 2.15, 95% confidence interval = 1.06, 4.39; p = 0.03) and (odds ratio = 4.47, 95% confidence interval = 1.67, 11.94; p = 0.003), respectively. Exposure to pesticides showed a positive association with Parkinson's disease (odds ratio = 2.84, 95% confidence interval = 1.34, 6.00; p = 0.007). "Always" use of aspirin was inversely associated with Parkinson's disease (odds ratio = 0.32, 95% confidence interval = 0.14, 0.70; p = 0.004). "Ever" having used anti-histamines was inversely associated with Parkinson's disease (odds ratio = 0.37, 95% confidence interval = 0.17, 0.81; p = 0.01). DISCUSSION Our study suggests that there are modifiable external factors that are associated with Parkinson's disease. The present study can thus assist clinicians, policy makers, and people living with Parkinson's disease in improving the experience and management of Parkinson's disease.
Collapse
Affiliation(s)
- Suzanna Shermon
- 24575Case Western Reserve University/Metrohealth Medical Center, USA
| | | | - Alexander Morris
- Department of Clinical Specialties, 43984New York Institute of Technology College of Osteopathic Medicine, USA
| | - Brian Harper
- Department of Clinical Specialties, 43984New York Institute of Technology College of Osteopathic Medicine, USA
| | - Adena Leder
- Department of Osteopathic Manipulative Medicine, 43984New York Institute of Technology College of Osteopathic Medicine, USA
| | - Anthony J Santella
- Department of Health Professions, 3871Hofstra University School of Health Professions, USA
| | - Bhuma Krishnamachari
- Department of Clinical Specialties, 43984New York Institute of Technology College of Osteopathic Medicine, USA
| |
Collapse
|
13
|
Ünlü Endirlik B, Bakır E, Ökçesiz A, Güler A, Hamurcu Z, Eken A, Dreij K, Gürbay A. Investigation of the toxicity of a glyphosate-based herbicide in a human liver cell line: Assessing the involvement of Nrf2 pathway and protective effects of vitamin E and α-lipoic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103999. [PMID: 36252731 DOI: 10.1016/j.etap.2022.103999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used herbicides all over the world and has gained more attention in recent years because of health safety concerns. In this study, Roundup, one of the most popular glyphosate formulations, was used to evaluate cytotoxic, oxidative stress and apoptosis inducing effects of GBHs in a human hepatocellular cell line (HepG2). Roundup was shown to significantly increase cellular reactive oxygen species (ROS) levels, which lead to activation of the nuclear factor-erythroid-2-related factor 2 (Nrf2) antioxidant defense pathway including reduced levels of heme oxygenase 1 (HO-1). Furthermore, Roundup was found to induce apoptosis and further analysis confirmed involvement of a mitochondrial-dependent pathway verified by increased Bax/Bcl-2 ratios. Investigation of the protective effects of antioxidants vitamin E (Vit E) and α-lipoic acid (LA) against Roundup toxicity showed that both antioxidants significantly reduced the cytotoxicity, ROS formation, HO-1 downregulation, and apoptosis and that Vit E did so more efficiently than LA. In conclusion, our findings highlight the ROS producing and apoptosis inducing effects associated with GBHs, the activation of Nrf2 pathway as a defense mechanism and the protective effects of Vit E and LA against GBH toxicity.
Collapse
Affiliation(s)
- Burcu Ünlü Endirlik
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Elçin Bakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Aysun Ökçesiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ahsen Güler
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey; Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aylin Gürbay
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Soliman TN, Mohammed DM, El-Messery TM, Elaaser M, Zaky AA, Eun JB, Shim JH, El-Said MM. Microencapsulation of Plant Phenolic Extracts Using Complex Coacervation Incorporated in Ultrafiltered Cheese Against AlCl 3-Induced Neuroinflammation in Rats. Front Nutr 2022; 9:929977. [PMID: 35845781 PMCID: PMC9278961 DOI: 10.3389/fnut.2022.929977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
Plant-derived phenolic compounds have numerous biological effects, including antioxidant, anti-inflammatory, and neuroprotective effects. However, their application is limited because they are degraded under environmental conditions. The aim of this study was to microencapsulate plant phenolic extracts using a complex coacervation method to mitigate this problem. Red beet (RB), broccoli (BR), and spinach leaf (SL) phenolic extracts were encapsulated by complex coacervation. The characteristics of complex coacervates [zeta potential, encapsulation efficiency (EE), FTIR, and morphology] were evaluated. The RB, BR, and SL complex coacervates were incorporated into an ultrafiltered (UF) cheese system. The chemical properties, pH, texture profile, microstructure, and sensory properties of UF cheese with coacervates were determined. In total, 54 male Sprague-Dawley rats were used, among which 48 rats were administered an oral dose of AlCl3 (100 mg/kg body weight/d). Nutritional and biochemical parameters, including malondialdehyde, superoxide dismutase, catalase, reduced glutathione, nitric oxide, acetylcholinesterase, butyrylcholinesterase, dopamine, 5-hydroxytryptamine, brain-derived neurotrophic factor, and glial fibrillary acidic protein, were assessed. The RB, BR, and SL phenolic extracts were successfully encapsulated. The RB, BR, and SL complex coacervates had no impact on the chemical composition of UF cheese. The structure of the RB, BR, and SL complex coacervates in UF cheese was the most stable. The hardness of UF cheese was progressively enhanced by using the RB, BR, and SL complex coacervates. The sensory characteristics of the UF cheese samples achieved good scores and were viable for inclusion in food systems. Additionally, these microcapsules improved metabolic strategies and neurobehavioral systems and enhanced the protein biosynthesis of rat brains. Both forms failed to induce any severe side effects in any experimental group. It can be concluded that the microencapsulation of plant phenolic extracts using a complex coacervation technique protected rats against AlCl3-induced neuroinflammation. This finding might be of interest to food producers and researchers aiming to deliver natural bioactive compounds in the most acceptable manner (i.e., food).
Collapse
Affiliation(s)
- Tarek N. Soliman
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Dina Mostafa Mohammed
- Department of Nutrition and Food Sciences, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Tamer M. El-Messery
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Mostafa Elaaser
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed A. Zaky
- Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Gwangju, South Korea
| | - Marwa M. El-Said
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
15
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
El Mouhab EH, Rebai O, Zekri S, Charfi L, Boukhchina S, Amri M. Morus alba Leaf Extract Attenuates Glyphosate-Induced Oxidative Stress, Inflammation and Alleviates Liver Injury in Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.24.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Bicca DF, Spiazzi CC, Ramalho JB, Soares MB, Cibin FWS. A subchronic low-dose exposure of a glyphosate-based herbicide induces depressive and anxious-like behavior in mice: quercetin therapeutic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67394-67403. [PMID: 34254248 DOI: 10.1007/s11356-021-15402-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the possible role of pesticide exposure in contributing to neurological diseases such as depression. Here, we evaluated whether a subchronic low dose of a glyphosate-based herbicide (GBH) could induce alterations in the central nervous system, using the flavonoid quercetin as a therapeutic strategy. Forty mice were divided into four treatment groups: control, GBH, quercetin, and GBH+Quer groups and received 50 mg/kg of GBH solution, 30 mg/kg of quercetin, and/or vehicles for 30 days via gavage. After performing behavioral tests, such as the open field (OF), elevated plus maze (EPM), forced swim test (FST), and sucrose preference test (SPT), the mice were euthanized and their hippocampal tissues were collected to measure the levels of oxidative stress markers such as reactive species (RS), total antioxidant capacity (FRAP), reduced glutathione (GSH), and acetylcholinesterase activity (AChE), as well as for histological evaluation. The GBH group showed anxious and depressive-like behavior in the EPM and FST tests, as well as increased levels of RS and decreased GSH levels in the hippocampus. Quercetin treatment in the GBH+Quer group allowed partial or total improvement in behavioral tests (EPM and FST) and in the levels of oxidative stress markers (RS and GSH). However, the quercetin group showed similar behavior to the GBH group after treatment. The results revealed that oral exposure to a subchronic low dose of GBH was capable of promoting effects on behavior and oxidative stress in the hippocampus of mice. In addition, despite quercetin having a neuroprotective role, caution is needed when considering the possible per se effects of its continuous supplementation.
Collapse
Affiliation(s)
- Diogo Ferreira Bicca
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Cristiano Chiapinotto Spiazzi
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Juliana Bernera Ramalho
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Melina Bucco Soares
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil
| | - Francielli Weber Santos Cibin
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
18
|
Lanzarin G, Venâncio C, Félix LM, Monteiro S. Inflammatory, Oxidative Stress, and Apoptosis Effects in Zebrafish Larvae after Rapid Exposure to a Commercial Glyphosate Formulation. Biomedicines 2021; 9:biomedicines9121784. [PMID: 34944599 PMCID: PMC8698920 DOI: 10.3390/biomedicines9121784] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/24/2023] Open
Abstract
Glyphosate-based herbicides (GBH) are the most used herbicides in the world, carrying potentially adverse consequences to the environment and non-target species due to their massive and inadequate use. This study aimed to evaluate the effects of acute exposure to a commercial formulation of glyphosate, Roundup® Flex (RF), at environmentally relevant and higher concentrations in zebrafish larvae through the assessment of the inflammatory, oxidative stress and cell death response. Transgenic Tg(mpxGFP)i114 and wild-type (WT) zebrafish larvae (72 h post-fertilisation) were exposed to 1, 5, and 10 µg mL-1 of RF (based on the active ingredient concentration) for 4 h 30 min. A concentration of 2.5 µg mL-1 CuSO4 was used as a positive control. Copper sulphate exposure showed effectiveness in enhancing the inflammatory profile by increasing the number of neutrophils, nitric oxide (NO) levels, reactive oxygen species (ROS), and cell death. None of the RF concentrations tested showed changes in the number of neutrophils and NO. However, the concentration of 10 µg a.i. mL-1 was able to induce an increase in ROS levels and cell death. The activity of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), the biotransformation activity, the levels of reduced (GSH) and oxidised (GSSG) glutathione, lipid peroxidation (LPO), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE) were similar among groups. Overall, the evidence may suggest toxicological effects are dependent on the concentration of RF, although at concentrations that are not routinely detected in the environment. Additional studies are needed to better understand the underlying molecular mechanisms of this formulation.
Collapse
Affiliation(s)
- Germano Lanzarin
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Correspondence: (G.L.); (L.M.F.); (S.M.)
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Animal Science, School of Agrarian and Veterinary Sciences, UTAD, 5000-801 Vila Real, Portugal
- Animal and Veterinary Research Center (CECAV), UTAD, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Instituto de Investigação e Inovação em Saúde (i3s), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), University of Porto (UP), 4200-135 Porto, Portugal
- Correspondence: (G.L.); (L.M.F.); (S.M.)
| | - Sandra Monteiro
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal
- Department of Biology and Environment (DeBA), School of Life and Environmental Sciences (ECVA), UTAD, 5000-801 Vila Real, Portugal
- Correspondence: (G.L.); (L.M.F.); (S.M.)
| |
Collapse
|
19
|
Characterization of the Safety Profile of Sweet Chestnut Wood Distillate Employed in Agriculture. SAFETY 2021. [DOI: 10.3390/safety7040079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In organic agriculture, synthetic pesticides and treatments are substituted by natural remedies with interesting success for product yield and environmental outcomes, but the safety of these bio-based products needs to be assessed in vertebrate and human models. Therefore, in this paper we assessed the safety profile of sweet chestnut (Castanea sativa) wood distillate (WD) on the different cellular components of tissues implied in transcutaneous absorption. We investigated the viability of different cell lines mimicking the skin (HaCaT keratinocytes), mucosa (A431), connective (normal human dermal fibroblasts, NHDF) and vascular (human umbilical vein endothelial cells, HUVEC) tissues after exposure to increasing concentrations (0.04–0.5%, v/v, corresponding to 1:2800–1:200 dilutions) of WD. A short exposure to increasing doses of WD was well tolerated up to the highest concentration. Instead, following a prolonged treatment, a concentration dependent cytotoxic effect was observed. Notably, a different behavior was found with the various cell lines, with higher sensitivity to cytotoxicity by the cells with higher proliferation rate and reduced doubling time (human keratinocytes). Moreover, to exclude an inflammatory effect at the not cytotoxic WD concentrations, the expression of the main inducible markers of inflammation, cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1), were assessed, and no improvement was found both after brief and prolonged exposure. In conclusion, our data exclude any inflammatory and cytotoxic effect at the lowest WD concentrations, namely 0.07% and 0.04%, mimicking some recommended dilutions of the product and the potential exposure doses for the operators in agriculture. Nevertheless, higher concentrations showed a safe profile for short time usage, but caution should be used by farmers following persistent product exposure.
Collapse
|
20
|
Prathima P, Venkaiah K, Daveedu T, Pavani R, Sukeerthi S, Gopinath M, Sainath SB. α-lipoic acid protects testis and epididymis against linuron-induced oxidative toxicity in adult rats. Toxicol Res 2020; 36:343-357. [PMID: 33005594 PMCID: PMC7494705 DOI: 10.1007/s43188-019-00036-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Linuron is well known for its antiandrogenic property. However, the effects of linuron on testicular and epididymal pro- and antioxidant status are not well defined. On the other hand, α-lipoic acid is well known as universal antioxidant. Therefore, the purpose of this study was twofold: firstly to investigate whether linuron exposure alters antioxidant status in the testis and epididymis of rats and if so, whether the supplementation of α-lipoic acid mitigates linuron-induced oxidative toxicity in rats. To address this question, α-lipoic acid at a dose of 70 mg/Kg body weight (three times a week) was administered to linuron exposed rats (10 or 50 mg/Kg body weight, every alternate day over a period of 60 days), and the selected reproductive endpoints were analyzed after 60 days. Respective controls were maintained in parallel. Linuron at selected doses reduced testicular daily sperm count, and epididymal sperm count, sperm motility, sperm viability, and number of tail coiled sperm, reduced activity levels of 3β- and 17β-hydroxysteroid dehydrogenases, decreased expression levels of StAR mRNA, inhibition of testosterone levels, and elevated levels of testicular cholesterol in rats over controls. Linuron intoxication deteriorated the structural integrity of testis and epididymis associated with reduced the reproductive performance over controls. Conversely, α-lipoic acid supplementation enhanced sperm quality and improved the testosterone synthesis pathway in linuron exposed rats over its respective control. Administration of α-lipoic acid restored inhibition of testicular and epididymal enzymatic (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidise) and non-enzymatic (glutathione content), increased lipid peroxidation and protein carbonyl content produced by linuron in rats. α-lipoic acid supplementation inhibited the expression levels of testicular caspase-3 mRNA levels and also its activity in linuron treated rats. To summate, α-lipoic acid-induced protection of reproductive health in linuron treated rats could be attributed to its antioxidant, and steroidogenic properties.
Collapse
Affiliation(s)
- P. Prathima
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, AP 524 320 India
| | - K. Venkaiah
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, AP 524 320 India
| | - T. Daveedu
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, AP 524 320 India
| | - R. Pavani
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, AP 524 320 India
| | - S. Sukeerthi
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, AP 524 320 India
| | - M. Gopinath
- Department of Pharmacy, Ratnam Pharmacy College, Muthukur, Nellore, AP India
| | - Sri Bhashaym Sainath
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, AP 524 320 India
| |
Collapse
|
21
|
Medithi S, Jonnalagadda PR, Jee B. Predominant role of antioxidants in ameliorating the oxidative stress induced by pesticides. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 76:61-74. [PMID: 32271132 DOI: 10.1080/19338244.2020.1750333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress has been reported as one of the adverse effects caused due to pesticides, which is the main mechanism of the toxicity in humans and animals and is a useful parameter in monitoring studies. It involves an imbalance in the equilibrium state of ROS and antioxidant defenses leading to alterations in various antioxidant enzyme levels and lipid peroxidation. The objective of the current paper is to present a review of the potential role and protective mechanism action of the antioxidant micronutrient supplementation to ameliorate the oxidative stress induced by pesticides. Studies in animal models and human were retrieved through the relevant search of the literature and categorized. Various animal studies were categorized according to the type of supplementation. Animal studies provide evidence to conclude the potential protective role of antioxidants in ameliorating the adverse effects of pesticides. Similar studies in humans are meager suggesting for further comprehensive research.
Collapse
Affiliation(s)
- Srujana Medithi
- Research Scholar, Food Safety Division, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
- Symbiosis School of Biological Sciences, Symbiosis International University, Pune, Maharashtra, India
| | - Padmaja R Jonnalagadda
- Scientist-F, Food Safety Division, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Babban Jee
- Scientist-C, Department of Health Research, Ministry of Health and Family Welfare, New Delhi, India
| |
Collapse
|
22
|
Red Beetroot Extract Abrogates Chlorpyrifos-Induced Cortical Damage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2963020. [PMID: 32215171 PMCID: PMC7085382 DOI: 10.1155/2020/2963020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 12/14/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
Organophosphorus insecticides including chlorpyrifos (CPF) are mainly used for agriculture, household, and military purposes; their application is associated with various adverse reactions in animals and humans. This study was conducted to evaluate the potential neuroprotective effect of red beetroot methanolic extract (RBR) against CPF-induced cortical damage. Twenty-eight adult male Wistar albino rats were divided into 4 groups (n = 7 in each group): the control group was administered physiological saline (0.9% NaCl), the CPF group was administered CPF (10 mg/kg), the RBR group was administered RBR (300 mg/kg), and the RBR+CPF group was treated with RBR (300 mg/kg) 1 hr before CPF (10 mg/kg) supplementation. All groups were treated for 28 days. Rats exposed to CPF exhibited a significant decrease in cortical acetylcholinesterase activity and brain-derived neurotrophic factor and a decrease in glial fibrillary acidic protein. CPF intoxication increased lipid peroxidation, inducible nitric oxide synthase expression, and nitric oxide production. This was accompanied by a decrease in glutathione content and in the activities of glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase in the cortical tissue. Additionally, CPF enhanced inflammatory response, indicated by increased levels and expression of interleukin-1β and tumor necrosis factor-α. CPF triggered neuronal apoptosis by upregulating Bax and caspase-3 and downregulating Bcl-2. However, RBR reversed the induced neuronal alterations following CPF intoxication. Our findings suggest that RBR can minimize and prevent CPF neurotoxicity through its antioxidant, anti-inflammatory, and antiapoptotic activities.
Collapse
|
23
|
He B, Wang X, Yang C, Zhu J, Jin Y, Fu Z. The regulation of autophagy in the pesticide-induced toxicity: Angel or demon? CHEMOSPHERE 2020; 242:125138. [PMID: 31670000 DOI: 10.1016/j.chemosphere.2019.125138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/20/2023]
Abstract
Pesticides have become an essential tool for pest kill, weed control and microbiome inhibition for both agricultural and domestic use. However, with the massive use, pesticides can exist in soil, air and water, and sometimes even accumulate in the human or other mammals through food chains. Lots of researches have proven that pesticides possess toxicity to mammals on endocrine, neural and immune systems. Autophagy, as a conservative intracellular process, which is activated by stress-related signals, plays a pivotal role, either "angle" or "demon", in regulation of cell fate and function. Recent evidences in researches elucidated a strong link between the autophagy and the toxicity of pesticides. In this review, we summarized the previous researches which focus on the autophagy regulation in the pesticides-induced toxicity, and hope that this work can help us to discover a potential strategy for the treatment of the disease caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
24
|
Neto da Silva K, Garbin Cappellaro L, Ueda CN, Rodrigues L, Pertile Remor A, Martins RDP, Latini A, Glaser V. Glyphosate-based herbicide impairs energy metabolism and increases autophagy in C6 astroglioma cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:153-167. [PMID: 32085696 DOI: 10.1080/15287394.2020.1731897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Several investigators demonstrated that glyphosate formulations produce neurotoxicity associated with oxidative stress, alterations in glutamatergic system, inhibition of acetylcholinesterase activity and mitochondrial dysfunction. However, the underlying molecular mechanisms following exposure to this herbicide on astrocytes are unclear. Thus, the aim of the present study was to determine the activity of enzymes related to energy metabolism, in addition to oxidative stress parameters, mitochondrial mass, nuclear area, and autophagy in astrocytes treated with a glyphosate-based herbicide. Our results showed that 24 h exposure to a glyphosate-based herbicide decreased (1) cell viability, (2) activities of mitochondrial respiratory chain enzymes and creatine kinase (CK), (3) mitochondrial mass, and (4) nuclear area in rat astroglioma cell line (C6 cells). However, non-protein thiol (NPSH) levels were increased but catalase activity was not changed in cells exposed to the herbicide at non-cytotoxic concentrations. Low glyphosate concentrations elevated content of cells positive to autophagy-related proteins. Nuclear factor erythroid 2-related factor (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1) and PTEN-induced kinase 1 (PINK1) labeling were not markedly altered in cells exposed to glyphosate at the same concentrations that an increase in NPSH levels and positive cells to autophagy were found. It is conceivable that mitochondria and CK may be glyphosate-based herbicides targets. Further, autophagy induction and NPSH increase may be mechanisms initiated to avoid oxidative stress and cell death. However, more studies are needed to clarify the role of autophagy in astrocytes exposed to the herbicide and which components of the formulation might be triggering the effects observed here.
Collapse
Affiliation(s)
- Katriane Neto da Silva
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Laura Garbin Cappellaro
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Caroline Naomi Ueda
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Luana Rodrigues
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Aline Pertile Remor
- Programa De Pós-graduação Em Biociências E Saúde, Universidade Do Oeste De Santa Catarina - Campus Joaçaba, Joaçaba, Brazil
| | - Roberta de Paula Martins
- Departamento De Ciências Da Saúde, Universidade Federal De Santa Catarina - Campus De Araranguá, Araranguá, Brazil
| | - Alexandra Latini
- Laboratório De Bioenergética E Estresse Oxidativo, Departamento De Bioquímica, Universidade Federal De Santa Catarina - Campus De Florianópolis, Florianópolis, Brazil
| | - Viviane Glaser
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| |
Collapse
|
25
|
Portier CJ. A comprehensive analysis of the animal carcinogenicity data for glyphosate from chronic exposure rodent carcinogenicity studies. Environ Health 2020; 19:18. [PMID: 32050978 PMCID: PMC7014589 DOI: 10.1186/s12940-020-00574-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/06/2020] [Indexed: 05/15/2023]
Abstract
Since the introduction of glyphosate-tolerant genetically-modified plants, the global use of glyphosate has increased dramatically making it the most widely used pesticide on the planet. There is considerable controversy concerning the carcinogenicity of glyphosate with scientists and regulatory authorities involved in the review of glyphosate having markedly different opinions. One key aspect of these opinions is the degree to which glyphosate causes cancer in laboratory animals after lifetime exposure. In this review, twenty-one chronic exposure animal carcinogenicity studies of glyphosate are identified from regulatory documents and reviews; 13 studies are of sufficient quality and detail to be reanalyzed in this review using trend tests, historical control tests and pooled analyses. The analyses identify 37 significant tumor findings in these studies and demonstrate consistency across studies in the same sex/species/strain for many of these tumors. Considering analyses of the individual studies, the consistency of the data across studies, the pooled analyses, the historical control data, non-neoplastic lesions, mechanistic evidence and the associated scientific literature, the tumor increases seen in this review are categorized as to the strength of the evidence that glyphosate causes these cancers. The strongest evidence shows that glyphosate causes hemangiosarcomas, kidney tumors and malignant lymphomas in male CD-1 mice, hemangiomas and malignant lymphomas in female CD-1 mice, hemangiomas in female Swiss albino mice, kidney adenomas, liver adenomas, skin keratoacanthomas and skin basal cell tumors in male Sprague-Dawley rats, adrenal cortical carcinomas in female Sprague-Dawley rats and hepatocellular adenomas and skin keratocanthomas in male Wistar rats.
Collapse
Affiliation(s)
- Christopher J Portier
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands.
- CJP Consulting, Seattle, Washington, USA.
| |
Collapse
|
26
|
Mahmoud SM, Abdel Moneim AE, Qayed MM, El-Yamany NA. Potential role of N-acetylcysteine on chlorpyrifos-induced neurotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20731-20741. [PMID: 31104238 DOI: 10.1007/s11356-019-05366-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate insecticide with several harmful effects. N-acetylcysteine (NAC) represents an ideal antixenobiotic; it can directly enter endogenous biochemical processes and is used as adjunctive treatment for psychiatric disorders. We aimed to evaluate the neuroprotective effect of NAC as an antioxidant drug against CPF-induced neurotoxicity in adult male albino rat brains. Twenty-eight male Wister rats were allocated into four groups (n = 7) and were administered the following for 28 days: group I (control group), physiological saline (0.9% NaCl); group II (CPF group), 10 mg/kg body weight (BW) CPF; group III (NAC group), 100 mg/kg BW NAC; and group VI (CPF+NAC group), NAC 1 h before CPF. CPF intoxication resulted in acetylcholinesterase inhibition, reduced glutathione content, and elevated levels of malondialdehyde and nitric oxide, which are oxidative stress biomarkers. CPF also depleted the activity of antioxidant enzymes, superoxide dismutase and catalase, and levels of inflammatory mediators, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. Levels of vascular endothelial growth factor, Bax, and the proapoptotic caspases-3 also increased, while brain-derived neurotrophic factor level decreased. Additionally, CPF significantly diminished Bcl-2 (an antiapoptotic protein) in rat brain cortical tissue. NAC treatment was found to protect brain tissue by reversing the CPF-induced neurotoxicity. Our results show the antioxidant, antiinflammatory, and antiapoptotic effects of NAC on CPF-induced neurotoxicity in rat brain tissue.
Collapse
Affiliation(s)
- Sahar M Mahmoud
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Marwa M Qayed
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nabil A El-Yamany
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Pandey A, Dhabade P, Kumarasamy A. Inflammatory Effects of Subacute Exposure of Roundup in Rat Liver and Adipose Tissue. Dose Response 2019; 17:1559325819843380. [PMID: 31205454 PMCID: PMC6537504 DOI: 10.1177/1559325819843380] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Roundup is a popular herbicide containing glyphosate as an active ingredient. The formulation of Roundup is speculated to have critical toxic effects, one among which is chronic inflammation. The present study analyzed adverse inflammatory effects in the liver and adipose tissue of rats after a subacute exposure of Roundup. Adult male rats were exposed to various doses of Roundup (0, 5, 10, 25, 50, 100 and 250 mg/kg bodyweight [bw] glyphosate) orally, everyday for 14 days. On day 15, liver and adipose tissues from dosed rats were analyzed for inflammation markers. C-reactive protein in liver, cytokines IL-1β, TNF-α, IL-6, and inflammatory response marker, and prostaglandin–endoperoxide synthase were upregulated in liver and adipose of rats exposed to higher (100 and 250 mg/kg bw/d) doses of Roundup. Cumulatively, our data suggest development of inflammation in lipid and hepatic organs upon exposure to Roundup. Furthermore, liver histological studies showed formation of vacuoles, fibroid tissue, and glycogen depletion in the groups treated with doses of higher Roundup. These observations suggest progression of fatty liver disease in Roundup-treated adult rats. In summary, our data suggest progression of multiorgan inflammation, liver scarring, and dysfunction post short-term exposure of Roundup in adult male rats.
Collapse
Affiliation(s)
- Aparamita Pandey
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prachi Dhabade
- Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Anand Kumarasamy
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
28
|
Toxicological Effects of Traumatic Acid and Selected Herbicides on Human Breast Cancer Cells: In Vitro Cytotoxicity Assessment of Analyzed Compounds. Molecules 2019; 24:molecules24091710. [PMID: 31052542 PMCID: PMC6539929 DOI: 10.3390/molecules24091710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
The main consequence of herbicides use is the presence of their residues in food of plant origin. A growing body of evidence indicates that herbicides cause detrimental effects upon human health while demonstrating a direct link of pesticides exposure with the occurrence of human chronic diseases, including cancer. There is a pressing need to develop our knowledge regarding interactions of food contaminants and food components both in vitro and in vivo. Pesticides are highly undesirable food contaminants, and traumatic acid (TA) is a very beneficial food ingredient, therefore we decided to study if TA may act as a compound that delays the stimulatory effect of pesticides on breast cancer cells. To analyze the potential effects that selected herbicides (MCPA, mesotrione, bifenox and dichlobenil) may have upon cancerous cells, we conducted studies of the cytotoxicity of physiological concentrations of four pesticides and the mix of TA with tested herbicides in three different breast cancer cell lines (MCF-7, ZR-75-1 and MDA-MB-231) and one normal healthy breast cell line MCF-12A. Based on the obtained results we conclude that TA in a concentration-dependent manner might influence selected effects of the studied herbicides for particular cancer cells lines.
Collapse
|
29
|
Park E, Gim J, Kim DK, Kim CS, Chun HS. Protective Effects of Alpha-Lipoic Acid on Glutamate-Induced Cytotoxicity in C6 Glioma Cells. Biol Pharm Bull 2019; 42:94-102. [PMID: 30606992 DOI: 10.1248/bpb.b18-00603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate-mediated cytotoxicity has been implicated in the pathogenesis of neurological diseases, including Parkinson's disease, Alzheimer's disease, and stroke. In this study, we investigated the protective effects of alpha-lipoic acid (ALA), a naturally occurring thiol antioxidant, on glutamate-induced cytotoxicity in cultured C6 astroglial cells. Exposure to high-dose glutamate (10 mM) caused oxidative stress and mitochondrial dysfunction through the elevation of reactive oxygen species, depletion of glutathione, and loss of the mitochondrial membrane potential (ΔΨm). Pretreatment with ALA (200 µM), however, significantly inhibited the glutamate-induced oxidative stress and mitochondrial dysfunction. ALA pretreatment dose-dependently suppressed glutamate-induced apoptotic events including altered nuclear morphology and activation of caspase-3. In addition, ALA significantly attenuated glutamate-induced endoplasmic reticulum (ER) stress markers; namely, glucose-regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), protein kinase regulated by RNA (PKR)-like ER-associated kinase (PERK), eukaryotic translation initiation factor 2 alpha (eIF2α), inositol-requiring enzyme 1 (IRE1), CCAAT/enhancer binding protein homologous protein (CHOP), and caspase-12. We confirmed that CHOP and caspase-12 are key mediators of glutamate-induced ER stress. Furthermore, exposure of the cells to a caspase-12-specific inhibitor and CHOP small interfering RNAs (siRNAs) led to restoration of the ΔΨm that was damaged by glutamate treatment. These results suggest that ALA can effectively suppress oxidative stress, mitochondrial dysfunction, and ER stress in astroglial cells.
Collapse
Affiliation(s)
- Euteum Park
- Department of Biomedical Science, Chosun University
| | - Jungsoo Gim
- Department of Biomedical Science, Chosun University
| | - Do Kyung Kim
- Department of Oral Physiology, College of Dentistry, Chosun University
| | - Chun-Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University
| | | |
Collapse
|
30
|
Ghelichpour M, Taheri Mirghaed A, Hoseinifar SH, Khalili M, Yousefi M, Van Doan H, Perez-Jimenez A. Expression of immune, antioxidant and stress related genes in different organs of common carp exposed to indoxacarb. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:208-216. [PMID: 30684893 DOI: 10.1016/j.aquatox.2019.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present study was to investigate the effects of chronic exposure of common carp (Cyprinus carpio) to indoxacarb on immune, antioxidant and stress gene expression. After 21 days exposure to 0, 0.75, 1.5 and 3 ppm indoxacarb, expression of IL-1β, IL-8, IL-10, TNF-α, IFN-γ, SOD, CAT, HSP70, IGF-I and IGF-II were assessed in liver, kidney and gills. In general, exposure to low concentration of indoxacarb increased inflammatory cytokine gene expression (IL-1β, IL-8, IL-10, TNF-α and IFN-γ) and inhibits inflammatory cytokines' expression at higher concentrations. The assessment of antioxidant gene expression (SOD and CAT) in different organs indicate that they were increased by low concentrations of indoxacarb to deal with primary oxidative situation. However, higher concentrations of indoxacarb caused reduction in oxidative gene expression. IGF genes expression in liver significantly increased at a concentration of 0.75 ppm treatment, then it decreased at 1.5 ppm indoxacarb and increased again by increasing in the indoxacarb concentration to 3 ppm. The expression of HSP70 in kidney showed a significant elevation in 0.75 and 1.5 ppm treatments compared with 3 ppm treatment and the control group. The expression of this gene in liver was significantly increased in 1.5 and 3 ppm treatments. The same pattern of expression was also observed in gill. Overall, indoxacarb exposure affects common carp health at transcription levels. Changes in the genes expression generally suggest that indoxacarb exposure led to interference in inflammation, oxidative stress and tissue damage.
Collapse
Affiliation(s)
- Melika Ghelichpour
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohsen Khalili
- Medical Cellular & Molecular Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Amalia Perez-Jimenez
- Departamento de Zoología, Universidad de Granada, Campus de Fuentenueva, Granada, Spain; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| |
Collapse
|
31
|
Bali YA, Kaikai NE, Ba-M'hamed S, Bennis M. Learning and memory impairments associated to acetylcholinesterase inhibition and oxidative stress following glyphosate based-herbicide exposure in mice. Toxicology 2019; 415:18-25. [PMID: 30682438 DOI: 10.1016/j.tox.2019.01.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
Numerous clinical and epidemiological data have reported the deleterious effects of glyphosate on learning and memory. The ability of this herbicide to cross the blood-brain barrier may have adverse effects on the structure and various functions of the nervous system. This study was conducted to highlight the effects of Glyphosate-based herbicide (GBH) on these two functions in mice treated daily with 250 or 500 mg/kg following acute (unique administration), subchronic (6 weeks) and chronic (12 weeks) treatments. The integrity of learning and memory was assessed by using a specific behavioral test battery: Novel object recognition, Y-maze and passive avoidance tasks. The acetylcholinesterase (AChE) and anti-oxidant enzyme activities, especially superoxide dismutase (SOD) and peroxidase (PO) were evaluated. Our results indicated that unlike acute treatment, both subchronic and chronic exposure to GBH decreased discrimination index and the step-through-latency indicating recognition and retention memory impairments, respectively. In contrast, only chronic exposure affected working memory manifested by decreased spontaneous alternation. Furthermore, our results showed also a prominent decrease in AChE, SOD and PO specific activities within the brain of treated mice following repeated exposures. This study demonstrates that GBH induced numerous cognitive abnormalities referred to different forms of memory likely associated with a significant inhibition of AChE activity and oxidative stress induction.
Collapse
Affiliation(s)
- Yassine Ait Bali
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Cadi Ayyad University, Marrakech, Morocco
| | - Nour-Eddine Kaikai
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Cadi Ayyad University, Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Cadi Ayyad University, Marrakech, Morocco.
| |
Collapse
|
32
|
Arnal N, Morel G, Marra CA, Astiz M. Pro-apoptotic effects of low doses of dimethoate in rat brain. Toxicol Appl Pharmacol 2019; 363:57-63. [DOI: 10.1016/j.taap.2018.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/12/2023]
|
33
|
Ramos P, Schmitz M, Gama S, Portantiolo A, Durruthy MG, de Souza Votto AP, Cornetet LR, dos Santos Machado K, Werhli A, Tonel MZ, Fagan SB, Yunes JS, Monserrat JM. Cytoprotection of lipoic acid against toxicity induced by saxitoxin in hippocampal cell line HT-22 through in silico modeling and in vitro assays. Toxicology 2018; 393:171-184. [DOI: 10.1016/j.tox.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
|
34
|
Cai Z, Shi T, Zhuang R, Fang H, Jiang X, Shao Y, Zhou H. Protective effect of N-acetylcysteine activated carbon release microcapsule on myocardial ischemia-reperfusion injury in rats. Exp Ther Med 2017; 15:1809-1818. [PMID: 29434769 PMCID: PMC5776512 DOI: 10.3892/etm.2017.5653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
With the development of science and technology, and development of artery bypass, methods such as cardiopulmonary cerebral resuscitation have been practiced in recent years. Despite this, some methods fail to promote or recover the function of tissues and organs, and in some cases, may aggravate dysfunction and structural damage to tissues. The latter is typical of ischemia-reperfusion (IR) injury. Lipid peroxidation mediated by free radicals is an important process of myocardial IR injury. Myocardial IR has been demonstrated to induce the formation of large numbers of free radicals in rats, which promotes the peroxidation of lipids within unsaturated fatty acids in the myocardial cell membrane. Markers of lipid peroxidation include malondialdehyde, superoxide dismutase and lactic dehydrogenase. Recent studies have demonstrated that N-acetylcysteine (NAC) is able to dilate blood vessels, prevent oxidative damage, improve immunity, inhibit apoptosis and the inflammatory response and promote glutathione synthesis in cells. NAC also improves the systolic function of myocardial cells and cardiac function, prevents myocardial apoptosis, protects ventricular remodeling and vascular remodeling, reduces opiomelanocortin levels in the serum and increases the content of nitric oxide in the serum, thus improving vascular endothelial function. Therefore, NAC has potent pharmacological activity; however, the relatively fast metabolism of NAC, along with its large clinical dose and low bioavailability, limit its applications. The present study combined NAC with medicinal activated carbons, and prepared N-acetylcysteine activated carbon sustained-release microcapsules (ACNACs) to overcome the limitations of NAC. It was demonstrated that ACNACs exerted greater effective protective effects than NAC alone on myocardial IR injury in rats.
Collapse
Affiliation(s)
- Zhaobin Cai
- Department of Cardiology, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310023, P.R. China
| | - Tingting Shi
- Department of Pharmaceutical Preparation, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310023, P.R. China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310023, P.R. China
| | - Hongying Fang
- Department of Pharmaceutical Preparation, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310023, P.R. China
| | - Xiaojie Jiang
- Department of Pharmaceutical Preparation, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310023, P.R. China
| | - Yidan Shao
- Department of Pharmaceutical Preparation, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310023, P.R. China
| | - Hongping Zhou
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
35
|
Fluegge K, Fluegge K. Use of anthropogenic nitrogen fertilizers in agriculture is associated with per capita ethanol consumption. Med Hypotheses 2017; 107:65-71. [PMID: 28915966 DOI: 10.1016/j.mehy.2017.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
It has previously been demonstrated that emissions of the agricultural pollutant, nitrous oxide (N2O), may be a confounder to the relationship between herbicide use and psychiatric impairments, including ADHD. This report attempts to extend this hypothesis by testing whether annual use of anthropogenic nitrogen-based fertilizers in U.S. agriculture (thought to be the most reliable indicator of environmental N2O emissions) is associated with per capita ethanol consumption patterns, a behavior often comorbid with ADHD. State estimates of anthropogenic nitrogen fertilizers from the United States Geological Survey (USGS) were obtained for the years between 1987 and 2006. Our dependent variable was annual per capita ethanol consumption. Ethanol consumption was categorized as beer, wine, spirits, and all alcoholic beverages. Least squares dummy variable method using two-ways fixed effects was utilized. Among states above the 50th percentile in farm use of anthropogenic nitrogen for all years (i.e., agricultural states), a one log-unit increase in farm use of anthropogenic nitrogen fertilizers is associated with a 0.13 gallon increase in total per capita ethanol consumption (p<0.0125). No statistically significant association between farm use of anthropogenic nitrogen and per capita ethanol consumption was found in states below the 50th percentile in farm use of anthropogenic nitrogen. The new findings are in agreement with both behavioral human studies demonstrating a link between N2O preference and alcohol and drug use history as well as molecular studies elucidating shared mechanisms between trace N2O antinociception and alcohol-seeking related behaviors.
Collapse
Affiliation(s)
- Keith Fluegge
- Institute of Health and Environmental Research, Cleveland, OH 44118, USA.
| | - Kyle Fluegge
- Institute of Health and Environmental Research, Cleveland, OH 44118, USA; New York City Department of Health and Mental Hygiene, New York 11101-4132, USA
| |
Collapse
|
36
|
Rebai O, Belkhir M, Boujelben A, Fattouch S, Amri M. Morus alba leaf extract mediates neuroprotection against glyphosate-induced toxicity and biochemical alterations in the brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9605-9613. [PMID: 28247273 DOI: 10.1007/s11356-017-8584-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Recent studies demonstrate that glyphosate exposure is associated with oxidative stress and some neurological disorders such as Parkinson's pathology. Therefore, phytochemicals, in particular phenolic compounds, have attracted increasing attention as potential agents for neuroprotection. In the present study, we investigate the impact of glyphosate on the rat brain following i.p. injection and the possible molecular target of neuroprotective activity of the phenolic fraction from Morus alba leaf extract (MALE) and its ability to reduce oxidative damage in the brain. Wistar rats from 180 to 240 g were i.p. treated with a single dose of glyphosate (100 mg kg-1 b.w.) or MALE (100 μg mL-1 kg-1 b.w.) for 2 weeks. Brain homogenates were used to evaluate neurotoxicity induced by the pesticide. For this, biochemical parameters were measured. Data shows that MALE regulated oxidative stress and counteracted glyphosate-induced deleterious effects and oxidative damage in the brain, as it abrogated LDH, protein carbonyls, and malonyldialdehyde. MALE also appears to be able to scavenge H2O2 levels, maintain iron and Ca2+ homeostasis, and increase SOD activity. Thus, in vivo results showed that mulberry leaf extract is a potent protector against glyphosate-induced toxicity, and its protective effect could result from synergism or antagonism between the various bioactive phenolic compounds in the acetonic fraction from M. alba leaf extract.
Collapse
Affiliation(s)
- Olfa Rebai
- Research Unit of Functional Neurophysiology and Pathology, 00/UR/08-01, Faculty of Science of Tunis, University El Manar, 2092, Tunis, Tunisia.
| | - Manel Belkhir
- Research Unit of Functional Neurophysiology and Pathology, 00/UR/08-01, Faculty of Science of Tunis, University El Manar, 2092, Tunis, Tunisia
| | - Adnen Boujelben
- Laboratory LIP-MB, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia
| | - Sami Fattouch
- Laboratory LIP-MB, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia
| | - Mohamed Amri
- Research Unit of Functional Neurophysiology and Pathology, 00/UR/08-01, Faculty of Science of Tunis, University El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
37
|
Nardi J, Moras PB, Koeppe C, Dallegrave E, Leal MB, Rossato-Grando LG. Prepubertal subchronic exposure to soy milk and glyphosate leads to endocrine disruption. Food Chem Toxicol 2017; 100:247-252. [PMID: 28017703 DOI: 10.1016/j.fct.2016.12.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/23/2022]
Abstract
Lactose intolerance is characterized by low or inexistent levels of lactase, and the main treatment consists of dietary changes, especially replacing dairy milk by soy milk. Soy contains phytoestrogens, substances with known estrogenic activity, besides, glyphosate-based herbicides are extensively used in soy crops, being frequently a residue in soy beans, bringing to a concern regarding the consumption of soy-based products, especially for children in breastfeeding period with lactose intolerance. This study evaluated the pubertal toxicity of a soy milk rich feeding (supplemented or not with glyphosate, doses of 50 and 100 mg/kg) during prepubertal period in male rats. Endocrine disruption was observed through decrease in testosterone levels, decrease in Sertoli cell number and increase in the percentage of degenerated Sertoli and Leydig cells in animals receiving soy milk supplemented with glyphosate (both doses) and in animals treated only with soy milk. Animals treated with soy milk with glyphosate (both doses) showed decrease spermatids number and increase of epididymal tail mass compared to control, and decrease in the diameter of seminiferous tubules compared to soy milk control group. Animals receiving soy milk supplemented with 100 mg/kg glyphosate showed decrease in round spermatids and increase in abnormal sperm morphology, compared to control.
Collapse
Affiliation(s)
- Jessica Nardi
- Institute of Biological Sciences, University of Passo Fundo, BR 285, 99052-900, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Patricia Bonamigo Moras
- Institute of Biological Sciences, University of Passo Fundo, BR 285, 99052-900, Passo Fundo, Rio Grande do Sul, Brazil
| | - Carina Koeppe
- Institute of Biological Sciences, University of Passo Fundo, BR 285, 99052-900, Passo Fundo, Rio Grande do Sul, Brazil
| | - Eliane Dallegrave
- Department of Pharmacoscience, Federal University of Health Sciences of Porto Alegre, Sarmento Leite Street, 245, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirna Bainy Leal
- Department of Pharmacology, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Sarmento Leite Street, 500/309, 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | | |
Collapse
|
38
|
Ingaramo PI, Varayoud J, Milesi MM, Schimpf MG, Muñoz-de-Toro M, Luque EH. Effects of neonatal exposure to a glyphosate-based herbicide on female rat reproduction. Reproduction 2016; 152:403-15. [PMID: 27486271 DOI: 10.1530/rep-16-0171] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022]
Abstract
In this study, we investigated whether neonatal exposure to a glyphosate-based herbicide (GBH) alters the reproductive performance and the molecular mechanisms involved in the decidualization process in adult rats. Newborn female rats received vehicle or 2 mg/kg/day of a GBH on postnatal days (PND) 1, 3, 5 and 7. On PND90, the rats were mated to evaluate (i) the reproductive performance on gestational day (GD) 19 and (ii) the ovarian steroid levels, uterine morphology, endometrial cell proliferation, apoptosis and cell cycle regulators, and endocrine pathways that regulate uterine decidualization (steroid receptors/COUP-TFII/Bmp2/Hoxa10) at the implantation sites (IS) on GD9. The GBH-exposed group showed a significant increase in the number of resorption sites on GD19, associated with an altered decidualization response. In fact, on GD9, the GBH-treated rats showed morphological changes at the IS, associated with a decreased expression of estrogen and progesterone receptors, a downregulation of COUP-TFII (Nr2f2) and Bmp2 mRNA and an increased expression of HOXA10 and the proliferation marker Ki67(Mki67) at the IS. We concluded that alterations in endometrial decidualization might be the mechanism of GBH-induced post-implantation embryo loss.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
39
|
Cytotoxic Effects of Environmental Toxins on Human Glial Cells. Neurotox Res 2016; 31:245-258. [PMID: 27796937 DOI: 10.1007/s12640-016-9678-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/29/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022]
Abstract
Toxins produced by cyanobacteria and dinoflagellates have increasingly become a public health concern due to their degenerative effects on mammalian tissue and cells. In particular, emerging evidence has called attention to the neurodegenerative effects of the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA). Other toxins such as the neurotoxins saxitoxin and ciguatoxin, as well as the hepatotoxic microcystin, have been previously shown to have a range of effects upon the nervous system. However, the capacity of these toxins to cause neurodegeneration in human cells has not, to our knowledge, been previously investigated. This study aimed to examine the cytotoxic effects of BMAA, microcystin-LR (MC-LR), saxitoxin (STX) and ciguatoxin (CTX-1B) on primary adult human astrocytes. We also demonstrated that α-lipoate attenuated MC-LR toxicity in primary astrocytes and characterised changes in gene expression which could potentially be caused by these toxins in primary astrocytes. Herein, we are the first to show that all of these toxins are capable of causing physiological changes consistent with neurodegeneration in glial cells, via oxidative stress and excitotoxicity, leading to a reduction in cell proliferation culminating in cell death. In addition, MC-LR toxicity was reduced significantly in astrocytes-treated α-lipoic acid. While there were no significant changes in gene expression, many of the probes that were altered were associated with neurodegenerative disease pathogenesis. Overall, this is important in advancing our current understanding of the mechanism of toxicity of MC-LR on human brain function in vitro, particularly in the context of neurodegeneration.
Collapse
|
40
|
Carter CJ, Blizard RA. Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem Int 2016; 101:S0197-0186(16)30197-8. [PMID: 27984170 DOI: 10.1016/j.neuint.2016.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022]
Abstract
The increasing incidence of autism suggests a major environmental influence. Epidemiology has implicated many candidates and genetics many susceptibility genes. Gene/environment interactions in autism were analysed using 206 autism susceptibility genes (ASG's) from the Autworks database to interrogate ∼1 million chemical/gene interactions in the comparative toxicogenomics database. Any bias towards ASG's was statistically determined for each chemical. Many suspect compounds identified in epidemiology, including tetrachlorodibenzodioxin, pesticides, particulate matter, benzo(a)pyrene, heavy metals, valproate, acetaminophen, SSRI's, cocaine, bisphenol A, phthalates, polyhalogenated biphenyls, flame retardants, diesel constituents, terbutaline and oxytocin, inter alia showed a significant degree of bias towards ASG's, as did relevant endogenous agents (retinoids, sex steroids, thyroxine, melatonin, folate, dopamine, serotonin). Numerous other suspected endocrine disruptors (over 100) selectively targeted ASG's including paraquat, atrazine and other pesticides not yet studied in autism and many compounds used in food, cosmetics or household products, including tretinoin, soy phytoestrogens, aspartame, titanium dioxide and sodium fluoride. Autism polymorphisms influence the sensitivity to some of these chemicals and these same genes play an important role in barrier function and control of respiratory cilia sweeping particulate matter from the airways. Pesticides, heavy metals and pollutants also disrupt barrier and/or ciliary function, which is regulated by sex steroids and by bitter/sweet taste receptors. Further epidemiological studies and neurodevelopmental and behavioural research is warranted to determine the relevance of large number of suspect candidates whose addition to the environment, household, food and cosmetics might be fuelling the autism epidemic in a gene-dependent manner.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex, TN34 2EY, UK.
| | - R A Blizard
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, University College, London, UK
| |
Collapse
|
41
|
Flora SJS. Arsenic and dichlorvos: Possible interaction between two environmental contaminants. J Trace Elem Med Biol 2016; 35:43-60. [PMID: 27049126 DOI: 10.1016/j.jtemb.2016.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/04/2016] [Accepted: 01/26/2016] [Indexed: 02/01/2023]
Abstract
Metals are ubiquitously present in the environment and pesticides are widely used throughout the world. Environmental and occupational exposure to metal along with pesticide is an area of great concern to both the public and regulatory authorities. Our major concern is that combination of these toxicant present in environment may elicit toxicity either due to additive or synergistic interactions or 'joint toxic actions' among these toxicants. It poses a rising threat to human health. Water contamination particularly ground water contamination with arsenic is a serious problem in today's scenario since arsenic is associated with several kinds of health problems, such arsenic associated health anomalies are commonly called as 'Arsenism'. Uncontrolled use and spillage of pesticides into the environment has resulted in alarming situation. Moreover serious concerns are being addressed due to their persistence in the environmental matrices such as air, soil and surface water runoff resulting in continuous exposure of these harmful chemicals to human beings and animals. Bio-availability of these environmental toxicants has been enhanced much due to anthropological activities. Dreadfully very few studies are available on combined exposures to these toxicants on the animal or human system. Studies on the acute and chronic exposure to arsenic and DDVP are well reported and well defined. Arsenic is a common global ground water contaminant while dichlorvos is one of the most commonly and widely employed organophosphate based insecticide used in agriculture, horticulture etc. There is thus a real situation where a human may get exposed to these toxicants while working in a field. This review highlights the individual and combined exposure to arsenic and dichlorvos on health.
Collapse
Affiliation(s)
- Swaran J S Flora
- Division of Regulatory Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
42
|
Elbini Dhouib I, Jallouli M, Annabi A, Gharbi N, Elfazaa S, Lasram MM. A minireview on N-acetylcysteine: An old drug with new approaches. Life Sci 2016; 151:359-363. [PMID: 26946308 DOI: 10.1016/j.lfs.2016.03.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/13/2023]
Abstract
N-acetylcysteine (NAC), a cysteine pro-drug and glutathione precursor has been used in therapeutic practices for several decades, as a mucolytic agent and for the treatment of numerous disorders including paracetamol intoxication. There is a growing interest concerning the beneficial effects of NAC against the early stages of toxicity-induced by pesticides. Nevertheless, the mechanisms underlying the therapeutic and clinical applications of NAC are not fully understood. In this review we aimed to focus on the protective effects of NAC against oxidative stress caused by pesticide in many organs. The possible mechanisms of action may be associated to its antioxidant properties. The anti-oxidative activity of NAC has been attributed to the fast reaction with free radicals as well as the restitution of reduced glutathione (GSH).
Collapse
Affiliation(s)
- Ines Elbini Dhouib
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia; Ecole Supérieure Privée des Ingénieurs et des Etudes Technologiques, Université Arabe des Sciences, Tunis, Tunisia.
| | - Manel Jallouli
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia
| | - Alya Annabi
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia
| | - Najoua Gharbi
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia
| | - Saloua Elfazaa
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia
| | - Mohamed Montassar Lasram
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia
| |
Collapse
|
43
|
Xu J, Li G, Wang Z, Si L, He S, Cai J, Huang J, Donovan MD. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues. CHEMOSPHERE 2016; 145:487-94. [PMID: 26701683 DOI: 10.1016/j.chemosphere.2015.11.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities.
Collapse
Affiliation(s)
- Jiaqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242 United States
| | - Gao Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhuoyi Wang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Sijie He
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jialing Cai
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Maureen D Donovan
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242 United States.
| |
Collapse
|
44
|
Madani FZ, Hafida M, Merzouk SA, Loukidi B, Taouli K, Narce M. Hemostatic, inflammatory, and oxidative markers in pesticide user farmers. Biomarkers 2015; 21:138-45. [DOI: 10.3109/1354750x.2015.1118545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Mesnage R, Defarge N, Spiroux de Vendômois J, Séralini GE. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol 2015; 84:133-53. [PMID: 26282372 DOI: 10.1016/j.fct.2015.08.012] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 01/05/2023]
Abstract
Glyphosate-based herbicides (GlyBH), including Roundup, are the most widely used pesticides worldwide. Their uses have increased exponentially since their introduction on the market. Residue levels in food or water, as well as human exposures, are escalating. We have reviewed the toxic effects of GlyBH measured below regulatory limits by evaluating the published literature and regulatory reports. We reveal a coherent body of evidence indicating that GlyBH could be toxic below the regulatory lowest observed adverse effect level for chronic toxic effects. It includes teratogenic, tumorigenic and hepatorenal effects. They could be explained by endocrine disruption and oxidative stress, causing metabolic alterations, depending on dose and exposure time. Some effects were detected in the range of the recommended acceptable daily intake. Toxic effects of commercial formulations can also be explained by GlyBH adjuvants, which have their own toxicity, but also enhance glyphosate toxicity. These challenge the assumption of safety of GlyBH at the levels at which they contaminate food and the environment, albeit these levels may fall below regulatory thresholds. Neurodevelopmental, reproductive, and transgenerational effects of GlyBH must be revisited, since a growing body of knowledge suggests the predominance of endocrine disrupting mechanisms caused by environmentally relevant levels of exposure.
Collapse
Affiliation(s)
- R Mesnage
- University of Caen, Institute of Biology and Network on Risks, Quality and Sustainable Environment (MRSH), Esplanade de la Paix, 14032 Caen Cedex, France; CRIIGEN, 81 rue de Monceau, 75008 Paris, France
| | - N Defarge
- University of Caen, Institute of Biology and Network on Risks, Quality and Sustainable Environment (MRSH), Esplanade de la Paix, 14032 Caen Cedex, France; CRIIGEN, 81 rue de Monceau, 75008 Paris, France
| | | | - G E Séralini
- University of Caen, Institute of Biology and Network on Risks, Quality and Sustainable Environment (MRSH), Esplanade de la Paix, 14032 Caen Cedex, France; CRIIGEN, 81 rue de Monceau, 75008 Paris, France.
| |
Collapse
|
46
|
Bobermin LD, Wartchow KM, Flores MP, Leite MC, Quincozes-Santos A, Gonçalves CA. Ammonia-induced oxidative damage in neurons is prevented by resveratrol and lipoic acid with participation of heme oxygenase 1. Neurotoxicology 2015; 49:28-35. [PMID: 26003724 DOI: 10.1016/j.neuro.2015.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/29/2022]
Abstract
Ammonia is a metabolite that, at high concentrations, is implicated in neurological disorders, such as hepatic encephalopathy (HE), which is associated with acute or chronic liver failure. Astrocytes are considered the primary target of ammonia toxicity in the central nervous system (CNS) because glutamine synthetase (GS), responsible for ammonia metabolism in CNS, is an astrocytic enzyme. Thus, neuronal dysfunction has been associated as secondary to astrocytic impairment. However, we demonstrated that ammonia can induce direct effects on neuronal cells. The cell viability was decreased by ammonia in SH-SY5Y cells and cerebellar granule neurons. In addition, ammonia induced increased reactive oxygen species (ROS) production and decreased GSH intracellular content, the main antioxidant in CNS. As ammonia neurotoxicity is strongly associated with oxidative stress, we also investigated the potential neuroprotective roles of the antioxidants, resveratrol (RSV) and lipoic acid (LA), against ammonia toxicity in cerebellar granule neurons. RSV and LA were able to prevent the oxidative damage induced by ammonia, maintaining the levels of ROS production and GSH close to basal values. Both antioxidants also decreased ROS production and increased GSH content under basal conditions (in the absence of ammonia). Moreover, we showed that heme oxygenase 1 (HO1), a protein associated with protection against stress conditions, is involved in the beneficial effects of RSV and LA in cerebellar granule neurons. Thus, this study reinforces the neuroprotective effects of RSV and LA. Although more studies in vivo are required, RSV and LA could represent interesting therapeutic strategies for the management of HE.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Krista Minéia Wartchow
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marianne Pires Flores
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Concli Leite
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
47
|
Veskovic M, Mladenovic D, Jorgacevic B, Stevanovic I, de Luka S, Radosavljevic T. Alpha-lipoic acid affects the oxidative stress in various brain structures in mice with methionine and choline deficiency. Exp Biol Med (Maywood) 2015; 240:418-425. [PMID: 25193852 PMCID: PMC4935381 DOI: 10.1177/1535370214549521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/30/2014] [Indexed: 02/05/2023] Open
Abstract
Deficiency in methionine or choline can induce oxidative stress in various organs such as liver, kidney, heart, and brain. This study was to examine the effects of alpha-lipoic acid (LA) on oxidative stress induced by methionine and choline deficiency (MCD) in several brain structures. Male mice C57BL/6 (n = 28) were divided into four groups: (1) control - continuously fed with standard chow; (2) LA - fed with standard chow and receiving LA; (3) MCD2 - fed with MCD diet for two weeks, and (4) MCD2+LA - fed with MCD diet for two weeks and receiving LA (100 mg/kg/day intraperitonealy [i.p.]). Brain tissue (cortex, hypothalamus, striatum and hippocampus) was taken for determination of oxidative stress parameters. MCD diet induced a significant increase in malondialdehyde and NOx concentration in all brain regions, while LA restored their content to normal values. Similar to this, in MCD2 group, activity of total SOD, MnSOD, and Cu/ZnSOD was reduced by MCD diet, while LA treatment improved their activities in all brain structures. Besides, in MCD2 group a decrease in catalase activity in cortex and GSH content in hypothalamus was evident, while LA treatment induced an increase in catalase activity in cortex and striatum and GSH content in hypothalamus. LA treatment can significantly reduce lipid peroxidation and nitrosative stress, caused by MCD diet, in all brain regions by restoring antioxidant enzymes activities, predominantly total SOD, MnSOD, and Cu/ZnSOD, and to a lesser extent by modulating catalase activity and GSH content. LA supplementation may be used in order to prevent brain oxidative injury induced by methionine and choline deficiency.
Collapse
Affiliation(s)
- Milena Veskovic
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dusan Mladenovic
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojan Jorgacevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Silvio de Luka
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tatjana Radosavljevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailović", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
48
|
Soloneski S, Kujawski M, Scuto A, Larramendy ML. Carbamates: A study on genotoxic, cytotoxic, and apoptotic effects induced in Chinese hamster ovary (CHO-K1) cells. Toxicol In Vitro 2015; 29:834-44. [PMID: 25820133 DOI: 10.1016/j.tiv.2015.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/11/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
In vitro effects of the carbamates pirimicarb and zineb and their formulations Aficida® (50% pirimicarb) and Azzurro® (70% zineb), respectively, were evaluated in Chinese hamster ovary (CHO-K1) cells. Whereas the cytokinesis-blocked micronucleus cytome assay was employed to test for genotoxicity, MTT, neutral red (NR), and apoptosis evaluation were used as tests for estimating cell viability and succinic dehydrogenase activity, respectively. Concentrations tested were 10-300 μg/ml for pirimicarb and Aficida®, and 1-50 μg/ml for zineb and Azzurro®. All compounds were able to increase the frequency of micronuclei. A marked reduction in the nuclear division index was observed after treatment with 5 μg/ml of zineb and Azzurro® and 10 μg/ml of Azzurro®. Alterations in the cellular morphology not allowing the recognition of binucleated cells exposed to 300 μg/ml pirimicarb and Aficida® as well as 10-50 μg/ml zineb and Azzurro®. All four compounds induced inhibition of both cell viability and succinic dehydrogenase activity and trigger apoptosis in CHO-K1 cells, at least when exposed for 24 h. The data herein demonstrate the genotoxic and cytotoxic effects exerted by these carbamates and reveal the potential risk factor of these pesticides, still extensively used worldwide, for both human health and the environment.
Collapse
Affiliation(s)
- Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Maciej Kujawski
- Department of Immunology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte Rd, Duarte, CA 91010, USA
| | - Anna Scuto
- Department of Anatomic Pathology, Medical Center at City of Hope Comprehensive Cancer Center, Duarte Rd, Duarte, CA 91010, USA
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
49
|
Karabay AZ, Koc A, Gurkan-Alp AS, Buyukbingol Z, Buyukbingol E. Inhibitory effects of indoleα-lipoic acid derivatives on nitric oxide production in LPS/IFNγ activated RAW 264.7 macrophages. Cell Biochem Funct 2015; 33:121-7. [DOI: 10.1002/cbf.3095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy; Ankara University; Ankara Turkey
| | - Aslı Koc
- Faculty of Pharmacy; Ankara University; Ankara Turkey
| | - A. Selen Gurkan-Alp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Ankara University; Ankara Turkey
| | - Zeliha Buyukbingol
- Department of Biochemistry, Faculty of Pharmacy; Ankara University; Ankara Turkey
| | - Erdem Buyukbingol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Ankara University; Ankara Turkey
| |
Collapse
|
50
|
Abdou RH, Abdel-Daim MM. Alpha-lipoic acid improves acute deltamethrin-induced toxicity in rats. Can J Physiol Pharmacol 2014; 92:773-779. [PMID: 25167376 DOI: 10.1139/cjpp-2014-0280] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Alpha-lipoic acid (ALA) is a natural dithiol compound, with a free radical scavenger and biological antioxidant properties. The purpose of the current study was to investigate the protective effects of ALA on biochemical alteration and oxidative stress induced by acute deltamethrin intoxication in rats. Markers of liver and kidney injuries in serum of deltamethrin-intoxicated as well as ALA-pretreated rats were analyzed. Moreover, serum and (or) tissue lipid peroxidation, malondialdehyde and antioxidant markers, reduced glutathione, catalase, superoxide dismutase activity, and total antioxidant capacity were evaluated. The results showed that all parameters were altered in the intoxicated group, indicating hepatorenal oxidative damage of deltamethrin. Pre-treatment with ALA reversed the changes in most of the studied parameters in a dose-dependent manner. Histopathological and biochemical findings were parallel. It can be concluded that ALA may be a promising therapeutic option for prevention and (or) treatment of deltamethin toxicity.
Collapse
Affiliation(s)
- Rania H Abdou
- a Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | |
Collapse
|