1
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
Krisanits BA, Kaur B, Fahey JW, Turner DP. The Anti-AGEing and RAGEing Potential of Isothiocyanates. Molecules 2024; 29:5986. [PMID: 39770075 PMCID: PMC11677037 DOI: 10.3390/molecules29245986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health. This review summarizes the current evidence supporting the observation that the antioxidant and anti-inflammatory activities of ITCs temper the pathogenic effects of a group of reactive metabolites called advanced glycation end products (AGEs). AGE exposure has significantly increased across the lifespan due to health risk factors that include dietary intake, a sedentary lifestyle, and comorbid conditions. By contributing to a chronic cycle of inflammatory stress through the aberrant activation of the transmembrane receptor for AGE (RAGE), increased AGE bioavailability is associated with chronic disease onset, progression, and severity. This review debates the potential molecular mechanisms by which ITCs may inhibit AGE bioavailability to reduce RAGE-mediated pro-oxidant and pro-inflammatory phenotypes. Bringing to light the molecular impact that ITCs may have on AGE biogenesis may stimulate novel intervention strategies for reversing or preventing the impact of lifestyle factors on chronic disease risk.
Collapse
Affiliation(s)
- Bradley A. Krisanits
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Bhoomika Kaur
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jed W. Fahey
- Departments of Medicine, Pharmacology & Molecular Sciences, Psychiatry & Behavioral Sciences, and iMIND Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Institute of Medicine, University of Maine, Orono, ME 04469, USA
| | - David P. Turner
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
3
|
Mokhtari S, Mahdavi AH, Jafarpour F, Andani MR, Dattilo M, Nasr-Esfahani MH. Taurine, alpha lipoic acid and vitamin B6 ameliorate the reduced developmental competence of immature mouse oocytes exposed to methylglyoxal. Sci Rep 2024; 14:17937. [PMID: 39095405 PMCID: PMC11297043 DOI: 10.1038/s41598-024-66785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Advanced glycation end products (AGEs) are the final products of the Maillard reaction, formed through the interaction of carbohydrates and proteins. Reactive dicarbonyl compounds such as methylglyoxal (MGO) serve as precursors for AGEs formation. Elevated levels of MGO/AGEs are observed in conditions like obesity, polycystic ovarian syndrome (PCOS), and diabetes, negatively impacting oocyte development. Previous studies have shown that hydrogen sulfide, a gasotransmitter with anti-AGEs effects, is produced in a process influenced by vitamin B6. R-α-lipoic acid (ALA) inhibits protein glycation and AGEs formation while stimulating glutathione (GSH) production. Taurine mitigates oxidative stress and acts as an anti-glycation compound, preventing in vitro glycation and AGEs accumulation. This study aimed to explore the ameliorative effects of a micronutrient support (Taurine, ALA and B6: TAB) on mouse oocytes challenged with MGO. Our results indicate that MGO reduces oocyte developmental competence, while TAB supplementation improves maturation, fertilization, and blastocyst formation rates. TAB also restores cell lineage allocation, redox balance and mitigates mitochondrial dysfunction in MGO-challenged oocytes. Furthermore, cumulus cells express key enzymes in the transsulfuration pathway, and TAB enhances their mRNA expression. However, TAB does not rescue MGO-induced damage in denuded oocytes, emphasizing the supportive role of cumulus cells. Overall, these findings suggest that TAB interventions may have significant implications for addressing reproductive dysfunctions associated with elevated MGO/AGEs levels. This study highlights the potential of TAB supplementation in preserving the developmental competence of COCs exposed to MGO stress, providing insights into mitigating the impact of dicarbonyl stress on oocyte quality and reproductive outcomes.
Collapse
Affiliation(s)
- Saba Mokhtari
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi Andani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
4
|
Tang Q, Xing X, Huang H, Yang J, Li M, Xu X, Gao X, Liang C, Tian W, Liao L. Eliminating senescent cells by white adipose tissue-targeted senotherapy alleviates age-related hepatic steatosis through decreasing lipolysis. GeroScience 2024; 46:3149-3167. [PMID: 38217637 PMCID: PMC11009221 DOI: 10.1007/s11357-024-01068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Cellular senescence is an important risk factor in the development of hepatic steatosis. Senolytics present therapeutic effects on age-related hepatic steatosis without eliminating senescent hepatocytes directly. Therefore, it highlights the need to find senolytics' therapeutic targets. Dysfunction of adipose tissue underlies the critical pathogenesis of lipotoxicity in the liver. However, the correlation between adipose tissue and hepatic steatosis during aging and its underlying molecular mechanism remains poorly understood. We explored the correlation between white adipose tissue (WAT) and the liver during aging and evaluated the effect of lipolysis of aged WAT on hepatic steatosis and hepatocyte senescence. We screened out the ideal senolytics for WAT and developed a WAT-targeted delivery system for senotherapy. We assessed senescence and lipolysis of WAT and hepatic lipid accumulation after treatment. The results displayed that aging accelerated cellular senescence and facilitated lipolysis of WAT. Free fatty acids (FFAs) generated by WAT during aging enhanced hepatic steatosis and induced hepatocyte senescence. The combined usage of dasatinib and quercetin was screened out as the ideal senolytics to eliminate senescent cells in WAT. To minimize non-specific distribution and enhance the effectiveness of senolytics, liposomes decorated with WAT affinity peptide P3 were constructed for senotherapy in vivo. In vivo study, WAT-targeted treatment eliminated senescent cells in WAT and reduced lipolysis, resulting in the alleviation of hepatic lipid accumulation and hepatocyte senescence when compared to non-targeted treatment, providing a novel tissue-targeted, effective and safe senotherapy for age-related hepatic steatosis.
Collapse
Affiliation(s)
- Qi Tang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xiaotao Xing
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haisen Huang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Jian Yang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Maojiao Li
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xun Xu
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xin Gao
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Cheng Liang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| | - Li Liao
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ, Yuan H, Liang XY, Ji XY, Jiang QY, Wu DD. The potential role of hydrogen sulfide in cancer cell apoptosis. Cell Death Discov 2024; 10:114. [PMID: 38448410 PMCID: PMC10917771 DOI: 10.1038/s41420-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
Collapse
Affiliation(s)
- Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
6
|
Majumder A. Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment. Antioxidants (Basel) 2023; 12:1520. [PMID: 37627515 PMCID: PMC10451792 DOI: 10.3390/antiox12081520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
A high level of homocysteine (Hcy) is associated with oxidative/ER stress, apoptosis, and impairment of angiogenesis, whereas hydrogen sulfide (H2S) has been found to reverse this condition. Recent studies have shown that cancer cells need to produce a high level of endogenous H2S to maintain cell proliferation, growth, viability, and migration. However, any novel mechanism that targets this balance of Hcy and H2S production has yet to be discovered or exploited. Cells require homocysteine metabolism via the methionine cycle for nucleotide synthesis, methylation, and reductive metabolism, and this pathway supports the high proliferative rate of cancer cells. Although the methionine cycle favors cancer cells for their survival and growth, this metabolism produces a massive amount of toxic Hcy that somehow cancer cells handle very well. Recently, research showed specific pathways important for balancing the antioxidative defense through H2S production in cancer cells. This review discusses the relationship between Hcy metabolism and the antiapoptotic, antioxidative, anti-inflammatory, and angiogenic effects of H2S in different cancer types. It also summarizes the historical understanding of targeting antioxidative defense systems, angiogenesis, and other protective mechanisms of cancer cells and the role of H2S production in the genesis, progression, and metastasis of cancer. This review defines a nexus of diet and precision medicine in targeting the delicate antioxidative system of cancer and explores possible future therapeutics that could exploit the Hcy and H2S balance.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Srivastava V, Zelmanovich V, Shukla V, Abergel R, Cohen I, Ben-Sasson SA, Gross E. Distinct designer diamines promote mitophagy, and thereby enhance healthspan in C. elegans and protect human cells against oxidative damage. Autophagy 2023; 19:474-504. [PMID: 35579620 PMCID: PMC9851263 DOI: 10.1080/15548627.2022.2078069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Impaired mitophagy is a primary pathogenic event underlying diverse aging-associated diseases such as Alzheimer and Parkinson diseases and sarcopenia. Therefore, augmentation of mitophagy, the process by which defective mitochondria are removed, then replaced by new ones, is an emerging strategy for preventing the evolvement of multiple morbidities in the elderly population. Based on the scaffold of spermidine (Spd), a known mitophagy-promoting agent, we designed and tested a family of structurally related compounds. A prototypic member, 1,8-diaminooctane (VL-004), exceeds Spd in its ability to induce mitophagy and protect against oxidative stress. VL-004 activity is mediated by canonical aging genes and promotes lifespan and healthspan in C. elegans. Moreover, it enhances mitophagy and protects against oxidative injury in rodent and human cells. Initial structural characterization suggests simple rules for the design of compounds with improved bioactivity, opening the way for a new generation of agents with a potential to promote healthy aging.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Veronica Zelmanovich
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Virendra Shukla
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Abergel
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Cohen
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel A. Ben-Sasson
- Department Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Gross
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel,CONTACT Einav Gross Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, the Hebrew University of Jerusalem, Ein Kerem. PO Box 12271, Jerusalem9112102, Israel
| |
Collapse
|
9
|
Bone-targeted delivery of senolytics to eliminate senescent cells increases bone formation in senile osteoporosis. Acta Biomater 2023; 157:352-366. [PMID: 36470392 DOI: 10.1016/j.actbio.2022.11.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Systemic elimination of senescent cells using senolytic drugs presents therapeutic effects on age-related diseases, including senile osteoporosis. However, low bioavailability and potential side effects of senolytics restrict clinical application. Therefore, we developed a bone-targeted delivery system for senolytics to effective treatment of senile osteoporosis. In this study, quercetin was screened out as the ideal senolytics for eliminating senescent BMSCs. Treatment of quercetin efficiently decreased the senescence markers in senescent BMSCs models. After treatment with quercetin in vitro, cell mitosis and calcification staining assay confirmed that the proliferation and osteogenesis of the senescent BMSCs populations were enhanced. To enhance the effectiveness and minimize the side effect of treatment, liposomes decorated with bone affinity peptide (DSS)6 were constructed for bone-targeted delivery of quercetin. After administration of liposomes loading quercetin in two aged mice models, histological and cellular analysis confirmed that bone-targeted treatment with quercetin efficiently eliminated senescent cells in bone, restored the function of BMCSs, and promoted bone formation in aged mice models when compared to non-targeted treatment. Taken together, the bone-targeted delivery of senolytics efficiently eliminates senescent cells to recover bone mass and microarchitecture, showing an effective treatment for senile osteoporosis. STATEMENT OF SIGNIFICANCE: Senile osteoporosis, a common and hazardous chronic disease, has been still lacking effective therapy. How to effectively eliminate the hazards of senescent cells in skeleton to bone formation remains challenge. In this study, quercetin was screened out as the ideal senolytic drug for senescent BMSCs and could effectively eliminated senescent BMSCs to restore the cellular functions of senescent BMSCs models in vitro. Then, the bone-targeted liposomes were designed to encapsulate and deliver senolytics efficiently to senile bone tissue. Based on two aged mice models, we confirmed that bone-targeted delivery of quercetin efficiently eliminated senescent cells in skeleton and enhanced bone formation in vivo, suggesting the bone-targeted elimination of senescent cells is an effective treatment for senile osteoporosis.
Collapse
|
10
|
Puig-Pijuan T, Souza LRQ, Pedrosa CDSG, Higa LM, Monteiro FL, Tanuri A, Valverde RHF, Einicker-Lamas M, Rehen SK. Copper regulation disturbance linked to oxidative stress and cell death during Zika virus infection in human astrocytes. J Cell Biochem 2022; 123:1997-2008. [PMID: 36063501 DOI: 10.1002/jcb.30323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022]
Abstract
The Zika virus (ZIKV) caused neurological abnormalities in more than 3500 Brazilian newborns between 2015 and 2020. Data have pointed to oxidative stress in astrocytes as well as to dysregulations in neural cell proliferation and cell cycle as important events accounting for the cell death and neurological complications observed in Congenital Zika Syndrome. Copper imbalance has been shown to induce similar alterations in other pathologies, and disturbances in copper homeostasis have already been described in viral infections. Here, we investigated copper homeostasis imbalance as a factor that could contribute to the cytotoxic effects of ZIKV infection in astrocytes. Human induced pluripotent stem cell-derived astrocytes were infected with ZIKV; changes in the gene expression of copper homeostasis proteins were analyzed. The effect of the administration of CuCl2 or a copper chelator on oxidative stress, cell viability and percentage of infection were also studied. ZIKV infection leads to a downregulation of one of the transporters mediating copper release, ATP7B protein. We also observed the activation of mechanisms that counteract high copper levels, including the synthesis of copper chaperones and the reduction of the copper importer protein CTR1. Finally, we show that chelator-mediated copper sequestration in ZIKV-infected astrocytes reduces the levels of reactive oxygen species and improves cell viability, but does not change the overall percentage of infected cells. In summary, our results show that copper homeostasis imbalance plays a role in the pathology of ZIKV in astrocytes, indicating that it may also be a factor accounting for the developmental abnormalities in the central nervous system following viral infection. Evaluating micronutrient levels and the use of copper chelators in pregnant women susceptible to ZIKV infection may be promising strategies to manage novel cases of congenital ZIKV syndrome.
Collapse
Affiliation(s)
- Teresa Puig-Pijuan
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia R Q Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Luiza M Higa
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Luis Monteiro
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael H F Valverde
- Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratory of Biomembranes, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stevens Kastrup Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Aschner M, Skalny AV, Ke T, da Rocha JBT, Paoliello MMB, Santamaria A, Bornhorst J, Rongzhu L, Svistunov AA, Djordevic AB, Tinkov AA. Hydrogen Sulfide (H 2S) Signaling as a Protective Mechanism against Endogenous and Exogenous Neurotoxicants. Curr Neuropharmacol 2022; 20:1908-1924. [PMID: 35236265 PMCID: PMC9886801 DOI: 10.2174/1570159x20666220302101854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022] Open
Abstract
In view of the significant role of H2S in brain functioning, it is proposed that H2S may also possess protective effects against adverse effects of neurotoxicants. Therefore, the objective of the present review is to discuss the neuroprotective effects of H2S against toxicity of a wide spectrum of endogenous and exogenous agents involved in the pathogenesis of neurological diseases as etiological factors or key players in disease pathogenesis. Generally, the existing data demonstrate that H2S possesses neuroprotective effects upon exposure to endogenous (amyloid β, glucose, and advanced-glycation end-products, homocysteine, lipopolysaccharide, and ammonia) and exogenous (alcohol, formaldehyde, acrylonitrile, metals, 6-hydroxydopamine, as well as 1-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine (MPTP) and its metabolite 1-methyl-4-phenyl pyridine ion (MPP)) neurotoxicants. On the one hand, neuroprotective effects are mediated by S-sulfhydration of key regulators of antioxidant (Sirt1, Nrf2) and inflammatory response (NF-κB), resulting in the modulation of the downstream signaling, such as SIRT1/TORC1/CREB/BDNF-TrkB, Nrf2/ARE/HO-1, or other pathways. On the other hand, H2S appears to possess a direct detoxicative effect by binding endogenous (ROS, AGEs, Aβ) and exogenous (MeHg) neurotoxicants, thus reducing their toxicity. Moreover, the alteration of H2S metabolism through the inhibition of H2S-synthetizing enzymes in the brain (CBS, 3-MST) may be considered a significant mechanism of neurotoxicity. Taken together, the existing data indicate that the modulation of cerebral H2S metabolism may be used as a neuroprotective strategy to counteract neurotoxicity of a wide spectrum of endogenous and exogenous neurotoxicants associated with neurodegeneration (Alzheimer's and Parkinson's disease), fetal alcohol syndrome, hepatic encephalopathy, environmental neurotoxicant exposure, etc. In this particular case, modulation of H2S-synthetizing enzymes or the use of H2S-releasing drugs should be considered as the potential tools, although the particular efficiency and safety of such interventions are to be addressed in further studies.
Collapse
Affiliation(s)
- Michael Aschner
- Address correspondence to this author at the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; E-mail
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
13
|
Wang YF, Chang YY, Zhang XM, Gao MT, Zhang QL, Li X, Zhang L, Yao WF. Salidroside protects against osteoporosis in ovariectomized rats by inhibiting oxidative stress and promoting osteogenesis via Nrf2 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154020. [PMID: 35278902 DOI: 10.1016/j.phymed.2022.154020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Osteoporosis (OP) is characterized as low bone mass, bone microarchitecture breakdown and bone fragility. The increase of oxidative stress could lead to breakdown in the balance of bone formation and resorption which gives rise to OP. Nrf2 is a transcription factor which takes part in oxidative stress and recently was reported that it can regulate the occurrence of OP. Salidroside (SAL) with the efficacies of anti-oxidation, anti-aging and bone-protection is one of the active ingredients in Ligustri Lucidi Fructus, a traditional Chinese medicinal herb. Nevertheless, few studies have explored the potential mechanism of SAL preventing OP development from the perspective of oxidative stress intervention. PURPOSE This study aimed to investigate the pharmacological effect and molecular mechanisms of SAL on OP. STUDY DESIGNS AND METHODS A tert-butyl hydroperoxide (t-BHP)-induced oxidative stress model was applied for investigating the effects of SAL in vitro, and an ovariectomized (OVX) model was used for in vivo study on the effect of SAL for OP. Related pharmacodynamic actions and molecular mechanisms of SAL were explored in both rat osteoblasts (ROBs) and OVX rats. Network biology and cell metabolomics were performed for further investigating the correlation and association among potential biomarkers, targets and pathways. RESULTS SAL reduced levels of ROS and lipid peroxidation (LPO), increased activities of antioxidant enzymes like GPx and SOD, and enhanced osteogenic differentiation in t-BHP-induced ROBs and OVX rats. Mechanistic studies showed SAL prevented OP development and reduced oxidative damage in ROBs and OVX rats through up-regulating Nrf2 expression and facilitating its nuclear translocation. The joint analysis of network biology and cell metabolomics revealed that galactose metabolism and fatty acid metabolism could be the major influenced pathways following treatment with SAL. CONCLUSION SAL could protect against OP by inhibiting oxidative stress, promoting osteogenesis through the up-regulation of Nrf2 and intervening galactose metabolism and fatty acid metabolism. Our study implied that SAL may be a potential drug to treat OP.
Collapse
Affiliation(s)
- Yi-Fei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yue-Yue Chang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Meng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Ting Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qiu-Lan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei-Feng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
14
|
Xing X, Huang H, Gao X, Yang J, Tang Q, Xu X, Wu Y, Li M, Liang C, Tan L, Liao L, Tian W. Local Elimination of Senescent Cells Promotes Bone Defect Repair during Aging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3885-3899. [PMID: 35014784 DOI: 10.1021/acsami.1c22138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to the declined function of bone marrow mesenchymal stem cells (BMSCs), the repair of bone defects in the elderly is retarded. Elimination of senescent cells emerges as a promising strategy for treating age-related diseases. However, whether the local elimination of senescent BMSCs can promote bone regeneration in the elderly remains elusive. To tackle the above issue, we first screened out the specific senolytics for BMSCs and confirmed their effect of eliminating senescent BMSCs in vitro. Treatment with quercetin, which is determined the best senolytics for senescent BMSCs, efficiently removed senescent cells in the population. Moreover, the self-renewal capacity was restored as well as osteogenic ability of BMSCs after treatment. We then designed a microenvironment-responsive hydrogel based on the MMPs secreted by senescent cells. This quercetin-encapsulated hydrogel exhibited a stable microstructure and responsively released quercetin in the presence of senescence in vitro. In vivo, the quercetin-loaded hydrogel effectively cleared the local senescent cells and reduced the secretion of MMPs in the bone. Due to the removal of local senescent cells, the hydrogel significantly accelerated the repair of bone defects in the femur and skull of old rats. Taken together, our study revealed the role of removing senescent cells in bone regeneration and provided a novel therapeutic approach for bone defects in aged individuals.
Collapse
Affiliation(s)
- Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of stomatology, West China School of Public Health & West China Fourth Hospital, Chengdu, Sichuan 610041, China
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yutao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lin Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021; 12:1211-1238. [PMID: 33693510 PMCID: PMC8321875 DOI: 10.1093/advances/nmab007] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several studies have reported that the oxidative stress-lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β, and TNF-α, upregulating nuclear factor erythroid 2-related factor 2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical-scavenging action, iron chelation, initiation of several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological disorders.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
16
|
Exercise renovates H 2S and Nrf2-related antioxidant pathways to suppress apoptosis in the natural ageing process of male rat cortex. Biogerontology 2021; 22:495-506. [PMID: 34251569 DOI: 10.1007/s10522-021-09929-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023]
Abstract
Ageing is a complex biological process that increases the probability of disease and death, which affects the organs of all species. The accumulation of oxidative damage in the brain contributes to a progressive loss of cognitive functions or even declined the energy metabolism. In this study, we tested the effects of exercise training on the apoptosis, survival, and antioxidant signaling pathways in the cerebral cortex of three age groups of male rats; 3, 12, and 18 months. We observed that H2S and the expression of Nrf2-related antioxidant pathways declined with age and increased after exercise training. IGF1R survival pathway was less increased in middle-aged rats; however, significantly increased after exercise training. The expression of mitochondrial-dependent apoptotic pathway components, such as Bak, cytochrome C, and caspase 3 in the ageing control group, were much higher than those of the exercise training groups. This study demonstrated that exercise training could reduce the apoptosis and oxidative stress that accrues throughout ageing, which causes brain damage.
Collapse
|
17
|
Hsu WH, Huang NK, Shiao YJ, Lu CK, Chao YM, Huang YJ, Yeh CH, Lin YL. Gastrodiae rhizoma attenuates brain aging via promoting neuritogenesis and neurodifferentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153576. [PMID: 33985879 DOI: 10.1016/j.phymed.2021.153576] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gastrodiae Rhizoma (Tianma), the dried tuber of Gastrodia elata Bl. (Orchidaceae), is listed as a top-grade herbal medicine in Shen-nong Ben-ts'ao Jing and has been used for treating headaches, dizziness, vertigo and convulsion. It has a neuroprotective effect and extends the lifespan in mouse models of Huntington's disease and Niemann-Pick type C disease. However, its effect on senescence remains unknown. PURPOSE This study aimed to investigate the anti-aging effects and the underlying mechanism of Gastrodiae Rhizoma. METHODS D-galactose (D-gal)- and BeSO4-induced cellular senescence and senescence-associated β-galactosidase (SA-β-gal) activity were evaluated in SH-SY5Y and PC12 cells. D-gal-induced aging mice were used as an in vivo model. Animal behaviors including nesting and burrowing and Morris water maze were conducted. Neurogenesis in the hippocampus was assessed by immunohistochemistry and confocal microscopy, and the aging-related proteins were assessed by Western blot analysis. The potential neuritogenesis activity of the partially purified fraction of Gastrodiae Rhizoma (TM-2) and its major ingredients were investigated in PC12 cells. RESULTS TM-2 could improve D-gal-induced learning and memory impairement by inhibiting oxidative stress, increasing hippocampal neurogenesis and regulating the SH2B1-Akt pathway. Moreover, N6-(4-hydroxybenzyl)adenine riboside (T1-11) and parishins A and B, three constituents of TM-2, had anti-aging activity, as did T1-11 and parishin A induced neuritogenesis. CONCLUSION Our data suggested that TM-2 slowed down D-gal-induced cellular and mouse brain aging. These results indicate that Gastrodiae Rhizoma has a beneficial effect on senescence. It may be used for neuroprotection and promoting neurogenesis.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Nai-Kuei Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan; Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Yen-Ming Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Yi-Jeng Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Chih-Hsin Yeh
- Taoyuan District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taoyuan 32754, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; Department of Pharmacy, National Taiwan University, Taipei 10050, Taiwan.
| |
Collapse
|
18
|
Petrovic D, Kouroussis E, Vignane T, Filipovic MR. The Role of Protein Persulfidation in Brain Aging and Neurodegeneration. Front Aging Neurosci 2021; 13:674135. [PMID: 34248604 PMCID: PMC8261153 DOI: 10.3389/fnagi.2021.674135] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrogen sulfide (H2S), originally considered a toxic gas, is now a recognized gasotransmitter. Numerous studies have revealed the role of H2S as a redox signaling molecule that controls important physiological/pathophysiological functions. The underlying mechanism postulated to serve as an explanation of these effects is protein persulfidation (P-SSH, also known as S-sulfhydration), an oxidative posttranslational modification of cysteine thiols. Protein persulfidation has remained understudied due to its instability and chemical reactivity similar to other cysteine modifications, making it very difficult to selectively label. Recent developments of persulfide labeling techniques have started unraveling the role of this modification in (patho)physiology. PSSH levels are important for the cellular defense against oxidative injury, albeit they decrease with aging, leaving proteins vulnerable to oxidative damage. Aging is one of the main risk factors for many neurodegenerative diseases. Persulfidation has been shown to be dysregulated in Parkinson's, Alzheimer's, Huntington's disease, and Spinocerebellar ataxia 3. This article reviews the latest discoveries that link protein persulfidation, aging and neurodegeneration, and provides future directions for this research field that could result in development of targeted drug design.
Collapse
Affiliation(s)
- Dunja Petrovic
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Emilia Kouroussis
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Thibaut Vignane
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Milos R Filipovic
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| |
Collapse
|
19
|
Greco M, Spinelli CC, De Riccardis L, Buccolieri A, Di Giulio S, Musarò D, Pagano C, Manno D, Maffia M. Copper Dependent Modulation of α-Synuclein Phosphorylation in Differentiated SHSY5Y Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22042038. [PMID: 33670800 PMCID: PMC7922547 DOI: 10.3390/ijms22042038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Copper (Cu) dyshomeostasis plays a pivotal role in several neuropathologies, such as Parkinson's disease (PD). Metal accumulation in the central nervous system (CNS) could result in loss-of-function of proteins involved in Cu metabolism and redox cycling, generating reactive oxygen species (ROS). Moreover, neurodegenerative disorders imply the presence of an excess of misfolded proteins known to lead to neuronal damage. In PD, Cu accumulates in the brain, binds α-synuclein, and initiates its aggregation. We assessed the correlation between neuronal differentiation, Cu homeostasis regulation, and α-synuclein phosphorylation. At this purpose, we used differentiated SHSY5Y neuroblastoma cells to reproduce some of the characteristics of the dopaminergic neurons. Here, we reported that differentiated cells expressed a significantly higher amount of a copper transporter protein 1 (CTR1), increasing the copper uptake. Cells also showed a significantly more phosphorylated form of α-synuclein, further increased by copper treatment, without modifications in α-synuclein levels. This effect depended on the upregulation of the polo-like kinase 2 (PLK2), whereas the levels of the relative protein phosphatase 2A (PP2A) remained unvaried. No changes in the oxidative state of the cells were identified. The Cu dependent alteration of α-synuclein phosphorylation pattern might potentially offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Marco Greco
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.G.); (D.M.)
| | - Chiara Carmela Spinelli
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Lidia De Riccardis
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Alessandro Buccolieri
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Simona Di Giulio
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Claudia Pagano
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
| | - Daniela Manno
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.G.); (D.M.)
| | - Michele Maffia
- Department of Biological and Environmental Science and Technology, University of Salento, 73100 Lecce, Italy; (C.C.S.); (L.D.R.); (A.B.); (S.D.G.); (D.M.); (C.P.)
- Correspondence: ; Tel.: +39-0832-298670
| |
Collapse
|
20
|
Gojon G, Morales GA. SG1002 and Catenated Divalent Organic Sulfur Compounds as Promising Hydrogen Sulfide Prodrugs. Antioxid Redox Signal 2020; 33:1010-1045. [PMID: 32370538 PMCID: PMC7578191 DOI: 10.1089/ars.2020.8060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Significance: Sulfur has a critical role in protein structure/function and redox status/signaling in all living organisms. Although hydrogen sulfide (H2S) and sulfane sulfur (SS) are now recognized as central players in physiology and pathophysiology, the full scope and depth of sulfur metabolome's impact on human health and healthy longevity has been vastly underestimated and is only starting to be grasped. Since many pathological conditions have been related to abnormally low levels of H2S/SS in blood and/or tissues, and are amenable to treatment by H2S supplementation, development of safe and efficacious H2S donors deserves to be undertaken with a sense of urgency; these prodrugs also hold the promise of becoming widely used for disease prevention and as antiaging agents. Recent Advances: Supramolecular tuning of the properties of well-known molecules comprising chains of sulfur atoms (diallyl trisulfide [DATS], S8) was shown to lead to improved donors such as DATS-loaded polymeric nanoparticles and SG1002. Encouraging results in animal models have been obtained with SG1002 in heart failure, atherosclerosis, ischemic damage, and Duchenne muscular dystrophy; with TC-2153 in Alzheimer's disease, schizophrenia, age-related memory decline, fragile X syndrome, and cocaine addiction; and with DATS in brain, colon, gastric, and breast cancer. Critical Issues: Mode-of-action studies on allyl polysulfides, benzyl polysulfides, ajoene, and 12 ring-substituted organic disulfides and thiosulfonates led several groups of researchers to conclude that the anticancer effect of these compounds is not mediated by H2S and is only modulated by reactive oxygen species, and that their central model of action is selective protein S-thiolation. Future Directions: SG1002 is likely to emerge as the H2S donor of choice for acquiring knowledge on this gasotransmitter's effects in animal models, on account of its unique ability to efficiently generate H2S without byproducts and in a slow and sustained mode that is dose independent and enzyme independent. Efficient tuning of H2S donation characteristics of DATS, dibenzyl trisulfide, and other hydrophobic H2S prodrugs for both oral and parenteral administration will be achieved not only by conventional structural modification of a lead molecule but also through the new "supramolecular tuning" paradigm.
Collapse
|
21
|
Habibitabar E, Moridi H, Shateri H, Karimi SA, Salehi I, Komaki A, Sarihi A. Chronic NaHS treatment improves spatial and passive avoidance learning and memory and anxiety-like behavior and decreases oxidative stress in rats fed with a high-fat diet. Brain Res Bull 2020; 164:380-391. [PMID: 32942011 DOI: 10.1016/j.brainresbull.2020.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Cognitive function is impaired by increased consumption of a high-fat diet (HFD). Also, HFD consumption can alter hydrogen sulfide (H2S) metabolism. H2S is an important signaling molecule with antioxidant effects that regulates multiple functions in the brain. In the present study, we investigated the effect of sodium hydrosulfide (NaHS, an H2S donor) on cognitive impairment and oxidative stress changes induced by HFD consumption. Following 11 weeks of HFD regimes in Wistar rats, elevated plus-maze (EPM), Morris water maze (MWM), and passive avoidance learning (PAL) tasks were used to evaluate the anxiety-like behavior and spatial and passive learning and memory, respectively. Daily intraperitoneal injection of NaHS was done during the dietary regimen. Serum and hippocampal oxidative stress biomarkers (malondialdehyde (MDA), total antioxidant capacity (TAC), and total oxidant status (TOS)) were measured. We demonstrated that treatment with NaHS ameliorated the impairment in the retrieval of reference memory and passive avoidance learning. Moreover, HFD increased anxiety-like behavior, which was reversed by the administration of NaHS. Additionally, the increase in MDA and TOS and the decrease in TAC induced by HFD in the serum and hippocampus were significantly reduced following administration of NaHS. These results indicate that NaHS could significantly ameliorate HFD-induced spatial and passive learning and memory impairment and anxiety-like behavior, at least in part, via its antioxidant activities. Therefore, the administration of NaHS can provide a therapeutic approach for HFD-induced memory impairment.
Collapse
Affiliation(s)
- Elahe Habibitabar
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heresh Moridi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Shateri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
T1-11, an adenosine derivative, ameliorates aging-related behavioral physiology and senescence markers in aging mice. Aging (Albany NY) 2020; 12:10556-10577. [PMID: 32501291 PMCID: PMC7346012 DOI: 10.18632/aging.103279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Abstract
Aging is a natural human process. It is uniquely individual, taking into account experiences, lifestyle habits and environmental factors. However, many disorders and syndromes, such as osteoporosis, neurodegenerative disorders, cognitive decline etc., often come with aging. The present study was designed to investigate the possible anti-aging effect of N6-(4-hydroxybenzyl)adenine riboside (T1-11), an adenosine analog isolated from Gastrodia elata, in a mouse model of aging created by D-galactose (D-gal) and the underlying mechanism, as well as explore the role of adenosine signaling in aging. T1-11 activated A2AR and suppressed D-gal- and BeSO4-induced cellular senescence in vitro. In vivo results in mice revealed that T1-11 abated D-gal-induced reactive oxygen species generation and ameliorated cognitive decline by inducing neurogenesis and lowering D-gal-caused neuron death. T1-11 could be a potent agent for postponing senility and preventing aging-related neuroinflammation and neurodegeneration.
Collapse
|
23
|
Liu H, Zhang X, Xiao J, Song M, Cao Y, Xiao H, Liu X. Astaxanthin attenuates d-galactose-induced brain aging in rats by ameliorating oxidative stress, mitochondrial dysfunction, and regulating metabolic markers. Food Funct 2020; 11:4103-4113. [PMID: 32343758 DOI: 10.1039/d0fo00633e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AX) is a red-colored xanthophyll carotenoid with potent antioxidant, anti-inflammatory, and neuroprotective properties. However, the underlying in vivo mechanism by which AX protects the brain from oxidative stress remains unclear. In this study, we investigated the protective effect of AX on brain oxidative damage in a d-galactose-induced rat model of aging. We also explored its possible mechanism of action by analyzing the resulting serum metabolic profiles. Our results showed that AX significantly increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) by 26%, 30%, and 53%, respectively. AX also significantly increased the mitochondrial membrane potential by 18% when compared with the model group. Additionally, treatment with AX (15 mg kg-1) increased the activities of respiratory chain complexes I and IV by 50.17% and 122.87%, respectively. Furthermore, AX also improved age-related morphological changes in the cerebral cortex and hippocampus. Significant differences in serum metabolic profiles were observed between the d-galactose and AX treatment groups. AX corrected amino acid metabolic problems by increasing the levels of N-acetyl-l-leucine, N-acetyl-l-tyrosine, and methionine sulfoxide to protect nerve cells. This also allowed AX to regulate the pentose phosphate pathway by acting on ergotoxine, d-xylose-5-phosphoric, and thiamine, to against oxidative stress and apoptosis. Moreover, AX reduced the levels of both hyodeoxycholic acid and chenodeoxycholic acid though the primary bile acid biosynthesis pathway, resulting in improved brain mitochondrial dysfunction. In conclusion, AX likely enhances the brain's antioxidant defenses through these potential metabolic means, enabling the brain to resist mitochondrial dysfunction, improve neuronal damage, and protect the electron transmission of mitochondrial respiratory chain, thus preventing brain aging.
Collapse
Affiliation(s)
- Han Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:110-144. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the "new entry" in the series of endogenous gasotransmitters, plays a fundamental role in regulating the biological functions of various organs and systems. Consequently, the lack of adequate levels of H2S may represent the etiopathogenetic factor of multiple pathological alterations. In these diseases, the use of H2S donors represents a precious and innovative opportunity. Recent Advances: Natural isothiocyanates (ITCs), sulfur compounds typical of some botanical species, have long been investigated because of their intriguing pharmacological profile. Recently, the ITC moiety has been proposed as a new H2S-donor chemotype (with a l-cysteine-mediated reaction). Based on this recent discovery, we can clearly observe that almost all the effects of natural ITCs can be explained by the H2S release. Consistently, the ITC function was also used as an original H2S-releasing moiety for the design of synthetic H2S donors and original "pharmacological hybrids." Very recently, the chemical mechanism of H2S release, resulting from the reaction between l-cysteine and some ITCs, has been elucidated. Critical Issues: Available literature gives convincing demonstration that H2S is the real player in ITC pharmacology. Further, countless studies have been carried out on natural ITCs, but this versatile moiety has been used only rarely for the design of synthetic H2S donors with optimal drug-like properties. Future Directions: The development of more ITC-based synthetic H2S donors with optimal drug-like properties and selectivity toward specific tissues/pathologies seem to represent a stimulating and indispensable prospect of future experimental activities.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Kim Y, Kim Y. L-histidine and L-carnosine exert anti-brain aging effects in D-galactose-induced aged neuronal cells. Nutr Res Pract 2020; 14:188-202. [PMID: 32528627 PMCID: PMC7263900 DOI: 10.4162/nrp.2020.14.3.188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/25/2019] [Accepted: 11/06/2019] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES Brain aging is a major risk factor for severe neurodegenerative diseases. Conversely, L-histidine and L-carnosine are known to exhibit neuroprotective effects. The aim of this study was to examine the potential for L-histidine, L-carnosine, and their combination to mediate anti-brain aging effects in neuronal cells subjected to D-galactose-induced aging. MATERIALS/METHODS The neuroprotective potential of L-histidine, L-carnosine, and their combination was examined in a retinoic acid-induced neuronal differentiated SH-SY5Y cell line exposed to D-galactose (200 mM) for 48 h. Neuronal cell proliferation, differentiation, and expression of anti-oxidant enzymes and apoptosis markers were subsequently evaluated. RESULTS Treatment with L-histidine (1 mM), L-carnosine (10 mM), or both for 48 h efficiently improved the proliferation, neurogenesis, and senescence of D-galactose-treated SH-SY5Y cells. In addition, protein expression levels of both neuronal markers (β tubulin-III and neurofilament heavy protein) and anti-oxidant enzymes, glutathione peroxidase-1 and superoxide dismutase-1 were up-regulated. Conversely, protein expression levels of amyloid β (1-42) and cleaved caspase-3 were down-regulated. Levels of mRNA for the pro-inflammatory cytokines, interleukin (IL)-8, IL-1β, and tumor necrosis factor-α were also down-regulated. CONCLUSIONS To the best of our knowledge, we provide the first evidence that L-histidine, L-carnosine, and their combination mediate anti-aging effects in a neuronal cell line subjected to D-galactose-induced aging. These results suggest the potential benefits of L-histidine and L-carnosine as anti-brain aging agents and they support further research of these amino acid molecules.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
26
|
Hydrogen sulfide serves as a biomarker in the anterior segment of patients with diabetic retinopathy. Int Ophthalmol 2020; 40:891-899. [DOI: 10.1007/s10792-019-01252-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
|
27
|
Wu L, Chen Y, Wang CY, Tang YY, Huang HL, Kang X, Li X, Xie YR, Tang XQ. Hydrogen Sulfide Inhibits High Glucose-Induced Neuronal Senescence by Improving Autophagic Flux via Up-regulation of SIRT1. Front Mol Neurosci 2019; 12:194. [PMID: 31481873 PMCID: PMC6710442 DOI: 10.3389/fnmol.2019.00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/25/2019] [Indexed: 01/31/2023] Open
Abstract
Hyperglycemia, a key characteristic and risk factor for diabetes mellitus (DM), causes neuronal senescence. Hydrogen sulfide (H2S) is a novel neuroprotectant. The present work was to investigate the potential effect of H2S on hyperglycemia-induced neuronal senescence and the underlying mechanisms. We found that NaHS, a donor of H2S, inhibited high glucose (HG)-induced cellular senescence in HT22 cells (an immortalized mouse hippocampal cell line), as evidenced by a decrease in the number of senescence associated-β-galactosidase (SA-β-gal) positive cells, increase in the growth of cells, and down-regulations of senescence mark proteins, p16INK4a and p21CIP1. NaHS improved the autophagic flux, which is judged by a decrease in the amount of intracellular autophagosome as well as up-regulations of LC3II/I and P62 in HG-exposed HT22 cells. Furthermore, blocked autophagic flux by chloroquine (CQ) significantly abolished NaHS-exerted improvement in the autophagic flux and suppression in the cellular senescence of GH-exposed HT22 cells, which indicated that H2S antagonizes HG-induced neuronal senescence by promoting autophagic flux. We also found that NaHS up-regulated the expression of silent mating type information regulation 2 homolog 1 (SIRT1), an important anti-aging protein, in HG-exposed HT22 cells. Furthermore, inhibition of SIRT1 by sirtinol reversed the protection of H2S against HG-induced autophagic flux blockade and cellular senescence in HT22 cells. These data indicated that H2S protects HT22 cells against HG-induced neuronal senescence by improving autophagic flux via up-regulation of SIRT1, suggesting H2S as a potential treatment strategy for hyperglycemia-induced neuronal senescence and neurotoxicity.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Ying Chen
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Department of Pharmacology, The Central Hospital of Hengyang, Hengyang, China
| | - Chun-Yan Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Hong-Lin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Xuan Kang
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiang Li
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Yu-Rong Xie
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
28
|
Ellagic acid dose and time-dependently abrogates d-galactose-induced animal model of aging: Investigating the role of PPAR-γ. Life Sci 2019; 232:116595. [PMID: 31238053 DOI: 10.1016/j.lfs.2019.116595] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023]
Abstract
AIMS The world's population is becoming aged and the proportion of older persons is growing in almost every country in the world. Ellagic acid (EA) shows abundant pharmacological properties. Therefore, we aimed to determine the mechanism of anti-aging effects of low and high doses of EA. MAIN METHODS Aging model was induced by d-galactose (DG), and the anti-aging effect of EA alone or in the presence of PPAR-γ antagonist GW9662, and in combination with metformin were evaluated. The activities of ALT, AST, and AChE, the levels of FBS, HbA1c, testosterone and DHEA-SO4, MDA, GSH, TNF-α, IL-6, advanced glycation end products (AGEs), and BDNF were measured in serum, liver or brain. KEY FINDINGS DG led to increasing in the levels of IL-6, TNF-α, MDA, AChE, AGEs, ALT, AST, FBS, and HbA1c, in which decrease in the levels of body weight, GSH, BDNF, DHEA-SO4 and testosterone. Metformin (300 mg/kg) abrogated the effects of DG-induced aging model. We also found that the low dose of EA (30 mg/kg) decreases the deteriorative effects of DG-induced aging at 10 weeks of treatment only, however, high dose of EA (100 mg/kg) was effective at both 6 and 10 weeks of treatment. The addition of GW9662 completely reversed the effects of the low dose of EA, but not for the high dose, on DG-induced aging model. SIGNIFICANCE We revealed that daily and oral administration of EA provides anti-aging effects at low dose in a PPAR-γ receptor-dependent fashion, but not at the high dose.
Collapse
|
29
|
Han Y, Shang Q, Yao J, Ji Y. Hydrogen sulfide: a gaseous signaling molecule modulates tissue homeostasis: implications in ophthalmic diseases. Cell Death Dis 2019; 10:293. [PMID: 30926772 PMCID: PMC6441042 DOI: 10.1038/s41419-019-1525-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H2S) serves as a gasotransmitter in the regulation of organ development and maintenance of homeostasis in tissues. Its abnormal levels are associated with multiple human diseases, such as neurodegenerative disease, myocardial injury, and ophthalmic diseases. Excessive exposure to H2S could lead to cellular toxicity, orchestrate pathological process, and increase the risk of various diseases. Interestingly, under physiological status, H2S plays a critical role in maintaining cellular physiology and limiting damages to tissues. In mammalian species, the generation of H2S is catalyzed by cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CSE), 3-mercapto-methylthio pyruvate aminotransferase (3MST) and cysteine aminotransferase (CAT). These enzymes are found inside the mammalian eyeballs at different locations. Their aberrant expression and the accumulation of substrates and intermediates can change the level of H2S by orders of magnitude, causing abnormal structures or functions in the eyes. Detailed investigations have demonstrated that H2S donors' administration could regulate intraocular pressure, protect retinal cells, inhibit oxidative stress and alleviate inflammation by modulating the function of intra or extracellular proteins in ocular tissues. Thus, several slow-releasing H2S donors have been shown to be promising drugs for treating multiple diseases. In this review, we discuss the biological function of H2S metabolism and its application in ophthalmic diseases.
Collapse
Affiliation(s)
- Yuyi Han
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, China
| | - Qianwen Shang
- Institutes for Translational Medicine, Soochow University Medical College, Suzhou, China
| | - Jin Yao
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
30
|
Sarni AR, Baroni L. Milk and Parkinson disease: Could galactose be the missing link. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
31
|
Eum WS, Shin MJ, Lee CH, Yeo HJ, Yeo EJ, Choi YJ, Kwon HJ, Kim DS, Kwon OS, Lee KW, Han KH, Park J, Kim DW, Choi SY. Neuroprotective effects of Tat-ATOX1 protein against MPP+-induced SH-SY5Y cell deaths and in MPTP-induced mouse model of Parkinson's disease. Biochimie 2019; 156:158-168. [DOI: 10.1016/j.biochi.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
|
32
|
Rahimi VB, Askari VR, Mousavi SH. Ellagic acid reveals promising anti-aging effects against d-galactose-induced aging on human neuroblastoma cell line, SH-SY5Y: A mechanistic study. Biomed Pharmacother 2018; 108:1712-1724. [DOI: 10.1016/j.biopha.2018.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023] Open
|
33
|
Majumder A, Singh M, George AK, Tyagi SC. Restoration of skeletal muscle homeostasis by hydrogen sulfide during hyperhomocysteinemia-mediated oxidative/ER stress condition 1. Can J Physiol Pharmacol 2018; 97:441-456. [PMID: 30422673 DOI: 10.1139/cjpp-2018-0501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated homocysteine (Hcy), i.e., hyperhomocysteinemia (HHcy), causes skeletal muscle myopathy. Among many cellular and metabolic alterations caused by HHcy, oxidative and endoplasmic reticulum (ER) stress are considered the major ones; however, the precise molecular mechanism(s) in this process is unclear. Nevertheless, there is no treatment option available to treat HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is increasingly recognized as a potent anti-oxidant, anti-apoptotic/necrotic/pyroptotic, and anti-inflammatory compound and also has been shown to improve angiogenesis during ischemic injury. Patients with CBS mutation produce less H2S, making them vulnerable to Hcy-mediated cellular damage. Many studies have reported bidirectional regulation of ER stress in apoptosis through JNK activation and concomitant attenuation of cell proliferation and protein synthesis via PI3K/AKT axis. Whether H2S mitigates these detrimental effects of HHcy on muscle remains unexplored. In this review, we discuss molecular mechanisms of HHcy-mediated oxidative/ER stress responses, apoptosis, angiogenesis, and atrophic changes in skeletal muscle and how H2S can restore skeletal muscle homeostasis during HHcy condition. This review also highlights the molecular mechanisms on how H2S could be developed as a clinically relevant therapeutic option for chronic conditions that are aggravated by HHcy.
Collapse
Affiliation(s)
- Avisek Majumder
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,b Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Akash K George
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
34
|
Hydrogen Sulfide Ameliorates Developmental Impairments of Rat Offspring with Prenatal Hyperhomocysteinemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2746873. [PMID: 30581528 PMCID: PMC6276483 DOI: 10.1155/2018/2746873] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
Maternal high levels of the redox active amino acid homocysteine—called hyperhomocysteinemia (hHCY)—can affect the health state of the progeny. The effects of hydrogen sulfide (H2S) treatment on rats with maternal hHCY remain unknown. In the present study, we characterized the physical development, reflex ontogeny, locomotion and exploratory activity, muscle strength, motor coordination, and brain redox state of pups with maternal hHCY and tested potential beneficial action of the H2S donor—sodium hydrosulfide (NaHS)—on these parameters. Our results indicate a significant decrease in litter size and body weight of pups from dams fed with methionine-rich diet. In hHCY pups, a delay in the formation of sensory-motor reflexes was observed. Locomotor activity tested in the open field by head rearings, crossed squares, and rearings of hHCY pups at all studied ages (P8, P16, and P26) was diminished. Exploratory activity was decreased, and emotionality was higher in rats with hHCY. Prenatal hHCY resulted in reduced muscle strength and motor coordination assessed by the paw grip endurance test and rotarod test. Remarkably, administration of NaHS to pregnant rats with hHCY prevented the observed deleterious effects of high homocysteine on fetus development. In rats with prenatal hHCY, the endogenous generation of H2S brain tissues was lower compared to control and NaHS administration restored the H2S level to control values. Moreover, using redox signaling assays, we found an increased level of malondialdehyde (MDA), the end product of lipid peroxidation, and decreased activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the brain tissues of rats of the hHCY group. Notably, NaHS treatment restored the level of MDA and the activity of SOD and GPx. Our data suggest that H2S has neuroprotective/antioxidant effects against homocysteine-induced neurotoxicity providing a potential strategy for the prevention of developmental impairments in newborns.
Collapse
|
35
|
Wang J, Wang W, Li S, Han Y, Zhang P, Meng G, Xiao Y, Xie L, Wang X, Sha J, Chen Q, Moore PK, Wang R, Xiang W, Ji Y. Hydrogen Sulfide As a Potential Target in Preventing Spermatogenic Failure and Testicular Dysfunction. Antioxid Redox Signal 2018; 28:1447-1462. [PMID: 28537489 DOI: 10.1089/ars.2016.6968] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Testis and sperm are particularly susceptible to inflammation and oxidative stress. Although hydrogen sulfide (H2S) has been considered an important biological signaling molecule in inflammatory and oxidative stress processes, its role in the male reproductive system was poorly understood. The aim of this study was to investigate the role of H2S in the regulation of male reproductive system. RESULTS We found that both subfertile and infertile patients, especially asthenospermic patients, exhibited decreased concentration of H2S in their seminal plasma and diminished expression of H2S-generating enzyme (cystathionine β-synthase [CBS]) in sperm. Supplying exogenous H2S to semen improved sperm motility of these asthenospermic patients. Furthermore, decreased sperm motility was observed in animal models with a defective in H2S generation such as lipopolysaccharide-treated mice, diabetic mice, and CBS-deficient mice. Our research showed that stress-induced reductions of endogenous H2S production and CBS expression are correlated with impaired spermatogenesis and a defective blood-testis barrier. Supplying exogenous H2S or overexpressing CBS could relieve the spermatogenic failure. This occurred primarily through the combination of anti-inflammatory and antioxidative effects. INNOVATION These results provide the first indication that H2S is important for maintaining male fertility and protecting testicular function. CONCLUSION H2S plays an important role in spermatogenic failure and testicular dysfunction mainly by its anti-inflammatory and antioxidative effects. Antioxid. Redox Signal. 28, 1447-1462.
Collapse
Affiliation(s)
- Jing Wang
- 1 State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmacology, School of Pharmacy, Nanjing Medical University , Nanjing, People's Republic of China
| | - Wan Wang
- 1 State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmacology, School of Pharmacy, Nanjing Medical University , Nanjing, People's Republic of China
| | - Shuangyue Li
- 1 State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmacology, School of Pharmacy, Nanjing Medical University , Nanjing, People's Republic of China
| | - Yi Han
- 2 Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University , Nanjing, People's Republic of China
| | - Ping Zhang
- 3 Department of Gynaecology, The First Public Hospital of Zhangjiagang , Zhangjiagang, People's Republic of China
| | - Guoliang Meng
- 1 State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmacology, School of Pharmacy, Nanjing Medical University , Nanjing, People's Republic of China
| | - Yujiao Xiao
- 1 State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmacology, School of Pharmacy, Nanjing Medical University , Nanjing, People's Republic of China
| | - Liping Xie
- 1 State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmacology, School of Pharmacy, Nanjing Medical University , Nanjing, People's Republic of China
| | - Xin Wang
- 4 Faculty of Life Sciences, The University of Manchester , Manchester, United Kingdom
| | - Jiahao Sha
- 1 State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmacology, School of Pharmacy, Nanjing Medical University , Nanjing, People's Republic of China
| | - Qi Chen
- 1 State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmacology, School of Pharmacy, Nanjing Medical University , Nanjing, People's Republic of China
| | - Philip K Moore
- 5 Neurobiology Program, Life Science Institute and Department of Pharmacology, National University of Singapore , Singapore, Singapore
| | - Rui Wang
- 6 Department of Biology Laurentian University , Sudbury, Canada
| | - Wenpei Xiang
- 7 Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, People's Republic of China
| | - Yong Ji
- 1 State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Department of Pharmacology, School of Pharmacy, Nanjing Medical University , Nanjing, People's Republic of China
| |
Collapse
|
36
|
Heidari S, Mehri S, Shariaty V, Hosseinzadeh H. Preventive effects of crocin on neuronal damages induced by D-galactose through AGEs and oxidative stress in human neuroblastoma cells (SH-SY5Y). J Pharmacopuncture 2018; 21:18-25. [PMID: 30151301 PMCID: PMC6054079 DOI: 10.3831/kpi.2018.21.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/18/2018] [Accepted: 02/26/2018] [Indexed: 01/02/2023] Open
Abstract
Objective D-galactose (D-gal) is well-known agent to induce aging process. In the present study, we selected crocin, the main constituent of Crocus sativus L. (saffron), against D-gal-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Methods Pretreated cells with crocin (25–500 μM, 24 h) were exposed to D-gal (25–400 mM, 48 h). The MTT assay was used for determination cell viability. Dichlorofluorescin diacetate assay (DCF-DA) and senescence associated β-galactosidase staining assay (SA-β-gal) were used to evaluate the generation of reactive oxygen species and beta-galactosidase as an aging marker, respectively. Also advanced glycation end products (AGEs) expression which is known as the main mechanism of age-related diseases was measured by western blot analysis. Results The findings of our study showed that treatment of cells with D-gal (25–400 mM) for 48h decreased cell viability concentration dependency. Reactive oxygen species (ROS) levels which are known as main factors in age-related diseases increased from 100 ± 8% in control group to 132 ± 22% in D-gal (200 mM) treated cells for 48h. The cytotoxic effects of D-gal decreased with 24h crocin pretreatment of cells. The cell viability at concentrations of 100 μM, 200 μM and 500 μM increased and ROS production decreased at concentrations of 200 and 500 μM to 111.5 ± 6% and 108 ± 5%, respectively. Also lysosomal biomarker of aging and carboxymethyl lysine (CML) expression as an AGE protein, significantly increased in D-gal 200 mM group after 48h incubation compare to control group. Pretreatment of SHSY-5Y cells with crocin (500 μM) before adding D-gal significantly reduced aging marker and CML formation. Conclusion Treatment of SH-SY5Y cells with crocin before adding of D-gal restored aging effects of D-gal concentration dependency. These findings indicate that crocin has potent anti-aging effects through inhibition of AGEs and ROS production.
Collapse
Affiliation(s)
- Somaye Heidari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I. R. Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I. R. Iran
| | - Vahidesadat Shariaty
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I. R. Iran
| |
Collapse
|
37
|
Hsu WH, Lin YC, Chen BR, Wu SC, Lee BH. The neuronal protection of a zinc-binding protein isolated from oyster. Food Chem Toxicol 2018; 114:61-68. [PMID: 29432843 DOI: 10.1016/j.fct.2018.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
Mitochondrial function is applied as oxidative stress and neuronal damage index. In this study, d-galactose was used to induce free radicals production and neuronal damage in HN-h cells, and the effect of novel 43 kDa protein isolated from oyster on anti-mitochondrial dysfunction and zinc-binding ability were evaluated. Crystal violet stain results indicated zinc-binding protein of oyster (ZPO) attenuated neuronal cell death induced by 100 mM of d-galactose on HN-h cells in a dose-dependent manner. ZPO alleviated mitochondrial inactivation, mitochondrial membrane potential decreasing, oxidative stress, and fusion/fission state in non-cytotoxic concentration of d-galactose (50 mM)-treated HN-h cells. ZPO treatment recovered metallathionein-3 (MT-3) decrease and inhibited β- and γ-secretase as well as amyloid beta (Aβ) accumulation in HN-h cells caused by d-galactose induction. These results suggest ZPO could avoid oxidative stress and is a functional protein for zinc concentration maintainability, which has potential for development of functional foods for neuronal protection.
Collapse
Affiliation(s)
- Wei-Hsuan Hsu
- Biochemical Process Technology Department, Center of Excellence for Drug Development, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
| | - Yu-Chun Lin
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Bo-Rui Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, ROC; Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan, ROC
| | - She-Ching Wu
- Department of Food Science, National Chiayi University, Chiayi, Taiwan, ROC.
| | - Bao-Hong Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC; Department of Chinese Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
38
|
Perridon BW, Leuvenink HGD, Hillebrands JL, van Goor H, Bos EM. The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 2017; 8:2264-2289. [PMID: 27683311 PMCID: PMC5115888 DOI: 10.18632/aging.101026] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the 'hallmarks of aging'. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H2S) in the regulation of aging. Nowadays, H2S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H2S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies.
Collapse
Affiliation(s)
- Bernard W Perridon
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | | | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands.,Department of Neurosurgery, Erasmus Medical Center Rotterdam, the Netherlands
| |
Collapse
|
39
|
The protective effect of hydrogen sulfide (H2S) on traumatic brain injury (TBI) induced memory deficits in rats. Brain Res Bull 2017; 134:177-182. [DOI: 10.1016/j.brainresbull.2017.07.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
|
40
|
Diling C, Chaoqun Z, Jian Y, Jian L, Jiyan S, Yizhen X, Guoxiao L. Immunomodulatory Activities of a Fungal Protein Extracted from Hericium erinaceus through Regulating the Gut Microbiota. Front Immunol 2017; 8:666. [PMID: 28713364 PMCID: PMC5492111 DOI: 10.3389/fimmu.2017.00666] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
A single-band protein (HEP3) was isolated from Hericium erinaceus using a chemical separation combined with pharmacodynamic evaluation methods. This protein exhibited immunomodulatory activity in lipopolysaccharide-activated RAW 264.7 macrophages by decreasing the overproduction of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, and downregulating the expression of inducible nitric oxide synthase and nuclear factor-κB p65. Further researches revealed that HEP3 could improve the immune system via regulating the composition and metabolism of gut microbiota to activate the proliferation and differentiation of T cells, stimulate the intestinal antigen-presenting cells in high-dose cyclophosphamide-induced immunotoxicity in mice, and play a prebiotic role in the case of excessive antibiotics in inflammatory bowel disease model mice. Aided experiments also showed that HEP3 could be used as an antitumor immune inhibitor in tumor-burdened mice. The results of the present study suggested that fungal protein from H. erinaceus could be used as a drug or functional food ingredient for immunotherapy because of its immunomodulatory activities.
Collapse
Affiliation(s)
- Chen Diling
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zheng Chaoqun
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Chinese Materia Medica, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yang Jian
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Li Jian
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Su Jiyan
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xie Yizhen
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, China
| | - Lai Guoxiao
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| |
Collapse
|
41
|
The anti-inflammatory effect of melatonin in SH-SY5Y neuroblastoma cells exposed to sublethal dose of hydrogen peroxide. Mech Ageing Dev 2017; 164:49-60. [DOI: 10.1016/j.mad.2017.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023]
|
42
|
Liu SY, Li D, Zeng HY, Kan LY, Zou W, Zhang P, Gu HF, Tang XQ. Hydrogen Sulfide Inhibits Chronic Unpredictable Mild Stress-Induced Depressive-Like Behavior by Upregulation of Sirt-1: Involvement in Suppression of Hippocampal Endoplasmic Reticulum Stress. Int J Neuropsychopharmacol 2017; 20:867-876. [PMID: 28482013 PMCID: PMC5737807 DOI: 10.1093/ijnp/pyx030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/03/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a crucial signaling molecule with a wide range of physiological functions. Previously, we confirmed that stress-induced depression is accompanied with disturbance of H2S generation in hippocampus. The present work attempted to investigate the inhibitory effect of H2S on chronic unpredictable mild stress-induced depressive-like behaviors and the underlying mechanism. METHODS We established the rat model of chronic unpredictable mild stress to simulate depression. Open field test, forced swim test, and tail suspension test were used to assess depressive-like behaviors. The expression of Sirt-1 and three marked proteins related to endoplasmic reticulum stress (GRP-78, CHOP, and cleaved caspase-12) were detected by western blot. RESULTS We found that chronic unpredictable mild stress-exposed rats exhibit depression-like behavior responses, including significantly increased immobility time in the forced swim test and tail suspension test, and decreased climbing time and swimming time in the forced swim test. In parallel, chronic unpredictable mild stress-exposed rats showed elevated levels of hippocampal endoplasmic reticulum stress and reduced levels of Sirt-1. However, NaHS (a donor of H2S) not only alleviated chronic unpredictable mild stress-induced depressive-like behaviors and hippocampal endoplasmic reticulum stress, but it also increased the expression of hippocampal Sirt-1 in chronic unpredictable mild stress-exposed rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the protective effects of H2S against chronic unpredictable mild stress-induced depression-like behaviors and hippocampal endoplasmic reticulum stress. CONCLUSION These results demonstrated that H2S has an antidepressant potential, and the underlying mechanism is involved in the inhibition of hippocampal endoplasmic reticulum stress by upregulation of Sirt-1 in hippocampus. These findings identify H2S as a novel therapeutic target for depression.
Collapse
Affiliation(s)
- Shu-Yun Liu
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Dan Li
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Hai-Ying Zeng
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Li-Yuan Kan
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Wei Zou
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Ping Zhang
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Hong-Feng Gu
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Xiao-Qing Tang
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang).,Correspondence: Xiao-Qing Tang, MD, PhD, Department of Physiology, Institute of Neuroscience, Medical College, University of South China, 28 West Changsheng Road, Hengyang 421001, Hunan Province, P. R. China ()
| |
Collapse
|
43
|
Faller S, Seiler R, Donus R, Engelstaedter H, Hoetzel A, Spassov SG. Pre- and posttreatment with hydrogen sulfide prevents ventilator-induced lung injury by limiting inflammation and oxidation. PLoS One 2017; 12:e0176649. [PMID: 28453540 PMCID: PMC5409137 DOI: 10.1371/journal.pone.0176649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Although essential in critical care medicine, mechanical ventilation often results in ventilator-induced lung injury. Low concentrations of hydrogen sulfide have been proven to have anti-inflammatory and anti-oxidative effects in the lung. The aim of this study was to analyze the kinetic effects of pre- and posttreatment with hydrogen sulfide in order to prevent lung injury as well as inflammatory and oxidative stress upon mechanical ventilation. Mice were either non-ventilated or mechanically ventilated with a tidal volume of 12 ml/kg for 6 h. Pretreated mice inhaled hydrogen sulfide in low dose for 1, 3, or 5 h prior to mechanical ventilation. Posttreated mice were ventilated with air followed by ventilation with hydrogen sulfide in various combinations. In addition, mice were ventilated with air for 10 h, or with air for 5 h and subsequently with hydrogen sulfide for 5 h. Histology, interleukin-1β, neutrophil counts, and reactive oxygen species formation were examined in the lungs. Both pre-and posttreatment with hydrogen sulfide time-dependently reduced or even prevented edema formation, gross histological damage, neutrophil influx and reactive oxygen species production in the lung. These results were also observed in posttreatment, when the experimental time was extended and hydrogen sulfide administration started as late as after 5 h air ventilation. In conclusion, hydrogen sulfide exerts lung protection even when its application is limited to a short or delayed period. The observed lung protection is mediated by inhibition of inflammatory and oxidative signaling.
Collapse
Affiliation(s)
- Simone Faller
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
- * E-mail:
| | - Raphael Seiler
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Rosa Donus
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Helen Engelstaedter
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Alexander Hoetzel
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Sashko Gregoriev Spassov
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
H 2S Donor NaHS Changes the Production of Endogenous H 2S and NO in D-Galactose-Induced Accelerated Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5707830. [PMID: 28512525 PMCID: PMC5420433 DOI: 10.1155/2017/5707830] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 01/08/2023]
Abstract
Aims. The study was designed to explore whether hydrogen sulphide (H2S) and nitric oxide (NO) generation changed in D-galactose- (D-gal-) induced ageing, the possible effects of exogenous H2S supplementation, and related mechanisms. Results. In D-gal-induced senescent mice, both H2S and NO levels in the heart, liver, and kidney tissues were decreased significantly. A similar trend was observed in D-gal-challenged human umbilical vein endothelial cells (HUVECs). Sustained H2S donor (NaHS) treatment for 2 months elevated H2S and NO levels in these mice, and during this period, the D-gal-induced senescent phenotype was reversed. The protective effect of NaHS is associated with a decrease in reactive oxygen species levels and an increase in antioxidants, such as glutathione, and superoxide dismutase and glutathione peroxidase activities. Increased expression of the H2S-producing enzymes cystathionine γ-lyase (CSE) and cystathionine-β-synthase (CBS) in the heart, liver, and kidney tissues was observed in the NaHS-treated groups. NaHS supplementation also significantly postponed D-gal-induced HUVEC senescence. Conclusions. Endogenous hydrogen sulphide production in both ageing mice and endothelial cells is insufficient. Exogenous H2S can partially rescue ageing-related dysfunction by inducing endogenous H2S and NO production and reducing oxidative stress. Restoring endogenous H2S production may contribute to healthy ageing, and H2S may have antiageing effects.
Collapse
|
45
|
Zhou H, Ding L, Wu Z, Cao X, Zhang Q, Lin L, Bian JS. Hydrogen sulfide reduces RAGE toxicity through inhibition of its dimer formation. Free Radic Biol Med 2017; 104:262-271. [PMID: 28108276 DOI: 10.1016/j.freeradbiomed.2017.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/30/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
Abstract
RAGE is important in the development of neurodegenerative diseases. The present study was designed to investigate the effect of hydrogen sulfide (H2S, an endogenous gaseous mediator) on the cytotoxicity caused by RAGE activation during the chronic oxidative stress. Aβ1-42 decreased cell viability and induced cell senescence in SH-SY5Y cells. Treatment with advanced glycation end products (AGEs) induced cell injury in HEK293 cells stably expressing RAGE (HEK293-RAGE) and stimulated inflammatory responses in SH-SY5Y cells. Pretreatment of SH-SY5Y cells with an H2S donor, NaHS, significantly attenuated the above harmful effects caused by Aβ1-42 or AGEs. Western blotting analysis shows that oxidative stress enhanced RAGE protein expression which was attenuated by either NaHS or over-expression of cystathionine β-synthase (CBS), a critical enzyme for producing H2S in brain cells. Both Western blots and split GFP complementation analysis demonstrate that NaHS reduced H2O2-enhanced RAGE dimerization. Immunofluorescence analysis shows that H2O2 up-regulated the membrane expression of wild-type RAGE. However, H2O2-enhanced expression of the RAGE harboring C259S/C310S double mutation (DM-RAGE) was observed in the endoplasmic reticulum. Treatment with NaHS attenuated the effects of H2O2 on the protein expression of WT-RAGE, but not that of DM-RAGE. Cycloheximide chase and ubiquitination assays show that NaHS reduced the half-life of WT-RAGE to a similar level of DM-RAGE. S-sulfhydration assay with the tag-switch technique demonstrate that H2S may directly S-sulfhydrate the C259/C301 residues. Our data suggest that H2S reduces RAGE dimer formation and impairs its membrane stability. The lowered plasma membrane abundance of RAGE therefore helps to protect cells against various RAGE mediated pathological effects.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Lei Ding
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Qichun Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Li Lin
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore; Life Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
46
|
The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution. Antioxidants (Basel) 2016; 5:antiox5030025. [PMID: 27472369 PMCID: PMC5039574 DOI: 10.3390/antiox5030025] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 07/22/2016] [Indexed: 01/15/2023] Open
Abstract
Human antioxidant protein 1 (Atox1) is a small cytosolic protein with an essential role in copper homeostasis. Atox1 functions as a copper carrier facilitating copper transfer to the secretory pathway. This process is required for activation of copper dependent enzymes involved in neurotransmitter biosynthesis, iron efflux, neovascularization, wound healing, and regulation of blood pressure. Recently, new cellular roles for Atox1 have emerged. Changing levels of Atox1 were shown to modulate response to cancer therapies, contribute to inflammatory response, and protect cells against various oxidative stresses. It has also become apparent that the activity of Atox1 is tightly linked to the cellular redox status. In this review, we summarize biochemical information related to a dual role of Atox1 as a copper chaperone and an antioxidant. We discuss how these two activities could be linked and contribute to establishing the intracellular copper balance and functional identity of cells during differentiation.
Collapse
|
47
|
Ahn EH, Kim DW, Shin MJ, Ryu EJ, Yong JI, Chung SY, Cha HJ, Kim SJ, Choi YJ, Kim DS, Cho SW, Lee K, Cho YS, Kwon HY, Park J, Eum WS, Choi SY. Tat-ATOX1 inhibits streptozotocin-induced cell death in pancreatic RINm5F cells and attenuates diabetes in a mouse model. Int J Mol Med 2016; 38:217-24. [PMID: 27222268 DOI: 10.3892/ijmm.2016.2599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 04/27/2016] [Indexed: 11/06/2022] Open
Abstract
Antioxidant 1 (ATOX1) functions as an antioxidant against hydrogen peroxide and superoxide, and therefore may play a significant role in many human diseases, including diabetes mellitus (DM). In the present study, we examined the protective effects of Tat-ATOX1 protein on streptozotocin (STZ)-exposed pancreatic insulinoma cells (RINm5F) and in a mouse model of STZ-induced diabetes using western blot analysis, immunofluorescence staining and MTT assay, as well as histological and biochemical analysis. Purified Tat-ATOX1 protein was efficiently transduced into RINm5F cells in a dose- and time-dependent manner. Additionally, Tat-ATOX1 protein markedly inhibited reactive oxygen species (ROS) production, DNA damage and the activation of Akt and mitogen activated protein kinases (MAPKs) in STZ-exposed RINm5F cells. In addition, Tat-ATOX1 protein transduced into mice pancreatic tissues and significantly decreased blood glucose and hemoglobin A1c (HbA1c) levels as well as the body weight changes in a model of STZ-induced diabetes. These results indicate that transduced Tat-ATOX1 protein protects pancreatic β-cells by inhibiting STZ-induced cellular toxicity in vitro and in vivo. Based on these findings, we suggest that Tat-ATOX1 protein has potential applications as a therapeutic agent for oxidative stress-induced diseases including DM.
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Eun Ji Ryu
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Ji In Yong
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Seok Young Chung
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Sang Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si, Chungnam 31538, Republic of Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Keunwook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Yoon Shin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon‑do 24252, Republic of Korea
| |
Collapse
|
48
|
Hydrogen Sulfide and Cellular Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6043038. [PMID: 26881033 PMCID: PMC4736422 DOI: 10.1155/2016/6043038] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/06/2023]
Abstract
Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review.
Collapse
|
49
|
In vivo HMRS and lipidomic profiling reveals comprehensive changes of hippocampal metabolism during aging in mice. Biochem Biophys Res Commun 2015; 470:9-14. [PMID: 26707637 DOI: 10.1016/j.bbrc.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 01/04/2023]
Abstract
Aging is characterized by various cellular changes in the brain. Hippocampus is important for systemic aging and lifespan control. There is still a lack of comprehensive overview of metabolic changes in hippocampus during aging. In this study, we first created an accelerated brain aging mice model through the chronic administration of d-galactose. We then performed a multiplatform metabolomic profiling of mice hippocampus using the combination of in vivo 9.4 T HMRS and in vitro LC-MS/MS based lipidomics. We found N-acetylaspartic acid (NAA), gama-aminobutyric acid (GABA), glutamate/glutamine, taurine, choline, sphingolipids (SMs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs) and phosphatidylserines (PSs), all of them decreasing with the aging process in mice hippocampus. The changes of sphingolipids and phospholipids were not limited to one single class or molecular species. In contrast, we found the significant accumulation of lactate, myoinositol and phosphatidylcholines (PCs) along with aging in hippocampus. SM (d18:1/20:2), PE (36:2), PG (34:1), PI (36:4), PS (18:0/20:4) and PC (36:0) have the most significant changes along with aging. Network analysis revealed the striking loss of biochemical connectivity and interactions between hippocampal metabolites with aging. The correlation pattern between metabolites in hippocampus could function as biomarkers for aging or diagnosis of aging-related diseases.
Collapse
|
50
|
Xiong L, Mao S, Lu B, Yang J, Zhou F, Hu Y, Jiang Y, Shen C, Zhao Y. Osmanthus fragrans Flower Extract and Acteoside Protect Against d-Galactose-Induced Aging in an ICR Mouse Model. J Med Food 2015; 19:54-61. [PMID: 26181905 DOI: 10.1089/jmf.2015.3462] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Osmanthus fragrans flower extract (OFE) is an organic extract from O. fragrans flower, which exhibits neuroprotective, free radical scavenging, and antioxidant effects. Therefore, the protective effect of OFE and acteoside against aging was studied. An aging ICR mouse model was established by chronically administering d-galactose (250 mg/kg) for 8 weeks. d-galactose induced spatial learning and memory impairments that were successfully inhibited by OFE and acteoside, which could shorten escape latency, improve platform crossing times, and increase zone time. The antioxidant potential of OFE and acteoside in vivo was evaluated by estimating the following: activities of antioxidant enzymes, such as glutathione peroxidase and aging-related enzyme, particularly monoamine oxidase; contents of lipid peroxidation methane dicarboxylic aldehyde, advanced glycation end products, and 8-hydroxy-2'-deoxyguanosine (a DNA damage product); and levels of nuclear factor-erythroid 2-related factor 2. OFE and acteoside also inhibited d-galactose-induced neurological aging by suppressing the increase in glial fibrillary acidic protein and neurotrophin-3. Considering the dose-dependent protective effects of OFE and acteoside, we concluded that OFE, rich in acteoside, was a good source of natural antiaging compounds.
Collapse
Affiliation(s)
- Lina Xiong
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Shuqin Mao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Jiajia Yang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Fei Zhou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Yinzhou Hu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Yirong Jiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Canxi Shen
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Yajing Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Key Laboratory for Agro-Food Risk Assessment of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| |
Collapse
|