1
|
Li K, Zheng Y, Cai S, Fan Z, Yang J, Liu Y, Liang S, Song M, Du S, Qi L. The subventricular zone structure, function and implications for neurological disease. Genes Dis 2025; 12:101398. [PMID: 39935607 PMCID: PMC11810716 DOI: 10.1016/j.gendis.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/28/2024] [Accepted: 07/28/2024] [Indexed: 02/13/2025] Open
Abstract
The subventricular zone (SVZ) is a region surrounding the lateral ventricles that contains neural stem cells and neural progenitor cells, which can proliferate and differentiate into various neural and glial cells. SVZ cells play important roles in neurological diseases like neurodegeneration, neural injury, and glioblastoma multiforme. Investigating the anatomy, structure, composition, physiology, disease associations, and related mechanisms of SVZ is significant for neural stem cell therapy and treatment/prevention of neurological disorders. However, challenges remain regarding the mechanisms regulating SVZ cell proliferation, differentiation, and migration, delivering cells to damaged areas, and immune responses. In-depth studies of SVZ functions and related therapeutic developments may provide new insights and approaches for treating brain injuries and degenerative diseases, as well as a scientific basis for neural stem cell therapy. This review summarizes research findings on SVZ and neurological diseases to provide references for relevant therapies.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yin Zheng
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shubing Cai
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Zhiming Fan
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Junyi Yang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yuanrun Liu
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shengqi Liang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Meihui Song
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Siyuan Du
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Ling Qi
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| |
Collapse
|
2
|
Simmons DA, Selvaraj S, Chen T, Cao G, Camelo TS, McHugh TL, Gonzalez S, Martin RM, Simanauskaite J, Uchida N, Porteus MH, Longo FM. Human striatal progenitor cells that contain inducible safeguards and overexpress BDNF rescue Huntington's disease phenotypes. Mol Ther Methods Clin Dev 2025; 33:101415. [PMID: 39995448 PMCID: PMC11848452 DOI: 10.1016/j.omtm.2025.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025]
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder characterized by striatal atrophy. Reduced trophic support due to decreased striatal levels of neurotrophins (NTs), mainly brain-derived neurotrophic factor (BDNF), contributes importantly to HD pathogenesis; restoring NTs has significant therapeutic potential. Human pluripotent stem cells (hPSCs) offer a scalable platform for NT delivery but have potential safety risks including teratoma formation. We engineered hPSCs to constitutively produce BDNF and contain inducible safeguards to eliminate these cells if safety concerns arise. This study examined the efficacy of intrastriatally transplanted striatal progenitor cells (STRpcs) derived from these hPSCs against HD phenotypes in R6/2 mice. Engrafted STRpcs overexpressing BDNF alleviated motor and cognitive deficits and reduced mutant huntingtin aggregates. Activating the inducible safety switch with rapamycin safely eliminated the engrafted cells. These results demonstrate that BDNF delivery via a novel hPSC-based platform incorporating safety switches could be a safe and effective HD therapeutic.
Collapse
Affiliation(s)
- Danielle A. Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tingshuo Chen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gloria Cao
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Talita Souto Camelo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tyne L.M. McHugh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Selena Gonzalez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Renata M. Martin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juste Simanauskaite
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nobuko Uchida
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew H. Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Park JJ, Rim YA, Sohn Y, Nam Y, Ju JH. Prospects of induced pluripotent stem cells in treating advancing Alzheimer's disease: A review. Histol Histopathol 2025; 40:157-170. [PMID: 38847077 DOI: 10.14670/hh-18-766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The World Health Organization has identified Alzheimer's disease (AD), the leading cause of dementia globally, as a public health priority. However, the complex multifactorial pathology of AD means that its etiology remains incompletely understood. Despite being recognized a century ago, incomplete knowledge has hindered the development of effective treatments for AD. Recent scientific advancements, particularly in induced pluripotent stem cell (iPSC) technology, show great promise in elucidating the fundamental mechanisms of AD. iPSCs play a dual role in regenerating damaged cells for therapeutic purposes and creating disease models to understand AD pathology and aid in drug screening. Nevertheless, as an emerging field, iPSC technology requires further technological advancement to develop effective AD treatments in the future. Thus, this review summarizes recent advances in stem cell therapies, specifically iPSCs, aimed at understanding AD pathology and developing treatments.
Collapse
Affiliation(s)
- Juyoun Janis Park
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Yeri Alice Rim
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
| | - Ji Hyeon Ju
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine and Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
4
|
Wihadmadyatami H, Zulfikar MA, Herawati H, Karnati S, Saragih GR, Aliffia D, Pratama DA, Handayani N, Kustiati U, Tirtosari DR, Tjahjono Y. Neuroprotection effect of bovine umbilical mesenchymal stem cell-conditioned medium on the rat model of Alzheimer's disease mediated by upregulation of BDNF and NGF and downregulation of TNF-α and IL-1β. Open Vet J 2025; 15:151-161. [PMID: 40092207 PMCID: PMC11910287 DOI: 10.5455/ovj.2025.v15.i1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/11/2024] [Indexed: 04/11/2025] Open
Abstract
Background Neurodegenerative diseases (NDDs) are distinguished by impairment and depletion of nerve cells; one of the most common NDDs is Alzheimer's disease (AD), which can appear in early onset or late onset. In recent years, the secretome or conditioned medium of mesenchymal stem cells has provided new hope for improving conditions and preventing AD. One of the secretomes is bovine umbilical mesenchymal stem cells-conditioned medium (BUMSC-CM), where BUMSC is predicted to promote neuronal proliferation potentially. Aim This study analyzes the therapeutic efficiency of conditioned medium or secretome produced from BUMSC-CM in treating neurodegeneration in animal models of AD. Methods Five groups consisting of 12 male rats were assigned: untreated (Group A, n = 5), positive control group given normal saline 1 ml/100 g BW (Group B, n = 5), AD rats model followed by Donepezil treatment (Group C, n = 5), AD rats model with BUMSC-CM 0.2 ml/kg BW post-trimethyltin (TMT) induction (Group D, n = 5), and AD rats model with BUMSC-CM 0.5 ml/kg BW post-TMT induction (Group E, n = 5). The brain samples were analyzed for neuronal density using cresyl violet staining. The expression and activity of brain-derived neurotrophic factor (BDNF) were analyzed by ELISA; in addition, interleukin 1beta (IL-1β), tumor necrotic factor-alpha (TNF-α), and neural growth factor (NGF) were analyzed by quantitative polymerase chain reaction. Interactions between the main substances of BUMSC-CM and beta-amyloid protein were visualized using in silico molecular docking. Results Our result demonstrated that BUMSC-CM with the dosage of 0.5 ml/kg BW significantly increased BDNF concentration. We also found that BUMSC-CM with dosage 0.2 ml/kg BW and 0.5 ml/kg BW down-regulated IL-1β and TNF-α and upregulated NGF expression. Additionally, the number of neurons in AD rats post-treated with BUMSC-CM was significantly increasing. Furthermore, the amino acids in BUMSC-CM, including isoleucine, leucine, and valine, bind to the amyloid beta protein via interactions that are hydrophobic and hydrogen-bonded. Conclusion In this study, the neuroprotective potential of BUMSC-CM was demonstrated by its ability to upregulate BDNF and NGF while downregulating IL-1β and TNF-α. Additionally, BUMSC-CM showed potential to promote neuron proliferation in the hippocampus regions of a rat AD model. The main constituents in BUMSC-CM adhere to amyloid beta protein, hence diminishing the likelihood of ND disorders, specifically AD.
Collapse
Affiliation(s)
- Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad Ali Zulfikar
- 2Department of Chemistry, Faculty of Mathematics and Science, Institut Teknologi Bandung, Bandung, Indonesia
| | - Herawati Herawati
- Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius Maximillian University, Wuerzburg, Germany
| | - Golda Rani Saragih
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dinda Aliffia
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dyah A.O.A. Pratama
- Laboratory of Pathology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Nurrahmi Handayani
- 2Department of Chemistry, Faculty of Mathematics and Science, Institut Teknologi Bandung, Bandung, Indonesia
| | - Ulayatul Kustiati
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Dewi Ratih Tirtosari
- Department of Pharmacy, Faculty of Medical Science, Universitas Ibrahimy, Situbondo, Indonesia
| | - Yudy Tjahjono
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Surabaya, Indonesia
| |
Collapse
|
5
|
Wihadmadyatami H, Zulfikar MA, Herawati H, Karnati S, Saragih GR, Aliffia D, Pratama DA, Handayani N, Kustiati U, Tirtosari DR, Tjahjono Y. Neuroprotection effect of bovine umbilical mesenchymal stem cell-conditioned medium on the rat model of Alzheimer's disease mediated by upregulation of BDNF and NGF and downregulation of TNF-α and IL-1β. Open Vet J 2025; 15:151-161. [PMID: 40092207 PMCID: PMC11910287 DOI: 10.5455/ovj.2024.v15.i1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/11/2024] [Indexed: 03/19/2025] Open
Abstract
Background Neurodegenerative diseases (NDDs) are distinguished by impairment and depletion of nerve cells; one of the most common NDDs is Alzheimer's disease (AD), which can appear in early onset or late onset. In recent years, the secretome or conditioned medium of mesenchymal stem cells has provided new hope for improving conditions and preventing AD. One of the secretomes is bovine umbilical mesenchymal stem cells-conditioned medium (BUMSC-CM), where BUMSC is predicted to promote neuronal proliferation potentially. Aim This study analyzes the therapeutic efficiency of conditioned medium or secretome produced from BUMSC-CM in treating neurodegeneration in animal models of AD. Methods Five groups consisting of 12 male rats were assigned: untreated (Group A, n = 5), positive control group given normal saline 1 ml/100 g BW (Group B, n = 5), AD rats model followed by Donepezil treatment (Group C, n = 5), AD rats model with BUMSC-CM 0.2 ml/kg BW post-trimethyltin (TMT) induction (Group D, n = 5), and AD rats model with BUMSC-CM 0.5 ml/kg BW post-TMT induction (Group E, n = 5). The brain samples were analyzed for neuronal density using cresyl violet staining. The expression and activity of brain-derived neurotrophic factor (BDNF) were analyzed by ELISA; in addition, interleukin 1beta (IL-1β), tumor necrotic factor-alpha (TNF-α), and neural growth factor (NGF) were analyzed by quantitative polymerase chain reaction. Interactions between the main substances of BUMSC-CM and beta-amyloid protein were visualized using in silico molecular docking. Results Our result demonstrated that BUMSC-CM with the dosage of 0.5 ml/kg BW significantly increased BDNF concentration. We also found that BUMSC-CM with dosage 0.2 ml/kg BW and 0.5 ml/kg BW down-regulated IL-1β and TNF-α and upregulated NGF expression. Additionally, the number of neurons in AD rats post-treated with BUMSC-CM was significantly increasing. Furthermore, the amino acids in BUMSC-CM, including isoleucine, leucine, and valine, bind to the amyloid beta protein via interactions that are hydrophobic and hydrogen-bonded. Conclusion In this study, the neuroprotective potential of BUMSC-CM was demonstrated by its ability to upregulate BDNF and NGF while downregulating IL-1β and TNF-α. Additionally, BUMSC-CM showed potential to promote neuron proliferation in the hippocampus regions of a rat AD model. The main constituents in BUMSC-CM adhere to amyloid beta protein, hence diminishing the likelihood of ND disorders, specifically AD.
Collapse
Affiliation(s)
- Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad Ali Zulfikar
- 2Department of Chemistry, Faculty of Mathematics and Science, Institut Teknologi Bandung, Bandung, Indonesia
| | - Herawati Herawati
- Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius Maximillian University, Wuerzburg, Germany
| | - Golda Rani Saragih
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dinda Aliffia
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dyah A.O.A. Pratama
- Laboratory of Pathology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Nurrahmi Handayani
- 2Department of Chemistry, Faculty of Mathematics and Science, Institut Teknologi Bandung, Bandung, Indonesia
| | - Ulayatul Kustiati
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Dewi Ratih Tirtosari
- Department of Pharmacy, Faculty of Medical Science, Universitas Ibrahimy, Situbondo, Indonesia
| | - Yudy Tjahjono
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Surabaya, Indonesia
| |
Collapse
|
6
|
Ji Q, Lv Y, Hu B, Su Y, Shaikh II, Zhu X. Study on the therapeutic potential of induced neural stem cells for Alzheimer's disease in mice. Biol Res 2024; 57:89. [PMID: 39582031 PMCID: PMC11587668 DOI: 10.1186/s40659-024-00568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Induced neural stem cells (iNSCs), which have similar properties to neural stem cells and are able to self-proliferate and differentiate into neural cell lineages, are expected to be potential cells for the treatment of neurodegeneration disease. However, cell therapy based on iNSCs transplantation is limited by the inability to acquire sufficient quantities of iNSCs. Previous studies have found that mouse and human fibroblasts can be directly reprogrammed into iNSCs with a single factor, Sox2. Here, we induced mouse embryonic fibroblasts (MEFs) into iNSCs by combining valproic acid (VPA) with the induction factor Sox2, and the results showed that VPA significantly improved the conversion efficiency of fibroblasts to iNSCs. The iNSCs exhibited typical neurosphere-like structures that can express NSCs markers, such as Sox2, Nestin, Sox1, and Zbtb16, and could differentiate into neurons, astrocytes, and oligodendrocytes in vitro. Subsequently, the iNSCs were stereotactically transplanted into the hippocampus of APP/PS1 double transgenic mice (AD mice). Post-transplantation, the iNSCs showed long-term survival, migrated over long distances, and differentiated into multiple types of functional neurons and glial cells in vivo. Importantly, the cognitive abilities of APP/PS1 mice transplanted with iNSCs exhibited significant functional recovery. These findings suggest that VPA enhances the conversion efficiency of fibroblasts into iNSCs when used in combination with Sox2, and iNSCs hold promise as a potential donor material for transplantation therapy in Alzheimer's disease.
Collapse
Affiliation(s)
- Qiongqiong Ji
- Department of Medical Imaging, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yuanhao Lv
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Bei Hu
- Fuzhou Medical College of Nanchang University, Fuzhou, 344099, Jiangxi, China
| | - Yue Su
- Department of Respiratory and Critical Care Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China.
| | - Imran Ibrahim Shaikh
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China.
| | - Xu Zhu
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
7
|
Capobianco DL, De Zio R, Profico DC, Gelati M, Simone L, D'Erchia AM, Di Palma F, Mormone E, Bernardi P, Sbarbati A, Gerbino A, Pesole G, Vescovi AL, Svelto M, Pisani F. Human neural stem cells derived from fetal human brain communicate with each other and rescue ischemic neuronal cells through tunneling nanotubes. Cell Death Dis 2024; 15:639. [PMID: 39217148 PMCID: PMC11365985 DOI: 10.1038/s41419-024-07005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Pre-clinical trials have demonstrated the neuroprotective effects of transplanted human neural stem cells (hNSCs) during the post-ischemic phase. However, the exact neuroprotective mechanism remains unclear. Tunneling nanotubes (TNTs) are long plasma membrane bridges that physically connect distant cells, enabling the intercellular transfer of mitochondria and contributing to post-ischemic repair processes. Whether hNSCs communicate through TNTs and their role in post-ischemic neuroprotection remains unknown. In this study, non-immortalized hNSC lines derived from fetal human brain tissues were examined to explore these possibilities and assess the post-ischemic neuroprotection potential of these hNSCs. Using Tau-STED super-resolution confocal microscopy, live cell time-lapse fluorescence microscopy, electron microscopy, and direct or non-contact homotypic co-cultures, we demonstrated that hNSCs generate nestin-positive TNTs in both 3D neurospheres and 2D cultures, through which they transfer functional mitochondria. Co-culturing hNSCs with differentiated SH-SY5Y (dSH-SY5Y) revealed heterotypic TNTs allowing mitochondrial transfer from hNSCs to dSH-SY5Y. To investigate the role of heterotypic TNTs in post-ischemic neuroprotection, dSH-SY5Y were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (OGD/R) with or without hNSCs in direct or non-contact co-cultures. Compared to normoxia, OGD/R dSH-SY5Y became apoptotic with impaired electrical activity. When OGD/R dSH-SY5Y were co-cultured in direct contact with hNSCs, heterotypic TNTs enabled the transfer of functional mitochondria from hNSCs to OGD/R dSH-SY5Y, rescuing them from apoptosis and restoring the bioelectrical profile toward normoxic dSH-SY5Y. This complete neuroprotection did not occur in the non-contact co-culture. In summary, our data reveal the presence of a functional TNTs network containing nestin within hNSCs, demonstrate the involvement of TNTs in post-ischemic neuroprotection mediated by hNSCs, and highlight the strong efficacy of our hNSC lines in post-ischemic neuroprotection. Human neural stem cells (hNSCs) communicate with each other and rescue ischemic neurons through nestin-positive tunneling nanotubes (TNTs). A Functional mitochondria are exchanged via TNTs between hNSCs. B hNSCs transfer functional mitochondria to ischemic neurons through TNTs, rescuing neurons from ischemia/reperfusion ROS-dependent apoptosis.
Collapse
Affiliation(s)
- D L Capobianco
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - R De Zio
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - D C Profico
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - M Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - L Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - A M D'Erchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) CNR, Bari, Italy
| | - F Di Palma
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - E Mormone
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - P Bernardi
- Department of Neurosciences, Biomedicine and Movement Sciences. Unit of Human Anatomy, University of Verona, Verona, Italy
| | - A Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences. Unit of Human Anatomy, University of Verona, Verona, Italy
| | - A Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - G Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) CNR, Bari, Italy
| | - A L Vescovi
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
- Faculty of Medicine, Link Campus University, Rome, Italy
| | - M Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) CNR, Bari, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - F Pisani
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
8
|
Zhang Y, Zheng Z, Sun J, Xu S, Wei Y, Ding X, Ding G. The application of mesenchymal stem cells in the treatment of traumatic brain injury: Mechanisms, results, and problems. Histol Histopathol 2024; 39:1109-1131. [PMID: 38353136 DOI: 10.14670/hh-18-716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be derived from a wide variety of human tissues and organs. They can differentiate into a variety of cell types, including osteoblasts, adipocytes, and chondrocytes, and thus show great potential in regenerative medicine. Traumatic brain injury (TBI) is an organic injury to brain tissue with a high rate of disability and death caused by an external impact or concussive force acting directly or indirectly on the head. The current treatment of TBI mainly includes symptomatic, pharmacological, and rehabilitation treatment. Although some efficacy has been achieved, the definitive recovery effect on neural tissue is still limited. Recent studies have shown that MSC therapies are more effective than traditional treatment strategies due to their strong multi-directional differentiation potential, self-renewal capacity, and low immunogenicity and homing properties, thus MSCs are considered to play an important role and are an ideal cell for the treatment of injurious diseases, including TBI. In this paper, we systematically reviewed the role and mechanisms of MSCs and MSC-derived exosomes in the treatment of TBI, thereby providing new insights into the clinical applications of MSCs and MSC-derived exosomes in the treatment of central nervous system disorders.
Collapse
Affiliation(s)
- Ying Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yanan Wei
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Xiaoling Ding
- Clinical Competency Training Center, Shandong Second Medical University, Weifang, Shandong Province, China.
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
9
|
González-Gil A, Sánchez-Maldonado B, Rojo C, Flor-García M, Queiroga FL, Ovalle S, Ramos-Ruiz R, Fuertes-Recuero M, Picazo RA. Proneurogenic actions of follicle-stimulating hormone on neurospheres derived from ovarian cortical cells in vitro. BMC Vet Res 2024; 20:372. [PMID: 39160565 PMCID: PMC11334536 DOI: 10.1186/s12917-024-04203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Neural stem and progenitor cells (NSPCs) from extra-neural origin represent a valuable tool for autologous cell therapy and research in neurogenesis. Identification of proneurogenic biomolecules on NSPCs would improve the success of cell therapies for neurodegenerative diseases. Preliminary data suggested that follicle-stimulating hormone (FSH) might act in this fashion. This study was aimed to elucidate whether FSH promotes development, self-renewal, and is proneurogenic on neurospheres (NS) derived from sheep ovarian cortical cells (OCCs). Two culture strategies were carried out: (a) long-term, 21-days NS culture (control vs. FSH group) with NS morphometric evaluation, gene expression analyses of stemness and lineage markers, and immunolocalization of NSPCs antigens; (b) NS assay to demonstrate FSH actions on self-renewal and differentiation capacity of NS cultured with one of three defined media: M1: positive control with EGF/FGF2; M2: control; and M3: M2 supplemented with FSH. RESULTS In long-term cultures, FSH increased NS diameters with respect to control group (302.90 ± 25.20 μm vs. 183.20 ± 7.63 on day 9, respectively), upregulated nestin (days 15/21), Sox2 (day 21) and Pax6 (days 15/21) and increased the percentages of cells immunolocalizing these proteins. During NS assays, FSH stimulated NSCPs proliferation, and self-renewal, increasing NS diameters during the two expansion periods and the expression of the neuron precursor transcript DCX during the second one. In the FSH-group there were more frequent cell-bridges among neighbouring NS. CONCLUSIONS FSH is a proneurogenic hormone that promotes OCC-NSPCs self-renewal and NS development. Future studies will be necessary to support the proneurogenic actions of FSH and its potential use in basic and applied research related to cell therapy.
Collapse
Affiliation(s)
- Alfredo González-Gil
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain.
| | - Belén Sánchez-Maldonado
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Concepción Rojo
- Department of Anatomy and Embriology, School of Veterinary Medicine, University Complutense of Madrid, Madrid, 28040, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Felisbina Luisa Queiroga
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal.
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Quinta dos Prados, Vila Real, 5000-801, Portugal.
| | - Susana Ovalle
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Ricardo Ramos-Ruiz
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Manuel Fuertes-Recuero
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| | - Rosa Ana Picazo
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| |
Collapse
|
10
|
Mourtzi T, Antoniou N, Dimitriou C, Gkaravelas P, Athanasopoulou G, Kostantzo PN, Stathi O, Theodorou E, Anesti M, Matsas R, Angelatou F, Kouroupi G, Kazanis I. Enhancement of endogenous midbrain neurogenesis by microneurotrophin BNN-20 after neural progenitor grafting in a mouse model of nigral degeneration. Neural Regen Res 2024; 19:1318-1324. [PMID: 37905881 PMCID: PMC11467940 DOI: 10.4103/1673-5374.385314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023] Open
Abstract
We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the “weaver” mouse, a model of progressive nigrostriatal degeneration. Here, we extended our investigation in two clinically-relevant ways. First, we assessed the effects of BNN-20 on human induced pluripotent stem cell-derived neural progenitor cells and neurons derived from healthy and parkinsonian donors. Second, we assessed if BNN-20 can boost the outcome of mouse neural progenitor cell intranigral transplantations in weaver mice, at late stages of degeneration. We found that BNN-20 has limited direct effects on cultured human induced pluripotent stem cell-derived neural progenitor cells, marginally enhancing their differentiation towards neurons and partially reversing the pathological phenotype of dopaminergic neurons generated from parkinsonian donors. In agreement, we found no effects of BNN-20 on the mouse neural progenitor cells grafted in the substantia nigra of weaver mice. However, the graft strongly induced an endogenous neurogenic response throughout the midbrain, which was significantly enhanced by the administration of microneurotrophin BNN-20. Our results provide straightforward evidence of the existence of an endogenous midbrain neurogenic system that can be specifically strengthened by BNN-20. Interestingly, the lack of major similar activity on cultured human induced pluripotent stem cell-derived neural progenitors and their progeny reveals the in vivo specificity of the aforementioned pro-neurogenic effect.
Collapse
Affiliation(s)
- Theodora Mourtzi
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Nasia Antoniou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Christina Dimitriou
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Panagiotis Gkaravelas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Athanasopoulou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiota Nti Kostantzo
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Olga Stathi
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Efthymia Theodorou
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Maria Anesti
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Fevronia Angelatou
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Ilias Kazanis
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
11
|
Hazell AS. Stem Cell Therapy and Thiamine Deficiency-Induced Brain Damage. Neurochem Res 2024; 49:1450-1467. [PMID: 38720090 DOI: 10.1007/s11064-024-04137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/18/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024]
Abstract
Wernicke's encephalopathy (WE) is a major central nervous system disorder resulting from thiamine deficiency (TD) in which a number of brain regions can develop serious damage including the thalamus and inferior colliculus. Despite decades of research into the pathophysiology of TD and potential therapeutic interventions, little progress has been made regarding effective treatment following the development of brain lesions and its associated cognitive issues. Recent developments in our understanding of stem cells suggest they are capable of repairing damage and improving function in different maladys. This article puts forward the case for the potential use of stem cell treatment as a therapeutic strategy in WE by first examining the effects of TD on brain functional integrity and its consequences. The second half of the paper will address the future benefits of treating TD with these cells by focusing on their nature and their potential to effectively treat neurodegenerative diseases that share some overlapping pathophysiological features with TD. At the same time, some of the obstacles these cells will have to overcome in order to become a viable therapeutic strategy for treating this potentially life-threatening illness in humans will be highlighted.
Collapse
Affiliation(s)
- Alan S Hazell
- Department of Medicine, University of Montreal, 2335 Bennett Avenue, Montreal, QC, H1V 2T6, Canada.
| |
Collapse
|
12
|
Smith SM, Ranjan K, Hoover BM, Drayson OGG, Acharya MM, Kramár EA, Baulch JE, Limoli CL. Extracellular vesicles from GABAergic but not glutamatergic neurons protect against neurological dysfunction following cranial irradiation. Sci Rep 2024; 14:12274. [PMID: 38806540 PMCID: PMC11133350 DOI: 10.1038/s41598-024-62691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Cranial irradiation used to control brain malignancies invariably leads to progressive and debilitating declines in cognition. Clinical efforts implementing hippocampal avoidance and NMDAR antagonism, have sought to minimize dose to radiosensitive neurogenic regions while normalizing excitatory/inhibitory (E/I) tone. Results of these trials have yielded only marginal benefits to cognition, prompting current studies to evaluate the potential of systemic extracellular vesicle (EV) therapy to restore neurocognitive functionality in the irradiated brain. Here we tested the hypothesis that EVs derived from inhibitory but not excitatory neuronal cultures would prove beneficial to cognition and associated pathology. Rats subjected to a clinically relevant, fractionated cranial irradiation paradigm were given multiple injections of either GABAergic- or glutamatergic-derived EV and subjected to behavioral testing. Rats treated with GABAergic but not glutamatergic EVs showed significant improvements on hippocampal- and cortical-dependent behavioral tasks. While each treatment enhanced levels of the neurotrophic factors BDNF and GDNF, only GABAergic EVs preserved granule cell neuron dendritic spine density. Additional studies conducted with GABAergic EVs, confirmed significant benefits on amygdala-dependent behavior and modest changes in synaptic plasticity as measured by long-term potentiation. These data point to a potentially more efficacious approach for resolving radiation-induced neurological deficits, possibly through a mechanism able to restore homeostatic E/I balance.
Collapse
Affiliation(s)
- Sarah M Smith
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, Room B-146B, Irvine, CA, 92697-2695, USA
| | - Kashvi Ranjan
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, Room B-146B, Irvine, CA, 92697-2695, USA
| | - Brianna M Hoover
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, Room B-146B, Irvine, CA, 92697-2695, USA
| | - Olivia G G Drayson
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, Room B-146B, Irvine, CA, 92697-2695, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Eniko A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, Room B-146B, Irvine, CA, 92697-2695, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, Room B-146B, Irvine, CA, 92697-2695, USA.
| |
Collapse
|
13
|
Parwana KAK, Kaur Gill P, Njanike R, Yiu HHP, Adams CF, Chari DM, Jenkins SI. Investigating Internalization of Reporter-Protein-Functionalized Polyhedrin Particles by Brain Immune Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2330. [PMID: 38793398 PMCID: PMC11122724 DOI: 10.3390/ma17102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Achieving sustained drug delivery to the central nervous system (CNS) is a major challenge for neurological injury and disease, and various delivery vehicles are being developed to achieve this. Self-assembling polyhedrin crystals (POlyhedrin Delivery System; PODS) are being exploited for the delivery of therapeutic protein cargo, with demonstrated efficacy in vivo. However, to establish the utility of PODS for neural applications, their handling by neural immune cells (microglia) must be documented, as these cells process and degrade many biomaterials, often preventing therapeutic efficacy. Here, primary mouse cortical microglia were cultured with a GFP-functionalized PODS for 24 h. Cell counts, cell morphology and Iba1 expression were all unaltered in treated cultures, indicating a lack of acute toxicity or microglial activation. Microglia exhibited internalisation of the PODS, with both cytosolic and perinuclear localisation. No evidence of adverse effects on cellular morphology was observed. Overall, 20-40% of microglia exhibited uptake of the PODS, but extracellular/non-internalised PODS were routinely present after 24 h, suggesting that extracellular drug delivery may persist for at least 24 h.
Collapse
Affiliation(s)
| | | | - Runyararo Njanike
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
| | - Humphrey H. P. Yiu
- School of Engineering & Physical Sciences, University of Edinburgh, Edinburgh EH14 4AS, UK;
| | - Chris F. Adams
- School of Life Sciences, Keele University, Keele ST5 5BG, UK; (K.A.K.P.); (C.F.A.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| | - Divya Maitreyi Chari
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| | - Stuart Iain Jenkins
- School of Medicine, Keele University, Keele ST5 5BG, UK; (P.K.G.); (R.N.)
- Neural Tissue Engineering Keele (NTEK), Keele University, Keele ST5 5BG, UK
| |
Collapse
|
14
|
Yang L, Liu SC, Liu YY, Zhu FQ, Xiong MJ, Hu DX, Zhang WJ. Therapeutic role of neural stem cells in neurological diseases. Front Bioeng Biotechnol 2024; 12:1329712. [PMID: 38515621 PMCID: PMC10955145 DOI: 10.3389/fbioe.2024.1329712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
The failure of endogenous repair is the main feature of neurological diseases that cannot recover the damaged tissue and the resulting dysfunction. Currently, the range of treatment options for neurological diseases is limited, and the approved drugs are used to treat neurological diseases, but the therapeutic effect is still not ideal. In recent years, different studies have revealed that neural stem cells (NSCs) have made exciting achievements in the treatment of neurological diseases. NSCs have the potential of self-renewal and differentiation, which shows great foreground as the replacement therapy of endogenous cells in neurological diseases, which broadens a new way of cell therapy. The biological functions of NSCs in the repair of nerve injury include neuroprotection, promoting axonal regeneration and remyelination, secretion of neurotrophic factors, immune regulation, and improve the inflammatory microenvironment of nerve injury. All these reveal that NSCs play an important role in improving the progression of neurological diseases. Therefore, it is of great significance to better understand the functional role of NSCs in the treatment of neurological diseases. In view of this, we comprehensively discussed the application and value of NSCs in neurological diseases as well as the existing problems and challenges.
Collapse
Affiliation(s)
- Ling Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Juan Xiong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Chang J, Li Y, Shan X, Chen X, Yan X, Liu J, Zhao L. Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer's disease. Neural Regen Res 2024; 19:619-628. [PMID: 37721293 PMCID: PMC10581561 DOI: 10.4103/1673-5374.380874] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 09/19/2023] Open
Abstract
Recent studies have demonstrated that neuroplasticity, such as synaptic plasticity and neurogenesis, exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer's disease. Hence, promoting neuroplasticity may represent an effective strategy with which Alzheimer's disease can be alleviated. Due to their significant ability to self-renew, differentiate, and migrate, neural stem cells play an essential role in reversing synaptic and neuronal damage, reducing the pathology of Alzheimer's disease, including amyloid-β, tau protein, and neuroinflammation, and secreting neurotrophic factors and growth factors that are related to plasticity. These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain. Consequently, neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer's disease in the clinic.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xi Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuhe Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
16
|
Ahmad F, Karan A, Sharma R, Sharma NS, Sundar V, Jayaraj R, Mukherjee S, DeCoster MA. Evolving therapeutic interventions for the management and treatment of Alzheimer's disease. Ageing Res Rev 2024; 95:102229. [PMID: 38364913 DOI: 10.1016/j.arr.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Alzheimer's Disease (AD) patients experience diverse symptoms, including memory loss, cognitive impairment, behavioral abnormalities, mood changes, and mental issues. The fundamental objective of this review is to discuss novel therapeutic approaches, with special emphasis on recently approved marketed formulations for the treatment of AD, especially Aducanumab, the first FDA approved moiety that surpasses the blood-brain barrier (BBB) and reduces amyloid plaques in the brain, thereby reducing associated cognitive decline. However, it is still in the phase IV trial and is to be completed by 2030. Other drugs such as lecanemab are also under clinical trial and has recently been approved by the FDA and is also discussed here. In this review, we also focus on active and passive immunotherapy for AD as well as several vaccines, such as amyloid-beta epitope-based vaccines, amyloid-beta DNA vaccines, and stem cell therapy for AD, which are in clinical trials. Furthermore, ongoing pre-clinical trials associated with AD and other novel strategies such as curcumin-loaded nanoparticles, Crispr/ cas9, precision medicine, as well as some emerging therapies like anti-sense therapy are also highlighted. Additionally, we discuss some off-labeled drugs like non-steroidal anti-inflammatory drugs (NSAID), anti-diabetic drugs, and lithium, which can manage symptoms of AD and different non-pharmacological approaches are also covered which can help to manage AD. In summary, we have tried to cover all the therapeutic interventions which are available for the treatment and management of AD under sections approved, clinical phase, pre-clinical phase or futuristic interventions, off-labelled drugs, and non-pharmacological interventions for AD, offering positive findings and well as challenges that remain.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi, India
| | - Anik Karan
- Department of Mechanical and Bioengineering, University of Kansas, Lawrence, KS, USA.
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi, India
| | - Navatha Shree Sharma
- Department of Surgery Transplant, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Richard Jayaraj
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Sudip Mukherjee
- Biomedical Engineering, Indian Institute of Technology- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
17
|
El‐Ayoubi A, Arakelyan A, Klawitter M, Merk L, Hakobyan S, Gonzalez‐Menendez I, Quintanilla Fend L, Holm PS, Mikulits W, Schwab M, Danielyan L, Naumann U. Development of an optimized, non-stem cell line for intranasal delivery of therapeutic cargo to the central nervous system. Mol Oncol 2024; 18:528-546. [PMID: 38115217 PMCID: PMC10920084 DOI: 10.1002/1878-0261.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Neural stem cells (NSCs) are considered to be valuable candidates for delivering a variety of anti-cancer agents, including oncolytic viruses, to brain tumors. However, owing to the previously reported tumorigenic potential of NSC cell lines after intranasal administration (INA), here we identified the human hepatic stellate cell line LX-2 as a cell type capable of longer resistance to replication of oncolytic adenoviruses (OAVs) as a therapeutic cargo, and that is non-tumorigenic after INA. Our data show that LX-2 cells can longer withstand the OAV XVir-N-31 replication and oncolysis than NSCs. By selecting the highly migratory cell population out of LX-2, an offspring cell line with a higher and more stable capability to migrate was generated. Additionally, as a safety backup, we applied genomic herpes simplex virus thymidine kinase (HSV-TK) integration into LX-2, leading to high vulnerability to ganciclovir (GCV). Histopathological analyses confirmed the absence of neoplasia in the respiratory tracts and brains of immuno-compromised mice 3 months after INA of LX-2 cells. Our data suggest that LX-2 is a novel, robust, and safe cell line for delivering anti-cancer and other therapeutic agents to the brain.
Collapse
Affiliation(s)
- Ali El‐Ayoubi
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Arsen Arakelyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
| | - Moritz Klawitter
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Luisa Merk
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Siras Hakobyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
- Armenian Institute of BioinformaticsYerevanArmenia
| | - Irene Gonzalez‐Menendez
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Leticia Quintanilla Fend
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der IsarTechnical University of MunichGermany
- Department of Oral and Maxillofacial SurgeryMedical University InnsbruckAustria
- XVir Therapeutics GmbHMunichGermany
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Matthias Schwab
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Lusine Danielyan
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
- Gene and RNA Therapy Center (GRTC)Faculty of Medicine University TübingenGermany
| |
Collapse
|
18
|
Zhang L, Yang H. Research progress of neural stem cells as a source of dopaminergic neurons for cell therapy in Parkinson's disease. Mol Biol Rep 2024; 51:347. [PMID: 38400887 DOI: 10.1007/s11033-024-09294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, the most characteristic pathological feature is the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compactus (SNpc) of the mesencephalon, along with reduced dopamine content in the striatum. Researchers have been searching for drugs and therapies to treat PD in decades. However, no approach could stop the progression of the disease, and even some of them caused adverse clinical side effects. PD has a well-defined lesion. Therefore, it is considered to be one of the most curable central nervous system diseases by cell replacement treatment. Fetal ventral mesencephalic tissue transplantation has been used to treat patients with PD and obtained positive treatment results. However, ethical issues, such as limited donor tissue, and side effects including graft-induced dyskinesias, limit its clinical applications. Neural stem cell (NSC) transplantation is a viable therapy choice because it possesses multipotency, self-renewal ability, and differentiation into DA neurons, which may substitute for lost DA neurons and slow down the neurodegenerative process in PD. Studies that investigated the delivery of NSCs by using animal models of PD revealed survival, migration, and even amelioration of behavioral deficits. Here, the research progress of NSCs or NSC-derived DA neurons in treating PD was reviewed, and the practicability of present manufacturing processes for clinical testing was considered. This review is expected to offer ideas for practical strategies to solve the present technical and biological problems related to the clinical application of NSCs in PD.
Collapse
Affiliation(s)
- Lingling Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, 555 East Youyi Road, Beilin District, Xi'an, 710054, China.
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, 555 East Youyi Road, Beilin District, Xi'an, 710054, China
| |
Collapse
|
19
|
Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, Vojvodic D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int J Mol Sci 2024; 25:993. [PMID: 38256066 PMCID: PMC10816024 DOI: 10.3390/ijms25020993] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Singh A, Ansari VA, Mahmood T, Ahsan F, Maheshwari S. Repercussion of Primary Nucleation Pathway: Dementia and Cognitive Impairment. Curr Aging Sci 2024; 17:196-204. [PMID: 38083895 DOI: 10.2174/0118746098243327231117113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 07/05/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion disease, are characterized by the conversion of normally soluble proteins or peptides into aggregated amyloidal fibrils. These diseases result in the permanent loss of specific types of neurons, making them incurable and devastating. Research on animal models of memory problems mentioned in this article contributes to our knowledge of brain health and functionality. Neurodegenerative disorders, which often lead to cognitive impairment and dementia, are becoming more prevalent as global life expectancy increases. These diseases cause severe neurological impairment and neuronal death, making them highly debilitating. Exploring and understanding these complex diseases offer significant insights into the fundamental processes essential for maintaining brain health. Exploring the intricate mechanisms underlying neurodegenerative diseases not only holds promise for potential treatments but also enhances our understanding of fundamental brain health and functionality. By unraveling the complexities of these disorders, researchers can pave the way for advancements in diagnosis, treatment, and ultimately, improving the lives of individuals affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Vaseem A Ansari
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | | |
Collapse
|
21
|
Nasrolahi A, Shabani Z, Sadigh-Eteghad S, Salehi-Pourmehr H, Mahmoudi J. Stem Cell Therapy for the Treatment of Parkinson's Disease: What Promise Does it Hold? Curr Stem Cell Res Ther 2024; 19:185-199. [PMID: 36815638 DOI: 10.2174/1574888x18666230222144116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
Parkinson's disease (PD) is a common, progressive neurodegenerative disorder characterized by substantia nigra dopamine cell death and a varied clinical picture that affects older people. Although more than two centuries have passed since the earliest attempts to find a cure for PD, it remains an unresolved problem. With this in mind, cell replacement therapy is a new strategy for treating PD. This novel approach aims to replace degenerated dopaminergic (DAergic) neurons with new ones or provide a new source of cells that can differentiate into DAergic neurons. Induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and embryonic stem cells (ESCs) are among the cells considered for transplantation therapies. Recently disease-modifying strategies like cell replacement therapies combined with other therapeutic approaches, such as utilizing natural compounds or biomaterials, are proposed to modify the underlying neurodegeneration. In the present review, we discuss the current advances in cell replacement therapy for PD and summarize the existing experimental and clinical evidence supporting this approach.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Khodabakhsh P, Asgari Taei A, Shafaroodi H, Pournajaf S, Dargahi L. Effect of Metformin on Epidermal Neural Crest Stem Cells and Their Potential Application in Ameliorating Paclitaxel-induced Neurotoxicity Phenotype. Stem Cell Rev Rep 2024; 20:394-412. [PMID: 37924435 DOI: 10.1007/s12015-023-10642-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
AIMS Epidermal Neural Crest Stem Cells (EPI-NCSCs) have emerged as prospective ideal candidates to meet the fundamental requirements of cell-based therapies in neurodegenerative disorders. The present study aimed to identify the potential of metformin in driving EPI-NCSCs to neuronal/glial differentiation and express neurotrophic factors as well as assess their therapeutic potential for mitigating the main behavioral manifestations of chemotherapy-induced neurotoxicity (CIN). MAIN METHODS EPI-NCSCs were extracted from the bulge region of hair follicle. Following expansion, transcript and protein expression profiles of key markers for stemness (Nestin, EGR-1, SOX-2 and 10), neurotrophic activity (BDNF, GDNF, NGF, FGF-2, and IL-6), and neuronal (TUB3, DCX, NRF and NeuN) and glial (PDGFRα, NG2, GFAP, and MBP) differentiation were determined on days 1 and 7 post-treatment with 10 and 100 μM metformin using real time-PCR and immunocytochemistry methods. Then, the in vivo function of metformin-treated stem cells was evaluated in the context of paclitaxel CIN. To do so, thermal hyperalgesia, mechanical allodynia, and spatial learning and memory tests were evaluated by Hotplate, Von Frey, and Morris water maze tests. KEY FINDINGS Our result indicated that exposure of EPI-NCSCs to metformin was associated with progressive decline in stemness markers and enhanced expression levels of several neurotrophic, neuron and oligodendrocyte-specific markers. Further, it was observed that intranasal metformin-treated EPI-NCSCs improved the cognitive impairment, and mechanical and thermal hypersensitivity induced by paclitaxel in rats. SIGNIFICANCE Collectively, we reasoned that metformin pretreatment of EPI-NCSCs might further enhance their therapeutic benefits against CIN.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Institute of Physiology, Department Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Song XY, Fan CX, Atta-ur-Rahman FRS, Choudhary MI, Wang XP. Neuro-regeneration or Repair: Cell Therapy of Neurological Disorders as A Way Forward. Curr Neuropharmacol 2024; 22:2272-2283. [PMID: 38939990 PMCID: PMC11451317 DOI: 10.2174/1570159x22666240509092903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 06/29/2024] Open
Abstract
The human central nervous system (CNS) has a limited capacity for regeneration and repair, as many other organs do. Partly as a result, neurological diseases are the leading cause of medical burden globally. Most neurological disorders cannot be cured, and primary treatments focus on managing their symptoms and slowing down their progression. Cell therapy for neurological disorders offers several therapeutic potentials and provides hope for many patients. Here we provide a general overview of cell therapy in neurological disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), stroke and traumatic brain injury (TBI), involving many forms of stem cells, including embryonic stem cells and induced pluripotent stem cells. We also address the current concerns and perspectives for the future. Most studies for cell therapy in neurological diseases are in the pre-clinical stage, and there is still a great need for further research to translate neural replacement and regenerative therapies into clinical settings.
Collapse
Affiliation(s)
- Xiao-Yan Song
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Cun-Xiu Fan
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Atta-ur-Rahman FRS
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Xiao-Ping Wang
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Ghosh S, Bhatti GK, Sharma PK, Kandimalla R, Mastana SS, Bhatti JS. Potential of Nano-Engineered Stem Cells in the Treatment of Multiple Sclerosis: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:6. [PMID: 38104307 PMCID: PMC11397842 DOI: 10.1007/s10571-023-01434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Multiple sclerosis (MS) is a chronic and degrading autoimmune disorder mainly targeting the central nervous system, leading to progressive neurodegeneration, demyelination, and axonal damage. Current treatment options for MS are limited in efficacy, generally linked to adverse side effects, and do not offer a cure. Stem cell therapies have emerged as a promising therapeutic strategy for MS, potentially promoting remyelination, exerting immunomodulatory effects and protecting against neurodegeneration. Therefore, this review article focussed on the potential of nano-engineering in stem cells as a therapeutic approach for MS, focusing on the synergistic effects of combining stem cell biology with nanotechnology to stimulate the proliferation of oligodendrocytes (OLs) from neural stem cells and OL precursor cells, by manipulating neural signalling pathways-PDGF, BMP, Wnt, Notch and their essential genes such as Sox, bHLH, Nkx. Here we discuss the pathophysiology of MS, the use of various types of stem cells in MS treatment and their mechanisms of action. In the context of nanotechnology, we present an overview of its applications in the medical and research field and discuss different methods and materials used to nano-engineer stem cells, including surface modification, biomaterials and scaffolds, and nanoparticle-based delivery systems. We further elaborate on nano-engineered stem cell techniques, such as nano script, nano-exosome hybrid, nano-topography and their potentials in MS. The article also highlights enhanced homing, engraftment, and survival of nano-engineered stem cells, targeted and controlled release of therapeutic agents, and immunomodulatory and tissue repair effects with their challenges and limitations. This visual illustration depicts the process of utilizing nano-engineering in stem cells and exosomes for the purpose of delivering more accurate and improved treatments for Multiple Sclerosis (MS). This approach targets specifically the creation of oligodendrocytes, the breakdown of which is the primary pathological factor in MS.
Collapse
Affiliation(s)
- Sushruta Ghosh
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University, Rajasthan, India
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University, Rajasthan, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, CSIR-Indian Institute of Technology, Hyderabad, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India.
| |
Collapse
|
25
|
Kim YS, Seo N, Kim JH, Kang S, Park JW, Park KD, Lee HA, Park M. Exploring the Functional Heterogeneity of Directly Reprogrammed Neural Stem Cell-Derived Neurons via Single-Cell RNA Sequencing. Cells 2023; 12:2818. [PMID: 38132138 PMCID: PMC10742074 DOI: 10.3390/cells12242818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The therapeutic potential of directly reprogrammed neural stem cells (iNSCs) for neurodegenerative diseases relies on reducing the innate tumorigenicity of pluripotent stem cells. However, the heterogeneity within iNSCs is a major hurdle in quality control prior to clinical applications. Herein, we generated iNSCs from human fibroblasts, by transfecting transcription factors using Sendai virus particles, and characterized the expression of iNSC markers. Using immunostaining and quantitative real time -polymerase chain reaction (RT -qPCR), no differences were observed between colonies of iNSCs and iNSC-derived neurons. Unexpectedly, patch-clamp analysis of iNSC-derived neurons revealed distinctive action potential firing even within the same batch product. We performed single-cell RNA sequencing in fibroblasts, iNSCs, and iNSC-derived neurons to dissect their functional heterogeneity and identify cell fate regulators during direct reprogramming followed by neuronal differentiation. Pseudotime trajectory analysis revealed distinct cell types depending on their gene expression profiles. Differential gene expression analysis showed distinct NEUROG1, PEG3, and STMN2 expression patterns in iNSCs and iNSC-derived neurons. Taken together, we recommend performing a predictable functional assessment with appropriate surrogate markers to ensure the quality control of iNSCs and their differentiated neurons, particularly before cell banking for regenerative cell therapy.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - NaRi Seo
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Ji-Hye Kim
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Soyeong Kang
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Ji Won Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Ki Dae Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea;
| | - Misun Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (Y.S.K.); (N.S.); (J.-H.K.); (S.K.); (J.W.P.); (K.D.P.)
| |
Collapse
|
26
|
Lockard G, Gordon J, Schimmel S, El Sayed B, Monsour M, Garbuzova‐Davis S, Borlongan CV. Attenuation of amyotrophic lateral sclerosis via stem cell and extracellular vesicle therapy: An updated review. NEUROPROTECTION 2023; 1:130-138. [PMID: 38188233 PMCID: PMC10766415 DOI: 10.1002/nep3.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 01/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly fatal neurological disease characterized by upper and lower motor neuron degeneration. Though typically idiopathic, familial forms of ALS are commonly comprised of a superoxide dismutase 1 (SOD1) mutation. Basic science frequently utilizes SOD1 models in vitro and in vivo to replicate ALS conditions. Therapies are sparse; those that exist on the market extend life minimally, thus driving the demand for research to identify novel therapeutics. Transplantation of stem cells is a promising approach for many diseases and has shown efficacy in SOD1 models and clinical trials. The underlying mechanism for stem cell therapy presents an exciting venue for research investigations. Most notably, the paracrine actions of stem cell-derived extracellular vesicles (EVs) have been suggested as a potent mitigating factor. This literature review focuses on the most recent preclinical research investigating cell-free methods for treating ALS. Various avenues are being explored, differing on the EV contents (protein, microRNA, etc.) and on the cell target (astrocyte, endothelial cell, motor neuron-like cells, etc.), and both molecular and behavioral outcomes are being examined. Unfortunately, EVs may also play a role in propagating ALS pathology. Nonetheless, the overarching goal remains clear; to identify efficient cell-free techniques to attenuate the deadly consequences of ALS.
Collapse
Affiliation(s)
- Gavin Lockard
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Jonah Gordon
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Samantha Schimmel
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Bassel El Sayed
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Molly Monsour
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Svitlana Garbuzova‐Davis
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| |
Collapse
|
27
|
Oz T, Kaushik A, Kujawska M. Neural stem cells for Parkinson's disease management: Challenges, nanobased support, and prospects. World J Stem Cells 2023; 15:687-700. [PMID: 37545757 PMCID: PMC10401423 DOI: 10.4252/wjsc.v15.i7.687] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
Parkinson's disease (PD), characterized by loss of nigrostriatal dopaminergic neurons, is one of the most predominant neurodegenerative diseases affecting the elderly population worldwide. The concept of stem cell therapy in managing neurodegenerative diseases has evolved over the years and has recently rapidly progressed. Neural stem cells (NSCs) have a few key features, including self-renewal, proliferation, and multipotency, which make them a promising agent targeting neurodegeneration. It is generally agreed that challenges for NSC-based therapy are present at every stage of the transplantation process, including preoperative cell preparation and quality control, perioperative procedures, and postoperative graft preservation, adherence, and overall therapy success. In this review, we provided a comprehensive, careful, and critical discussion of experimental and clinical data alongside the pros and cons of NSC-based therapy in PD. Given the state-of-the-art accomplishments of stem cell therapy, gene therapy, and nanotechnology, we shed light on the perspective of complementing the advantages of each process by developing nano-stem cell therapy, which is currently a research hotspot. Although various obstacles and challenges remain, nano-stem cell therapy holds promise to cure PD, however, continuous improvement and development from the stage of laboratory experiments to the clinical application are necessary.
Collapse
Affiliation(s)
- Tuba Oz
- Department of Toxicology, Poznan University of Medical Sciences, Poznan 60-631, Poland
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, United States
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan 60-631, Poland.
| |
Collapse
|
28
|
Jeyaraman M, Rajendran RL, Muthu S, Jeyaraman N, Sharma S, Jha SK, Muthukanagaraj P, Hong CM, Furtado da Fonseca L, Santos Duarte Lana JF, Ahn BC, Gangadaran P. An update on stem cell and stem cell-derived extracellular vesicle-based therapy in the management of Alzheimer's disease. Heliyon 2023; 9:e17808. [PMID: 37449130 PMCID: PMC10336689 DOI: 10.1016/j.heliyon.2023.e17808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Globally, neurological diseases pose a major burden to healthcare professionals in terms of the management and prevention of the disorder. Among neurological diseases, Alzheimer's disease (AD) accounts for 50%-70% of dementia and is the fifth leading cause of mortality worldwide. AD is a progressive, degenerative neurological disease, with the loss of neurons and synapses in the cerebral cortex and subcortical regions. The management of AD remains a debate among physicians as no standard and specific "disease-modifying" modality is available. The concept of 'Regenerative Medicine' is aimed at regenerating the degenerated neural tissues to reverse the pathology in AD. Genetically modified engineered stem cells modify the course of AD after transplantation into the brain. Extracellular vesicles (EVs) are an emerging new approach in cell communication that involves the transfer of cellular materials from parental cells to recipient cells, resulting in changes at the molecular and signaling levels in the recipient cells. EVs are a type of vesicle that can be transported between cells. Many have proposed that EVs produced from mesenchymal stem cells (MSCs) may have therapeutic promise in the treatment of AD. The biology of AD, as well as the potential applications of stem cells and their derived EVs-based therapy, were explored in this paper.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600056, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Government Dindigul Medical College and Hospital, Dindigul, Tamil Nadu, 624001, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Shri Sathya Sai Medical College and Research Institute, Sri Balaji Vidyapeeth, Chengalpet, Tamil Nadu, 603108, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Purushothaman Muthukanagaraj
- Department of Internal Medicine & Psychiatry, SUNY-Upstate Binghamton Clinical Campus, Binghamton, NY, 13904, USA
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, The Federal University of São Paulo, São Paulo, 04023-062, SP, Brazil
| | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| |
Collapse
|
29
|
Insights on the molecular mechanism of neuroprotection exerted by edible bird’s nest and its bioactive constituents. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Peng Y, Liou B, Lin Y, Mayhew CN, Fleming SM, Sun Y. iPSC-derived neural precursor cells engineering GBA1 recovers acid β-glucosidase deficiency and diminishes α-synuclein and neuropathology. Mol Ther Methods Clin Dev 2023; 29:185-201. [PMID: 37063480 PMCID: PMC10102010 DOI: 10.1016/j.omtm.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Mutations in GBA1, encoding the lysosomal acid β-glucosidase (GCase), cause neuronopathic Gaucher disease (nGD) and promote Parkinson disease (PD). The mutations on GBA1 include deletion and missense mutations that are pathological and lead to GCase deficiency in Gaucher disease. Both nGD and PD lack disease-modifying treatments and are critical unmet medical needs. In this study, we evaluated a cell therapy treatment using mouse iPSC-derived neural precursor cells (NPCs) engineered to overexpress GCase (termed hGBA1-NPCs). The hGBA1-NPCs secreted GCase that was taken up by adjacent mouse Gba -/- neurons and improved GCase activity, reduced GCase substrate accumulation, and improved mitochondrial function. Short-term in vivo effects were evaluated in 9H/PS-NA mice, an nGD mouse model exhibiting neuropathology and α-synuclein aggregation, the typical PD phenotypes. Intravenously administrated hGBA1-NPCs were engrafted throughout the brain and differentiated into neural lineages. GCase activity was increased in various brain regions of treated 9H/PS-NA mice. Compared with vehicle, hGBA1-NPC-transplanted mice showed ∼50% reduction of α-synuclein aggregates in the substantia nigra, significant reduction of neuroinflammation and neurodegeneration in the regions of NPC migration, and increased expression of neurotrophic factors that support neural cell function. Together, these results support the therapeutic benefit of intravenous delivery of iPSC-derived NPCs overexpressing GCase in mitigating nGD and PD phenotypes and establish the feasibility of combined cell and gene therapy for GBA1-associated PD.
Collapse
Affiliation(s)
- Yanyan Peng
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Lin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Christopher N. Mayhew
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sheila M. Fleming
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
31
|
Singh A, Ansari VA, Ansari TM, Hasan SM, Ahsan F, Singh K, Wasim R, Maheshwari S, Ahmad A. Consequence of Dementia and Cognitive Impairment by Primary Nucleation Pathway. Horm Metab Res 2023; 55:304-314. [PMID: 37130536 DOI: 10.1055/a-2052-8462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An acquired loss of cognition in several cognitive domains that is severe enough to interfere with social or professional functioning is called dementia. As well as a moderately in-depth mental status examination by a clinician to identify impairments in memory, language, attention, visuospatial cognition, such as spatial orientation, executive function, and mood, the diagnosis of dementia requires a history evaluating for cognitive decline and impairment in daily activities, with confirmation from a close friend or family member. The start and organization of the cognitive assessment can be helped by short screening tests for cognitive impairment. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some types of neurons. It has been determined through an assessment that, at best, our understanding of the underlying processes is still rudimentary, which presents exciting new targets for further study as well as the development of diagnostics and drugs. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. We concentrate on a number of the animal models of memory problems that have been mentioned in this review article because dementia has numerous etiologies. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders are followed by those primary nucleation pathways responsible for cognitive impairment and dementia.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | | | | | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Rufaida Wasim
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
32
|
Inhibition of Neural Stem Cell Necroptosis Mediated by RIPK1/MLKL Promotes Functional Recovery After SCI. Mol Neurobiol 2023; 60:2135-2149. [PMID: 36602703 DOI: 10.1007/s12035-022-03156-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/26/2022] [Indexed: 01/06/2023]
Abstract
Endogenous neural stem cells (eNSCs) are a new therapeutic strategy for the noninvasive repair of spinal cord injury (SCI). Necroptosis is a necrosome-dependent cell death process that serves as a significant regulatory mechanism in SCI. Current research shows that neurons, oligodendrocytes, and astrocytes all undergo necroptosis after SCI. However, it is unclear whether eNSCs are associated with necroptosis after SCI. By performing immunofluorescence analysis, we found that eNSCs undergo necroptosis during spinal cord injury repair in mice. Our present work demonstrates that receptor-interacting protein kinase 1 (RIPK1)/mixed lineage kinase domain-like protein (MLKL) are involved in necroptosis pathway in SCI mice. In vitro, the necroptosis induced by TNF-α/Smac-mimetic/Z-VAD-FMK (TSZ) treatment regulates phenotype of NSCs. In detail, the proliferative capacity of NSCs was significantly decreased in the presence of continual TSZ treatment, and the transcription of proinflammatory genes was upregulated, while the transcription of neurotrophic factors was inhibited. NSCs exhibited an obvious tendency to differentiate into glial cells under short-duration TSZ stimulation (6 h and 12 h); as the stimulus duration increased (24 h), the differentiation ability of the NSCs was significantly inhibited. These phenotypic changes are not conducive to neural cell survival and neural repair. Moreover, we examined the effect of necroptosis inhibitors on TSZ-treated NSCs. Necrostatin-1 and necrosulfonamide significantly reduced the necroptosis of NSCs after TSZ treatment and improved the phenotypic function of NSCs under TSZ stimulation. In additional in vivo experiments, after 2 weeks of administration, the necroptosis inhibitors reduced the necroptosis of NSCs and improved functional recovery in SCI mice. Taken together, these data indicate that the inhibition of NSC necroptosis with necroptosis inhibitors facilitates survival and phenotype maintenance in vitro and contributes to neuroprotection and repair in vivo. Our findings suggest that blocking necroptosis of eNSCs may be a potential therapeutic strategy for treating SCI.
Collapse
|
33
|
Staszkiewicz R, Gralewski M, Gładysz D, Bryś K, Garczarek M, Gadzieliński M, Marcol W, Sobański D, Grabarek BO, sobaÅ Ski D, Grabarek BO. Evaluation of the concentration of growth associated protein-43 and glial cell-derived neurotrophic factor in degenerated intervertebral discs of the lumbosacral region of the spine. Mol Pain 2023; 19:17448069231158287. [PMID: 36733259 PMCID: PMC10071099 DOI: 10.1177/17448069231158287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Important neurotrophic factors that are potentially involved in degenerative intervertebral disc (IVD) disease of the spine's lumbosacral (L/S) region include glial cell-derived neurotrophic factor (GDNF) and growth associated protein 43 (GAP-43). The aim of this study was to determine and compare the concentrations of GAP-43 and GDNF in degenerated and healthy IVDs and to quantify and compare the GAP-43-positive and GDNF-positive nerve fibers. The study group consisted of 113 Caucasian patients with symptomatic lumbosacral discopathy (confirmed by a specialist surgeon), an indication for surgical treatment. The control group included 81 people who underwent postmortem examination. GAP-43 and GDNF concentrations were significantly higher in IVD samples from the study group compared with the control group, and the highest concentrations were observed in the degenerated IVDs that were graded 4 on the Pfirrmann scale. In the case of GAP-43, it was found that as the degree of IVD degeneration increased, the number of GAP-43-positive nerve fibers decreased. In the case of GDNF, the greatest number of fibers per mm2 of surface area was found in the IVD samples graded 3 on the Pfirrmann scale, and the number was found to be lower in samples graded 4 and 5. Hence, GAP-43 and GDNF are promising targets for analgesic treatment of degenerative IVD disease of the lumbosacral region of the spine.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Marcin Gralewski
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Dorian Gładysz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Michał Garczarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland
| | - Marcin Gadzieliński
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland
| | - Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, 49613Medical University of Silesia, Katowice, Poland.,Department of Neurosurgery, Provincial Specialist Hospital No. 2 in Jastrzębie - Zdrój, Jastrzębie-Zdrój, Poland
| | - Dawid Sobański
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland.,Department of Neurosurgery, Szpital sw Rafala w Krakowie, Krakow, Poland
| | - Beniamin Oskar Grabarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | | | | |
Collapse
|
34
|
Ahmad F, Sachdeva P. Critical appraisal on mitochondrial dysfunction in Alzheimer's disease. Aging Med (Milton) 2022; 5:272-280. [PMID: 36606272 PMCID: PMC9805294 DOI: 10.1002/agm2.12217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
It is widely recognized that Alzheimer's disease (AD) is a common type of progressive neurodegenerative disorder that results in cognitive impairment over time. Approximately 152 million cases of AD are predicted to be reported by 2050. Amyloid plaques and tau proteins are two major hallmarks of AD which can be seen under electron microscope. Mitochondria plays a vital role in the pathogenesis of AD and mitochondria disruption leads to mitochondrial DNA (mtDNA) dysfunction, alteration of mitochondria dependent Ca2+ homeostasis, copper dysfunction, immune cell dysfunction, etc. In this review, we try to cover all the mechanisms related with mitochondrial dysfunction and mitochondrial pathogenesis that may help us to better understand AD as well as open a new era for therapeutic target of AD and treat this progressive disease.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| |
Collapse
|
35
|
Hashimoto M, Takeichi K, Murata K, Kozakai A, Yagi A, Ishikawa K, Suzuki-Nakagawa C, Kasuya Y, Fukamizu A, Nakagawa T. Regulation of neural stem cell proliferation and survival by protein arginine methyltransferase 1. Front Neurosci 2022; 16:948517. [PMID: 36440275 PMCID: PMC9685794 DOI: 10.3389/fnins.2022.948517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 12/22/2024] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), a major type I arginine methyltransferase in mammals, methylates histone and non-histone proteins to regulate various cellular functions, such as transcription, DNA damage response, and signal transduction. PRMT1 is highly expressed in neural stem cells (NSCs) and embryonic brains, suggesting that PRMT1 is essential for early brain development. Although our previous reports have shown that PRMT1 positively regulates oligodendrocyte development, it has not been studied whether PRMT1 regulates NSC proliferation and its survival during development. To examine the role of PRMT1 in NSC activity, we cultured NSCs prepared from embryonic mouse forebrains deficient in PRMT1 specific for NSCs and performed neurosphere assays. We found that the primary neurospheres of PRMT1-deficient NSCs were small and the number of spheres was decreased, compared to those of control NSCs. Primary neurospheres deficient in PRMT1 expressed an increased level of cleaved caspase-3, suggesting that PRMT1 deficiency-induced apoptosis. Furthermore, p53 protein was significantly accumulated in PRMT1-deficient NSCs. In parallel, p53-responsive pro-apoptotic genes including Pmaip1 and Perp were upregulated in PRMT1-deficient NSCs. p53-target p21 mRNA and its protein levels were shown to be upregulated in PRMT1-deficient NSCs. Moreover, the 5-bromo-2'-deoxyuridine (BrdU) incorporation assay showed that the loss of PRMT1 led to cell cycle defects in the embryonic NSCs. In contrast to the above in vitro observations, NSCs normally proliferated and survived in the fetal brains of NSC-specific PRMT1-deficient mice. We also found that Lama1, which encodes the laminin subunit α1, was significantly upregulated in the embryonic brains of PRMT1-deficient mice. These data implicate that extracellular factors provided by neighboring cells in the microenvironment gave a trophic support to NSCs in the PRMT1-deficient brain and recovered NSC activity to maintain brain homeostasis. Our study implies that PRMT1 plays a cell-autonomous role in the survival and proliferation of embryonic NSCs.
Collapse
Affiliation(s)
- Misuzu Hashimoto
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kaho Takeichi
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Aoi Kozakai
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Atsushi Yagi
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kohei Ishikawa
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Chiharu Suzuki-Nakagawa
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- World Premier International Research Center Initiative, International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Tsutomu Nakagawa
- Laboratory of Biological Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
36
|
Profico DC, Gelati M, Ferrari D, Sgaravizzi G, Ricciolini C, Projetti Pensi M, Muzi G, Cajola L, Copetti M, Ciusani E, Pugliese R, Gelain F, Vescovi AL. Human Neural Stem Cell-Based Drug Product: Clinical and Nonclinical Characterization. Int J Mol Sci 2022; 23:ijms232113425. [PMID: 36362211 PMCID: PMC9653902 DOI: 10.3390/ijms232113425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Translation of cell therapies into clinical practice requires the adoption of robust production protocols in order to optimize and standardize the manufacture and cryopreservation of cells, in compliance with good manufacturing practice regulations. Between 2012 and 2020, we conducted two phase I clinical trials (EudraCT 2009-014484-39, EudraCT 2015-004855-37) on amyotrophic lateral sclerosis secondary progressive multiple sclerosis patients, respectively, treating them with human neural stem cells. Our production process of a hNSC-based medicinal product is the first to use brain tissue samples extracted from fetuses that died in spontaneous abortion or miscarriage. It consists of selection, isolation and expansion of hNSCs and ends with the final pharmaceutical formulation tailored to a specific patient, in compliance with the approved clinical protocol. The cells used in these clinical trials were analyzed in order to confirm their microbiological safety; each batch was also tested to assess identity, potency and safety through morphological and functional assays. Preclinical, clinical and in vitro nonclinical data have proved that our cells are safe and stable, and that the production process can provide a high level of reproducibility of the cultures. Here, we describe the quality control strategy for the characterization of the hNSCs used in the above-mentioned clinical trials.
Collapse
Affiliation(s)
- Daniela Celeste Profico
- Unità Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Maurizio Gelati
- Unità Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, AOSP S. Maria, 05100 Terni, Italy
- Correspondence:
| | - Daniela Ferrari
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| | - Giada Sgaravizzi
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, AOSP S. Maria, 05100 Terni, Italy
| | - Claudia Ricciolini
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, AOSP S. Maria, 05100 Terni, Italy
| | - Massimo Projetti Pensi
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, AOSP S. Maria, 05100 Terni, Italy
| | - Gianmarco Muzi
- Laboratorio Cellule Staminali, Cell Factory e Biobanca, AOSP S. Maria, 05100 Terni, Italy
| | - Laura Cajola
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| | - Massimiliano Copetti
- Unità di Biostatistica, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Emilio Ciusani
- Laboratorio Analisi, Instituto Nazionale Neurologico C. Besta, 20133 Milano, Italy
| | - Raffaele Pugliese
- Unità di Ingegneria Tissutale, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Fabrizio Gelain
- Unità di Ingegneria Tissutale, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Angelo Luigi Vescovi
- Unità Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
37
|
Alfonsetti M, d’Angelo M, Castelli V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2022; 18:1220-1228. [PMID: 36453397 PMCID: PMC9838155 DOI: 10.4103/1673-5374.358619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline. This process represents the major risk factor for aging-related diseases such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. The incidence of all these pathologies increases exponentially with age. Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive deficit and neurodegeneration, common features of aging-related pathologies, are related to the alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases. Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors, neurotrophins' binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies. Considering neurotrophins' crucial role in aging pathologies, here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,Correspondence to: Vanessa Castelli, .
| |
Collapse
|
38
|
Srivastava R, Li A, Datta T, Jha NK, Talukder S, Jha SK, Chen ZS. Advances in stromal cell therapy for management of Alzheimer’s disease. Front Pharmacol 2022; 13:955401. [PMID: 36267273 PMCID: PMC9576849 DOI: 10.3389/fphar.2022.955401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Deposition of misfolded proteins and synaptic failure affects the brain in Alzheimer’s disease (AD). Its progression results in amnesia and cognitive impairment. Absence of treatment is due to excessive loss of neurons in the patients and the delayed effects of drugs. The enhanced pluripotency, proliferation, differentiation, and recombination characteristics of stromal cells into nerve cells and glial cells present them as a potential treatment for AD. Successful evidence of action in animal models along with positive results in preclinical studies further encourage its utilization for AD treatment. With regard to humans, cell replacement therapy involving mesenchymal stromal cells, induced-pluripotent stromal cells, human embryonic stromal cells, and neural stems show promising results in clinical trials. However, further research is required prior to its use as stromal cell therapy in AD related disorders. The current review deals with the mechanism of development of anomalies such as Alzheimer’s and the prospective applications of stromal cells for treatment.
Collapse
Affiliation(s)
- Rashi Srivastava
- Chemical and Biochemical Engineering, Indian Institute of Technology, Patna, India
| | - Aidong Li
- Department of Rehabilitation, The Second People’s Hospital of Shenzhen, Shenzhen, China
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Salehikram Talukder
- Institute for Biotechnology, St. John’s University, New York City, NY, United States
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- *Correspondence: Saurabh Kumar Jha, ; Zhe-Sheng Chen,
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, New York City, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York City, NY, United States
- *Correspondence: Saurabh Kumar Jha, ; Zhe-Sheng Chen,
| |
Collapse
|
39
|
Pan W, Goldstein AM, Hotta R. Opportunities for novel diagnostic and cell-based therapies for Hirschsprung disease. J Pediatr Surg 2022; 57:61-68. [PMID: 34852916 PMCID: PMC9068833 DOI: 10.1016/j.jpedsurg.2021.10.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022]
Abstract
Despite significant progress in our understanding of the etiology and pathophysiology of Hirschsprung disease (HSCR), early and accurate diagnosis and operative management can be challenging. Moreover, long-term morbidity following surgery, including fecal incontinence, constipation, and Hirschsprung-associated enterocolitis (HAEC), remains problematic. Recent advances applying state-of-the art imaging for visualization of the enteric nervous system and utilizing neuronal stem cells to replace the missing enteric neurons and glial cells offer the possibility of a promising new future for patients with HSCR. In this review, we summarize recent research advances that may one day offer novel approaches for the diagnosis and management of this disease.
Collapse
Affiliation(s)
- Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA 02114, USA; Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA 02114, USA.
| |
Collapse
|
40
|
Ahmad F, Sachdeva P. A consolidated review on stem cell therapy for treatment and management of Alzheimer's disease. Aging Med (Milton) 2022; 5:182-190. [PMID: 36247342 PMCID: PMC9549310 DOI: 10.1002/agm2.12216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and affects around 50 million people around the globe. AD is diagnosed mainly through imaging techniques and to date only five drugs are approved for management of AD but no promising treatment is available for AD. So in this review, we are focusing on stem cell therapy for AD. This review will cover all stem cells like mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and neural stem cells. Clinical trials of AD have also been discussed. Finally, limitations of stem cells are discussed with ongoing clinical trials, and in the future stem cell therapy can be used for treatment of AD.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| |
Collapse
|
41
|
Wang Y, Tan Z, Zhang Z, Zhu P, Tam SW, Zhang Z, Jiang X, Lin K, Tian L, Huang Z, Zhang S, Peng YK, Yung KKL. Facet-Dependent Activity of CeO 2 Nanozymes Regulate the Fate of Human Neural Progenitor Cell via Redox Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35423-35433. [PMID: 35905295 DOI: 10.1021/acsami.2c09304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neural progenitor cells (NPCs) therapy, a promising therapeutic strategy for neurodegenerative diseases, has a huge challenge to ensure high survival rate and neuronal differentiation rate. Cerium oxide (CeO2) nanoparticles exhibit multienzyme mimetic activities and have shown the capability of regulating reactive oxygen species (ROS), which is a pivotal mediator for intracellular redox homeostasis in NPCs, regulating biological processes including differentiation, proliferation, and apoptosis. In the present study, the role of facet-dependent CeO2-mediated redox homeostasis in regulating self-renewal and differentiation of NPCs is reported for the first time. The cube-, rod-, and octahedron-shaped CeO2 nanozymes with different facets are prepared. Among the mentioned nanozymes, the cube enclosed by the (100) facet exhibits the highest CAT-like activity, causing it to provide superior protection to NPCs from oxidative stress induced by H2O2; meanwhile, the octahedron enclosed by the (111) facet with the lowest CAT-like activity induces the most ROS production in ReNcell CX cells, which promotes neuronal differentiation by activated AKT/GSK-3β/β-catenin pathways. A further mechanistic study indicated that the electron density of the surface Ce atoms changed continuously with different crystal facets, which led to their different CAT-like activity and modulation of redox homeostasis in NPCs. Altogether, the different surface chemistry and atomic architecture of active sites on CeO2 exert modulation of redox homeostasis and the fate of NPCs.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Sze Wah Tam
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Zhang Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Linyuan Tian
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University, HKSAR 999077, China
| | - Shiqing Zhang
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| |
Collapse
|
42
|
Yang H, Su Y, Sun Z, Ma B, Liu F, Kong Y, Sun C, Li B, Sang Y, Wang S, Li G, Qiu J, Liu C, Geng Z, Liu H. Gold Nanostrip Array-Mediated Wireless Electrical Stimulation for Accelerating Functional Neuronal Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202376. [PMID: 35618610 PMCID: PMC9353484 DOI: 10.1002/advs.202202376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 05/27/2023]
Abstract
Neural stem cell (NSC)-based therapy holds great promise for the treatment of neurodegenerative diseases. Presently, however, it is hindered by poor functional neuronal differentiation. Electrical stimulation is considered one of the most effective ways to promote neuronal differentiation of NSCs. In addition to surgically implanted electrodes, traditional electrical stimulation includes wires connected to the external power supply, and an additional surgery is required to remove the electrodes or wires following stimulation, which may cause secondary injuries and infections. Herein, a novel method is reported for generation of wireless electrical signals on an Au nanostrip array by leveraging the effect of electromagnetic induction under a rotating magnetic field. The intensity of the generated electrical signals depends on the rotation speed and magnetic field strength. The Au nanostrip array-mediated electric stimulation promotes NSC differentiation into mature neurons within 5 days, at the mRNA, protein, and function levels. The rate of differentiation is faster by at least 5 days than that in cells without treatment. The Au nanostrip array-based wireless device also accelerates neuronal differentiation of NSCs in vivo. The novel method to accelerate the neuronal differentiation of NSCs has the advantages of wireless, timely, localized and precise controllability, and noninvasive power supplementation.
Collapse
Affiliation(s)
- Hongru Yang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Yue Su
- State Key Laboratory of Integrated OptoelectronicsInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial SurgeryQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Baojin Ma
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Ying Kong
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022P. R. China
| | - Boyan Li
- Department of Neurosurgery Qilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandong250012P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Shuhua Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Gang Li
- Department of Neurosurgery Qilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandong250012P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial SurgeryQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Zhaoxin Geng
- School of Information EngineeringMinzu University of ChinaBeijing100081P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022P. R. China
| |
Collapse
|
43
|
Zeraatpisheh Z, Shamsi F, Sarkoohi P, Torabi S, Alipour H, Aligholi H. Effects of FTY720 on Neural Cell Behavior in Two and Three-Dimensional Culture and in Compression Spinal Cord Injury. Cell Mol Bioeng 2022; 15:331-340. [PMID: 36119134 PMCID: PMC9474962 DOI: 10.1007/s12195-022-00724-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/24/2022] [Indexed: 11/03/2022] Open
Abstract
Introduction The present study aimed to evaluate the effects of FTY720 as a neuromodulatory drug on the behaviors of neural stem/progenitor cells (NS/PCs) in two-dimensional (2-D) and three-dimensional (3-D) cultures and in spinal cord injury (SCI). Methods The NS/PCs isolated from the ganglionic eminence of the 13.5-day old embryos were cultured as free-floating spheres. The single cells obtained from the second passage were cultured in 96-well plates without any scaffold (2-D) or containing PuraMatrix (PM, 3-D) or were used for transplantation in a mouse model of compression SCI. After exposure to 0, 10, 50, and 100 nanomolar of FTY720, the survival, proliferation, and migration of the NS/PCs were evaluated in vitro using MTT assay, neurosphere assay, and migration assay, respectively. Moreover, the functional recovery, survival and migration capacity of transplanted cells exposure to 100 nanomolar FTY720 were investigated in SCI. Results Cell survival and migration capacity increased after exposure to 50 and 100 nanomolar FTY720. In addition, higher doses of FTY720 led to the formation of more extensive and more neurospheres. Although this phenomenon was similar in both 2-D and 3-D cultures, PM induced better distribution of the cells in a 3-D environment. Furthermore, co-administration of FTY720 and NS/PCs 7 days after SCI enhanced functional recovery and both survival and migration of transplanted cells in the lesion site. Conclusions Due to the positive effects of FTY720 on the behavior of NS/PCs, using them in combination therapies can be an appealing approach for stem cell therapy in CNS injury.
Collapse
Affiliation(s)
- Zahra Zeraatpisheh
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shamsi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Sarkoohi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Somayyeh Torabi
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Alipour
- Department of Tissue Engineering & Applied cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
The neural stem cell secretome across neurodevelopment. Exp Neurol 2022; 355:114142. [PMID: 35709983 DOI: 10.1016/j.expneurol.2022.114142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Neural stem cell (NSC) based therapies are at the forefront of regenerative medicine strategies to combat illness and injury of the central nervous system (CNS). In addition to their ability to produce new cells, NSCs secrete a variety of products, known collectively as the NSC secretome, that have been shown to ameliorate CNS disease pathology and promote recovery. As pre-clinical and clinical research to harness the NSC secretome for therapeutic purposes advances, a more thorough understanding of the endogenous NSC secretome can provide useful insight into the functional capabilities of NSCs. In this review, we focus on research investigating the autocrine and paracrine functions of the endogenous NSC secretome across life. Throughout development and adulthood, we find evidence that the NSC secretome is a critical component of how endogenous NSCs regulate themselves and their niche. We also find gaps in current literature, most notably in the clinically-relevant domain of endogenous NSC paracrine function in the injured CNS. Future investigations to further define the endogenous NSC secretome and its role in CNS tissue regulation are necessary to bolster our understanding of NSC-niche interactions and to aid in the generation of safe and effective NSC-based therapies.
Collapse
|
45
|
Cell models for Alzheimer’s and Parkinson’s disease: At the interface of biology and drug discovery. Biomed Pharmacother 2022; 149:112924. [PMID: 36068783 DOI: 10.1016/j.biopha.2022.112924] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
|
46
|
Mutepfa AR, Hardy JG, Adams CF. Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:693438. [PMID: 35274106 PMCID: PMC8902299 DOI: 10.3389/fmedt.2022.693438] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a serious condition caused by damage to the spinal cord through trauma or disease, often with permanent debilitating effects. Globally, the prevalence of SCI is estimated between 40 to 80 cases per million people per year. Patients with SCI can experience devastating health and socioeconomic consequences from paralysis, which is a loss of motor, sensory and autonomic nerve function below the level of the injury that often accompanies SCI. SCI carries a high mortality and increased risk of premature death due to secondary complications. The health, social and economic consequences of SCI are significant, and therefore elucidation of the complex molecular processes that occur in SCI and development of novel effective treatments is critical. Despite advances in medicine for the SCI patient such as surgery and anaesthesiology, imaging, rehabilitation and drug discovery, there have been no definitive findings toward complete functional neurologic recovery. However, the advent of neural stem cell therapy and the engineering of functionalized biomaterials to facilitate cell transplantation and promote regeneration of damaged spinal cord tissue presents a potential avenue to advance SCI research. This review will explore this emerging field and identify new lines of research.
Collapse
Affiliation(s)
- Anthea R. Mutepfa
- Neural Tissue Engineering Keele, School of Life Sciences, Keele University, Keele, United Kingdom
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom
- Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Christopher F. Adams
- Neural Tissue Engineering Keele, School of Life Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
47
|
Karvelas N, Bennett S, Politis G, Kouris NI, Kole C. Advances in stem cell therapy in Alzheimer's disease: a comprehensive clinical trial review. Stem Cell Investig 2022; 9:2. [PMID: 35280344 PMCID: PMC8898169 DOI: 10.21037/sci-2021-063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/27/2022] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia responsible for more than 121,499 deaths from AD in 2019 making AD the sixth-leading cause in the United States. AD is a progressive neurodegenerative disorder characterized by decline of memory, behavioral impairments that affects a person's ability to function independently ultimately leading to death. The current pressing need for a treatment for (AD) and advances in the field of cell therapy, has rendered stem cell therapeutics a promising field of research. Despite advancements in stem cell technology, confirmed by encouraging pre-clinical utilization of stem cells in AD animal models, the number of clinical trials evaluating the efficacy of stem cell therapy is limited, with the results of many ongoing clinical trials on cell therapy for AD still pending. Mesenchymal stem cells (MSCs) have been the main focus in these studies, reporting encouraging results concerning safety profile, however their efficacy remains unproven. In the current article we review the latest advances regarding different sources of stem cell therapy and present a comprehensive list of every available clinical trial in national and international registries. Finally, we discuss drawbacks arising from AD pathology and technical limitations that hinder the transition of stem cell technology from bench to bedside. Our findings emphasize the need to increase clinical trials towards uncovering the mode of action and the underlying therapeutic mechanisms of transplanted cells as well as the molecular mechanisms controlling regeneration and neuronal microenvironment.
Collapse
Affiliation(s)
- Nikolaos Karvelas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| | | | - Georgios Politis
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| | | | - Christo Kole
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| |
Collapse
|
48
|
Puranik N, Arukha AP, Yadav SK, Yadav D, Jin JO. Exploring the Role of Stem Cell Therapy in Treating Neurodegenerative Diseases: Challenges and Current Perspectives. Curr Stem Cell Res Ther 2022; 17:113-125. [PMID: 35135462 DOI: 10.2174/1574888x16666210810103838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
:
Several human neurological disorders, such as Parkinson’s disease, Alzheimer’s disease,
amyotrophic lateral sclerosis, Huntington’s disease, spinal cord injury, multiple sclerosis, and brain
stroke, are caused by the injury to neurons or glial cells. The recent years have witnessed the successful
generation of neurons and glia cells driving efforts to develop stem-cell-based therapies for
patients to combat a broad spectrum of human neurological diseases. The inadequacy of suitable
cell types for cell replacement therapy in patients suffering from neurological disorders has hampered
the development of this promising therapeutic approach. Attempts are thus being made to reconstruct
viable neurons and glial cells from different stem cells, such as embryonic stem cells,
mesenchymal stem cells, and neural stem cells. Dedicated research to cultivate stem cell-based
brain transplantation therapies has been carried out. We aim at compiling the breakthroughs in the
field of stem cell-based therapy for the treatment of neurodegenerative maladies, emphasizing the
shortcomings faced, victories achieved, and the future prospects of the therapy in clinical settings.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Biological Science, Bharathiar University, Coimbatore, Tamil Nadu-641046, India
| | - Ananta Prasad Arukha
- Comparative Diagnostic
and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville- 32608, U.S.A
| | - Shiv Kumar Yadav
- Department of Botany, Government Lal Bahadur Shastri PG college, Sironj, Vidisha, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
| | - Jun O. Jin
- Department
of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
49
|
Rao YL, Ganaraja B, Murlimanju BV, Joy T, Krishnamurthy A, Agrawal A. Hippocampus and its involvement in Alzheimer's disease: a review. 3 Biotech 2022; 12:55. [PMID: 35116217 PMCID: PMC8807768 DOI: 10.1007/s13205-022-03123-4] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022] Open
Abstract
Hippocampus is the significant component of the limbic lobe, which is further subdivided into the dentate gyrus and parts of Cornu Ammonis. It is the crucial region for learning and memory; its sub-regions aid in the generation of episodic memory. However, the hippocampus is one of the brain areas affected by Alzheimer's (AD). In the early stages of AD, the hippocampus shows rapid loss of its tissue, which is associated with the functional disconnection with other parts of the brain. In the progression of AD, atrophy of medial temporal and hippocampal regions are the structural markers in magnetic resonance imaging (MRI). Lack of sirtuin (SIRT) expression in the hippocampal neurons will impair cognitive function, including recent memory and spatial learning. Proliferation, differentiation, and migrations are the steps involved in adult neurogenesis. The microglia in the hippocampal region are more immunologically active than the other regions of the brain. Intrinsic factors like hormones, glia, and vascular nourishment are instrumental in the neural stem cell (NSC) functions by maintaining the brain's microenvironment. Along with the intrinsic factors, many extrinsic factors like dietary intake and physical activity may also influence the NSCs. Hence, pro-neurogenic lifestyle could delay neurodegeneration.
Collapse
Affiliation(s)
- Y. Lakshmisha Rao
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. Ganaraja
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Teresa Joy
- Department of Anatomy, College of Medicine, American University of Antigua, Coolidge, Antigua, Antigua and Barbuda
| | - Ashwin Krishnamurthy
- Department of Anatomy, K.S. Hegde Medical Academy, Deralakatte, Nitte University, Mangalore, Karnataka India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal, 462020 Madhya Pradesh India
| |
Collapse
|
50
|
Campos HC, Ribeiro DE, Hashiguchi D, Hukuda DY, Gimenes C, Romariz SAA, Ye Q, Tang Y, Ulrich H, Longo BM. Distinct Effects of the Hippocampal Transplantation of Neural and Mesenchymal Stem Cells in a Transgenic Model of Alzheimer's Disease. Stem Cell Rev Rep 2022; 18:781-791. [PMID: 34997526 DOI: 10.1007/s12015-021-10321-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a severe disabling condition with no cure currently available, which accounts for 60-70% of all dementia cases worldwide. Therefore, the investigation of possible therapeutic strategies for AD is necessary. To this end, animal models corresponding to the main aspects of AD in humans have been widely used. Similar to AD patients, the double transgenic APPswe/PS1dE9 (APP/PS1) mice show cognitive deficits, hyperlocomotion, amyloid-β (Αβ) plaques in the cortex and hippocampus, and exacerbated inflammatory responses. Recent studies have shown that these neuropathological features could be reversed by stem cell transplantation. However, the effects induced by neural (NSC) and mesenchymal (MSC) stem cells has never been compared in an AD animal model. Therefore, the present study aimed to investigate whether transplantation of NSC or MSC into the hippocampus of APP/PS1 mice reverses AD-induced pathological alterations, evaluated by the locomotor activity (open field test), short- and long-term memory (object recognition) tests, Αβ plaques (6-E10), microglia distribution (Iba-1), M1 (iNOS) and M2 (ARG-1) microglial phenotype frequencies. NSC and MSC engraftment reduced the number of Αβ plaques and produced an increase in M2 microglia polarization in the hippocampus of APP/PS1 mice, suggesting an anti-inflammatory effect of stem cell transplantation. NSC also reversed the hyperlocomotor activity and increased the number of microglia in the hippocampus of APP/PS1 mice. No impairment of short or long-term memory was observed in APP/PS1 mice. Overall, this study highlights the potential beneficial effects of transplanting NSC or MSC for AD treatment.
Collapse
Affiliation(s)
- Henrique C Campos
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Debora Hashiguchi
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Laboratório de Plasticidade Sináptica, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Caixa Postal: 1524, Brazil
| | - Deborah Y Hukuda
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Christiane Gimenes
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Simone A A Romariz
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Qing Ye
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.,International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Yong Tang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.,International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Beatriz Monteiro Longo
- Laboratório de Neurofisiologia, Depto. Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|