1
|
Zhang Z, Yang J, Zhou Q, Zhong S, Liu J, Zhang X, Chang X, Wang H. The cGAS-STING-mediated ROS and ferroptosis are involved in manganese neurotoxicity. J Environ Sci (China) 2025; 152:71-86. [PMID: 39617588 DOI: 10.1016/j.jes.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 12/12/2024]
Abstract
Manganese (Mn) has been characterized as an environmental pollutant. Excessive releases of Mn due to human activities have increased Mn levels in the environment over the years, posing a threat to human health and the environment. Long-term exposure to high concentrations of Mn can induce neurotoxicity. Therefore, toxicological studies on Mn are of paramount importance. Mn induces oxidative stress through affecting the level of reactive oxygen species (ROS), and the overabundance of ROS further triggers ferroptosis. Additionally, Mn2+ was found to be a novel activator of the cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway in the innate immune system. Thus, we speculate that Mn exposure may promote ROS production by activating the cGAS-STING pathway, which further induces oxidative stress and ferroptosis, and ultimately triggers Mn neurotoxicity. This review discusses the mechanism between Mn-induced oxidative stress and ferroptosis via activation of the cGAS-STING pathway, which may offer a prospective direction for future in-depth studies on the mechanism of Mn neurotoxicity.
Collapse
Affiliation(s)
- Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Jávega-Cometto M, Naranjo-Viteri AJ, Champarini LG, Hereñú CB, Crespo R. Plant-Derived Monoterpene Therapies in Parkinson's Disease Models: Systematic Review and Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2025; 14:999. [PMID: 40219067 PMCID: PMC11990262 DOI: 10.3390/plants14070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
Monoterpenes (MTs) are plants' secondary metabolites and major components of essential oils (EOs), widely used in the pharmaceutical industry. However, its neuroprotective effects, particularly in Parkinson's disease (PD) have not been fully demonstrated. PD is a progressive neurological disorder marked by dopaminergic neuron loss in the substantia nigra, motor symptoms being the most reported ones. This review evaluates the evidence supporting the use of MTs as potential neuroprotective agents. PubMed, SCOPUS, Google Scholar, and ScienceDirect databases were searched for articles on MTs in murine models with any type of administration. The PRISMA guidelines were followed. After screening 405 records, 32 were included in the systematic review and 30 were included in the meta-analysis. Fifteen MTs, commonly found in EOs, were identified as potential therapeutic agents for PD. The meta-analysis revealed that MTs administration improved motor performance, increased tyrosine hydroxylase levels, reduced oxidative stress markers (malondialdehyde) and proinflammatory cytokines (IL-6, IL-1, TNF-α), and enhanced antioxidant enzymes (catalase, superoxide dismutase) in parkinsonian animals. The antioxidant and anti-inflammatory properties of MTs appear to be key mechanisms in mitigating dopaminergic neurodegeneration. However, further clinical research is essential to translate these findings into practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Rosana Crespo
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (M.J.-C.); (A.J.N.-V.); (L.G.C.); (C.B.H.)
| |
Collapse
|
3
|
Merghany RM, El-Sawi SA, Naser AFA, Ezzat SM, Moustafa SFA, Meselhy MR. A comprehensive review of natural compounds and their structure-activity relationship in Parkinson's disease: exploring potential mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2229-2258. [PMID: 39392484 PMCID: PMC11920337 DOI: 10.1007/s00210-024-03462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine-producing cells in the Substantia nigra region of the brain. Complementary and alternative medicine approaches have been utilized as adjuncts to conventional therapies for managing the symptoms and progression of PD. Natural compounds have gained attention for their potential neuroprotective effects and ability to target various pathways involved in the pathogenesis of PD. This comprehensive review aims to provide an in-depth analysis of the molecular targets and mechanisms of natural compounds in various experimental models of PD. This review will also explore the structure-activity relationship (SAR) of these compounds and assess the clinical studies investigating the impact of these natural compounds on individuals with PD. The insights shared in this review have the potential to pave the way for the development of innovative therapeutic strategies and interventions for PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Kavrik O, Gumral N, Ozmen O, Aslankoc R, Saygin M, Yalcin A. The combined use of thymoquinone and metformin provides more effective neuroprotection in a mouse model of MPTP-induced Parkinson's disease. J Recept Signal Transduct Res 2024; 44:161-173. [PMID: 39585743 DOI: 10.1080/10799893.2024.2434112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Thymoquinone (TQ) is known for its antioxidant properties, and although metformin (MM) is known as an antidiabetic drug, it is suggested that it reduces neurodegeneration. The study aimed to investigate the neuroprotective effects of TQ and MM, particularly when used together, in relation to Parkinson's disease (PD). In the study, sixty-eight male C57BL/6 mice weighing 25-30 g were divided into five groups as follows: control, MPTP, MPTP+TQ, MPTP+MM, and MPTP+TQ+MM. MM (500 mg/kg, orally) and TQ (5 mg/kg, i.p.) were administered for 21 days. Motor coordination and locomotor activities were evaluated by the pole test. TOS and TAS analyses were conducted to determine oxidative stress levels in the substantia nigra. Dopaminergic degeneration in the substantia nigra was evaluated by analyzing Tyrosine hydroxylase (TH). To evaluate the apoptotic pathway, the expression levels of iNOS, BDNF, Complex 1, Bax, Bcl-2, Cytochrome C, AIF, and Caspase-3 were examined immunohistochemically. Compared to the MPTP-treated group, TQ, MM and MM+TQ treatment provided significant improvement in locomotor activity in mice, significantly increased antioxidant activity, significantly reduced the expression levels of iNOS, Bax, Cytochrome C, Caspase-3, and AIF, significantly increased BDNF, Bcl-2, and Complex 1 expressions, and significantly increased the number of TH positive cells. The separate use of TQ and MM exhibits neuroprotective activity, however, we showed that using TQ and MM in combination may be more effective. This may provide preclinical evidence supporting the therapeutic potential of their combined use for treating PD.
Collapse
Affiliation(s)
- Oguzhan Kavrik
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Nurhan Gumral
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Burdur Mehmet Akif Ersoy University Faculty of Veterinary, Burdur, Turkey
| | - Rahime Aslankoc
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Saygin
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Arzu Yalcin
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
5
|
Gebremedin BD, Asfaw BT, Mengesha WA, Abebe KA. Biochemical Characterization of Ethiopian Black Cumin ( Nigella sativa L.). INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:2746560. [PMID: 39185325 PMCID: PMC11343625 DOI: 10.1155/2024/2746560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Black cumin (Nigella sativa L.) seed oil has been used for its medicinal and aromatic values. Some studies revealed the presence of variability among N. sativa genotypes in seed oil content and yield. In Ethiopia, very few studies were conducted to investigate the variability of N. sativa genotypes by using biochemical traits. Thus, this study was conducted at Debre Zeit and Kulumsa Agricultural Research Centers' experimental sites under field conditions during the 2021 cropping season to investigate the variability of Ethiopian N. sativa genotypes based on biochemical traits. Sixty-four genotypes were used and arranged in an 8 × 8 simple lattice design with two replications. Essential oils (EOs) and fixed oils were extracted by the respective methods of hydro distillation and solvent extraction. The univariate, bivariate, and multivariate analyses of the collected data were performed. Combined analysis of variance (ANOVA) revealed significant differences among genotypes in fixed oil yield per hectare (FOY), EO content (EOC), and EO yield per hectare (EOY). EOY had a significant positive correlation with FOY and EOC. It is expected to improve all biochemical traits by 17.39%-94.62% over the improved varieties by selection of the top 5% landraces. Therefore, genotypes 90504, 219970, and 013_ATH were the top 5% best performed landraces by FOY and EOY over the improved varieties. So, through selection, it would also be possible to improve the studied biochemical traits of the genotypes. The principal component (PC) analysis (PCA) of four biochemical traits showed 85.86% of the total variance captured by the first two PCs. EOY and FOY were the main contributor traits to the variation in the first PC, whereas FOC and EOC were the main contributor traits to the variation in the second PC. The genotypes were grouped into three different clusters based on four biochemical traits with significant intercluster distance. This showed that there was sufficient diversity among the genotypes which can be exploited for the future N. sativa improvement program in Ethiopia.
Collapse
Affiliation(s)
- Basazinew Degu Gebremedin
- Wondo Genet Agricultural Research CenterEthiopian Institute of Agricultural Research, P. O. Box 198, Shashemene, Ethiopia
- School of Plant and Horticultural ScienceHawassa University, P. O. Box 05, Hawassa, Ethiopia
| | - Bizuayehu Tesfaye Asfaw
- School of Plant and Horticultural ScienceHawassa University, P. O. Box 05, Hawassa, Ethiopia
| | - Wendawek Abebe Mengesha
- Department of MolecularCellular and Microbial BiologyAddis Ababa University, P. O. Box 3434, Addis Ababa, Ethiopia
| | - Kebebew Assefa Abebe
- Debre Zeit Agricultural Research CenterEthiopian Institute of Agricultural Research, P. O. Box 32, Debre Zeit, Ethiopia
| |
Collapse
|
6
|
Fu M, Wang Q, Gao L, Yuan X, Wang J. Antimicrobial drugs for Parkinson's disease: Existing therapeutic strategies and novel drugs exploration. Ageing Res Rev 2024; 99:102387. [PMID: 38942200 DOI: 10.1016/j.arr.2024.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 06/30/2024]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by loss of dopaminergic neurons in the substantia nigra, as well as the abnormal accumulation of misfolded α-synuclein. Clinically, PD is featured by typical motor symptoms and some non-motor symptoms. Up to now, although considerable progress has been made in understanding the pathogenesis of PD, there is still no effective therapeutic treatment for the disease. Thus, exploring new therapeutic strategies has been a topic that needs to be addressed urgently. Noteworthy, with the proposal of the microbiota-gut-brain axis theory, antimicrobial drugs have received significant attention due to their effects on regulating the intestinal microbiota. Nowadays, there is growing evidence showing that some antimicrobial drugs may be promising drugs for the treatment of PD. Data from pre-clinical and clinical studies have shown that some antimicrobial drugs may play neuroprotective roles in PD by modulating multiple biochemical and molecular pathways, including reducing α-synuclein aggregation, inhibiting neuroinflammation, regulating mitochondrial structure and function, as well as suppressing oxidative stress. In this paper, we summarized the effects of some antimicrobial drugs on PD treatment from recent pre-clinical and clinical studies. Then, we further discussed the potential of a few antimicrobial drugs for treating PD based on molecular docking and molecular dynamics simulation. Importantly, we highlighted the potential of clorobiocin as the therapeutic strategy for PD owing to its ability to inhibit α-synuclein aggregation. These results will help us to better understand the potential of antimicrobial drugs in treating PD and how antimicrobial drugs may alleviate or reverse the pathological symptoms of PD.
Collapse
Affiliation(s)
- Mengjie Fu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qiuchen Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Lihui Gao
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Xin Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
7
|
Saadat M, Dahmardeh N, Sheikhbahaei F, Mokhtari T. Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: a comprehensive review on molecular mechanisms in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3541-3564. [PMID: 38010395 DOI: 10.1007/s00210-023-02832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Thymoquinone (THQ) and its nanoformulation (NFs) have emerged as promising candidates for the treatment of neurological diseases due to their diverse pharmacological properties, which include anti-inflammatory, antioxidant, and neuroprotective effects. In this study, we conducted an extensive search across reputable scientific websites such as PubMed, ScienceDirect, Scopus, and Google Scholar to gather relevant information. The antioxidant and anti-inflammatory properties of THQ have been observed to enhance the survival of neurons in affected areas of the brain, leading to significant improvements in behavioral and motor dysfunctions. Moreover, THQ and its NFs have demonstrated the capacity to restore antioxidant enzymes and mitigate oxidative stress. The primary mechanism underlying THQ's antioxidant effects involves the regulation of the Nrf2/HO-1 signaling pathway. Furthermore, THQ has been found to modulate key components of inflammatory signaling pathways, including toll-like receptors (TLRs), nuclear factor-κB (NF-κB), interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα), thereby exerting anti-inflammatory effects. This comprehensive review explores the various beneficial effects of THQ and its NFs on neurological disorders and provides insights into the underlying mechanisms involved.
Collapse
Affiliation(s)
- Maryam Saadat
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narjes Dahmardeh
- Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| |
Collapse
|
8
|
Seyed Aliyan SM, Roohbakhsh A, Jafari Fakhrabad M, Salmasi Z, Moshiri M, Shahbazi N, Etemad L. Evaluating the Protective Effects of Thymoquinone on Methamphetamine-induced Toxicity in an In Vitro Model Based on Differentiated PC12 Cells. Altern Lab Anim 2024; 52:94-106. [PMID: 38445454 DOI: 10.1177/02611929241237409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 μM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.
Collapse
Affiliation(s)
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Jafari Fakhrabad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahar Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niosha Shahbazi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Singh K, Gupta JK, Sethi P, Mathew S, Bhatt A, Sharma MC, Saha S, Shamim, Kumar S. Recent Advances in the Synthesis of Antioxidant Derivatives: Pharmacological Insights for Neurological Disorders. Curr Top Med Chem 2024; 24:1940-1959. [PMID: 39108007 DOI: 10.2174/0115680266305736240725052825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024]
Abstract
Neurological disorders, characterized by oxidative stress (OS) and inflammation, have become a major global health concern. Redox reactions play a vital role in regulating the balance of the neuronal microenvironment. Specifically, the imbalance leads to a significant weakening of the organism's natural defensive mechanisms. This, in turn, causes the development of harmful oxidative stress, which plays a crucial role in the onset and progression of neurodegenerative diseases. The quest for effective therapeutic agents has led to significant advancements in the synthesis of antioxidant derivatives. This review provides a comprehensive overview of the recent developments in the use of novel antioxidant compounds with potential pharmacological applications in the management of neurological disorders. The discussed compounds encompass a diverse range of chemical structures, including polyphenols, vitamins, flavonoids, and hybrid molecules, highlighting their varied mechanisms of action. This review also focuses on the mechanism of oxidative stress in developing neurodegenerative disease. The neuroprotective effects of these antioxidant derivatives are explored in the context of specific neurological disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. The ultimate goal is to provide effective treatments for these debilitating conditions and improve the quality of life for patients.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Sojomon Mathew
- Department of Zoology, Government College, Kottayam, Kerala, India
| | - Alok Bhatt
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | | | - Sunam Saha
- Department of Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Shamim
- IIMT College of Medical Sciences, IIMT University, Meerut, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
10
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 352] [Impact Index Per Article: 176.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
11
|
Amoroso R, Maccallini C, Bellezza I. Activators of Nrf2 to Counteract Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12030778. [PMID: 36979026 PMCID: PMC10045503 DOI: 10.3390/antiox12030778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration and loss of nerve cells. Oxidative stress has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders since neuron cells are particularly vulnerable to oxidative damage. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is strictly related to anti-inflammatory and antioxidative cell response; therefore, its activation and the consequent enhancement of the related cellular pathways have been proposed as a potential therapeutic approach. Several Nrf2 activators with different mechanisms and diverse structures have been reported, but those applied for neurodisorders are still limited. However, in the very last few years, interesting progress has been made, particularly in enhancing the blood-brain barrier penetration, to make Nrf2 activators effective drugs, and in designing Nrf2-based multitarget-directed ligands to affect multiple pathways involved in the pathology of neurodegenerative diseases. The present review gives an overview of the most representative findings in this research area.
Collapse
Affiliation(s)
- Rosa Amoroso
- Department of Pharmacy, University "G.d'Annunzio" of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, University "G.d'Annunzio" of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
12
|
Mathur S, Gawas C, Ahmad IZ, Wani M, Tabassum H. Neurodegenerative disorders: Assessing the impact of natural vs drug-induced treatment options. Aging Med (Milton) 2023; 6:82-97. [PMID: 36911087 PMCID: PMC10000287 DOI: 10.1002/agm2.12243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
Neurodegenerative illnesses refer to the gradual, cumulative loss of neural activity. Neurological conditions are considered to be the second leading cause of mortality in the modern world and the two most prevalent ones are Parkinson's disease and Alzheimer's disease. The negative side effects of pharmaceutical use are a major global concern, despite the availability of many different treatments for therapy. We concentrated on different types of neurological problems and their influence on targets, in vitro, in vivo, and in silico methods toward neurological disorders, as well as the molecular approaches influencing the same, in the first half of the review. The bulk of the second half of the review focuses on the many categories of treatment possibilities, including natural and artificial. Nevertheless, herbal treatment solutions are piquing scholarly attention due to their anti-oxidative properties and accessibility. However, more quality investigations and innovations are undoubtedly needed to back up these conclusions.
Collapse
Affiliation(s)
- Sakshi Mathur
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Chaitali Gawas
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | | | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
13
|
Isaev NK, Genrikhs EE, Stelmashook EV. Antioxidant Thymoquinone and Its Potential in the Treatment of Neurological Diseases. Antioxidants (Basel) 2023; 12:antiox12020433. [PMID: 36829993 PMCID: PMC9952318 DOI: 10.3390/antiox12020433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Oxidative stress is one of the main pathogenic factors of neuron damage in neurodegenerative processes; this makes it an important therapeutic target to which the action of neuroprotectors should be directed. One of these drugs is thymoquinone. According to modern data, this substance has a wide range of pharmacological activity, including neuroprotective, which was demonstrated in experimental modeling of various neurodegenerative diseases and pathological conditions of the brain. The neuroprotective effect of thymoquinone is largely due to its antioxidant ability. Currently available data show that thymoquinone is an effective means to reduce the negative consequences of acute and chronic forms of cerebral pathology, leading to the normalization of the content of antioxidant enzymes and preventing an increase in the level of lipid peroxidation products. Antioxidant properties make this substance a promising basis for the development of prototypes of therapeutic agents aimed at the treatment of a number of degenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Nickolay K. Isaev
- Research Center of Neurology, 125367 Moscow, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Elena V. Stelmashook
- Research Center of Neurology, 125367 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-9171908
| |
Collapse
|
14
|
Gawas CG, Mathur S, Wani M, Tabassum H. Nigella sativa and its nano-mediated approach toward management of neurodegenerative disorders: A review. IBRAIN 2023; 9:111-123. [PMID: 37786518 PMCID: PMC10529340 DOI: 10.1002/ibra.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 10/04/2023]
Abstract
Nigella sativa L., also known as black seed or black cumin, is a plant that has been used for centuries. In the past, this flowering plant was used as a food preservative and medicinal herb. A vital component of Nigella sativa, thymoquinone (TQ), plays a significant therapeutic role in the management of most diseases, including cancer, diabetes mellitus, hypertension, inflammation, gastrointestinal disorders, and neurodegenerative disorders. Neurodegenerative disorders are primarily caused by neurotransmitter hypoactivity, particularly insufficient serotonin activity. It has been discovered that many medicinal herbs and their active compounds have therapeutic value. Black cumin seeds have been used to heal ailments and its history traces back to ancient times such as ancient Babylonia. They can be used applied to alleviate edema, hair loss, and bruising, and consumd to treat stomach issues. It is one of the most feasible and effective medicinal plants. The use of nanoformulations based on Nigella sativa and TQ to treat neurodegenerative diseases (NDs) has yielded promising outcomes. Customized administration of nanoparticle (NP) systems and nanomedicine are two of the many options for drug delivery to the central nervous system (CNS) that are attracting increasing interest. Delivering a therapeutic and diagnostic substance to a particular location is the core target of NPs. Because of their distinct cell uptake and trafficking mechanisms, NPs can reduce the amount that accumulates in undesirable organs. The focus of the current review is on recent studies on the various neuroprotective properties of Nigella sativa as well as nanoformulations for NDs and the brain's uptake of NPs. The review summarizes the In vivo, In vitro, and In silico studies on the protective effects of black cumin against neurodegenerative disorders.
Collapse
Affiliation(s)
- Chaitali G. Gawas
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Sakshi Mathur
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
15
|
Norouzkhani N, Karimi AG, Badami N, Jalalifar E, Mahmoudvand B, Ansari A, Pakrou Sariyarighan N, Alijanzadeh D, Aghakhani S, Shayestehmehr R, Arzaghi M, Sheikh Z, Salami Y, Marabi MH, Abdi A, Deravi N. From kitchen to clinic: Pharmacotherapeutic potential of common spices in Indian cooking in age-related neurological disorders. Front Pharmacol 2022; 13:960037. [PMID: 36438833 PMCID: PMC9685814 DOI: 10.3389/fphar.2022.960037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Aging is described as an advanced time-related collection of changes that may negatively affect with the risk of several diseases or death. Aging is a main factor of several age-related neurological disorders, including neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, and dementia), stroke, neuroinflammation, neurotoxicity, brain tumors, oxidative stress, and reactive oxygen species (ROS). Currently available medications for age-related neurological disorders may lead to several side effects, such as headache, diarrhea, nausea, gastrointestinal (GI) diseases, dyskinesia, and hallucinosis. These days, studies on plant efficacy in traditional medicine are being conducted because herbal medicine is affordable, safe, and culturally acceptable and easily accessible. The Indian traditional medicine system called Ayurveda uses several herbs and medicinal plants to treat various disorders including neurological disorders. This review aims to summarize the data on the neuroprotective potential of the following common Indian spices widely used in Ayurveda: cumin (Cuminum cyminum (L.), Apiaceae), black cumin (Nigella sativa (L.), Ranunculaceae), black pepper (Piper nigrum (L.), Piperaceae), curry leaf tree (Murraya koenigii (L.), Spreng Rutaceae), fenugreek (Trigonella foenum-graecum (L.), Fabaceae), fennel (Foeniculum vulgare Mill, Apiaceae), cardamom (Elettaria cardamomum (L.) Maton, Zingiberaceae), cloves (Syzygium aromaticum (L.) Merr. & L.M.Perry, Myrtaceae), and coriander (Coriandrum sativum (L.), Apiaceae) in age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arian Ghannadi Karimi
- Preclinical, Cardiovascular Imaging Core Facility, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Badami
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Erfan Jalalifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mahmoudvand
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Dorsa Alijanzadeh
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Aghakhani
- Student Research Committee, Esfahan University of Medical Sciences, Esfahan, Iran
| | - Reza Shayestehmehr
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Zahra Sheikh
- Babol University of Medical Sciences, Babol, Iran
| | - Yasaman Salami
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hesam Marabi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Deravi
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Niloofar Deravi, ,
| |
Collapse
|
16
|
Ahmad J, Albarqi HA, Ahmad MZ, Orabi MAA, Md S, Bandopadhyay R, Ahmed F, Khan MA, Ahamad J, Mishra A. Utilization of Nanotechnology to Improve Bone Health in Osteoporosis Exploiting Nigella sativa and Its Active Constituent Thymoquinone. Bioengineering (Basel) 2022; 9:631. [PMID: 36354542 PMCID: PMC9687452 DOI: 10.3390/bioengineering9110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 09/08/2024] Open
Abstract
Osteoporosis, a chronic bone disorder, is one of the leading causes of fracture and morbidity risk. Numerous medicinally important herbs have been evaluated for their efficacy in improving bone mass density in exhaustive preclinical and limited clinical studies. Nigella sativa L. has been used as local folk medicine, and traditional healers have used it to manage various ailments. Its reported beneficial effects include controlling bone and joint diseases. The present manuscript aimed to provide a sound discussion on the pharmacological evidence of N. sativa and its active constituent, thymoquinone, for its utility in the effective management of osteoporosis. N. sativa is reported to possess anti-IL-1 and anti-TNF-α-mediated anti-inflammatory effects, leading to positive effects on bone turnover markers, such as alkaline phosphatase and tartrate-resistant acid phosphatase. It is reported to stimulate bone regeneration by prompting osteoblast proliferation, ossification, and decreasing osteoclast cells. Thymoquinone from N. sativa has exhibited an antioxidant effect on bone tissue by reducing the FeNTA-induced oxidative stress. The present manuscript highlights phytochemistry, pharmacological effect, and the important mechanistic perspective of N. sativa and its active constituents for the management of osteoporosis. Further, it also provides sound discussion on the utilization of a nanotechnology-mediated drug delivery approach as a promising strategy to improve the therapeutic performance of N. sativa and its active constituent, thymoquinone, in the effective management of osteoporosis.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Faraha Ahmed
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar 110062, New Delhi, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar 110062, New Delhi, India
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)–Guwahati, Changsari, Kamrup 781101, Assam, India
| |
Collapse
|
17
|
Pang M, Peng R, Wang Y, Zhu Y, Wang P, Moussian B, Su Y, Liu X, Ming D. Molecular understanding of the translational models and the therapeutic potential natural products of Parkinson's disease. Biomed Pharmacother 2022; 155:113718. [PMID: 36152409 DOI: 10.1016/j.biopha.2022.113718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease after Alzheimer's disease, mostly happened in the elder population and the prevalence gradually increased with age. Parkinson's disease is a movement disorder that severely affects patients' daily life. The mechanism of Parkinson's disease still remains unknown, however, studies already proved that the damage or absence of dopaminergic neurons located in the substantia nigra and the decreased dopamine in the striatum are significantly related to Parkinson's disease. To date, the mainstream treatment of Parkinson's disease has been achieved by alleviating its associated morbid symptoms, such as the use of levodopa, carbidopa, dopamine receptor agonists, monoamine oxidase type B inhibitors, anticholinergic drugs, etc. However, strong side effects, even toxicity, have been reported after using these drugs, with reduced effectiveness over time. Plant compounds have shown good therapeutic effects in neurodegenerative diseases as a less toxic treatment. In this review, we have compiled several natural plant compounds and classified the currently reported compounds for therapeutic use based on their structural parent nuclei and constituent elements. We wish to inspire new ideas for the treatment of Parkinson's disease by summarizing their mechanisms.
Collapse
Affiliation(s)
- Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Rui Peng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Yi Zhu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Peng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903 Sophia Antipolis Cedex, France
| | - Yanfang Su
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China; Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, 300072 Tianjin, China.
| |
Collapse
|
18
|
Liu Y, Huang L, Kim MY, Cho JY. The Role of Thymoquinone in Inflammatory Response in Chronic Diseases. Int J Mol Sci 2022; 23:ijms231810246. [PMID: 36142148 PMCID: PMC9499585 DOI: 10.3390/ijms231810246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Anti-inflammatory therapies have been shown to be effective in the prevention of various cardiovascular diseases, tumors, and cancer complications. Thymoquinone (TQ), the main active constituent of Nigella sativa, has shown promising therapeutic properties in many in vivo and in vitro models. However, TQ has poor bioavailability and is hydrophobic, prohibiting clinical trials with TQ alone. Studies have explored the combination of TQ with biological nanomaterials to improve its bioavailability. The TQ nanoparticle formulation shows better bioavailability than free TQ, and these formulations are ready for clinical trials to determine their potential as therapeutic agents. In this paper, we review current knowledge about the interaction between TQ and the inflammatory response and summarize the research prospects in Korea and abroad. We discuss the different biological activities of TQ and various combination therapies of TQ and nanomaterials in clinical trials.
Collapse
Affiliation(s)
- Yan Liu
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Mi-Yeon Kim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
19
|
Khan FZ, Mostaid MS, Apu MNH. Molecular Signaling Pathway Targeted Therapeutic Potential of Thymoquinone in Alzheimer’s disease. Heliyon 2022; 8:e09874. [PMID: 35832342 PMCID: PMC9272348 DOI: 10.1016/j.heliyon.2022.e09874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with rapid progression. Black cumin (Nigella sativa) is a nutraceutical that has been investigated as a prophylactic and therapeutic agent for this disease due to its ability to prevent or retard the progression of neurodegeneration. Thymoquinone (TQ) is the main bioactive compound isolated from the seeds of black cumin. Several reports have shown that it has promising potential in the prevention and treatment of AD due to its significant antioxidative, anti-inflammatory, and antiapoptotic properties along with several other mechanisms that target the altered signaling pathways due to the disease pathogenesis. In addition, it shows anticholinesterase activity and prevents α-synuclein induced synaptic damage. The aim of this review is to summarize the potential aspects and mechanisms by which TQ imparts its action in AD.
Collapse
|
20
|
Verma R, Sartaj A, Qizilbash FF, Ghoneim MM, Alshehri S, Imam SS, Kala C, Alam MS, Gilani SJ, Taleuzzaman M. An Overview of the Neuropharmacological Potential of Thymoquinone and its Targeted Delivery Prospects for CNS Disorder. Curr Drug Metab 2022; 23:447-459. [PMID: 35676849 DOI: 10.2174/1389200223666220608142506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
At present, people and patients worldwide are relying on the medicinal plant as a therapeutic agent over pharmaceuticals because the medicinal plant is considered safer, especially for chronic disorders. Several medicinal plants and their components are being researched and explored for their possible therapeutic contribution to CNS disorders. Thymoquinone (TQ) is one such molecule. Thymoquinone, one of the constituents of Plant Nigella Sativa, is effective against several neurodegenerative diseases like; Alzheimer's, Depression, Encephalomyelitis, Epilepsy, Ischemia, Parkinson's, and Traumatic. This review article presents the neuropharmacological potential of TQ's, their challenges, and delivery prospects, explicitly focusing on neurological disorders along with their chemistry, pharmacokinetics, and toxicity. Since TQ has some pharmacokinetic challenges, scientists have focused on novel formulations and delivery systems to enhance bioavailability and ultimately increase its therapeutic value. In the present work, the role of nanotechnology in neurodegenerative disease and how it improves bioavailability and delivery of a drug to the site of action has been discussed. There are a few limitations for developing novel drug formulation, including solubility, pH, and compatibility of nanomaterials. Since here we are targeting CNS disorders, the blood-brain barrier (BBB) becomes an additional challenge Hence, the review summarized the novel aspects of delivery and biocompatible nanoparticles-based approaches for targeted drug delivery into CNS, enhancing TQ bioavailability and its neurotherapeutic effects.
Collapse
Affiliation(s)
- Rishabh Verma
- Department of Pharmacology, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Farheen Fatima Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, 342802. Rajasthan, India
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Kingdom of Saudi Arabia
| | - Sadaf Jamal Gilani
- College of Basic Health Science, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan,342008, India
| |
Collapse
|
21
|
Thymoquinone Improved Nonylphenol-Induced Memory Deficit and Neurotoxicity Through Its Antioxidant and Neuroprotective Effects. Mol Neurobiol 2022; 59:3600-3616. [PMID: 35355194 DOI: 10.1007/s12035-022-02807-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/17/2022] [Indexed: 12/27/2022]
Abstract
Nonylphenol (NP), a well-known endocrine-disrupter chemical, has several harmful effects on the central nervous system including neuroendocrine disruption, cognitive impairment, and neurotoxicity. Thymoquinone (TQ) is a main bioactive compound in the black seeds of Nigella sativa that has antioxidant, anti-inflammatory, and neuroprotective properties. Here, we investigated the neuroprotective effect of TQ against NP-induced memory deficit and neurotoxicity in rats. To induce memory impairment, NP (25 mg/kg) was used as gavage in male Wistar rats for 21 days. TQ (2.5, 5, and 10 mg/kg) was intraperitoneally administered in NP-treated animals. The morris water maze test was performed to assess spatial learning and memory. The hippocampal tissues were isolated from the brain for histopathological evaluation. Biochemical, molecular, and cellular tests were performed to quantify oxidant (malondialdehyde; MDA)/antioxidant (superoxide dismutase (SOD), total antioxidant capacity (TAC), and reduced glutathione (GSH) parameters) as well as markers for astrocytic activation (glial fibrillary acidic protein; GFAP) and neuronal death (alpha-synuclein; α-syn). Results showed TQ (5 mg/kg) significantly improved NP-induced memory impairment. Histological data revealed a significant increase in the number of necrotic cells in hippocampus, and TQ treatment markedly decreased this effect. The GSH and TAC levels were significantly increased in TQ-treated groups compared to NP group. The molecular analysis indicated that NP increased GFAP and decreased α-syn expression and TQ treatment did the reverse. In vitro study in astrocytes isolated from mice brain showed that TQ significantly increased cell viability in NP-induced cytotoxicity. This study strongly indicates that TQ has neuroprotective effects on NP-induced neurotoxicity through reducing oxidative damages and neuroinflammation. This study investigates the behavioral neurotoxicity induced by Nonylphenol (NP) and the protective effects of Thymoquinone (TQ) as a potent antioxidant compound using molecular, cell culture, histopathological and biochemical techniques.
Collapse
|
22
|
Pottoo FH, Ibrahim AM, Alammar A, Alsinan R, Aleid M, Alshehhi A, Alshehri M, Mishra S, Alhajri N. Thymoquinone: Review of Its Potential in the Treatment of Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15040408. [PMID: 35455405 PMCID: PMC9026861 DOI: 10.3390/ph15040408] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Thymoquinone (TQ) possesses anticonvulsant, antianxiety, antidepressant, and antipsychotic properties. It could be utilized to treat drug misuse or dependence, and those with memory and cognitive impairment. TQ protects brain cells from oxidative stress, which is especially pronounced in memory-related regions. TQ exhibits antineurotoxin characteristics, implying its role in preventing neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. TQ’s antioxidant and anti-inflammatory properties protect brain cells from damage and inflammation. Glutamate can trigger cell death by causing mitochondrial malfunction and the formation of reactive oxygen species (ROS). Reduction in ROS production can explain TQ effects in neuroinflammation. TQ can help prevent glutamate-induced apoptosis by suppressing mitochondrial malfunction. Several studies have demonstrated TQ’s role in inhibiting Toll-like receptors (TLRs) and some inflammatory mediators, leading to reduced inflammation and neurotoxicity. Several studies did not show any signs of dopaminergic neuron loss after TQ treatment in various animals. TQ has been shown in clinical studies to block acetylcholinesterase (AChE) activity, which increases acetylcholine (ACh). As a result, fresh memories are programmed to preserve the effects. Treatment with TQ has been linked to better outcomes and decreased side effects than other drugs.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
- Correspondence: (F.H.P.); (A.M.I.)
| | - Abdallah Mohammad Ibrahim
- Department of Fundamentals of Nursing, College of Nursing, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (F.H.P.); (A.M.I.)
| | - Ali Alammar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Rida Alsinan
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Mahdi Aleid
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Ali Alshehhi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Muruj Alshehri
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Supriya Mishra
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad 201204, UP, India;
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|
23
|
Iranshahy M, Javadi B, Sahebkar A. Protective effects of functional foods against Parkinson's disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother Res 2022; 36:1952-1989. [PMID: 35244296 DOI: 10.1002/ptr.7425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
In Persian Medicine (PM), PD (brain-based tremor) is a known CNS disorder with several therapeutic and preventive options. In their medical textbooks and pharmacopeias, Persian great scientists such as Rhazes (854-925 AD), Avicenna (980-1037 AD), and Jorjani (1042-1136 AD), have discussed pharmacological and nutritional strategies for the prevention, slowing progression, and treatment of PD. In the present study, we surveyed plant- and animal-based foods recommended by PM for the prevention and treatment of CNS-related tremors. In vivo and in-vitro pharmacological evidence supporting the beneficial effects of PM-recommended foods in prevention and alleviating PD, major active phytochemicals along with the relevant mechanisms of action were studied. Several PM plants possess potent antioxidant, antiinflammatory, and PD preventing properties. Garlic and allicin, cabbage and isothiocyanates, chickpea seed and its O-methylated isoflavones biochanin A and formononetin, cinnamon, and cinnamaldehyde, saffron and its crocin, crocetin, and safranal, black cumin and its thymoquinone, black pepper and piperine, pistachio and genistein and daidzein, and resveratrol are among the most effective dietary itemsagainst PD. They act through attenuating neurotoxin-induced memory loss and behavioral impairment, oxidative stress, and dopaminergic cell death. PM-recommended foods can help alleviate PD progression and also discovering and developing new neuroprotective anti-PD pharmaceuticals.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Mahmud NM, Paraoan L, Khaliddin N, Kamalden TA. Thymoquinone in Ocular Neurodegeneration: Modulation of Pathological Mechanisms via Multiple Pathways. Front Cell Neurosci 2022; 16:786926. [PMID: 35308121 PMCID: PMC8924063 DOI: 10.3389/fncel.2022.786926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Thymoquinone is a naturally occurring compound and is the major component of Nigella sativa, also known as black seed or black cumin. For centuries thymoquinone has been used especially in the Middle East traditionally to treat wounds, asthma, allergies, fever, headache, cough, hypertension, and diabetes. Studies have suggested beneficial effects of thymoquinone to be attributed to its antioxidant, antibacterial, anti-oxidative stress, anti-inflammatory, and neuroprotective properties. Recently, there has been a surge of interest in thymoquinone as a treatment for neurodegeneration in the brain, such as that seen in Alzheimer’s (AD) and Parkinson’s diseases (PD). In vitro and in vivo studies on animal models of AD and PD suggest the main neuroprotective mechanisms are based on the anti-inflammatory and anti-oxidative properties of thymoquinone. Neurodegenerative conditions of the eye, such as Age-related Macular Degeneration (AMD) and glaucoma share at least in part similar mechanisms of neuronal cell death with those occurring in AD and PD. This review aims to summarize and critically analyze the evidence to date of the effects and potential neuroprotective actions of thymoquinone in the eye and ocular neurodegenerations.
Collapse
Affiliation(s)
- Nur Musfirah Mahmud
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nurliza Khaliddin
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| | - Tengku Ain Kamalden
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Tengku Ain Kamalden,
| |
Collapse
|
25
|
Abstract
Parkinson’s disease, the second most prevalent neurodegenerative disorder worldwide, is characterized by a progressive loss of dopaminergic neurons in substantia nigra pars compacta, causing motor symptoms. This disorder’s main hallmark is the formation of intraneuronal protein inclusions, named Lewy bodies and neurites. The major component of these arrangements is α-synuclein, an intrinsically disordered and soluble protein that, in pathological conditions, can form toxic and cell-to-cell transmissible amyloid structures. Preventing α-synuclein aggregation has attracted significant effort in the search for a disease-modifying therapy for Parkinson’s disease. Small molecules like SynuClean-D, epigallocatechin gallate, trodusquemine, or anle138b exemplify this therapeutic potential. Here, we describe a subset of compounds containing a single aromatic ring, like dopamine, ZPDm, gallic acid, or entacapone, which act as molecular chaperones against α-synuclein aggregation. The simplicity of their structures contrasts with the complexity of the aggregation process, yet the block efficiently α-synuclein assembly into amyloid fibrils, in many cases, redirecting the reaction towards the formation of non-toxic off-pathway oligomers. Moreover, some of these compounds can disentangle mature α-synuclein amyloid fibrils. Their simple structures allow structure-activity relationship analysis to elucidate the role of different functional groups in the inhibition of α-synuclein aggregation and fibril dismantling, making them informative lead scaffolds for the rational development of efficient drugs.
Collapse
Affiliation(s)
- Samuel Pena-DIaz
- Institut de Biotecnologia i Biomedicina; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
26
|
Ardah MT, Eid N, Kitada T, Haque ME. Ellagic Acid Prevents α-Synuclein Aggregation and Protects SH-SY5Y Cells from Aggregated α-Synuclein-Induced Toxicity via Suppression of Apoptosis and Activation of Autophagy. Int J Mol Sci 2021; 22:13398. [PMID: 34948195 PMCID: PMC8707649 DOI: 10.3390/ijms222413398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopamine neurons and the deposition of misfolded proteins known as Lewy bodies (LBs), which contain α-synuclein (α-syn). The causes and molecular mechanisms of PD are not clearly understood to date. However, misfolded proteins, oxidative stress, and impaired autophagy are believed to play important roles in the pathogenesis of PD. Importantly, α-syn is considered a key player in the development of PD. The present study aimed to assess the role of Ellagic acid (EA), a polyphenol found in many fruits, on α-syn aggregation and toxicity. Using thioflavin and seeding polymerization assays, in addition to electron microscopy, we found that EA could dramatically reduce α-syn aggregation. Moreover, EA significantly mitigated the aggregated α-syn-induced toxicity in SH-SY5Y cells and thus enhanced their viability. Mechanistically, these cytoprotective effects of EA are mediated by the suppression of apoptotic proteins BAX and p53 and a concomitant increase in the anti-apoptotic protein, BCL-2. Interestingly, EA was able to activate autophagy in SH-SY5Y cells, as evidenced by normalized/enhanced expression of LC3-II, p62, and pAKT. Together, our findings suggest that EA may attenuate α-syn toxicity by preventing aggregation and improving viability by restoring autophagy and suppressing apoptosis.
Collapse
Affiliation(s)
- Mustafa T Ardah
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 17666, United Arab Emirates;
| | - Nabil Eid
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 17666, United Arab Emirates;
| | - Tohru Kitada
- Otawa-Kagaku, Parkinson Clinic and Research, Kamakura 247-0061, Japan;
| | - M. Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
27
|
Samad N, Manzoor N, Muneer Z, Bhatti SA, Imran I. Reserpine-induced altered neuro-behavioral, biochemical and histopathological assessments prevent by enhanced antioxidant defence system of thymoquinone in mice. Metab Brain Dis 2021; 36:2535-2552. [PMID: 34309746 DOI: 10.1007/s11011-021-00789-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
Thymoquinone (Tq), an active compound of Nigella sativa, has been known for its anti-inflammatory, antioxidant, and neuroprotective characteristics. The present study is aimed to evaluate the effect of Tq on reserpine (Rsp)-induced behavioral (anxiety and/or depression) and, memory deficit; hippocampal inflammatory markers, oxidative markers, antioxidant enzymes, acetylcholinesterase (AChE) activity and histopathology in male mice. Animals were injected with Rsp at a dose of 2 mg/ml/kg and doses of Tq (10 and 20 mg/ml/kg) for 28 days. After the treatment period, behavioral tests [Elevated plus maze (Epm); Light dark box test (Lda); Morris water maze (Mwm); Forced swim test (Fst); Tail suspension test (Tst)] were conducted. After analysis of behaviors, mice were decapitated and brain samples were collected, the hippocampus was removed from the whole-brain sample for biochemical analysis and histology. Administration of Tq at both doses prevent adverse effects of Rsp and increased time spent in open arm and lightbox in Lda and Epm respectively, decreased immobility period in Fst and Tst, decreased latency escape in Mwm, reduced lipid peroxidation (lpo) and inflammatory cytokines, increased defensive enzymes, reduced acetylcholinesterase (AChE) activity and corrected histological lines. It is concluded that Rsp-instigated behavioral and memory deficits were prevented by Tq possibly via its strong antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahra Muneer
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sheraz A Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
28
|
Franzoni F, Scarfò G, Guidotti S, Fusi J, Asomov M, Pruneti C. Oxidative Stress and Cognitive Decline: The Neuroprotective Role of Natural Antioxidants. Front Neurosci 2021; 15:729757. [PMID: 34720860 PMCID: PMC8548611 DOI: 10.3389/fnins.2021.729757] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Free- radicals (Oxygen and Nitrogen species) are formed in mitochondria during the oxidative phosphorylation. Their high reactivity, due to not-engaged electrons, leads to an increase of the oxidative stress. This condition affects above all the brain, that usually needs a large oxygen amount and in which there is the major possibility to accumulate "Reacting Species." Antioxidant molecules are fundamental in limiting free-radical damage, in particular in the central nervous system: the oxidative stress, in fact, seems to worsen the course of neurodegenerative diseases. The aim of this review is to sum up natural antioxidant molecules with the greatest neuroprotective properties against free radical genesis, understanding their relationship with the Central Nervous System.
Collapse
Affiliation(s)
- Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgia Scarfò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Guidotti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Muzaffar Asomov
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Pruneti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
29
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
30
|
Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, Rahman MS, Timalsina B, Munni YA, Sarker PP, Alam M, Mohibbullah M, Haque MN, Jahan I, Hossain MT, Afrin T, Rahman MM, Tahjib-Ul-Arif M, Mitra S, Oktaviani DF, Khan MK, Choi HJ, Moon IS, Kim B. Black Cumin ( Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021; 13:1784. [PMID: 34073784 PMCID: PMC8225153 DOI: 10.3390/nu13061784] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb-drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.J.U.); (P.P.S.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Gyeonggi-do, Anseong 17546, Korea;
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Partha Protim Sarker
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.J.U.); (P.P.S.)
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea
| | - Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh;
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh;
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Tania Afrin
- Interdisciplinary Institute for Food Security, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Mahbubur Rahman
- Research and Development Center, KNOTUS Co., Ltd., Yeounsu-gu, Incheon 22014, Korea;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Md Kawsar Khan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh;
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
31
|
Pal RR, Rajpal V, Singh P, Saraf SA. Recent Findings on Thymoquinone and Its Applications as a Nanocarrier for the Treatment of Cancer and Rheumatoid Arthritis. Pharmaceutics 2021; 13:775. [PMID: 34067322 PMCID: PMC8224699 DOI: 10.3390/pharmaceutics13060775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer causes a considerable amount of mortality in the world, while arthritis is an immunological dysregulation with multifactorial pathogenesis including genetic and environmental defects. Both conditions have inflammation as a part of their pathogenesis. Resistance to anticancer and disease-modifying antirheumatic drugs (DMARDs) happens frequently through the generation of energy-dependent transporters, which lead to the expulsion of cellular drug contents. Thymoquinone (TQ) is a bioactive molecule with anticancer as well as anti-inflammatory activities via the downregulation of several chemokines and cytokines. Nevertheless, the pharmacological importance and therapeutic feasibility of thymoquinone are underutilized due to intrinsic pharmacokinetics, including short half-life, inadequate biological stability, poor aqueous solubility, and low bioavailability. Owing to these pharmacokinetic limitations of TQ, nanoformulations have gained remarkable attention in recent years. Therefore, this compilation intends to critically analyze recent advancements in rheumatoid arthritis and cancer delivery of TQ. This literature search revealed that nanocarriers exhibit potential results in achieving targetability, maximizing drug internalization, as well as enhancing the anti-inflammatory and anticancer efficacy of TQ. Additionally, TQ-NPs (thymoquinone nanoparticles) as a therapeutic payload modulated autophagy as well as enhanced the potential of other drugs when given in combination. Moreover, nanoformulations improved pharmacokinetics, drug deposition, using EPR (enhanced permeability and retention) and receptor-mediated delivery, and enhanced anti-inflammatory and anticancer properties. TQ's potential to reduce metal toxicity, its clinical trials and patents have also been discussed.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Vasundhara Rajpal
- Department of Biotechology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India;
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| |
Collapse
|
32
|
Pal RR, Kumar D, Raj V, Rajpal V, Maurya P, Singh S, Mishra N, Singh N, Singh P, Tiwari N, Saraf SA. Synthesis of pH-sensitive crosslinked guar gum-g-poly(acrylic acid-co-acrylonitrile) for the delivery of thymoquinone against inflammation. Int J Biol Macromol 2021; 182:1218-1228. [PMID: 33991556 DOI: 10.1016/j.ijbiomac.2021.05.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022]
Abstract
The present work aims to synthesize the pH-sensitive crosslinked guar gum-g-poly(acrylic acid-co-acrylonitrile) [guar-g-(AA-co-ACN)] via microwave-assisted technique for the sustained release of thymoquinone. The synthesized material [guar-g-(AA-co-ACN)] was optimized by varying synthetic parameters viz. monomer concentration, reaction time, and microwave power to obtain the maximum yield of the crosslinked guar gum grafted product as well as maximum encapsulation of thymoquinone. The synthesized material [guar-g-poly(AA-co-ACN)] was characterized by FT-IR, SEM, XRD, NMR, zeta potential, and thermal techniques. This synthesized material was used to encapsulate thymoquinone (TQ) for effective nanotherapeutic delivery. In-vitro thymoquinone release behavior of guar-g-poly(AA-co-ACN) based nanoparticles (NpTGG) was investigated. The maximum thymoquinone release (78%) was achieved at pH 7.4 and time (6 h). The NpTGG also exhibited better antioxidant activity and hemocompatibility as compared to thymoquinone. Cytotoxicity of uar-g-(AA-co-ACN) and NpTGG was also evaluated against the human kidney VERO cell line and found to be nontoxic. Current research provides a cost-effective and green approach for the synthesis of guar-g-(AA-co-ACN) and NpTGG for sustained release of thymoquinone.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Deepak Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Vinit Raj
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Vasundhara Rajpal
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Samipta Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Raibarelly Road, U.P., Lucknow 226014, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India.
| |
Collapse
|
33
|
Dose-related biphasic effect of the Parkinson's disease neurotoxin MPTP, on the spread, accumulation, and toxicity of α-synuclein. Neurotoxicology 2021; 84:41-52. [PMID: 33549656 DOI: 10.1016/j.neuro.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease (PD), the second most common progressive neurodegenerative disorder, is characterized by the abnormal accumulation of intraneuronal inclusions enriched in aggregated α-synuclein (α-syn), known as Lewy bodies (LBs) and Lewy neurites (LNs), and significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the brain. Recent evidence suggests that the intrastriatal inoculation of α-syn preformed fibrils (PFF) in mice brain triggers endogenous α-syn in interconnected brain regions. 1-methyl, 4-phenyl, 1,2,3,6 tetrahydropyridine (MPTP), a mitochondrial neurotoxin, has been used previously to generate a PD mouse model. However, the common methods of MPTP exposure do not induce LB or α-syn aggregation in mice. In the present study, we evaluated the effect of different doses of MPTP (10 mg/kg.b.wt and/or 25 mg/kg.b.wt) on the spread, accumulation, and toxicity of endogenous α-syn in mice administered an intrastriatal injection of human α-syn PFF. METHODS We inoculated human WT α-syn PFF in mouse striatum. At 6 weeks post PFF injection, we challenged the animal with two different doses of MPTP (10 mg/kg.b.wt and 25 mg/kg.b.wt) once daily for five consecutive days. At 2 weeks from the start of the MPTP regimen, we collected the mice brain and performed immunohistochemical analysis, and Rotarod test to assess motor coordination and muscle strength before and after MPTP injection. RESULTS A single injection of human WT α-syn PFF in the mice striatum induced the propagation of α-syn, occurring as phosphorylated α-synuclein (pS129), towards the SNpc, within a very short time. Injection of a low dose of MPTP (10 mg/kg.b.wt) at 6 weeks post α-syn PFF inoculation further enhanced the spread, whereas a high dose of MPTP (25 mg/kg.b.wt.) reduced the spread. Majority of the accumulated α-syn were proteinase K resistant, as recognized using a conformation-specific α-syn antibody. Injection of α-syn PFF alone caused 12 % reduction in the number of tyrosine hydroxylase positive neurons while α-syn PFF + a low dose of MPTP caused 33 % reduction (loss), compared to the control mice injected with saline. This combination also reduced the motor coordination. Interestingly, a low dose of MPTP alone did not cause any significant reduction in the number of tyrosine hydroxylase positive neurons compared to saline treatment. Animals that received α-syn PFF and a high dose of MPTP showed massive activation of glial cells and decreased spread of α-syn, majority of which were detected in the nucleus. CONCLUSION Our results suggest that a combination of human WT α-syn PFF and a low dose of MPTP increases the pathological conversion and propagation of endogenous α-syn, and neurodegeneration, within a very short time. Our model can be used to study the mechanisms of α-syn propagation and screen for potential drugs against PD.
Collapse
|
34
|
Dong J, Zhang X, Wang S, Xu C, Gao M, Liu S, Li X, Cheng N, Han Y, Wang X, Han Y. Thymoquinone Prevents Dopaminergic Neurodegeneration by Attenuating Oxidative Stress Via the Nrf2/ARE Pathway. Front Pharmacol 2021; 11:615598. [PMID: 33519481 PMCID: PMC7840486 DOI: 10.3389/fphar.2020.615598] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Studies have indicated that oxidative stress plays a crucial role in the development of Parkinson's disease (PD) and other neurodegenerative conditions. Research has also revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) triggers the expression of antioxidant genes via a series of antioxidant response elements (AREs), thus preventing oxidative stress. Thymoquinone (TQ) is the bioactive component of Nigella sativa, a medicinal plant that exhibits antioxidant and neuroprotective effects. In the present study we examined whether TQ alleviates in vivo and in vitro neurodegeneration induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by acting as an activator of the Nrf2/ARE cascade. We showed that TQ significantly reduced MPP+-mediated cell death and apoptosis. Moreover, TQ significantly elevated the nuclear translocation of Nrf2 and significantly increased the subsequent expression of antioxidative genes such as Heme oxygenase 1 (HO-1), quinone oxidoreductase (NQO1) and Glutathione-S-Transferase (GST). The application of siRNA to silence Nrf2 led to an abolishment in the protective effects of TQ. We also found that the intraperitoneal injection of TQ into a rodent model of PD ameliorated oxidative stress and effectively mitigated nigrostriatal dopaminergic degeneration by activating the Nrf2-ARE pathway. However, these effects were inhibited by the injection of a lentivirus wrapped Nrf2 siRNA (siNrf2). Collectively, these findings suggest that TQ alleviates progressive dopaminergic neuropathology by activating the Nrf2/ARE signaling cascade and by attenuating oxidative stress, thus demonstrating that TQ is a potential novel drug candidate for the treatment of PD.
Collapse
Affiliation(s)
- Jianjian Dong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoming Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Shijing Wang
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China
| | - Chenchen Xu
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China
| | - Manli Gao
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Songyang Liu
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoxiao Li
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Nan Cheng
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Yongsheng Han
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Xun Wang
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| | - Yongzhu Han
- The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China.,Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
35
|
Ardah MT, Bharathan G, Kitada T, Haque ME. Ellagic Acid Prevents Dopamine Neuron Degeneration from Oxidative Stress and Neuroinflammation in MPTP Model of Parkinson's Disease. Biomolecules 2020; 10:E1519. [PMID: 33172035 PMCID: PMC7694688 DOI: 10.3390/biom10111519] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases and is characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta area. In the present study, treatment of EA for 1 week at a dose of 10 mg/kg body weight prior to MPTP (25 mg/kg body weight) was carried out. MPTP administration caused oxidative stress, as evidenced by decreased activities of superoxide dismutase and catalase, and the depletion of reduced glutathione with a concomitant rise in the lipid peroxidation product, malondialdehyde. It also significantly increased the pro-inflammatory cytokines and elevated the inflammatory mediators like cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Immunohistochemical analysis revealed a loss of dopamine neurons in the SNc area and a decrease in dopamine transporter in the striatum following MPTP administration. However, treatment with EA prior to MPTP injection significantly rescued the dopaminergic neurons and dopamine transporter. EA treatment further restored antioxidant enzymes, prevented the depletion of glutathione and inhibited lipid peroxidation, in addition to the attenuation of pro-inflammatory cytokines. EA also reduced the levels of COX-2 and iNOS. The findings of the present study demonstrate that EA protects against MPTP-induced PD and the observed neuroprotective effects can be attributed to its potent antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Mustafa T. Ardah
- Department of Biochemistry, College of Medicine and Health Sciences, UAEU, Al Ain, UAE; (M.T.A.); (G.B.)
| | - Greeshma Bharathan
- Department of Biochemistry, College of Medicine and Health Sciences, UAEU, Al Ain, UAE; (M.T.A.); (G.B.)
| | - Tohru Kitada
- Otawa-Kagaku Service, Parkinson’s Clinic and Research, Kamakura 247-0061, Japan;
| | - M. Emdadul Haque
- Department of Biochemistry, College of Medicine and Health Sciences, UAEU, Al Ain, UAE; (M.T.A.); (G.B.)
| |
Collapse
|
36
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
37
|
Isaev NK, Chetverikov NS, Stelmashook EV, Genrikhs EE, Khaspekov LG, Illarioshkin SN. Thymoquinone as a Potential Neuroprotector in Acute and Chronic Forms of Cerebral Pathology. BIOCHEMISTRY (MOSCOW) 2020; 85:167-176. [PMID: 32093593 DOI: 10.1134/s0006297920020042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thymoquinone is one of the main active components of the essential oil from black cumin (Nigella sativa) seeds. Thymoquinone exhibits a wide range of pharmacological activities, including neuroprotective action demonstrated in the models of brain ischemia/reperfusion, Alzheimer's and Parkinson's diseases, and traumatic brain injury. The neuroprotective effect of thymoquinone is mediated via inhibition of lipid peroxidation, downregulation of proinflammatory cytokines, maintenance of mitochondrial membrane potential, and prevention of apoptosis through inhibition of caspases-3, -8, and -9. Thymoquinone-based mitochondria-targeted antioxidants are accumulated in the mitochondria and exhibit neuroprotective properties in nanomolar concentrations. Thymoquinone reduces the negative effects of acute and chronic forms of brain pathologies. The mechanisms of the pharmacological action of thymoquinone and its chemical derivatives require more comprehensive studying. In this paper, we formulated the prospects of application of thymoquinone and thymoquinone-based drugs in the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- N K Isaev
- Research Center of Neurology, Moscow, 125367, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - N S Chetverikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | | | - E E Genrikhs
- Research Center of Neurology, Moscow, 125367, Russia
| | - L G Khaspekov
- Research Center of Neurology, Moscow, 125367, Russia.
| | | |
Collapse
|
38
|
Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020; 192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Protein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs. The past decade has witnessed the rapid progresses of this field, dozens of inhibitors have been screened and verified in vitro and in vivo, demonstrating inhibitory effects against the aggregation and misfolding of amyloidogenic proteins, together with beneficial effects. Natural products are major sources of small molecule amyloid inhibitors, a number of natural derived compounds have been identified with great bioactivities and translational prospects. Here, we review the non-polyphenolic natural inhibitors that potentially applicable for PMDs treatment, along with their working mechanisms. Future directions are proposed for the development and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yushuo Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430035, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
39
|
Cho B, Kim T, Huh YJ, Lee J, Lee YI. Amelioration of Mitochondrial Quality Control and Proteostasis by Natural Compounds in Parkinson's Disease Models. Int J Mol Sci 2019; 20:ijms20205208. [PMID: 31640129 PMCID: PMC6829248 DOI: 10.3390/ijms20205208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is a well-known age-related neurodegenerative disorder associated with longer lifespans and rapidly aging populations. The pathophysiological mechanism is a complex progress involving cellular damage such as mitochondrial dysfunction and protein homeostasis. Age-mediated degenerative neurological disorders can reduce the quality of life and also impose economic burdens. Currently, the common treatment is replacement with levodopa to address low dopamine levels; however, this does not halt the progression of PD and is associated with adverse effects, including dyskinesis. In addition, elderly patients can react negatively to treatment with synthetic neuroprotection agents. Recently, natural compounds such as phytochemicals with fewer side effects have been reported as candidate treatments of age-related neurodegenerative diseases. This review focuses on mitochondrial dysfunction, oxidative stress, hormesis, proteostasis, the ubiquitin‒proteasome system, and autophagy (mitophagy) to explain the neuroprotective effects of using natural products as a therapeutic strategy. We also summarize the efforts to use natural extracts to develop novel pharmacological candidates for treatment of age-related PD.
Collapse
Affiliation(s)
- Bongki Cho
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Taeyun Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Yu-Jin Huh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Yun-Il Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| |
Collapse
|