1
|
Cieślińska MW, Bialuk I, Dziemidowicz M, Szynaka B, Reszeć-Giełażyn J, Winnicka MM, Bonda TA. The Influence of Interleukin 6 Knockout on Age-Related Degenerative Changes in the Cerebellar Cortex of Mice. Cells 2025; 14:532. [PMID: 40214486 PMCID: PMC11989083 DOI: 10.3390/cells14070532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
This study investigates age-related neurodegeneration in the cerebellar cortex, emphasizing the role of IL-6 deficiency in preserving Purkinje cells. We found that apoptosis plays a minimal role in Purkinje cell loss by using 4-month- and 24-month-old wild-type (WT) and IL-6 knockout (IL-6KO) mice. At 24 months, WT mice exhibited severe Purkinje cell degeneration, including atrophic cell bodies, eosinophilic cytoplasm, pyknotic nuclei, mitochondrial disruption, and increased levels of lipofuscin-rich lysosomes. In contrast, IL-6KO mice showed fewer lysosomes, reduced mitochondrial damage, and less neuronal atrophy, indicating a neuroprotective effect. Lower p53 expression and decreased levels of its downstream effectors (p21, and Bax) in IL-6KO mice correlated with reduced cellular stress. Minimal changes in apoptotic markers (Bax and caspase-3) further reinforce the limited role of apoptosis. Neuroinflammation, marked by elevated GFAP, was prominent in aged WT mice but attenuated in IL-6KO mice. Reduced p53 accumulation, less severe neuroinflammation, and preserved metabolic homeostasis in IL-6KO mice correlated with improved Purkinje cell survival. These findings suggest that IL-6 accelerates neurodegeneration via p53-associated stress and inflammation, while IL-6 deficiency mitigates these effects. Targeting IL-6 signaling through anti-inflammatory strategies or IL-6 inhibition may offer a therapeutic approach for age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Magdalena Wiktoria Cieślińska
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Izabela Bialuk
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Magdalena Dziemidowicz
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Beata Szynaka
- Department of Histology and Embryology, Medical University of Bialystok, Waszyngtona 13, 15-269 Białystok, Poland
| | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Białystok, Poland
| | - Maria Małgorzata Winnicka
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Tomasz Andrzej Bonda
- Department of General and Experimental Pathology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| |
Collapse
|
2
|
Kolinko Y, Kralickova M, Cendelin J. Reduction of Microvessel Number and Length in the Cerebellum of Purkinje Cell Degeneration Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:471-478. [PMID: 37071329 DOI: 10.1007/s12311-023-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Degenerative effects of nerve tissues are often accompanied by changes in vascularization. In this regard, knowledge about hereditary cerebellar degeneration is limited. In this study, we compared the vascularity of the individual cerebellar components of 3-month-old wild-type mice (n = 8) and Purkinje cell degeneration (pcd) mutant mice, which represent a model of hereditary cerebellar degeneration (n = 8). Systematic random samples of tissue sections were processed, and laminin was immunostained to visualize microvessels. A computer-assisted stereology system was used to quantify microvessel parameters including total number, total length, and associated densities in cerebellar layers. Our results in pcd mice revealed a 45% (p < 0.01) reduction in the total volume of the cerebellum, a 28% (p < 0.05) reduction in the total number of vessels and a lower total length, approaching 50% (p < 0.001), compared to the control mice. In pcd mutants, cerebellar degeneration is accompanied by significant reduction in the microvascular network that is proportional to the cerebellar volume reduction therefore does not change density of in the cerebellar gray matter of pcd mice.
Collapse
Affiliation(s)
- Yaroslav Kolinko
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Milena Kralickova
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Cendelin
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
3
|
Pérez-Martín E, Pérez-Revuelta L, Barahona-López C, Pérez-Boyero D, Alonso JR, Díaz D, Weruaga E. Oleoylethanolamide Treatment Modulates Both Neuroinflammation and Microgliosis, and Prevents Massive Leukocyte Infiltration to the Cerebellum in a Mouse Model of Neuronal Degeneration. Int J Mol Sci 2023; 24:ijms24119691. [PMID: 37298639 DOI: 10.3390/ijms24119691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegenerative diseases involve an exacerbated neuroinflammatory response led by microglia that triggers cytokine storm and leukocyte infiltration into the brain. PPARα agonists partially dampen this neuroinflammation in some models of brain insult, but neuronal loss was not the triggering cause in any of them. This study examines the anti-inflammatory and immunomodulatory properties of the PPARα agonist oleoylethanolamide (OEA) in the Purkinje Cell Degeneration (PCD) mouse, which exhibits striking neuroinflammation caused by aggressive loss of cerebellar Purkinje neurons. Using real-time quantitative polymerase chain reaction and immunostaining, we quantified changes in pro- and anti-inflammatory markers, microglial density and marker-based phenotype, and overall leukocyte recruitment at different time points after OEA administration. OEA was found to modulate cerebellar neuroinflammation by increasing the gene expression of proinflammatory mediators at the onset of neurodegeneration and decreasing it over time. OEA also enhanced the expression of anti-inflammatory and neuroprotective factors and the Pparα gene. Regarding microgliosis, OEA reduced microglial density-especially in regions where it is preferentially located in PCD mice-and shifted the microglial phenotype towards an anti-inflammatory state. Finally, OEA prevented massive leukocyte infiltration into the cerebellum. Overall, our findings suggest that OEA may change the environment to protect neurons from degeneration caused by exacerbated inflammation.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Cristina Barahona-López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Pérez-Boyero
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
4
|
Hawkinson TR, Clarke HA, Young LEA, Conroy LR, Markussen KH, Kerch KM, Johnson LA, Nelson PT, Wang C, Allison DB, Gentry MS, Sun RC. In situ spatial glycomic imaging of mouse and human Alzheimer's disease brains. Alzheimers Dement 2022; 18:1721-1735. [PMID: 34908231 PMCID: PMC9198106 DOI: 10.1002/alz.12523] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 01/28/2023]
Abstract
N-linked protein glycosylation in the brain is an understudied facet of glucose utilization that impacts a myriad of cellular processes including resting membrane potential, axon firing, and synaptic vesicle trafficking. Currently, a spatial map of N-linked glycans within the normal and Alzheimer's disease (AD) human brain does not exist. A comprehensive analysis of the spatial N-linked glycome would improve our understanding of brain energy metabolism, linking metabolism to signaling events perturbed during AD progression, and could illuminate new therapeutic strategies. Herein we report an optimized in situ workflow for enzyme-assisted, matrix-assisted laser desorption and ionization (MALDI) mass spectrometry imaging (MSI) of brain N-linked glycans. Using this workflow, we spatially interrogated N-linked glycan heterogeneity in both mouse and human AD brains and their respective age-matched controls. We identified robust regional-specific N-linked glycan changes associated with AD in mice and humans. These data suggest that N-linked glycan dysregulation could be an underpinning of AD pathologies.
Collapse
Affiliation(s)
- Tara R. Hawkinson
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Harrison A. Clarke
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lyndsay E. A. Young
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Lindsey R. Conroy
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Kayla M. Kerch
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lance A. Johnson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T. Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ramon C. Sun
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Huang Y, Yuan M, Duan F, Yang Y, Lou B, Lin X. Inhibition of endoplasmic reticulum stress by 4-phenylbutyrate alleviates retinal inflammation and the apoptosis of retinal ganglion cells after ocular alkali burn in mice. Inflamm Res 2022; 71:577-590. [PMID: 35415762 DOI: 10.1007/s00011-022-01565-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Retinal ganglion cell (RGC) apoptosis is one of the most severe complications that causes permanent visual impairment following ocular alkali burn (OAB). Currently, very few treatment options exist for this condition. This study was conducted to determine the effect of 4-phenylbutyric acid (4-PBA) on endoplasmic reticulum (ER) stress after OAB using a well-established OAB mouse model. METHODS Ocular alkali burn was induced in C57BL/6 mouse corneas using 1 M NaOH. 4-PBA (10 mg/kg; 250 μL per injection) or saline (250 μL per injection) was injected intraperitoneally once per day for 3 days before the establishment of the OAB model. The apoptosis of retinal ganglion cells (RGCs) was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and the histological damage was examined by hematoxylin and eosin and immunofluorescence assay on retinal flat mounts. The key inflammatory response and the expression of ER stress-related markers in the retinal tissues were assessed by real-time PCR, western blotting and histologic analyses. RESULTS 4-PBA significantly alleviated the apoptosis of RGCs and prevented the structural damage of the retina, as determined by the evaluation of RGC density and retinal thickness. Inhibition of ER stress by 4-PBA decreased the expression of vital proinflammatory cytokines, tumor necrosis factor alpha, and interleukin-1 beta; and suppressed the activation of retinal microglial cells and nuclear factor-kappa B (NF-κB). 4-PBA reduced the expression of the ER stress molecules, glucose-regulated protein 78, activated transcription factor 6, inositol-requiring enzyme-1 (IRE1), X-box-binding protein 1 splicing, and CCAAT/enhancer-binding protein homologous protein, in the retinal tissues and RGCs of OAB mice. CONCLUSIONS The present study demonstrated that the inhibition of ER stress by 4-PBA alleviates the inflammatory response via the IRE1/NF-κB signaling pathway and protects the retina and RGCs from injury in an OAB mouse model. Such findings further suggest that 4-PBA might have potential therapeutic implications for OAB treatment.
Collapse
Affiliation(s)
- Yanqiao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Miner Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Del Pilar C, Lebrón-Galán R, Pérez-Martín E, Pérez-Revuelta L, Ávila-Zarza CA, Alonso JR, Clemente D, Weruaga E, Díaz D. The Selective Loss of Purkinje Cells Induces Specific Peripheral Immune Alterations. Front Cell Neurosci 2021; 15:773696. [PMID: 34916910 PMCID: PMC8671039 DOI: 10.3389/fncel.2021.773696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
The progression of neurodegenerative diseases is reciprocally associated with impairments in peripheral immune responses. We investigated different contexts of selective neurodegeneration to identify specific alterations of peripheral immune cells and, at the same time, discover potential biomarkers associated to this pathological condition. Consequently, a model of human cerebellar degeneration and ataxia -the Purkinje Cell Degeneration (PCD) mouse- has been employed, as it allows the study of different processes of selective neuronal death in the same animal, i.e., Purkinje cells in the cerebellum and mitral cells in the olfactory bulb. Infiltrated leukocytes were studied in both brain areas and compared with those from other standardized neuroinflammatory models obtained by administering either gamma radiation or lipopolysaccharide. Moreover, both myeloid and lymphoid splenic populations were analyzed by flow cytometry, focusing on markers of functional maturity and antigen presentation. The severity and type of neural damage and inflammation affected immune cell infiltration. Leukocytes were more numerous in the cerebellum of PCD mice, being located predominantly within those cerebellar layers mostly affected by neurodegeneration, in a completely different manner than the typical models of induced neuroinflammation. Furthermore, the milder degeneration of the olfactory bulb did not foster leukocyte attraction. Concerning the splenic analysis, in PCD mice we found: (1) a decreased percentage of several myeloid cell subsets, and (2) a reduced mean fluorescence intensity in those myeloid markers related to both antigen presentation and functional maturity. In conclusion, the selective degeneration of Purkinje cells triggers a specific effect on peripheral immune cells, fostering both attraction and functional changes. This fact endorses the employment of peripheral immune cell populations as concrete biomarkers for monitoring different neuronal death processes.
Collapse
Affiliation(s)
- Carlos Del Pilar
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Ester Pérez-Martín
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Laura Pérez-Revuelta
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Carmelo Antonio Ávila-Zarza
- IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Applied Statistics Group, Department of Statistics, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón Alonso
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Eduardo Weruaga
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - David Díaz
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Baltanás FC, Berciano MT, Santos E, Lafarga M. The Childhood-Onset Neurodegeneration with Cerebellar Atrophy (CONDCA) Disease Caused by AGTPBP1 Gene Mutations: The Purkinje Cell Degeneration Mouse as an Animal Model for the Study of this Human Disease. Biomedicines 2021; 9:biomedicines9091157. [PMID: 34572343 PMCID: PMC8464709 DOI: 10.3390/biomedicines9091157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Recent reports have identified rare, biallelic damaging variants of the AGTPBP1 gene that cause a novel and documented human disease known as childhood-onset neurodegeneration with cerebellar atrophy (CONDCA), linking loss of function of the AGTPBP1 protein to human neurodegenerative diseases. CONDCA patients exhibit progressive cognitive decline, ataxia, hypotonia or muscle weakness among other clinical features that may be fatal. Loss of AGTPBP1 in humans recapitulates the neurodegenerative course reported in a well-characterised murine animal model harbouring loss-of-function mutations in the AGTPBP1 gene. In particular, in the Purkinje cell degeneration (pcd) mouse model, mutations in AGTPBP1 lead to early cerebellar ataxia, which correlates with the massive loss of cerebellar Purkinje cells. In addition, neurodegeneration in the olfactory bulb, retina, thalamus and spinal cord were also reported. In addition to neurodegeneration, pcd mice show behavioural deficits such as cognitive decline. Here, we provide an overview of what is currently known about the structure and functional role of AGTPBP1 and discuss the various alterations in AGTPBP1 that cause neurodegeneration in the pcd mutant mouse and humans with CONDCA. The sequence of neuropathological events that occur in pcd mice and the mechanisms governing these neurodegenerative processes are also reported. Finally, we describe the therapeutic strategies that were applied in pcd mice and focus on the potential usefulness of pcd mice as a promising model for the development of new therapeutic strategies for clinical trials in humans, which may offer potential beneficial options for patients with AGTPBP1 mutation-related CONDCA.
Collapse
Affiliation(s)
- Fernando C. Baltanás
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-923294801
| | - María T. Berciano
- Department of Molecular Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| | - Eugenio Santos
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| |
Collapse
|
8
|
Bodakuntla S, Janke C, Magiera MM. Tubulin polyglutamylation, a regulator of microtubule functions, can cause neurodegeneration. Neurosci Lett 2021; 746:135656. [PMID: 33482309 DOI: 10.1016/j.neulet.2021.135656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases lead to a progressive demise of neuronal functions that ultimately results in neuronal death. Besides a large variety of molecular pathways that have been linked to the degeneration of neurons, dysfunctions of the microtubule cytoskeleton are common features of many human neurodegenerative disorders. Yet, it is unclear whether microtubule dysfunctions are causative, or mere bystanders in the disease progression. A so-far little explored regulatory mechanism of the microtubule cytoskeleton, the posttranslational modifications of tubulin, emerge as candidate mechanisms involved in neuronal dysfunction, and thus, degeneration. Here we review the role of tubulin polyglutamylation, a prominent modification of neuronal microtubules. We discuss the current understanding of how polyglutamylation controls microtubule functions in healthy neurons, and how deregulation of this modification leads to neurodegeneration in mice and humans.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, F-91401 Orsay, France; Université Paris-Saclay, CNRS UMR3348, F-91401 Orsay, France.
| |
Collapse
|
9
|
Expression of ATP/GTP Binding Protein 1 Has Prognostic Value for the Clinical Outcomes in Non-Small Cell Lung Carcinoma. J Pers Med 2020; 10:jpm10040263. [PMID: 33276627 PMCID: PMC7761608 DOI: 10.3390/jpm10040263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
ATP/GTP binding protein 1 (AGTPBP1) encodes a crucial protein, cytosolic carboxypeptidase 1 (CCP1), which plays a role in modulating the polyglutamylation of tubulin and has been studied in degenerative diseases. However, the role of AGTPBP1 in malignancy has not been completely studied yet. In this study, we examined the role of AGTPBP1 in cancer progression, its association with patient survival, and related mechanisms in lung cancer, using the A549 cell line and lung cancer gene expression datasets. AGTPBP1 knockdown increased the proliferation, migration, sphere formation, and drug resistance of A549 cells. Lung cancer datasets revealed significantly lower mRNA and protein expression levels of AGTPBP1 in lung cancer tissues, as compared to those in normal tissues. Importantly, AGTPBP1 expression positively correlated with patient survival. Analysis of co-expressed genes revealed that AGTPBP1 expression positively correlated with immune infiltration in lung cancer. Our results conclusively suggested that AGTPBP1 expression was correlated with cancer progression and immune infiltration in lung cancer.
Collapse
|
10
|
Embryonic Cerebellar Graft Morphology Differs in Two Mouse Models of Cerebellar Degeneration. THE CEREBELLUM 2020; 18:855-865. [PMID: 31418135 DOI: 10.1007/s12311-019-01067-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cerebellar diseases causing substantial cell loss often lead to severe functional deficits and restoration of cerebellar function is difficult. Neurotransplantation therapy could become a hopeful method, but there are still many limitations and unknown aspects. Studies in a variety of cerebellar mutant mice reflecting heterogeneity of human cerebellar degenerations show promising results as well as new problems and questions to be answered. The aim of this work was to compare the development of embryonic cerebellar grafts in adult B6CBA Lurcher and B6.BR pcd mutant mice and strain-matched healthy wild type mice. Performance in the rotarod test, graft survival, structure, and volume was examined 2 months after the transplantation or sham-operation. The grafts survived in most of the mice of all types. In both B6CBA and B6.BR wild type mice and in pcd mice, colonization of the host's cerebellum was a common finding, while in Lurcher mice, the grafts showed a low tendency to infiltrate the host's cerebellar tissue. There were no significant differences in graft volume between mutant and wild type mice. Nevertheless, B6CBA mice had smaller grafts than their B6.BR counterparts. The transplantation did not improve the performance in the rotarod test. The study showed marked differences in graft integration into the host's cerebellum in two types of cerebellar mutants, suggesting disease-specific factors influencing graft fate.
Collapse
|
11
|
Naughton M, McMahon J, Healy S, FitzGerald U. Profile of the unfolded protein response in rat cerebellar cortical development. J Comp Neurol 2019; 527:2910-2924. [PMID: 31132146 DOI: 10.1002/cne.24718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
The unfolded protein response (UPR) has been reported during normal development of cortical neurons and cerebellar white matter and may also contribute to the pathogenesis of neurological conditions, such as Marinesco-Sjogren syndrome and Borna virus infection, which result in cerebellar defects. The UPR is initiated when the processing capacity of the endoplasmic reticulum (ER) is overwhelmed. Misfolded proteins accumulate and can activate ER stress sensors; PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), activated transcription factor 6 (ATF6) and their downstream targets glucose-regulated protein 78 (GRP78), glucose-regulated protein 94 (GRP94) and protein disulfide isomerase (PDI). In order to provide a fuller appreciation of the possible importance of ER stress-associated proteins in the context of cerebellar disease, we have profiled the expression of ER stress sensors and their downstream targets in the developing cerebellar cortex in postnatal rat. Activation of PERK and IRE1 stress sensors was observed for the first time in normally developing granule cell precursors. A second proliferative pPERK-positive population was also detected in the internal granular layer (IGL). In general, the density of UPR protein-positive cells was found to decrease significantly when profiles in early and late postnatal ages were compared. These data may be relevant to studies of medulloblastoma and warrant further investigation.
Collapse
Affiliation(s)
- Michelle Naughton
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jill McMahon
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Sinéad Healy
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Una FitzGerald
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
12
|
Zhou L, Hossain MI, Yamazaki M, Abe M, Natsume R, Konno K, Kageyama S, Komatsu M, Watanabe M, Sakimura K, Takebayashi H. Deletion of exons encoding carboxypeptidase domain of Nna1 results in Purkinje cell degeneration (pcd
) phenotype. J Neurochem 2018; 147:557-572. [DOI: 10.1111/jnc.14591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Li Zhou
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - M. Ibrahim Hossain
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Manabu Abe
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Rie Natsume
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Kohtaro Konno
- Department of Anatomy; Faculty of Medicine; Hokkaido University; Sapporo Japan
| | - Shun Kageyama
- Department of Biochemistry; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - Masaaki Komatsu
- Department of Biochemistry; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - Masahiko Watanabe
- Department of Anatomy; Faculty of Medicine; Hokkaido University; Sapporo Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| |
Collapse
|
13
|
Cairns J, Swanson D, Yeung J, Sinova A, Chan R, Potluri P, Dickson P, Mittleman G, Goldowitz D. Abnormalities in the Structure and Function of Cerebellar Neurons and Neuroglia in the Lc/+ Chimeric Mouse Model of Variable Developmental Purkinje Cell Loss. THE CEREBELLUM 2017; 16:40-54. [PMID: 26837618 DOI: 10.1007/s12311-015-0756-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders characterized by impaired and disordered language, decreased social interactions, stereotyped and repetitive behaviors, and impaired fine and gross motor skills. It has been well established that cerebellar abnormalities are one of the most common structural changes seen in the brains of people diagnosed with autism. Common cerebellar pathology observed in autistic individuals includes variable loss of cerebellar Purkinje cells (PCs) and increased numbers of reactive neuroglia in the cerebellum and cortical brain regions. The Lc/+ mutant mouse loses 100 % of cerebellar PCs during the first few weeks of life and provided a valuable model to study the effects of developmental PC loss on underlying structural and functional changes in cerebellar neural circuits. Lurcher (Lc) chimeric mice were also generated to explore the link between variable cerebellar pathology and subsequent changes in the structure and function of cerebellar neurons and neuroglia. Chimeras with the most severe cerebellar pathology (as quantified by cerebellar PC counts) had the largest changes in cFos expression (an indirect reporter of neural activity) in cerebellar granule cells (GCs) and cerebellar nucleus (CN) neurons. In addition, Lc chimeras with the fewest PCs also had numerous reactive microglia and Bergmann glia located in the cerebellar cortex. Structural and functional abnormalities observed in the cerebella of Lc chimeras appeared to be along a continuum, with the degree of pathology related to the number of PCs in individual chimeras.
Collapse
Affiliation(s)
- James Cairns
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Doug Swanson
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
| | - Joanna Yeung
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
| | - Anna Sinova
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Ronny Chan
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
| | - Praneetha Potluri
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
| | - Price Dickson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, Muncie, IN, 47306, USA
| | - Dan Goldowitz
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4.
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4.
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3.
| |
Collapse
|
14
|
Abstract
The name of Jan Evangelista Purkyně and the cerebellum belong inseparably together. He was the first who saw and described the largest nerve cells in the brain, de facto in the cerebellum. The most distinguished researchers of the nervous system then showed him the highest recognition by naming these neurons as Purkinje cells. Through experiments by J. E. Purkyně and his followers properly functionally was attributed to the cerebellum share in precision of motor skills. Despite ongoing and fruitful research, after a relatively long time, especially in the last two decades, scientists had to constantly replenish and re-evaluate the traditional conception of the cerebellum and formulate a new one. It started in the early 1990s, when it was found that cerebellar cortex contains more neurons than the cerebral cortex. Shortly thereafter it was gradually revealed that such enormous numbers of neural cells are not without an impact on brain functions and that the cerebellum, except its traditional role in the motor skills, also participates in higher nervous activity. These new findings were obtained thanks to the introduction of modern methods of examination into the clinical praxis, and experimental procedures using animal models of cerebellar disorders described below.
Collapse
Affiliation(s)
- F Vožeh
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|
15
|
Song N, Kim N, Xiao R, Choi H, Chun HI, Kang MH, Kim JH, Seo K, Soundrarajan N, Do JT, Song H, Ge ZJ, Park C. Lack of Cytosolic Carboxypeptidase 1 Leads to Subfertility due to the Reduced Number of Antral Follicles in pcd3J-/- Females. PLoS One 2015; 10:e0139557. [PMID: 26452267 PMCID: PMC4599934 DOI: 10.1371/journal.pone.0139557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Females homozygous for the Purkinje cell degeneration mutation (pcd) are fertile, although the success rate is much lower than in the wild type. We performed detailed analysis of reproductive abnormalities of pcd females. The number of oocytes produced following exogenous gonadotropin treatment was much lower in pcd3J-/- females than in pcd3J+/+ females. Furthermore, the estrous cyclicity of pcd3J-/- females according to the appearance of the vagina was almost undetectable comparing to that of the wild type. Histological analyses and follicle counting of 4- and 8-week-old pcd3J-/- ovaries showed an increase in the number of secondary follicles and a decrease in the number of antral follicles, indicating that AGTPBP1/ CCP1 plays an important role in the development of secondary follicles into antral follicles. Consistent with a previous analysis of the pcd cerebellum, pcd3J-/- ovaries also showed a clear increase in the level of polyglutamylation. Gene expression analysis showed that both oocytes and cumulus cells express CCP1. However, Ccp4 and CCP6, which can compensate the function of CCP1, were not expressed in mouse ovaries. Failure of microtubule deglutamylation did not affect the structure and function of the meiotic spindle in properly aligning chromosomes in the center of the nucleus during meiosis in pcd3J-/- females. We also showed that the pituitary-derived growth and reproduction-related endocrine system functions normally in pcd3J-/- mice. The results of this study provide insight into additional functions of CCP1, which cannot be fully explained by the side chain deglutamylation of microtubules alone.
Collapse
Affiliation(s)
- Ning Song
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Nameun Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Rui Xiao
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Hojun Choi
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyo-Im Chun
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Min-Hee Kang
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Kunho Seo
- Colleges of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | | | - Jeong-Tae Do
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyuk Song
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Zhao-Jia Ge
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
16
|
Tanco S, Tort O, Demol H, Aviles FX, Gevaert K, Van Damme P, Lorenzo J. C-terminomics screen for natural substrates of cytosolic carboxypeptidase 1 reveals processing of acidic protein C termini. Mol Cell Proteomics 2014; 14:177-90. [PMID: 25381060 DOI: 10.1074/mcp.m114.040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic carboxypeptidases (CCPs) constitute a new subfamily of M14 metallocarboxypeptidases associated to axonal regeneration and neuronal degeneration, among others. CCPs are deglutamylating enzymes, able to catalyze the shortening of polyglutamate side-chains and the gene-encoded C termini of tubulin, telokin, and myosin light chain kinase. The functions of these enzymes are not entirely understood, in part because of the lack of information about C-terminal protein processing in the cell and its functional implications. By means of C-terminal COFRADIC, a positional proteomics approach, we searched for cellular substrates targets of CCP1, the most relevant member of this family. We here identified seven new putative CCP1 protein substrates, including ribosomal proteins, translation factors, and high mobility group proteins. Furthermore, we showed for the first time that CCP1 processes both glutamates as well as C-terminal aspartates. The implication of these C termini in molecular interactions furthermore suggests that CCP1-mediated shortening of acidic protein tails might regulate protein-protein and protein-DNA interactions.
Collapse
Affiliation(s)
- Sebastian Tanco
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Olivia Tort
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Hans Demol
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Francesc Xavier Aviles
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Kris Gevaert
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium;
| | - Julia Lorenzo
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
17
|
Zhao D, Liu Q, Ji Y, Wang G, He X, Tian W, Xu H, Lei T, Wang Y. Correlation between nitric oxide and early brain injury after subarachnoid hemorrhage. Int J Neurosci 2014; 125:531-9. [DOI: 10.3109/00207454.2014.951442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Shin HY, Park JH, Carp RI, Choi EK, Kim YS. Deficiency of prion protein induces impaired autophagic flux in neurons. Front Aging Neurosci 2014; 6:207. [PMID: 25202268 PMCID: PMC4142790 DOI: 10.3389/fnagi.2014.00207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/25/2014] [Indexed: 12/22/2022] Open
Abstract
Normal cellular prion protein (PrPC) is highly expressed in the central nervous system. The Zürich I Prnp-deficient mouse strain did not show an abnormal phenotype in initial studies, however, in later studies, deficits in exploratory behavior and short- and long-term memory have been revealed. In the present study, numerous autophagic vacuoles were found in neurons from Zürich I Prnp-deficient mice. The autophagic accumulation in the soma of cortical neurons in Zürich I Prnp-deficient mice was observed as early as 3 months of age, and in the hippocampal neurons at 6 months of age. Specifically, there is accumulation of electron dense pigments associated with autophagy in the neurons of Zürich I Prnp-deficient mice. Furthermore, autophagic accumulations were observed as early as 3 months of age in the CA3 region of hippocampal and cerebral cortical neuropils. The autophagic vacuoles increased with age in the hippocampus of Zürich I Prnp-deficient mice at a faster rate and to a greater extent than in normal C57BL/6J mice, whereas the cortex exhibited high levels that were maintained from 3 months old in Zürich I Prnp-deficient mice. The pigmented autophagic accumulation is due to the incompletely digested material from autophagic vacuoles. Furthermore, a deficiency in PrPC may disrupt the autophagic flux by inhibiting autophagosome-lysosomal fusion. Overall, our results provide insight into the protective role of PrPC in neurons, which may play a role in normal behavior and other brain functions.
Collapse
Affiliation(s)
- Hae-Young Shin
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea
| | - Jeong-Ho Park
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea
| | - Richard I Carp
- New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea ; Department of Biomedical Gerontology, Graduate School of Hallym University Chuncheon, Gangwon-do, South Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University Anyang, Gyeonggi-do, South Korea ; Department of Microbiology, College of Medicine, Hallym University Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
19
|
Dlugos CA. ATF6 and caspase 12 expression in Purkinje neurons in acute slices from adult, ethanol-fed rats. Brain Res 2014; 1577:11-20. [PMID: 24976582 DOI: 10.1016/j.brainres.2014.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to determine, whether previously reported ethanol-induced alterations to the smooth endoplasmic reticulum (SER), predispose Purkinje neurons (PN) to thapsigargin-induced endoplasmic reticulum (ER) stress. Thapsigargin blocks the sarco/endoplasmic Ca(2+) ATPase pump (SERCA 2), depleting the SER of calcium. Forty-one, eight month old Fischer 344 male rats were treated with either the AIN (American Institute of Nutrition) liquid control or ethanol diets for 10 (n=14), 20 (n=10), or 40(n=17) weeks. At the end of treatment, acute cerebellar slices were prepared by standard means. Cerebellar slices were treated with thapsigargin or as controls for three hours in oxygenated (95% CO2, 5% O2) ACSF (artificial cerebrospinal fluid). Slices were then fixed in 4% paraformaldehyde and sectioned on a freezing microtome. Free floating sections were stained with antibodies against activating transcription factor 6 (ATF6) or activated caspase 12 and calbindin. Results showed a significant increase in the activated caspase+PN dendrites in the EF rats along with a significant interaction due to enhanced expression of activated caspase 12 at 20 weeks. The density of ATF6 labeling was not different between the EF and PF groups and was confined to the PN soma. The finding of activated caspase and ATF6 expression in PN within both the EF and PF groups supports the finding of thapsigargin-induced ER stress. The finding of increased activated caspase 12 in the dendrites supports an increased tendency to ER stress and other dendritic deficits in the ethanol rats.
Collapse
Affiliation(s)
- Cynthia A Dlugos
- Department of Pathology and Anatomical Sciences, 206 Farber Hall, School of Medicine and Biomedical Sciences, University at Buffalo, NY 14214-3000, USA.
| |
Collapse
|
20
|
Cendelin J. From mice to men: lessons from mutant ataxic mice. CEREBELLUM & ATAXIAS 2014; 1:4. [PMID: 26331028 PMCID: PMC4549131 DOI: 10.1186/2053-8871-1-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023]
Abstract
Ataxic mutant mice can be used to represent models of cerebellar degenerative disorders. They serve for investigation of cerebellar function, pathogenesis of degenerative processes as well as of therapeutic approaches. Lurcher, Hot-foot, Purkinje cell degeneration, Nervous, Staggerer, Weaver, Reeler, and Scrambler mouse models and mouse models of SCA1, SCA2, SCA3, SCA6, SCA7, SCA23, DRPLA, Niemann-Pick disease and Friedreich ataxia are reviewed with special regard to cerebellar pathology, pathogenesis, functional changes and possible therapeutic influences, if any. Finally, benefits and limitations of mouse models are discussed.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague, Lidicka 1, 301 66 Plzen, Czech Republic ; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Plzen, Czech Republic
| |
Collapse
|
21
|
Berezniuk I, Sironi JJ, Wardman J, Pasek RC, Berbari NF, Yoder BK, Fricker LD. Quantitative peptidomics of Purkinje cell degeneration mice. PLoS One 2013; 8:e60981. [PMID: 23593366 PMCID: PMC3620535 DOI: 10.1371/journal.pone.0060981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Cytosolic carboxypeptidase 1 (CCP1) is a metallopeptidase that removes C-terminal and side-chain glutamates from tubulin. The Purkinje cell degeneration (pcd) mouse lacks CCP1 due to a mutation. Previously, elevated levels of peptides derived from cytosolic and mitochondrial proteins were found in adult pcd mouse brain, raising the possibility that CCP1 functions in the degradation of intracellular peptides. To test this hypothesis, we used a quantitative peptidomics technique to compare peptide levels in wild-type and pcd mice, examining adult heart, spleen, and brain, and presymptomatic 3 week-old amygdala and cerebellum. Contrary to adult mouse brain, young pcd brain and adult heart and spleen did not show a large increase in levels of intracellular peptides. Unexpectedly, levels of peptides derived from secretory pathway proteins were altered in adult pcd mouse brain. The pattern of changes for the intracellular and secretory pathway peptides in pcd mice was generally similar to the pattern observed in mice lacking primary cilia. Collectively, these results suggest that intracellular peptide accumulation in adult pcd mouse brain is a secondary effect and is not due to a role of CCP1 in peptide turnover.
Collapse
Affiliation(s)
- Iryna Berezniuk
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan J. Sironi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jonathan Wardman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Raymond C. Pasek
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Nicolas F. Berbari
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Bradley K. Yoder
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Lloyd D. Fricker
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Sharov V, Pal R, Dremina E, Michaelis E, Schöneich C. Fluorogenic tagging of protein 3-nitrotyrosine with 4-(aminomethyl)benzene sulfonate in tissues: a useful alternative to Immunohistochemistry for fluorescence microscopy imaging of protein nitration. Free Radic Biol Med 2012; 53:1877-85. [PMID: 22995636 PMCID: PMC3523807 DOI: 10.1016/j.freeradbiomed.2012.08.582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/01/2023]
Abstract
Protein tyrosine nitration is a common biomarker of biological aging and diverse pathologies associated with the excessive formation of reactive oxygen and nitrogen species. Recently, we suggested a novel fluorogenic derivatization procedure for the detection of 3-nitrotyrosine (3-NT) using benzylamine derivatives to convert specifically protein- or peptide-bound 3-NT to a highly fluorescent benzoxazole product. In this study, we applied this procedure to fluorogenic derivatization of protein 3-NT in sections from adult rat cerebellum to: (i) test this method for imaging nitrated proteins in fixed brain tissue sections and (ii) compare the chemical approach to immunohistochemical labeling with anti-3-NT antibodies. Immunofluorescence analysis of cerebellar sections using anti-3-NT antibodies showed differential levels of immunostaining in the molecular, Purkinje, and granule cell layers of the cerebellar cortex; in agreement with previous reports, the Purkinje cells were most highly labeled. Importantly, fluorogenic derivatization reactions of cerebellar proteins with 4-(aminomethyl)benzene sulfonic acid (ABS) and K(3)Fe(CN)(6) at pH 9, after sodium dithionite reduction of 3-NT to 3-aminotyrosine, showed a very similar pattern of relative intensity of cell labeling and improved resolution compared with antibody labeling. Our data demonstrate that ABS derivatization may be either a useful alternative to or a complementary approach to immunolabeling in imaging protein nitration in cells and tissues, including under conditions of dual labeling with antibodies to cell proteins, thus allowing for cellular colocalization of nitrated proteins and any protein of interest.
Collapse
Affiliation(s)
- V.S. Sharov
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - R. Pal
- Department of Pharmacology and Toxicology, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - E.S. Dremina
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - E.K. Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - C. Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
23
|
Gambhir V, Yildiz C, Mulder R, Siddiqui S, Guzzo C, Szewczuk M, Gee K, Basta S. The TLR2 agonists lipoteichoic acid and Pam3CSK4 induce greater pro-inflammatory responses than inactivated Mycobacterium butyricum. Cell Immunol 2012; 280:101-7. [DOI: 10.1016/j.cellimm.2012.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 11/30/2022]
|
24
|
Baltanás FC, Berciano MT, Valero J, Gómez C, Díaz D, Alonso JR, Lafarga M, Weruaga E. Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia 2012; 61:254-72. [PMID: 23047288 DOI: 10.1002/glia.22431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 09/06/2012] [Indexed: 01/22/2023]
Abstract
Purkinje Cell Degeneration (PCD) mice harbor a nna1 gene mutation which leads to an early and rapid degeneration of Purkinje cells (PC) between the third and fourth week of age. This mutation also underlies the death of mitral cells (MC) in the olfactory bulb (OB), but this process is slower and longer than in PC. No clear interpretations supporting the marked differences in these neurodegenerative processes exist. Growing evidence suggests that either beneficial or detrimental effects of gliosis in damaged regions would underlie these divergences. Here, we examined the gliosis occurring during PC and MC death in the PCD mouse. Our results demonstrated different glial reactions in both affected regions. PC disappearance stimulated a severe gliosis characterized by strong morphological changes, enhanced glial proliferation, as well as the release of pro-inflammatory mediators. By contrast, MC degeneration seems to promote a more attenuated glial response in the PCD OB compared with that of the cerebellum. Strikingly, cerebellar oligodendrocytes died by apoptosis in the PCD, whereas bulbar ones were not affected. Interestingly, the level of nna1 mRNA under normal conditions was higher in the cerebellum than in the OB, probably related to a faster neurodegeneration and stronger glial reaction in its absence. The glial responses may thus influence the neurodegenerative course in the cerebellum and OB of the mutant mouse brain, providing harmful and beneficial microenvironments, respectively.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castile and León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hart AD, Wyttenbach A, Hugh Perry V, Teeling JL. Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 2012; 26:754-65. [PMID: 22155499 PMCID: PMC3381227 DOI: 10.1016/j.bbi.2011.11.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022] Open
Abstract
Subtle regional differences in microglial phenotype exist in the adult mouse brain. We investigated whether these differences were amplified during ageing and following systemic challenge with lipopolysaccharide (LPS). We studied microglial morphology and phenotype in young (4mo) and aged (21mo) C57/BL6 mice using immunohistochemistry and quantified the expression levels of surface molecules on microglia in white and grey matter along the rostral-caudal neuraxis. We detected significant regional, age dependent differences in microglial phenotypes, with the microglia of white matter and caudal areas of the CNS exhibiting greater upregulation of CD11b, CD68, CD11c, F4/80 and FcγRI than grey matter and rostral CNS areas. Upregulation of CD11c with age was restricted to the white matter, as was the appearance of multinucleated giant cells. Systemic LPS caused a subtle upregulation of FcγRI after 24 h, but the other markers examined were not affected. Burrowing behaviour and static rod assays were used to assess hippocampal and cerebellar integrity. Aged mice exhibited exaggerated and prolonged burrowing deficits following systemic LPS injection, while in the absence of an inflammatory challenge aged mice performed significantly worse than young mice in the static rod test. Taken together, these findings show that the effects of age on microglial phenotype and functional integrity vary significantly between CNS compartments, as do, albeit to a lesser extent, the effects of systemic LPS.
Collapse
Affiliation(s)
- Adam D. Hart
- Corresponding author. Address: Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK. Fax: +44(0) 2380 795332.
| | | | | | | |
Collapse
|
26
|
Kyöstilä K, Cizinauskas S, Seppälä EH, Suhonen E, Jeserevics J, Sukura A, Syrjä P, Lohi H. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD) machinery. PLoS Genet 2012; 8:e1002759. [PMID: 22719266 PMCID: PMC3375262 DOI: 10.1371/journal.pgen.1002759] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/30/2012] [Indexed: 11/23/2022] Open
Abstract
Inherited ataxias are characterized by degeneration of the cerebellar structures, which results in progressive motor incoordination. Hereditary ataxias occur in many species, including humans and dogs. Several mutations have been found in humans, but the genetic background has remained elusive in dogs. The Finnish Hound suffers from an early-onset progressive cerebellar ataxia. We have performed clinical, pathological, and genetic studies to describe the disease phenotype and to identify its genetic cause. Neurological examinations on ten affected dogs revealed rapidly progressing generalized cerebellar ataxia, tremors, and failure to thrive. Clinical signs were present by the age of 3 months, and cerebellar shrinkage was detectable through MRI. Pathological and histological examinations indicated cerebellum-restricted neurodegeneration. Marked loss of Purkinje cells was detected in the cerebellar cortex with secondary changes in other cortical layers. A genome-wide association study in a cohort of 31 dogs mapped the ataxia gene to a 1.5 Mb locus on canine chromosome 8 (praw = 1.1×10−7, pgenome = 7.5×10−4). Sequencing of a functional candidate gene, sel-1 suppressor of lin-12-like (SEL1L), revealed a homozygous missense mutation, c.1972T>C; p.Ser658Pro, in a highly conserved protein domain. The mutation segregated fully in the recessive pedigree, and a 10% carrier frequency was indicated in a population cohort. SEL1L is a component of the endoplasmic reticulum (ER)–associated protein degradation (ERAD) machinery and has not been previously associated to inherited ataxias. Dysfunctional protein degradation is known to cause ER stress, and we found a significant increase in expression of nine ER stress responsive genes in the cerebellar cortex of affected dogs, supporting the pathogenicity of the mutation. Our study describes the first early-onset neurodegenerative ataxia mutation in dogs, establishes an ERAD–mediated neurodegenerative disease model, and proposes SEL1L as a new candidate gene in progressive childhood ataxias. Furthermore, our results have enabled the development of a genetic test for breeders. Hereditary ataxias are a heterogeneous group of rare disorders characterized by progressive cerebellar neurodegeneration. Several causative mutations have been identified in various forms of human ataxias. In addition to humans, inherited ataxias have been described in several other species, including the domestic dog. In this study, we have studied the clinical and genetic properties of cerebellar ataxia in the Finnish Hound dog breed. The breed suffers from a progressive ataxia that has an early onset before the age of 3 months. Affected puppies have difficulties in coordinating their movements and balance, and have to be euthanized due to rapidly worsening symptoms. Our pedigree analysis suggested an autosomal recessive mode of inheritance, which was confirmed by identifying a homozygous mutation in the SEL1L gene through genome-wide association and linkage analyses. The SEL1L protein functions in a protein quality control pathway that targets misfolded proteins to degradation in the endoplasmic reticulum. Mutations in the SEL1L gene have not been previously found in ataxias. Our study indicates SEL1L as a novel candidate gene for human childhood ataxias, establishes a large animal model to investigate mechanisms of cerebellar neurodegeneration, and enables carrier screening for breeding purposes.
Collapse
Affiliation(s)
- Kaisa Kyöstilä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | - Eija H. Seppälä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Esko Suhonen
- Small Animal Clinic Kontiolahti, Kontiolahti, Finland
| | | | - Antti Sukura
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Pernilla Syrjä
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
- * E-mail:
| |
Collapse
|
27
|
Berezniuk I, Vu HT, Lyons PJ, Sironi JJ, Xiao H, Burd B, Setou M, Angeletti RH, Ikegami K, Fricker LD. Cytosolic carboxypeptidase 1 is involved in processing α- and β-tubulin. J Biol Chem 2011; 287:6503-17. [PMID: 22170066 DOI: 10.1074/jbc.m111.309138] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Purkinje cell degeneration (pcd) mouse has a disruption in the gene encoding cytosolic carboxypeptidase 1 (CCP1). This study tested two proposed functions of CCP1: degradation of intracellular peptides and processing of tubulin. Overexpression (2-3-fold) or knockdown (80-90%) of CCP1 in human embryonic kidney 293T cells (HEK293T) did not affect the levels of most intracellular peptides but altered the levels of α-tubulin lacking two C-terminal amino acids (delta2-tubulin) ≥ 5-fold, suggesting that tubulin processing is the primary function of CCP1, not peptide degradation. Purified CCP1 produced delta2-tubulin from purified porcine brain α-tubulin or polymerized HEK293T microtubules. In addition, CCP1 removed Glu residues from the polyglutamyl side chains of porcine brain α- and β-tubulin and also generated a form of α-tubulin with two C-terminal Glu residues removed (delta3-tubulin). Consistent with this, pcd mouse brain showed hyperglutamylation of both α- and β-tubulin. The hyperglutamylation of α- and β-tubulin and subsequent death of Purkinje cells in pcd mice was counteracted by the knock-out of the gene encoding tubulin tyrosine ligase-like-1, indicating that this enzyme hyperglutamylates α- and β-tubulin. Taken together, these results demonstrate a role for CCP1 in the processing of Glu residues from β- as well as α-tubulin in vitro and in vivo.
Collapse
Affiliation(s)
- Iryna Berezniuk
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Baltanás FC, Casafont I, Lafarga V, Weruaga E, Alonso JR, Berciano MT, Lafarga M. Purkinje cell degeneration in pcd mice reveals large scale chromatin reorganization and gene silencing linked to defective DNA repair. J Biol Chem 2011; 286:28287-302. [PMID: 21700704 DOI: 10.1074/jbc.m111.246041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA repair protects neurons against spontaneous or disease-associated DNA damage. Dysfunctions of this mechanism underlie a growing list of neurodegenerative disorders. The Purkinje cell (PC) degeneration mutation causes the loss of nna1 expression and is associated with the postnatal degeneration of PCs. This PC degeneration dramatically affects nuclear architecture and provides an excellent model to elucidate the nuclear mechanisms involved in a whole array of neurodegenerative disorders. We used immunocytochemistry for histone variants and components of the DNA damage response, an in situ transcription assay, and in situ hybridization for telomeres to analyze changes in chromatin architecture and function. We demonstrate that the phosphorylation of H2AX, a DNA damage signal, and the trimethylation of the histone H4K20, a repressive mark, in extensive domains of genome are epigenetic hallmarks of chromatin in degenerating PCs. These histone modifications are associated with a large scale reorganization of chromatin, telomere clustering, and heterochromatin-induced gene silencing, all of them key factors in PC degeneration. Furthermore, ataxia telangiectasia mutated and 53BP1, two components of the DNA repair pathway, fail to be concentrated in the damaged chromatin compartments, even though the expression levels of their coding genes were slightly up-regulated. Although the mechanism by which Nna1 loss of function leads to PC neurodegeneration is undefined, the progressive accumulation of DNA damage in chromosome territories irreversibly compromises global gene transcription and seems to trigger PC degeneration and death.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, E-37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Gambhir V, Kim J, Siddiqui S, Taylor M, Byford V, Petrof EO, Jones G, Basta S. Influence of 1,25-dihydroxy vitamin D3 on TLR4-induced activation of antigen presenting cells is dependent on the order of receptor engagement. Immunobiology 2011; 216:988-96. [PMID: 21529994 DOI: 10.1016/j.imbio.2011.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/15/2011] [Accepted: 03/30/2011] [Indexed: 12/17/2022]
Abstract
The vitamin D metabolite, 1,25-(OH)₂D₃, binds the vitamin D receptor (VDR) to exert its regulatory effects at the transcription level. VDR is expressed in professional antigen-presenting cells (pAPCs), such as macrophages (Mø) and dendritic cells (DCs). We show for the first time that the 24-hydroxylase enzyme is activated in bone marrow-derived dendritic cell (BMDC), due to 1,25(OH)₂D₃ stimulation which resulted in the induction of its gene, CYP24A1. Furthermore, we provide evidence that the influence of 1,25-(OH)₂D₃ on TLR-4-L-induced activation of pAPC is dependent on the order of VDR and TLR-4 engagement. Thus, pre-treatment of pAPC with 1,25-(OH)₂D₃ partially inhibited LPS-induced nitric oxide (NO) production. However, these inhibitory effects were not observed when LPS and 1,25-(OH)₂D₃ were added simultaneously or when LPS preceded 1,25-(OH)₂D₃. Moreover, we found that 1,25-(OH)₂D₃ pre-treatment of pAPCs did not cause general suppression since it interfered with NO levels but not with the cytokines IL-6 or TNF-α. Consequently, engagement of VDR by 1,25-(OH)₂D₃ can partially interfere with TLR-4-L-induced activation of pAPCs only when it occurs before TLR-4 stimulation.
Collapse
Affiliation(s)
- Vandana Gambhir
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Reith RM, Way S, McKenna J, Haines K, Gambello MJ. Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration. Neurobiol Dis 2011; 43:113-22. [PMID: 21419848 DOI: 10.1016/j.nbd.2011.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/27/2011] [Indexed: 01/27/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a neurogenetic disorder that often causes brain abnormalities leading to epilepsy, developmental delay, and autism. TSC is caused by inactivating mutations in either of the genes encoding the proteins hamartin (TSC1) and tuberin (TSC2). These proteins form a heterodimer that inhibits the mammalian target of rapamycin complex 1 (mTORC1) pathway, controlling translation and cell growth. Loss of either protein results in dysregulated mTORC1 activation, an important aspect of TSC pathogenesis. About thirty percent of TSC patients have cerebellar pathology that is poorly understood. To investigate the effects of TSC on the cerebellum, we created a mouse model in which the Tsc2 gene was selectively deleted from Purkinje cells starting at postnatal day 6 (P6). The loss of Tsc2 caused a progressive increase in Purkinje cell size and subsequent death from apoptosis. Purkinje cell loss was predominantly cell type specific and associated with motor deficits. Immunohistochemical analysis showed that both endoplasmic reticulum (ER) and oxidative stress were increased in Tsc2-null Purkinje cells. The cell death and ER stress phenotypes were rescued by treatment with the mTORC1 inhibitor rapamycin. To assess whether the murine Purkinje cell loss has a correlate to the human TSC, we analyzed postmortem cerebellum samples from TSC patients and detected Purkinje cell loss in half of the samples. Our results establish a critical role for the TSC complex in Purkinje cell survival by regulating ER and oxidative stress and reveal a novel aspect of TSC neuropathology.
Collapse
Affiliation(s)
- R Michelle Reith
- University of Texas Health Science Center at Houston, Department of Pediatrics, Division of Medical Genetics, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Recio JS, Álvarez-Dolado M, Díaz D, Baltanás FC, Piquer-Gil M, Alonso JR, Weruaga E. Bone marrow contributes simultaneously to different neural types in the central nervous system through different mechanisms of plasticity. Cell Transplant 2011; 20:1179-92. [PMID: 21294954 DOI: 10.3727/096368910x552826] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies have reported the contribution of bone marrow-derived cells (BMDC) to the CNS, raising the possibility of using them as a new source to repair damaged brain tissue or restore neuronal function. This process has mainly been investigated in the cerebellum, in which a degenerative microenvironment has been suggested to be responsible for its modulation. The present study further analyzes the contribution of BMDC to different neural types in other adult brain areas, under both physiological and neurodegenerative conditions, together with the mechanisms of plasticity involved. We grafted genetically marked green fluorescent protein/Cre bone marrow in irradiated recipients: a) the PCD (Purkinje Cell Degeneration) mutant mice, suffering a degeneration of specific neuronal populations at different ages, and b) their corresponding healthy controls. These mice carried the conditional lacZ reporter gene to allow the identification of cell fusion events. Our results demonstrate that BMDC mainly generate microglial cells, although to a lesser extent a clear formation of neuronal types also exists. This neuronal recruitment was not increased by the neurodegenerative processes occurring in PCD mice, where BMDC did not contribute to rescuing the degenerated neuronal populations either. However, an increase in the number of bone marrow-derived microglia was found along the life span in both experimental groups. Six weeks after transplantation more bone marrow-derived microglial cells were observed in the olfactory bulb of the PCD mice compared to the control animals, where the degeneration of mitral cells was in process. In contrast, this difference was not observed in the cerebellum, where Purkinje cell degeneration had been completed. These findings demonstrated that the degree of neurodegenerative environment can foster the recruitment of neural elements derived from bone marrow, but also provide the first evidence that BMDC can contribute simultaneously to different encephalic areas through different mechanisms of plasticity: cell fusion for Purkinje cells and differentiation for olfactory bulb interneurons.
Collapse
Affiliation(s)
- Javier S Recio
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Kim N, Xiao R, Choi H, Kim JH, Sang-Jun U, Chankyu P. Abnormal sperm development in pcd(3J)-/- mice: the importance of Agtpbp1 in spermatogenesis. Mol Cells 2011; 31:39-48. [PMID: 21110128 PMCID: PMC3906870 DOI: 10.1007/s10059-011-0002-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022] Open
Abstract
Homozygous Purkinje cell degeneration (pcd) mutant males exhibit abnormal sperm development. Microscopic examination of the testes from pcd(3J)-/- mice at postnatal days 12, 15, 18 and 60 revealed histological differences, in comparison to wild-type mice, which were evident by day 18. Greatly reduced numbers of spermatocytes and spermatids were found in the adult testes, and apoptotic cells were identified among the differentiating germ cells after day 15. Our immunohistological analysis using an antihuman AGTPBP1 antibody showed that AGTPBP1 was expressed in spermatogenic cells between late stage primary spermatocytes and round spermatids. A global gene expression analysis from the testes of pcd(3J)-/- mice showed that expression of cyclin B3 and de-ubiquitinating enzymes USP2 and USP9y was altered by >1.5-fold compared to the expression levels in the wild-type. Our results suggest that the pcd mutant mice have defects in spermatogenesis that begin with the pachytene spermatocyte stage and continue through subsequent stages. Thus, Agtpbp1, the gene responsible for the pcd phenotype, plays an important role in spermatogenesis and is important for survival of germ cells at spermatocytes stage onward.
Collapse
Affiliation(s)
- Nameun Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Rui Xiao
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | | | | | | | - Park Chankyu
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
33
|
Li J, Gu X, Ma Y, Calicchio ML, Kong D, Teng YD, Yu L, Crain AM, Vartanian TK, Pasqualini R, Arap W, Libermann TA, Snyder EY, Sidman RL. Nna1 mediates Purkinje cell dendritic development via lysyl oxidase propeptide and NF-κB signaling. Neuron 2010; 68:45-60. [PMID: 20920790 DOI: 10.1016/j.neuron.2010.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2010] [Indexed: 01/19/2023]
Abstract
The molecular pathways controlling cerebellar Purkinje cell dendrite formation and maturation are poorly understood. The Purkinje cell degeneration (pcd) mutant mouse is characterized by mutations in Nna1, a gene discovered in an axonal regenerative context, but whose actual function in development and disease is unknown. We found abnormal development of Purkinje cell dendrites in postnatal pcd(Sid) mice and linked this deficit to a deletion mutation in exon 7 of Nna1. With single cell gene profiling and virus-based gene transfer, we analyzed a molecular pathway downstream to Nna1 underlying abnormal Purkinje cell dendritogenesis in pcd(Sid) mice. We discovered that mutant Nna1 dramatically increases intranuclear localization of lysyl oxidase propeptide, which interferes with NF-κB RelA signaling and microtubule-associated protein regulation of microtubule stability, leading to underdevelopment of Purkinje cell dendrites. These findings provide insight into Nna1's role in neuronal development and why its absence renders Purkinje cells more vulnerable.
Collapse
Affiliation(s)
- Jianxue Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu SH, Yang CN, Pan HC, Sung YJ, Liao KK, Chen WB, Lin WZ, Sheu ML. IL-13 downregulates PPAR-gamma/heme oxygenase-1 via ER stress-stimulated calpain activation: aggravation of activated microglia death. Cell Mol Life Sci 2010; 67:1465-76. [PMID: 20221786 PMCID: PMC11115918 DOI: 10.1007/s00018-009-0255-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/02/2009] [Accepted: 12/29/2009] [Indexed: 02/01/2023]
Abstract
Interleukin 13 (IL-13) has been shown to induce the death of activated microglia. We observed that IL-13, but not IL-4 or IL-10, significantly enhanced endoplasmic reticulum (ER) stress induction, apoptosis and death in microglia activated by lipopolysaccharide (LPS). IL-13 enhanced ER stress-regulated calpain activation and calpain-II expression in LPS-activated microglia. Calpain-II siRNA effectively reversed the IL-13 + LPS-activated caspase-12 activation. Expression of heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor-gamma (PPAR-gamma) was also increased in activated microglia, and this was effectively blocked by IL-13 and recombinant calpain. Both HO-1 inhibitor and PPAR-gamma antagonist augmented, but calpain inhibitor and PPAR-gamma agonists reversed, apoptosis induction in activated microglia. Transfection of PPAR-gamma siRNA effectively inhibited HO-1 protein expression in activated microglia. LPS stimulated transcriptional activation of HO-1 via an increase in PPAR-gamma DNA binding activity, which was reversed by IL-13. These results indicate that an ER stress-related calpain-down-regulated PPAR-gamma/HO-1 pathway is involved in the IL-13-enhanced activated death of microglia.
Collapse
Affiliation(s)
- Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fricker LD. Analysis of mouse brain peptides using mass spectrometry-based peptidomics: implications for novel functions ranging from non-classical neuropeptides to microproteins. MOLECULAR BIOSYSTEMS 2010; 6:1355-65. [PMID: 20428524 DOI: 10.1039/c003317k] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptides are known to play many important physiological roles in signaling. A large number of peptides have been detected in mouse brain extracts using mass spectrometry-based peptidomics studies, and 850 peptides have been identified. Half of these peptides are derived from secretory pathway proteins and many are known bioactive neuropeptides which activate G protein-coupled receptors; these are termed "classical neuropeptides". In addition, 427 peptides were identified that are derived from non-secretory pathway proteins; the majority are cystosolic, and the remainder are mitochondrial, nuclear, lysosomal, or membrane proteins. Many of these peptides represent the N- or C-terminus of the protein, rather than internal fragments, raising the possibility that they are formed by selective processing rather than protein degradation. In addition to consideration of the cleavage site required to generate the intracellular peptides, their potential functions are discussed. Several of the cytosolic peptides were previously found to interact with receptors and/or otherwise influence cellular activity; examples include hemorphins, hemopressins, diazepam binding inhibitor, and hippocampal cholinergic neurostimulating peptide. The possibility that these peptides are secreted from cells and function in cell-cell signaling is discussed. If these intracellular peptides can be shown to be secreted in levels sufficient to produce a biological effect, they would appropriately be called "non-classical neuropeptides" by analogy with non-classical neurotransmitters such as nitric oxide and anandamide. It is also possible that intracellular peptides function as "microproteins" and modulate protein-protein interactions; evidence for this function is discussed, along with future directions that are needed to establish this and other possible functions for peptides.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
36
|
Berezniuk I, Sironi J, Callaway MB, Castro LM, Hirata IY, Ferro ES, Fricker LD. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J 2010; 24:1813-23. [PMID: 20061535 DOI: 10.1096/fj.09-147942] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.
Collapse
Affiliation(s)
- Iryna Berezniuk
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
The ataxic Syrian hamster: an animal model homologous to the pcd mutant mouse? THE CEREBELLUM 2009; 8:202-10. [PMID: 19462216 DOI: 10.1007/s12311-009-0113-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 05/06/2009] [Indexed: 01/29/2023]
Abstract
A spontaneous model of cerebellar ataxia in the Syrian hamster is described. Breeding data indicate that the condition is hereditary and that the mode of inheritance is autosomal recessive. Homozygotes are smaller in size than the wild-type but have a normal appearance. Mutants show a moderate ataxia beginning at 7 weeks of age. Although affected adults exhibit significant atrophy in the cerebellum, other parts of the brain appear relatively normal by light microscopy. Mutants lose almost all Purkinje cells by 18 months of age and exhibit a moderate reduction in granule cell density, probably as a consequence of the primary loss of Purkinje cells. In the homozygous hamster brain, Nna1 expression is suppressed, similar to that previously observed in Purkinje cell degeneration (pcd) mutant mice. A phenotypic comparison of ataxic hamsters with the pcd mutant mice suggests that the influence of the causal allele in ataxic hamsters is considerably milder than most of the alleles found in the mutant mice.
Collapse
|
38
|
Protein nitration in placenta - functional significance. Placenta 2008; 29:985-94. [PMID: 18851882 DOI: 10.1016/j.placenta.2008.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 01/30/2023]
Abstract
Crucial roles of the placenta are disrupted in early and mid-trimester pregnancy loss, preeclampsia, eclampsia and intrauterine growth restriction. The pathophysiology of these disorders includes a relative hypoxia of the placenta, ischemia/reperfusion injury, an inflammatory response and oxidative stress. Reactive oxygen species including nitric oxide (NO), carbon monoxide and superoxide have been shown to participate in trophoblast invasion, regulation of placental vascular reactivity and other events. Superoxide, which regulates expression of redox sensitive genes, has been implicated in up-regulation of transcription factors, antioxidant production, angiogenesis, proliferation and matrix remodeling. When superoxide and nitric oxide are present in abundance, their interaction yields peroxynitrite a potent pro-oxidant, but also alters levels of nitric oxide, which in turn affect physiological functions. The peroxynitrite anion is extremely unstable thus evidence of its formation in vivo has been indirect via the occurrence of nitrated moieties including nitrated lipids and nitrotyrosine residues in proteins. Formation of 3-nitrotyrosine (protein nitration) is a "molecular fingerprint" of peroxynitrite formation. Protein nitration has been widely reported in a number of pathological states associated with inflammation but is reported to occur in normal physiology and is thought of as a prevalent, functionally relevant post-translational modification of proteins. Nitration of proteins can give either no effect, a gain or a loss of function. Nitration of a range of placental proteins is found in normal pregnancy but increased in pathologic pregnancies. Evidence is presented for nitration of placental signal transduction enzymes and transporters. The targets and extent of nitration of enzymes, receptors, transporters and structural proteins may markedly influence placental cellular function in both physiologic and pathologic settings.
Collapse
|
39
|
Chen J, Qin J, Liu X, Han Y, Yang Z, Chang X, Ji X. Nitric oxide-mediated neuronal apoptosis in rats with recurrent febrile seizures through endoplasmic reticulum stress pathway. Neurosci Lett 2008; 443:134-9. [DOI: 10.1016/j.neulet.2008.07.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
40
|
Holst MI, Maercker C, Pintea B, Masseroli M, Liebig C, Jankowski J, Miething A, Martini J, Schwaller B, Oberdick J, Schilling K, Baader SL. Engrailed-2 regulates genes related to vesicle formation and transport in cerebellar Purkinje cells. Mol Cell Neurosci 2008; 38:495-504. [DOI: 10.1016/j.mcn.2008.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 11/25/2022] Open
|
41
|
Kyuhou SI, Gemba H. Fast cortical oscillation after thalamic degeneration: pivotal role of NMDA receptor. Biochem Biophys Res Commun 2007; 356:187-92. [PMID: 17349613 DOI: 10.1016/j.bbrc.2007.02.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/20/2007] [Indexed: 11/19/2022]
Abstract
We examined electrophysiological and molecular changes of the thalamocortical system after thalamic degeneration in Purkinje cell degeneration (pcd) mice. In pcd mice, neurons in specific thalamic nuclei including the ventral medial geniculate nucleus began to degenerate around postnatal day 50, whereas the visual thalamic nucleus and nonspecific thalamic nuclei remained almost intact. In association with the morphological changes, auditory evoked potentials in the primary auditory cortex (AC) began to decrease gradually. Fast Fourier transform analysis of spontaneous cortical field potentials revealed that fast oscillation (FO) around 25 Hz occurred in the AC but not in the visual cortex. Quantitative mRNA analysis demonstrated that expression of the N-methyl-D-aspartate (NMDA) receptor was up-regulated in the AC but not in the visual cortex. Systemic administration of an NMDA antagonist abolished the FO in the AC. These results indicate that increased NMDA activity may cause the FO in the AC of pcd mice.
Collapse
Affiliation(s)
- Shin-ichi Kyuhou
- Department of Physiology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan.
| | | |
Collapse
|
42
|
Wang X, Wang B, Fan Z, Shi X, Ke ZJ, Luo J. Thiamine deficiency induces endoplasmic reticulum stress in neurons. Neuroscience 2007; 144:1045-56. [PMID: 17137721 PMCID: PMC1819404 DOI: 10.1016/j.neuroscience.2006.10.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 10/23/2022]
Abstract
Thiamine (vitamin B1) deficiency (TD) causes region selective neuronal loss in the brain; it has been used to model neurodegeneration that accompanies mild impairment of oxidative metabolism. The mechanisms for TD-induced neurodegeneration remain incompletely elucidated. Inhibition of protein glycosylation, perturbation of calcium homeostasis and reduction of disulfide bonds provoke the accumulation of unfolded proteins in the endoplasmic reticulum (ER), and cause ER stress. Recently, ER stress has been implicated in a number of neurodegenerative models. We demonstrated here that TD up-regulated several markers of ER stress, such as glucose-regulated protein (GRP) 78, growth arrest and DNA-damage inducible protein or C/EBP-homologus protein (GADD153/Chop), phosphorylation of eIF2alpha and cleavage of caspase-12 in the cerebellum and the thalamus of mice. Furthermore, ultrastructural analysis by electron microscopic study revealed an abnormality in ER structure. To establish an in vitro model of TD in neurons, we treated cultured cerebellar granule neurons (CGNs) with amprolium, a potent inhibitor of thiamine transport. Exposure to amprolium caused apoptosis and the generation of reactive oxygen species in CGNs. Similar to the observation in vivo, TD up-regulated markers for ER stress. Treatment of a selective inhibitor of caspase-12 significantly alleviated amprolium-induced death of CGNs. Thus, ER stress may play a role in TD-induced brain damage.
Collapse
Affiliation(s)
- X Wang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Sajdel-Sulkowska EM, Nguon K, Sulkowski ZL, Lipinski B. Potential Role of Oxidative Stress in Mediating the Effect of Altered Gravity on the Developing Rat Cerebellum. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2007; 40:1414-1420. [PMID: 18438448 PMCID: PMC2344128 DOI: 10.1016/j.asr.2007.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that exposure to hypergravity results in oxidative stress that may contribute to the decrease in Purkinje cell number and the impairment of motor coordination in hypergravity-exposed rat neonates. To test this hypothesis we compared cerebellar oxidative stress marker 3-nitrotyrosine (3-NT; an index of oxidative protein modification) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG; an index of oxidative DNA damage) between stationary control (SC) and rat neonates exposed to 1.65 G (HG) on a 24-ft centrifuge from gestational day (G) 8 to P21. The levels of 3-NT and 8-OH-dG were determined by specific ELISAs. We also compared the Purkinje cell number (stereorologically) and rotarod performance between the two groups. The levels of 3-NT were increased only in HG females on P6 and on P12 in the cerebellum, and only in HG females on P12 in the extracellabellar tissue. Limited cerebellar data suggests an increase in the levels of 8-OH-dG on P12 only in HG females. In extracerebellar tissue the increase in 8-OH-dG levels was observed in both HG males and HG females except on P6 when it was only observed in HG males. While preliminary, these data suggest that the effect of hypergravity on the developing brain is sex-dependent and may involve oxidative stress. Oxidative stress may, in turn, contribute to the decrease Purkinje cell number and impaired motor behavior observed in hypergravity-exposed rats.
Collapse
Affiliation(s)
- Elizabeth M. Sajdel-Sulkowska
- Department of Psychiatry, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
| | - Kosal Nguon
- Department of Psychiatry, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Boguslaw Lipinski
- Department of Psychiatry, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
44
|
Williams BL, Lipkin WI. Endoplasmic reticulum stress and neurodegeneration in rats neonatally infected with borna disease virus. J Virol 2006; 80:8613-26. [PMID: 16912310 PMCID: PMC1563873 DOI: 10.1128/jvi.00836-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Borna disease virus infection of neonatal rats results in a characteristic behavioral syndrome and apoptosis of subsets of neurons in the hippocampus and cerebellum (neonatal Borna disease [NBD]). The cellular mechanisms leading to neurodevelopmental damage in NBD have not been fully elucidated. Insights into this model may have general implications for understanding the pathogenesis of virus-associated neurodevelopmental damage. Here we report the presence of endoplasmic reticulum (ER) stress markers and activation of the unfolded protein response in the NBD hippocampus and cerebellum. Specific findings included enhanced PERK-mediated phosphorylation of eif2alpha and concomitant regulation of ATF4 translation; IRE1-mediated splicing of XBP1 mRNA; and cleavage of the ATF6 protein in NBD rat brains. We found evidence for regional and cell type-specific divergence in the expression of ER stress-induced proapoptotic and quality control signals. Our results demonstrate that ER stress induction in death-susceptible Purkinje neurons in NBD is associated with the expression of the proapoptotic molecule CHOP in the absence of compensatory expression of the ER quality control molecules Bip and protein disulfide isomerase. In contrast, ER stress in death-resistant astrocytes is associated with complementary expression of CHOP and ER quality control signals. These results implicate an imbalance between ER stress-mediated apoptosis and survival signaling as a critical determinant of neural cell fate in NBD.
Collapse
Affiliation(s)
- B L Williams
- Jerome L. and Dawn Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
45
|
Valero J, Berciano MT, Weruaga E, Lafarga M, Alonso JR. Pre-neurodegeneration of mitral cells in the pcd mutant mouse is associated with DNA damage, transcriptional repression, and reorganization of nuclear speckles and Cajal bodies. Mol Cell Neurosci 2006; 33:283-95. [PMID: 16978877 DOI: 10.1016/j.mcn.2006.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/04/2006] [Accepted: 08/01/2006] [Indexed: 01/01/2023] Open
Abstract
DNA damage and impairment of its repair underlie several neurodegenerative diseases. The Purkinje cell degeneration (pcd) mutation causes the loss of Nna1 expression and is associated with a selective and progressive degeneration of specific neuronal populations, including mitral cells in the olfactory bulb. Using an in situ transcription assay, molecular markers for both nuclear compartments and components of the DNA damage/repair pathway, and ultrastructural analysis, here we demonstrate that the pcd mutation induces the formation of DNA damage/repair foci in mitral cells. Furthermore, this effect is associated with transcriptional inhibition, heterochromatinization, nucleolar segregation and the reorganization of nuclear speckles of splicing factors and Cajal bodies. The most significant cytoplasmic alteration observed was a partial replacement of rough endoplasmic reticulum cisternae by a larger amount of free ribosomes, while other organelles were structurally preserved. The tools employed in this work may be of use for the early detection of predegenerative processes in neurodegenerative disorders and for validating rescue strategies.
Collapse
Affiliation(s)
- Jorge Valero
- Laboratorio de Plasticidad Neuronal y Neurorreparación, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca. Avd. Alfonso X el Sabio s/n, E-37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
46
|
Wang T, Morgan JI. The Purkinje cell degeneration (pcd) mouse: an unexpected molecular link between neuronal degeneration and regeneration. Brain Res 2006; 1140:26-40. [PMID: 16942761 DOI: 10.1016/j.brainres.2006.07.065] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
The spontaneous autosomal recessive mouse mutation, Purkinje cell degeneration (pcd), was first identified through its ataxic behavior. Since its discovery in the 1970s, the strain has undergone extensive investigation, although another quarter century elapsed until the mutant gene (agtpbp1 a.k.a. Nna1) underlying the pcd phenotype was identified. As Nna1 was initially discovered as a gene induced in motor neurons following axotomy the finding that its loss leads to selective neuronal degeneration points to a novel and unexpected common molecular mechanism contributing to the apparently opposing processes of degeneration and regeneration. The elucidation of this mechanism may of course have significant implications for an array of neurological disorders. Here we will first review the principle features of the pcd phenotype and then discuss the functional implications of more recent findings emanating from the characterization of Nna1, the protein that is lost in pcd. We also provide new data on the genetic dissection of the cell death pathways operative in pcd(3J) mice, proving that granule cell death and Purkinje cell death in these mice have distinct molecular bases. We also provide new information on the structure of mouse Nna1 as well as Nna1 protein levels in pcd(3J) mice.
Collapse
Affiliation(s)
- Taiyu Wang
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
47
|
Blanco A, Moyano R, Vivo J, Flores-Acuña R, Molina A, Blanco C, Monterde JG. Purkinje Cell Apoptosis in Arabian Horses with Cerebellar Abiotrophy. ACTA ACUST UNITED AC 2006; 53:286-7. [PMID: 16901270 DOI: 10.1111/j.1439-0442.2006.00836.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purkinje cerebellar cells were studied in three Arabian horses aged between 6 and 8 months with clinical disorders in their movements, tremors and ataxia; the occurrence of apoptosis in this cell population was investigated by the (terminal deoxynucleotidyl transferase biotin-dUTP nick-end labelling (TUNEL) method. Both optical and electron microscopical images showed a scant number of Purkinje cells, most of them with morphological features of apoptosis such as condensation of the nucleus and cytoplasm as well as segregation and fragmentation of the nucleus into apoptotic bodies. The TUNEL technique revealed a substantial number (65%) of positive immunoreactive Purkinje cells.
Collapse
Affiliation(s)
- A Blanco
- Department of Comparative Anatomy and Pathological Anatomy, Veterinary Faculty, University of Córdoba, Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|