1
|
Dittmann NL, Chen L, Voronova A. Regulation of neural stem cells by innervating neurons. J Neurochem 2025; 169:e16287. [PMID: 39775528 PMCID: PMC11707326 DOI: 10.1111/jnc.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states. Recently, NPCs have been found to express neurotransmitter receptors, respond to electrical stimulation and interact with neurons, suggesting that neuron-NPC communication is an emerging critical regulator of NPC biology. In this review, we discuss reports that demonstrate neuronal innervation and control of the neurogenic niches. We discuss the role of innervating neurons in regulating NPC fates, such as activation, proliferation, and differentiation. Our review focuses primarily on the innervation of the SVZ niche by the following neuronal types: glutamatergic, GABAergic projection and interneurons, cholinergic, dopaminergic, serotonergic, neuropeptidergic, nitrergic, and noradrenergic. We also discuss the origins of SVZ niche innervating neurons, such as striatum, cortex, basal ganglia, raphe nuclei, substantia nigra and ventral tegmental area, hypothalamus, and locus coeruleus. Our review highlights the various roles of innervating neurons in SVZ NPC fates in a spatiotemporal manner and emphasizes a need for future investigation into the impact of neuronal innervation on NPC gliogenesis.
Collapse
Affiliation(s)
| | - Lauren Chen
- Department of Medical Genetics, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Anastassia Voronova
- Neurosciences and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Faculty of Medicine & Dentistry, MS CentreUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Shemiakova TS, Efimova EV, Gainetdinov RR. TAARs as Novel Therapeutic Targets for the Treatment of Depression: A Narrative Review of the Interconnection with Monoamines and Adult Neurogenesis. Biomedicines 2024; 12:1263. [PMID: 38927470 PMCID: PMC11200894 DOI: 10.3390/biomedicines12061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Depression is a common mental illness of great concern. Current therapy for depression is only suitable for 80% of patients and is often associated with unwanted side effects. In this regard, the search for and development of new antidepressant agents remains an urgent task. In this review, we discuss the current available evidence indicating that G protein-coupled trace amine-associated receptors (TAARs) might represent new targets for depression treatment. The most frequently studied receptor TAAR1 has already been investigated in the treatment of schizophrenia, demonstrating antidepressant and anxiolytic properties. In fact, the TAAR1 agonist Ulotaront is currently undergoing phase 2/3 clinical trials testing its safety and efficacy in the treatment of major depressive disorder and generalized anxiety disorder. Other members of the TAAR family (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) are not only involved in the innate olfaction of volatile amines, but are also expressed in the limbic brain areas. Furthermore, animal studies have shown that TAAR2 and TAAR5 regulate emotional behaviors and thus may hold promise as potential antidepressant targets. Of particular interest is their connection with the dopamine and serotonin systems of the brain and their involvement in the regulation of adult neurogenesis, known to be affected by the antidepressant drugs currently in use. Further non-clinical and clinical studies are necessary to validate TAAR1 (and potentially other TAARs) as novel therapeutic targets for the treatment of depression.
Collapse
Affiliation(s)
- Taisiia S. Shemiakova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (T.S.S.); (E.V.E.)
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (T.S.S.); (E.V.E.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia; (T.S.S.); (E.V.E.)
- Saint-Petersburg University Hospital, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Díaz-Piña DA, Rivera-Ramírez N, García-López G, Díaz NF, Molina-Hernández A. Calcium and Neural Stem Cell Proliferation. Int J Mol Sci 2024; 25:4073. [PMID: 38612887 PMCID: PMC11012558 DOI: 10.3390/ijms25074073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.
Collapse
Affiliation(s)
- Dafne Astrid Díaz-Piña
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
- Facultad de Medicina, Circuito Exterior Universitario, Universidad Nacional Autónoma de México Universitario, Copilco Universidad, Coyoacán, Ciudad de México 04360, Mexico
| | - Nayeli Rivera-Ramírez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| |
Collapse
|
4
|
Ishizuka T, Nagata W, Nomura-Takahashi S, Satoh Y. Effects of oxidized low-density lipoprotein on differentiation of mouse neural progenitor cells into neural cells. Eur J Pharmacol 2020; 888:173456. [DOI: 10.1016/j.ejphar.2020.173456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
|
5
|
Wang XY, Yu J, Zhang Y, Zhang FY, Liu KJ, Xiang B. Phenylephrine alleviates 131I damage in submandibular gland through promoting endogenous stem cell regeneration via lissencephaly-1 upregulation. Toxicol Appl Pharmacol 2020; 396:114999. [PMID: 32278511 DOI: 10.1016/j.taap.2020.114999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 01/07/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. 131I ablation therapy is an effective treatment for patients with differentiated thyroid cancer (DTC) but frequently causes radiation damage in salivary glands (SGs). Stem cell-based regenerative therapy has been found to reduce radiation sialadenitis. We hypothesize that microtubule motor-regulating protein lissencephaly-1 (LIS1) may be a key stem cell regulator responsible for its efficacy and that upregulating LIS1 would decrease131I-induced radiation sialadenitis. Here, we report that LIS1 was reduced by 131I in submandibular glands (SMGs) of rats, using both proteomic analysis and Western blot approach. Moreover, the levels of LIS1-Sca-1 and LIS1-SOX2 were downregulated by 131I together with the decrease of LIS1. In contrast, phenylephrine pretreatment enhanced LIS1 and improved the co-expressions and co-localizations of LIS1-Sca-1 and LIS1-SOX2 in 131I-irradiated SMGs. Since Sca-1 and SOX2 are the established stem cell biomarkers in salivary gland, our findings demonstrate that LIS1 may be a potential target for regulating stem cell maintenance in irradiated SGs. Importantly, phenylephrine may have the ability to promote endogenous stem cell regeneration in SMGs via upregulating the LIS1/Sca-1 and LIS1/SOX2 signaling pathways, suggesting that phenylephrine application before 131I ablation therapy may provide a practical and effective way to prevent radiation sialadenitis for DTC patients.
Collapse
Affiliation(s)
- Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jing Yu
- Department of Nuclear Medicine, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Fu Yin Zhang
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
6
|
Pilipović I, Vujnović I, Stojić-Vukanić Z, Petrović R, Kosec D, Nacka-Aleksić M, Jasnić N, Leposavić G. Noradrenaline modulates CD4+ T cell priming in rat experimental autoimmune encephalomyelitis: a role for the α 1-adrenoceptor. Immunol Res 2020; 67:223-240. [PMID: 31396845 DOI: 10.1007/s12026-019-09082-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pharmacological blockade of α1-adrenoceptor is shown to influence development of experimental autoimmune encephalomyelitis (EAE), an IL-17-producing CD4+TCR+ (Th17) cell-mediated disease mimicking multiple sclerosis. Considering significance of CD4+ cell priming for the clinical outcome of EAE, the study examined α1-adrenoceptor-mediated influence of catecholamines, particularly those derived from draining lymph node (dLN) cells (as catecholamine supply from nerve fibers decreases with the initiation of autoimmune diseases) for CD4+ cell priming. The results confirmed diminishing effect of immunization on nerve fiber-derived noradrenaline supply and showed that antigen presenting and CD4+ cells synthesize catecholamines, while antigen presenting cells and only CD4+CD25+Foxp3+ regulatory T cells (Tregs) express α1-adrenoceptor. The analysis of influence of α1-adrenoceptor antagonist prazosin on the myelin basic protein (MBP)-stimulated CD4+ lymphocytes in dLN cell culture showed their diminished proliferation in the presence of prazosin. This was consistent with prazosin enhancing effect on Treg frequency and their Foxp3 expression in these cultures. The latter was associated with upregulation of TGF-β expression. Additionally, prazosin decreased antigen presenting cell activation and affected their cytokine profile by diminishing the frequency of cells that produce Th17 polarizing cytokines (IL-1β and IL-23) and increasing that of IL-10-producing cells. Consistently, the frequency of all IL-17A+ cells and those co-expressing GM-CSF within CD4+ lymphocytes was decreased in prazosin-supplemented MBP-stimulated dLN cell cultures. Collectively, the results indicated that dLN cell-derived catecholamines may influence EAE development by modulating interactions between distinct subtypes of CD4+ T cells and antigen presenting cells through α1-adrenoceptor and consequently CD4+ T cell priming.
Collapse
MESH Headings
- Animals
- Biomarkers
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Immunization
- Immunophenotyping
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Male
- Norepinephrine/pharmacology
- Rats
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Nebojša Jasnić
- Institute for Physiology and Biochemistry, University of Belgrade-Faculty of Biology, Studentski trg 16, Belgrade, 11000, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
7
|
Saxena S, Hillis AE. An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Rev Neurother 2017; 17:1091-1107. [PMID: 28847186 DOI: 10.1080/14737175.2017.1373020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Aphasia is among the most debilitating outcomes of stroke. Aphasia is a language disorder occurring in 10-30% of stroke survivors. Speech and Language Therapy (SLT) is the gold standard, mainstay treatment for aphasia, but gains from SLT may be incomplete. Pharmaceutical and noninvasive brain stimulation (NIBS) techniques may augment the effectiveness of SLT. Areas covered: Herein reviewed are studies of the safety and efficacy of these adjunctive interventions for aphasia, including randomized placebo-controlled and open-label trials, as well as case series from Pubmed, using search terms 'pharmacological,' 'tDCS' or 'TMS' combined with 'aphasia' and 'stroke.' Expert commentary: Relatively small studies have included participants with a range of aphasia types and severities, using inconsistent interventions and outcome measures. Results to-date have provided promising, but weak to moderate evidence that medications and/or NIBS can augment the effects of SLT for improving language outcomes. We end with recommendations for future approaches to studying these interventions, with multicenter, double-blind, randomized controlled trials.
Collapse
Affiliation(s)
- Sadhvi Saxena
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Argye E Hillis
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
8
|
Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience 2016; 337:88-97. [DOI: 10.1016/j.neuroscience.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022]
|
9
|
Sun F, Yang XJ, Lv HY, Tang YB, An SM, Ding XP, Li WB, Teng L, Shen Y, Chen HZ, Zhu L. β2-Adrenoreceptor-Mediated Proliferation Inhibition of Embryonic Pluripotent Stem Cells. J Cell Physiol 2015; 230:2640-6. [PMID: 25639860 DOI: 10.1002/jcp.24937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/16/2015] [Indexed: 01/19/2023]
Abstract
Adrenoreceptors (ARs) are widely expressed and play essential roles throughout the body. Different subtype adrenoceptors elicit distinct effects on cell proliferation, but knowledge remains scarce about the subtype-specific effects of β2-ARs on the proliferation of embryonic pluripotent stem (PS) cells that represent different characteristics of proliferation and cell cycle regulation with the somatic cells. Herein, we identified a β2-AR/AC/cAMP/PKA signaling pathway in embryonic PS cells and found that the pathway stimulation inhibited proliferation and cell cycle progression involving modulating the stem cell growth and cycle regulatory machinery. Embryonic stem (ES) cells and embryonal carcinoma stem (ECS) cells expressed functional β-ARs coupled to AC/cAMP/PKA signaling. Agonistic activation of β-ARs led to embryonic PS cell cycle arrest and proliferation inhibition. Pharmacological and genetic analyzes using receptor subtype blocking and RNA interference approaches revealed that this effect selectively depended on β2-AR signaling involving the regulation of AKT, ERK, Rb, and Cyclin E molecules. Better understanding of the effects of β2-ARs on embryonic PS cell proliferation and cycle progression may provide new insights into stem cell biology and afford the opportunity for exploiting more selective ligands targeting the receptor subtype for the modulation of stem cells.
Collapse
Affiliation(s)
- Fan Sun
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Jie Yang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao-Yu Lv
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Shi-Min An
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Xu-Ping Ding
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Bin Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Lin Teng
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai, China
| |
Collapse
|
10
|
Soeda J, Mouralidarane A, Ray S, Novelli M, Thomas S, Roskams T, Diehl AM, Oben JA. The β-adrenoceptor agonist isoproterenol rescues acetaminophen-injured livers through increasing progenitor numbers by Wnt in mice. Hepatology 2014; 60:1023-34. [PMID: 24923719 DOI: 10.1002/hep.27266] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 06/10/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Acetaminophen (APAP)-induced acute liver injury (AILI) is a major health problem. Accumulating evidence suggests that the sympathetic nervous system (SNS) regulates neuronal and hematopoietic progenitors. SNS signaling affects hepatic progenitor/oval cells (HPCs) and β-adrenoceptor agonism will expand HPCs to reduce AILI. Dopamine β-hydroxylase-deficient mice (Dbh-/-), lacking catecholamine SNS neurotransmitters, isolated HPCs, and immature ductular 603B cells were initially used to investigate SNS involvement in HPC physiology. Subsequently, control mice were treated with APAP (350 mg/kg) followed by the β-adrenoceptor agonist, isoproterenol (ISO), or the β-adrenoceptor antagonist, propranolol. Mechanistic studies examined effects of non-SNS HPC expansion on AILI, involvement of the canonical Wnt/β-catenin pathway (CWP) in the action of ISO on HPC expansion and comparison of ISO with the current standard of care, N-acetylcysteine (NAC). Dbh-/- mice lacking catecholamines had low HPC numbers, reconstituted by ISO. In vitro, ISO-induced proliferation of 603B cells was CWP dependent. In control mice, AILI raised HPC numbers, further increased by ISO, with attenuation of liver injury. Delayed administration of NAC did not, but delayed ISO did, reverse AILI. Propranolol worsened AILI. AILI activated the CWP, and ISO enhanced Wnt-ligand production. HPCs were the major source of Wnt ligands. Recombinant Wnt3a and ISO-603B-conditioned media, but not ISO alone, protected isolated hepatocytes from death, reversed by DKK1-a Wnt antagonist. Additionally, tumor-associated weak inducer of apoptosis expanded HPCs and protected against AILI. Furthermore, allotransplantation of HPCs from APAP+ISO-treated mice to other APAP-injured mice improved AILI, an effect antagonized by DKK1. CONCLUSION SNS catecholamines expand HPCs, which are both targets and sources of Wnt ligands. Hepatoprotection by ISO is mediated by para- and autocrine effects of Wnt signaling. ISO represents novel pharmacotherapy for AILI.
Collapse
Affiliation(s)
- Junpei Soeda
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Radojević K, Rakin A, Pilipović I, Kosec D, Djikić J, Bufan B, Vujnović I, Leposavić G. Effects of catecholamines on thymocyte apoptosis and proliferation depend on thymocyte microenvironment. J Neuroimmunol 2014; 272:16-28. [PMID: 24837703 DOI: 10.1016/j.jneuroim.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/24/2023]
Abstract
The present study, through quantification of tyrosine hydroxylase (TH) expression and catecholamine (CA) content in the presence and in the absence of α-methyl-p-tyrosine (AMPT), a TH inhibitor, in adult thymic organ (ATOC) and thymocyte culture, demonstrated that thymic cells produce CAs. In addition, in ATOC an increase in β2-adrenoceptor (AR) mRNA expression and β2-AR thymocyte surface density was registered. Furthermore, AMPT (10(-4)M), as propranolol (10(-4)M), augmented thymocyte apoptosis and diminished thymocyte proliferation in ATOC. Propranolol exerted these effects acting on CD3(high) thymocytes. However, in thymocyte cultures, propranolol (10(-6)M) acting on the same thymocyte subset exerted the opposing effect on thymocyte apoptosis and ConA-stimulated proliferation. This suggested that, depending on thymocyte microenvironment, differential effects can be induced through the same type of AR. Additionally, arterenol (10(-8) to 10(-6)M), similar to propranolol, diminished apoptosis, but increased ConA-stimulated thymocyte proliferation in thymocyte culture. However, differently from propranolol, arterenol affected manly CD3- thymocyte subset, which harbors majority of α1-AR+thymocytes. Additionally, arterenol showed a dose-dependent decrease in efficiency of thymocyte apoptosis and proliferation modulation with the rise in its concentration. Considering greater affinity of arterenol for α1-ARs than for β2-ARs, the previous findings could be attributable to increased engagement of β2-ARs with the rise of arterenol concentration. Consistently, in the presence of propranolol (10(-6)M), a β-AR blocker, the arterenol (10(-8)M) effects on thymocytes were augmented. In conclusion, thymic endogenous CAs, acting through distinct AR types and, possible, the same AR type (but in different cell microenvironment) may exert the opposing effects on thymocyte apoptosis/proliferation.
Collapse
Affiliation(s)
- Katarina Radojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ana Rakin
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
12
|
Stimulation of α1-adrenoceptor or angiotensin type 1 receptor enhances DNA synthesis in human-induced pluripotent stem cells via Gq-coupled receptor-dependent signaling pathways. Eur J Pharmacol 2013; 714:202-9. [DOI: 10.1016/j.ejphar.2013.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/31/2013] [Accepted: 06/08/2013] [Indexed: 11/22/2022]
|
13
|
Abstract
Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G protein-coupled receptors in the regulation of stem cells and their potential in future clinical applications.
Collapse
Affiliation(s)
- VAN A. DOZE
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| | - DIANNE M. PEREZ
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| |
Collapse
|
14
|
McLaren D, Gorba T, Marguerie de Rotrou A, Pillai G, Chappell C, Stacey A, Lingard S, Falk A, Smith A, Koch P, Brüstle O, Vickers R, Tinsley J, Flanders D, Bello P, Craig S. Automated large-scale culture and medium-throughput chemical screen for modulators of proliferation and viability of human induced pluripotent stem cell-derived neuroepithelial-like stem cells. ACTA ACUST UNITED AC 2012; 18:258-68. [PMID: 23042076 DOI: 10.1177/1087057112461446] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to demonstrate proof-of-concept feasibility for the use of human neural stem cells (NSCs) for high-throughput screening (HTS) applications. For this study, an adherent human induced pluripotent stem (iPS) cell-derived long-term, self-renewing, neuroepithelial-like stem (lt-NES) cell line was selected as a representative NSC. Here, we describe the automated large-scale serum-free culture ("scale-up") of human lt-NES cells on the CompacT SelecT cell culture robotic platform, followed by their subsequent automated "scale-out" into a microwell plate format. We also report a medium-throughput screen of 1000 compounds to identify modulators of neural stem cell proliferation and/or survival. The screen was performed on two independent occasions using a cell viability assay with end-point reading resulting in the identification of 24 potential hit compounds, 5 of which were found to increase the proliferation and/or survival of human lt-NES on both occasions. Follow-up studies confirmed a dose-dependent effect of one of the hit compounds, which was a Cdk-2 modulator. This approach could be further developed as part of a strategy to screen compounds to either improve the procedures for the in vitro expansion of neural stem cells or to potentially modulate endogenous neural stem cell behavior in the diseased nervous system.
Collapse
|
15
|
Ishizuka T, Goshima H, Ozawa A, Watanabe Y. β1-adrenoceptor stimulation enhances the differentiation of mouse induced pluripotent stem cells into neural progenitor cells. Neurosci Lett 2012; 525:60-5. [PMID: 22828480 DOI: 10.1016/j.neulet.2012.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 01/15/2023]
Abstract
The cyclic AMP/protein kinase A signaling pathway is thought to be involved in neural differentiation of mesenchymal stem cells. In the present study, we examined the involvement of β-adrenoceptor signaling on the differentiation of mouse induced pluripotent stem (iPS) cells into neural progenitor cells. Mouse iPS cells were cultured on ultra-low-attachment dishes to induce embryoid body (EB) formation. All-trans retinoic acid (ATRA, 1 μM) and/or the β-adrenoceptor agonist l-isoproterenol (0.3 or 1 μM) were added to the EB cultures for 4 days, then EBs were plated on gelatin-coated plates and cultured for 7 or 14 days. Subtype-specific antibody staining revealed that mouse iPS cells express β(1)-adrenoceptors predominantly. Although treatment with l-isoproterenol alone did not affect the expression of Nestin (a specific marker for neural progenitor cells), l-isoproterenol significantly enhanced ATRA-induced Nestin expression. Pretreatment of EBs with either atenolol (a selective β(1)-adrenoceptor antagonist) or H89 (a protein kinase A inhibitor) significantly inhibited the l-isoproterenol-enhancement of ATRA-induced Nestin expression. In addition, the l-isoproterenol treatment significantly enhanced ATRA-induced expression of NeuN (a neuron-specific nuclear protein). These findings suggest that β(1)-adrenoceptor stimulation enhances ATRA-induced neural differentiation of mouse iPS cells.
Collapse
Affiliation(s)
- Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | | | | | | |
Collapse
|
16
|
Abstract
The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Van A Doze
- Department of Molecular Cardiology, NB50, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | |
Collapse
|
17
|
Involvement of nicotinic acetylcholine receptor in the proliferation of mouse induced pluripotent stem cells. Life Sci 2012; 90:637-48. [PMID: 22483693 DOI: 10.1016/j.lfs.2012.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/20/2012] [Accepted: 02/28/2012] [Indexed: 01/04/2023]
Abstract
AIMS As the clinical use of induced pluripotent stem (iPS) cells may have the potential to overcome current obstacles in stem cell-based therapy, the molecular mechanisms that regulate the proliferation of iPS cells are of great interest. However, to our knowledge, no previous studies have examined whether stimulation with nicotinic acetylcholine receptor (nAchR) enhances the growth of iPS cells. In the present study, we examined the involvement of nAchR in the proliferation of mouse iPS cells. MAIN METHODS We performed immunofluorescence staining to determine whether mouse iPS cells could express nAchRs. Mouse iPS cells were treated with nicotine for 24h under feeder-free conditions in the presence of leukemia inhibitory factor (LIF). The DNA synthesis was examined by the BrdU incorporation assay. Intracellular calcium levels were measured using Fluo-4-acetoxymethyl (a cell-permeable calcium indicator). In addition, we examined the involvement of the CaMKП pathway in nicotine-enhanced proliferation of mouse iPS cells. KEY FINDINGS The fluorescence images revealed that α(4)-nAchR and α(7)-nAchR are expressed on mouse iPS cells. Treatment of the cells with 300nM nicotine significantly increases DNA synthesis. This is significantly inhibited by pretreatment with antagonists of α(4)-nAchR and α(7)-nAchR or a CaMKП inhibitor. In addition, treatment with nicotine increases the intracellular Ca(2+) level dose-dependently in mouse iPS cells. Treatment with nicotine significantly enhances CaMKП phosphorylation. SIGNIFICANCE The present study indicates that stimulation of α(4)-nAchR and α(7)-nAchR may lead to a significant increase in the rate of mouse iPS cell proliferation through enhancement of the CaMKП signaling pathway.
Collapse
|
18
|
Jensen BC, O'Connell TD, Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol 2011; 51:518-28. [PMID: 21118696 PMCID: PMC3085055 DOI: 10.1016/j.yjmcc.2010.11.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down-regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart might represent a novel and effective way to treat heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Brian C. Jensen
- Cardiology Division, VA Medical Center; Cardiovascular Research Institute; and Department of Medicine, Cardiology Division, University of California, San Francisco, CA, USA
- University of North Carolina, Cardiology Division, 160 Dental Circle, Chapel Hill, NC 27599-7075 USA
| | - Timothy D. O'Connell
- Cardiovascular Health Research Center, Sanford Research/University of South Dakota, 2301 E. 60th Street, Sioux Falls, SD 57104, USA
| | - Paul C. Simpson
- Cardiology Division, VA Medical Center; Cardiovascular Research Institute; and Department of Medicine, Cardiology Division, University of California, San Francisco, CA, USA
| |
Collapse
|
19
|
Ishizuka T, Watanabe Y. α₁-Adrenoceptor stimulation enhances leukemia inhibitory factor-induced proliferation of mouse-induced pluripotent stem cells. Eur J Pharmacol 2011; 668:42-56. [PMID: 21745467 DOI: 10.1016/j.ejphar.2011.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 06/09/2011] [Accepted: 06/15/2011] [Indexed: 11/26/2022]
Abstract
Since the clinical use of induced pluripotent stem (iPS) cells may overcome the current obstacles in stem cell-based therapy, the molecular mechanisms that regulate iPS cell proliferation are of great interest. Therefore, in the present study, we determined the involvement of α(1)-adrenoceptor in the proliferation of mouse iPS cells. The selective α(1)-adrenoceptor agonist l-phenylephrine dose-dependently increased the proliferation of mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment with either selective α(1)-adrenoceptor antagonists or protein kinase C (PKC) inhibitors significantly inhibited l-phenylephrine-induced DNA synthesis. The treatment with an IP(3) receptor agonist significantly enhanced LIF-induced DNA synthesis. On the other hand, we confirmed that the intracellular calcium level was increased by the treatment with l-phenylephrine. Thus, intracellular calcium release or PKC activation induced by α(1)-adrenoceptor activation may lead to the enhancement of DNA synthesis. In addition, pretreatment with mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD98059 or phosphatidylinositol-3 phosphate kinase (PI3K) inhibitor LY294002 significantly inhibited l-phenylephrine-induced DNA synthesis. Treatment with l-phenylephrine significantly increased Akt or p44/42 MAPK phosphorylation. α(1)-Adrenoceptor expression in mouse iPS cells was confirmed by immunofluorescence staining and western blotting analysis. In mouse iPS cells cultured with LIF, stimulation with l-phenylephrine significantly increased the proportion of cells in the S and G(2)/M phases and decreased that in the G(1) phase. These results suggest that stimulation with α(1)-adrenoceptor may enhance DNA synthesis and proliferation of mouse iPS cells cultured with LIF via augmentation of both the MEK/MAPK and the PI3K/Akt pathways.
Collapse
Affiliation(s)
- Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | | |
Collapse
|
20
|
Effect of central myelin on the proliferation and differentiation into O4+ oligodendrocytes of GFP-NSCs. Mol Cell Biochem 2011; 358:173-8. [DOI: 10.1007/s11010-011-0932-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/21/2011] [Indexed: 01/29/2023]
|
21
|
Perez DM, Doze VA. Cardiac and neuroprotection regulated by α(1)-adrenergic receptor subtypes. J Recept Signal Transduct Res 2011; 31:98-110. [PMID: 21338248 DOI: 10.3109/10799893.2010.550008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sympathetic nervous system regulation by the α(1)-adrenergic receptor (AR) subtypes (α(1A), α(1B), α(1D)) is complex, whereby chronic activity can be either detrimental or protective for both heart and brain function. This review will summarize the evidence that this dual regulation can be mediated through the different α(1)-AR subtypes in the context of cardiac hypertrophy, heart failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration, cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness.
Collapse
Affiliation(s)
- Dianne M Perez
- Department of Molecular Cardiology, NB50, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
22
|
Siejka A, Schally AV, Block NL, Barabutis N. Mechanisms of inhibition of human benign prostatic hyperplasia in vitro by the luteinizing hormone-releasing hormone antagonist cetrorelix. BJU Int 2010; 106:1382-8. [PMID: 20151966 DOI: 10.1111/j.1464-410x.2010.09215.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To assess the mechanism by which the luteinizing hormone-releasing hormone (LHRH) antagonist cetrorelix exerts its effects in men with benign prostatic hyperplasia (BPH), as it produces a long-lasting improvement in lower urinary tract symptoms that is only partly accounted for by the transient reduction in testosterone levels, and the beneficial results could be due to direct inhibitory effects of cetrorelix on the prostate exerted through prostatic LHRH receptors. MATERIALS AND METHODS Using the BPH-1 cell line we evaluated the effects of cetrorelix in vitro on the proliferation and the expression of receptors for LHRH, epidermal growth factor (EGF), α(1A) -adrenergic receptor, STAT-3 transcription factor and the response to growth factors insulin-like growth factor (IGF)-1 and -II and fibroblast growth factor (FGF)-2. RESULTS There was expression of LHRH receptors in the human BPH-1 cell line. Cetrorelix had inhibitory effects on the proliferation rate of BPH-1 cells, also reflected by the decrease in the expression of the proliferating cell nuclear antigen (PCNA). Cetrorelix inhibited the stimulatory effect of the growth factors IGF-I and -II and FGF-2 on the proliferation of this line. Cetrorelix also downregulated the expression of the receptors for LHRH and EGF, as well as of α(1A) -adrenergic receptors, and inhibited the activation of the STAT3 transcription factor. CONCLUSIONS The results show that in vitro cetrorelix can directly inhibit the proliferation rate of the human BPH-1 cell line by counteracting growth factors like IGF-I and -II and FGF-2, and downregulating the LHRH receptor and α-adrenergic receptors, as well as transcription factors.
Collapse
Affiliation(s)
- Agnieszka Siejka
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL, USA
| | | | | | | |
Collapse
|
23
|
Scholl JL, Renner KJ, Forster GL, Tejani-Butt S. Central monoamine levels differ between rat strains used in studies of depressive behavior. Brain Res 2010; 1355:41-51. [PMID: 20696147 DOI: 10.1016/j.brainres.2010.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Previous studies have shown that the Wistar-Kyoto (WKY) rat strain may be a genetic model of depression when their behaviors are compared to Sprague-Dawley (SD) or Wistar (WIS) rats. Significant differences in dopamine (DA), serotonin (5-HT), and norepinephrine (NE) transporter site densities have been reported when comparing WKY to both SD and WIS rats. Susceptibility of WKY rats to anxiety and depressive behavior may be related to underlying differences in monoamine levels in various regions of the brain. Levels of monoamines (DA, 5-HT and NE) and their metabolites were measured in monoaminergic cell body, cortical and limbic brain regions using HPLC with electrochemical detection and compared between WKY, WIS and SD rats. In regions where strain differences in monoamine levels were observed (the basolateral amygdala, subregions of the hippocampus and the nucleus accumbens shell), WKY rats consistently had lower levels than SD rats. Similarly, WKY rats had lower monoamine levels compared to WIS, although these differences were observed in a more restricted number of brain regions. Interestingly, WIS rats showed reduced levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) in several regions including the prefrontal cortex, subregions of the hippocampus and subregions of the hypothalamus, suggesting decreased 5-HT turnover when compared to both WKY and SD rats. Overall, these results imply that decreased monoamine levels, combined with alterations in transporter sites, may be related to the predisposition of WKY rats towards depressive behavior.
Collapse
Affiliation(s)
- Jamie L Scholl
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, SD, USA
| | | | | | | |
Collapse
|
24
|
Barr JL, Renner KJ, Forster GL. Withdrawal from chronic amphetamine produces persistent anxiety-like behavior but temporally-limited reductions in monoamines and neurogenesis in the adult rat dentate gyrus. Neuropharmacology 2010; 59:395-405. [PMID: 20638943 DOI: 10.1016/j.neuropharm.2010.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 11/28/2022]
Abstract
Acute amphetamine administration activates monoaminergic pathways and increases systemic corticosterone, both of which influence anxiety states and adult dentate gyrus neurogenesis. Chronic amphetamine increases anxiety states in rats when measured at 24 h and at 2 weeks of withdrawal. However, the effects of chronic amphetamine exposure and withdrawal on long term anxiety-like behavior and adult neurogenesis in the dentate gyrus are unknown. Adult male rats were administered amphetamine (2.5 mg/kg, ip.) daily for two weeks. Anxiety-like behaviors were increased markedly in amphetamine-treated rats following four weeks of withdrawal from amphetamine. Plasma corticosterone level was unaltered by amphetamine treatment or withdrawal. However, norepinephrine and serotonin concentrations were selectively reduced in the dentate gyrus 20 h following amphetamine treatment. This effect did not persist through the four week withdrawal period. In separate experiments, rats received bromodeoxyuridine to label cells in S-phase, prior to or immediately following amphetamine treatment. Newly generated cells were quantified to measure extent of progenitor cell proliferation and neurogenesis following treatment or withdrawal. Progenitor cell proliferation and neurogenesis were not significantly affected by amphetamine exposure when measured 20 h following the last amphetamine treatment. However, neurogenesis in the dentate gyrus was reduced after four weeks of withdrawal when compared to saline-pretreated rats. Overall, our findings indicate that withdrawal from chronic amphetamine leads to persistent anxiety-like behavior which may be maintained by reduced neurogenesis in the dentate gyrus at this protracted withdrawal time point. However, neurogenesis is unaffected at earlier withdrawal time points where anxiety states emerge, suggesting different mechanisms may underlie the emergence of anxiety states during amphetamine withdrawal.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Division of Basic Biomedical Sciences and Neuroscience Group, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, USA
| | | | | |
Collapse
|
25
|
Abstract
In this review, we discuss the basic mechanisms of neural regeneration and repair and attempt to correlate findings from animal models of stroke recovery with clinical trials for aphasia. Several randomized controlled clinical trials involving manipulation of different neurotransmitter systems, including noradrenergic, dopaminergic, cholinergic, and glutamatergic systems, have shown signals of efficacy. Biological approaches such as anti-Nogo and cell replacement therapy have shown efficacy in preclinical models but have yet to reach proof of concept in the clinic. Finally, noninvasive cortical stimulation techniques have been used in a few small trials and have shown promising results. It appears that the efficacy of all these platforms can be potentiated through coupling with concomitant behavioral intervention. Given this array of potential mechanisms that exist to augment and/or stimulate neural reorganization after stroke, we are optimistic that approaches to aphasia therapy will transition from compensatory models to models in which brain reorganization is the goal.
Collapse
|
26
|
Induction of cell migration of neural progenitor cells in vitro by alpha-1 adrenergic receptor and dopamine D1 receptor stimulation. Neuroreport 2008; 19:793-7. [PMID: 18446092 DOI: 10.1097/wnr.0b013e3282fd1270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The radial migration is an important process in the development of the cerebral cortex. Earlier studies have reported that classical neurotransmitters such as L-dopamine and L-adrenaline regulate the proliferation of neural progenitor cells. We examined whether L-dopamine and L-adrenaline regulate cell migration, using embryonic neural progenitor cells from mouse embryonic telencephalon in vitro. In this study, we showed that dopamine D1 agonist induces cell migration of embryonic neural progenitor cells. In addition, we have demonstrated that L-adrenaline induces cell migration of embryonic neural progenitor cells, mediated through the activation of alpha-1 adrenergic receptors. Our results suggest that alpha-1 adrenergic receptor and dopamine D1 receptor stimulations in neural progenitor cells are the important process for embryonic brain development, respectively.
Collapse
|
27
|
Taves J, Rastedt D, Canine J, Mork D, Wallert MA, Provost JJ. Sodium hydrogen exchanger and phospholipase D are required for alpha1-adrenergic receptor stimulation of metalloproteinase-9 and cellular invasion in CCL39 fibroblasts. Arch Biochem Biophys 2008; 477:60-6. [PMID: 18539131 DOI: 10.1016/j.abb.2008.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/05/2008] [Accepted: 05/17/2008] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase 9 (MMP-9) plays a critical role in digesting the extracellular matrix and has a vital function in tumor metastasis and invasion; this protease activity is significantly increased in non-small cell lung cancers. The sodium hydrogen exchanger isoform 1 (NHE1) functions as a focal point for signal coordination and cytoskeletal reorganization. NHE1 is thought to play a central role in establishing signaling components at the leading edge of a migrating cell. Therefore, we studied the relationship between NHE1 and MMP-9 activity in Chinese hamster lung fibroblasts (CCL39) stimulated with phenylephrine (PE). We show that PE increases MMP-9 gelatinolytic activity in CCL39 cells. The inhibition of phospholipase D (PLD) signaling abrogated PE-induced MMP-9 activity. The role of PLD as an essential signaling intermediate was confirmed when the addition of permeable phosphatidic acid increased MMP-9 activity in the same cells. PE-induced invasion was increased 1.9-fold over controls and the PE response was lost when 1-butanol was used to block PLD signaling. Cells pre-treated with the NHE1 inhibitor, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) prior to PE addition resulted in a notable decrease in MMP-9 activation and cell invasion as compared to untreated PE-stimulated cells. CCL39 NHE1 null cells demonstrated no increase in MMP-9 protease activity or cell invasion in response to PE treatment. Reconstitution of NHE1 expression recovered the PE-induced activation of protease activity and cell invasion. MMP-9 processing was altered in cells expressing a proton transport defective NHE1 but retained the ability to respond to PE. Conversely, cells expressing an ezrin, radixin, moesin (ERM)-binding deficient NHE1 had a lower MMP-9 activity and the protease did not respond to PE addition. Parallel studies on NCI-H358 non-small cell lung cancer (NSCL) cells showed that PE stimulated both MMP-9 activity and cell invasion in an NHE1 dependent manner. This work describes for the first time a PE-induced relationship between NHE1 and MMP-9 and a new potential mechanism by which NHE1 could promote tumor formation and metastasis.
Collapse
Affiliation(s)
- Jennifer Taves
- Departments of Chemistry and Biosciences, Minnesota State University Moorhead, Hagen Hall, Moorhead, MN 56563, USA
| | | | | | | | | | | |
Collapse
|
28
|
Ohashi H, Nishikawa K, Ayukawa K, Hara Y, Nishimoto M, Kudo Y, Abe T, Aoki S, Wada K. Alpha 1-adrenoceptor agonists protect against stress-induced death of neural progenitor cells. Eur J Pharmacol 2007; 573:20-8. [PMID: 17643416 DOI: 10.1016/j.ejphar.2007.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/18/2007] [Accepted: 06/26/2007] [Indexed: 11/19/2022]
Abstract
Here, we show that alpha(1)-adrenoceptor agonists suppress stress-induced death of mouse embryonic brain-derived neural progenitor cells (NPCs). NPCs highly expressed both alpha(1A)- and alpha(1B)-adrenoceptor genes, whereas the gene encoding alpha(1D)-adrenoceptor was expressed at low levels. Application of the alpha(1)-adrenoceptor agonists phenylephrine and cirazoline significantly promoted cell survival of embryonic NPCs that had been exposed to stress, as measured by a lactate dehydrogenase release assay, but had no remarkable effect on differentiation of the NPCs. Both phenylephrine and cirazoline protected NPCs from death induced by growth factor deprivation, N2 nutrient deprivation, tunicamycin treatment or staurosporine treatment. Phenylephrine and cirazoline treatments both maximally reduced stress-induced cell death by approximately 60% but did not change the percentage of undifferentiated cells as measured by nestin staining. Moreover, phenylephrine and cirazoline treatments did not affect the cellular activities of caspase-3 and caspase-7 but markedly reduced propidium iodide penetration into the cytoplasm, suggesting that alpha(1)-adrenoceptor agonists inhibit caspase-3/7-independent death of the embryonic NPCs.
Collapse
Affiliation(s)
- Hiroki Ohashi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hiramoto T, Kanda Y, Satoh Y, Takishima K, Watanabe Y. Dopamine D2 receptor stimulation promotes the proliferation of neural progenitor cells in adult mouse hippocampus. Neuroreport 2007; 18:659-64. [PMID: 17426594 DOI: 10.1097/wnr.0b013e3280bef9d3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We initially examined the effects of apomorphine in vitro using mouse embryonic and adult neural progenitor cells. The effects of apomorphine treatment led to dose-dependent increases in the number of embryonic and adult neural progenitor cells, and dopamine D2 receptor antagonist treatment significantly reduced the increases induced by apomorphine. Next, we investigated the effects of apomorphine in vivo in the adult mouse hippocampus. The effects of single-dose apomorphine administration led to an increase of approximately 30% in the number of bromodeoxyuridine-positive cells in the dentate gyrus. Moreover, the chronic apomorphine administration induced an increase in the number of bromodeoxyuridine-positive cells by about 30%. Thus, we suggest that the stimulation of dopamine D2 receptors increases the proliferation of neural progenitor cells both in vivo and in vitro.
Collapse
Affiliation(s)
- Takeshi Hiramoto
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Japan
| | | | | | | | | |
Collapse
|