1
|
Fernández-Albarral JA, Simón-García A, Salobrar-García E, Salazar JJ, López-Menéndez C, Pajuelo LSM, Matamoros JA, de Hoz R, López-Cuenca I, Elvira-Hurtado L, Sanchez-Puebla L, Sánchez-Carralero MP, Sanz M, Ramírez JM, Iglesias T, Ramírez AI. Kidins220-deficient hydrocephalus mice exhibit altered glial phenotypes and AQP4 differential regulation in the retina and optic nerve, with preserved retinal ganglion cell survival. Fluids Barriers CNS 2025; 22:16. [PMID: 39939990 PMCID: PMC11823095 DOI: 10.1186/s12987-025-00626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
Hydrocephalus, characterized by ventriculomegaly due to cerebrospinal fluid accumulation in the cerebral ventricles, is a co-morbidity factor in several neurodevelopmental, psychiatric and neurodegenerative diseases. Aquaporin-4 (AQP4) is crucial for brain water homeostasis, with Aqp4 knockout mice showing sporadic ventriculomegaly and increased brain water content. Kinase D interacting substrate of 220 kDa (Kidins220), a transmembrane protein involved in neuronal survival, synaptic activity and neurogenesis, controls AQP4 levels in ependymocytes and brain astrocytes. Indeed, Kidins220 deficiency in mice leads to hydrocephalus by downregulating VPS35, a key component of the retromer complex, and targeting AQP4 to lysosomal degradation. Importantly, the ependymal barrier of idiopathic normal pressure hydrocephalus patients shows a similar downregulation of KIDINS220 and AQP4. In addition, pathogenic variants in the KIDINS220 gene are linked to SINO syndrome, a rare disorder characterized by spastic paraplegia, intellectual disability, nystagmus, and obesity associated with hydrocephalus and ventriculomegaly. Given the retina's structural and functional similarities to the brain, we hypothesized that Kidins220 deficiency would affect retinal water regulation. However, the diminished expression of Kidins220 and VPS35 in the retina of Kidins220-deficient hydrocephalus mice, did not cause edema or downregulate AQP4 in Müller cells. Surprisingly, there was an increase in AQP4 levels within this glial cell population. Conversely, AQP4 expression in the optic nerve astrocytes was reduced, as observed in brain astrocytes, suggesting a distinctive adaptive response to hydrocephalus in Müller glia within the Kidins220-deficient retina. Furthermore, we observed phenotypic modifications in retinal glia in Kidins220-deficient hydrocephalus mice. However, we did not find any signs of neuronal damage in the retina. Future studies using OCT and OCTA in SINO syndrome patients with ventriculomegaly will be essential in elucidating the relationship between KIDINS220 pathogenic variants, retinal alterations, papilledema, and visual function.
Collapse
Affiliation(s)
- Jose A Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Ana Simón-García
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Juan J Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Celia López-Menéndez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Luis S M Pajuelo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Jose A Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Lidia Sanchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Marina P Sánchez-Carralero
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Marina Sanz
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - José M Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.
| | - Ana I Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain.
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain.
| |
Collapse
|
2
|
Carrero L, Antequera D, Alcalde I, Megias D, Ordoñez-Gutierrez L, Gutierrez C, Merayo-Lloves J, Wandosell F, Municio C, Carro E. Altered Clock Gene Expression in Female APP/PS1 Mice and Aquaporin-Dependent Amyloid Accumulation in the Retina. Int J Mol Sci 2023; 24:15679. [PMID: 37958666 PMCID: PMC10648501 DOI: 10.3390/ijms242115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a neurodegenerative disorder characterized by different pathological symptomatology, including disrupted circadian rhythm. The regulation of circadian rhythm depends on the light information that is projected from the retina to the suprachiasmatic nucleus in the hypothalamus. Studies of AD patients and AD transgenic mice have revealed AD retinal pathology, including amyloid-β (Aβ) accumulation that can directly interfere with the regulation of the circadian cycle. Although the cause of AD pathology is poorly understood, one of the main risk factors for AD is female gender. Here, we found that female APP/PS1 mice at 6- and 12-months old display severe circadian rhythm disturbances and retinal pathological hallmarks, including Aβ deposits in retinal layers. Since brain Aβ transport is facilitated by aquaporin (AQP)4, the expression of AQPs were also explored in APP/PS1 retina to investigate a potential correlation between retinal Aβ deposits and AQPs expression. Important reductions in AQP1, AQP4, and AQP5 were detected in the retinal tissue of these transgenic mice, mainly at 6-months of age. Taken together, our findings suggest that abnormal transport of Aβ, mediated by impaired AQPs expression, contributes to the retinal degeneration in the early stages of AD.
Collapse
Affiliation(s)
- Laura Carrero
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
- PhD Program in Neuroscience, Autonoma de Madrid University, 28049 Madrid, Spain
| | - Desireé Antequera
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, 28012 Oviedo, Spain; (I.A.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Diego Megias
- Advanced Optical Microscopy Unit, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28222 Madrid, Spain;
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.O.-G.); (F.W.)
| | - Cristina Gutierrez
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, 28012 Oviedo, Spain; (I.A.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.O.-G.); (F.W.)
| | - Cristina Municio
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Eva Carro
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| |
Collapse
|
3
|
Murai Y, Mori S, Okuda M, Kusuhara S, Kurimoto T, Nakamura M. Effects of Elevated Intraocular Pressure on Retinal Ganglion Cell Density and Expression and Interaction of Retinal Aquaporin 9 and Monocarboxylate Transporters. Ophthalmic Res 2023; 66:1222-1229. [PMID: 37647868 PMCID: PMC10614569 DOI: 10.1159/000533497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Astrocyte-to-neuron lactate shuttle (ANLS) plays an important role in the energy metabolism of neurons, including retinal ganglion cells (RGCs). Aquaporin 9 (AQP9), which is an aquaglyceroporin that can transport lactate, may be involved in ANLS together with monocarboxylate transporters (MCTs) to maintain RGC function and survival. This study aimed to investigate the impact of elevated intraocular pressure (IOP) on AQP9-MCT interaction and RGC survival. METHODS IOP was elevated in Aqp9 knock-out (KO) mice and wild-type (WT) littermates by anterior chamber microbead injection. RGC density was measured by TUBB3 immunostaining on retinal flat mounts. Immunolabeling, immunoblot, and immunoprecipitation were conducted to identify and quantitate expressions of AQP9, MCT1, MCT2, and MCT4 in whole retinas and ganglion cell layer (GCL). RESULTS Aqp9 KO and WT mice had similar RGC density at baseline. Microbead injection increased cumulative IOP by approximately 32% up to 4 weeks, resulting in RGC density loss of 42% and 34% in WT and Aqp9 KO mice, respectively, with no statistical difference. In the retina of WT mice, elevated IOP decreased the amount of AQP9, MCT1, and MCT2 protein and changed the AQP9 immunoreactivity and reduced MCT1 and MCT2 immunoreactivities in GCL. Meanwhile, it decreased MCT1 and increased MCT2 that interact with AQP9, without affecting MCT4 expression. Aqp9 gene deletion increased baseline MCT2 expression in the GCL and counteracted IOP elevation regarding MCT1 and MCT2 expressions. CONCLUSION The compensatory upregulation of MCT1 and MCT2 with Aqp9 gene deletion and ocular hypertension may reflect the need to maintain lactate transport in the retina for RGC survival.
Collapse
Affiliation(s)
- Yusuke Murai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mina Okuda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuji Kurimoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Guo R, Zhang Y, Geng Y, Chen P, Fu T, Xia Y, Zhang R, Zhu Y, Jin J, Jin N, Xu H, Tian X. Electroacupuncture ameliorates inflammatory response induced by retinal ischemia-reperfusion injury and protects the retina through the DOR-BDNF/Trkb pathway. Front Neuroanat 2023; 16:1057929. [PMID: 36686575 PMCID: PMC9850165 DOI: 10.3389/fnana.2022.1057929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Objectives: Retinal ischemia-reperfusion injury (RIRI) is the common pathological basis of many ophthalmic diseases in the later stages, and inflammation is the primary damage mechanism of RIRI. Our study aimed to assess whether electroacupuncture (EA) has a protective effect against RIRI and to elucidate its related mechanisms. Methods: A high-intraocular pressure (HIOP) model was used to simulate RIRI in Wistar rats. EA was applied to the EA1 group [Jingming (BL1) + Shuigou (GV26)] and the EA2 group [Jingming (BL1) + Hegu (LI4)] respectively for 30 min starting immediately after the onset of reperfusion and repeated (30 min/time) at 12 h and then every 24 h until days 7 after reperfusion. The pathological changes in the retina were observed by H and E staining after HIOP. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was utilized to observe retinal cell apoptosis. The mRNA expression of IL1-β, TNF-α, IL-4, IL-10, δ-opioid receptor (DOR), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) in the retina was measured by quantitative real-time PCR. Results: HIOP caused structural disorders of the retina, decreased RGCs, and increased retinal cell apoptosis. At 1 and 3 days of RIRI, retinal apoptotic cells in the EA group were significantly reduced, while there was no distinct difference in the EA group compared with the HIOP group at 7 days of RIRI. Compared with that in the HIOP group, the expression of anti-inflammatory factors, DOR and TrkB was increased, and the expression of pro-inflammatory factors was decreased in the EA group. In contrast, HIOP had no appreciable effect on BDNF expression. Conclusion: EA at Jingming (BL1) and Shuigou (GV26) or at Jingming (BL1) and Hegu (LI4) may inhibit RIRI induced inflammation through activating the DOR-BDNF/TrkB pathway to protect the retina, especially the pair of Jingming (BL1) and Shuigou (GV26) has better inhibitory effects on inflammation.
Collapse
Affiliation(s)
- Runjie Guo
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjie Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Geng
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiantian Fu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Xia
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ren Zhang
- Shanghai Chinese Medicine Literature Museum, Shanghai, China
| | - Yuan Zhu
- Shanghai Jinshan District Hospital of Traditional Chinese and Western Medicine, Shanghai, China
| | - Jingling Jin
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Nange Jin
- Department of Vision Sciences, University of Houston College of Optometry, Houston, TX, United States
| | - Hong Xu
- Department of Acupuncture-Moxibustion, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Hong Xu Xuesong Tian
| | - Xuesong Tian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Hong Xu Xuesong Tian
| |
Collapse
|
5
|
Wang Q, Li Y, Wu C, Wang T, Wu M. Aquaporin-1 inhibition exacerbates ischemia-reperfusion-induced lung injury in mouse. Am J Med Sci 2023; 365:84-92. [PMID: 36075463 DOI: 10.1016/j.amjms.2022.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/18/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI), which involves severe inflammation and edema, is an inevitable feature of the lung transplantation process and leads to primary graft dysfunction (PGD). The activation of aquaporin 1 (AQP1) modulates fluid transport in the alveolar space. The current study investigated the role of AQP1 in ischemia-reperfusion (IR)-induced lung injury. METHODS A mouse model of lung IR was established by clamping the left lung hilar for 1 h and released for reperfusion for 24 h. The AQP1 inhibitor acetazolamide (AZA) was administered 3 days before lung ischemia with a dose of 100 mg/kg per day via gavage. Lung injury was evaluated using the ratio of wet-to-dry weight, peripheral bronchial epithelial thickness, degree of angioedema, acute lung injury score, neutrophil infiltration, and cytokine concentrations in bronchoalveolar lavage fluid. RESULTS Compared with sham treatment, ischemia with no reperfusion (IR 0h) and ischemia with reperfusion for 24 h (IR 24 h) significantly upregulated AQP1 expression, increased the wet/dry weight ratio, angioedema, neutrophil infiltration and cytokine production (interleukin -6 and tumor necrosis factor -α) and thickened the peripheral bronchial epithelium. AZA exacerbated inflammation and pulmonary edema. CONCLUSION AQP1 may exert a protective effect against IR-induced lung injury, which could be attributed to alleviating pulmonary edema and inflammation. AQP1 upregulation might be a potential application to alleviate lung IRI and decrease the incidence of PGD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Thoracic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yangfan Li
- Department of Thoracic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Chuanqiang Wu
- Department of Thoracic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Tong Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming Wu
- Department of Thoracic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
6
|
Lang Y, Kwapong WR, Kong L, Shi Z, Zhao Z, Du Q, Zhang Y, Wang J, Cai L, Zhou H. Sparser macula microvasculature in neuromyelitis optica spectrum disorder occurs independently of optic neuritis. Mult Scler Relat Disord 2021; 58:103470. [PMID: 34974244 DOI: 10.1016/j.msard.2021.103470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate the macula microvascular perfusion in neuromyelitis optica spectrum disorder (NMOSD) patients and assess the correlation with their clinical features. METHODS 35 aquaporin-4 seropositive NMOSD patients (38 NMOSD eyes without optic neuritis, NMOSD-NON, and 32 NMOSD eyes with optic neuritis) and 35 healthy controls (HC) were included in our study. Swept-source optical coherence tomography angiography (SS-OCTA) was used to image and segment the macula microvasculature into the inner macula vascular complex (IVC), superficial vascular plexus (SVC), and deep vascular plexus (DVC). An inbuilt software within the OCTA tool was used to measure the microvascular perfusion in these two plexuses. RESULTS NMOSD eyes without optic neuritis showed sparser (P < 0.05) IVC and SVC compared with healthy controls; NMOSD eyes with optic neuritis showed significantly sparser (P < 0.001) IVC, SVC, and DVC when compared with healthy controls respectively. NMOSD eyes with optic neuritis showed significantly sparser IVC (P = 0.002), SVC (P = 0.001) and DVC (P = = 0.040) when compared with eyes without optic neuritis. CONCLUSIONS Microvascular impairment in NMOSD patients occurs independently of ON. Microvascular impairment is associated with reduced visual acuity and frequency of ON.
Collapse
Affiliation(s)
- Yanlin Lang
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan, PR China
| | - William Robert Kwapong
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan, PR China
| | - Lingyao Kong
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan, PR China
| | - Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan, PR China
| | - Zhengyang Zhao
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan, PR China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan, PR China
| | - Ying Zhang
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan, PR China
| | - Jiancheng Wang
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan, PR China
| | - Linjun Cai
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan, PR China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
7
|
Bringmann A, Unterlauft JD, Barth T, Wiedemann R, Rehak M, Wiedemann P. Müller cells and astrocytes in tractional macular disorders. Prog Retin Eye Res 2021; 86:100977. [PMID: 34102317 DOI: 10.1016/j.preteyeres.2021.100977] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/04/2023]
Abstract
Tractional deformations of the fovea mainly arise from an anomalous posterior vitreous detachment and contraction of epiretinal membranes, and also occur in eyes with cystoid macular edema or high myopia. Traction to the fovea may cause partial- and full-thickness macular defects. Partial-thickness defects are foveal pseudocysts, macular pseudoholes, and tractional, degenerative, and outer lamellar holes. The morphology of the foveal defects can be partly explained by the shape of Müller cells and the location of tissue layer interfaces of low mechanical stability. Because Müller cells and astrocytes provide the structural scaffold of the fovea, they are active players in mediating tractional alterations of the fovea, in protecting the fovea from such alterations, and in the regeneration of the foveal structure. Tractional and degenerative lamellar holes are characterized by a disruption of the Müller cell cone in the foveola. After detachment or disruption of the cone, Müller cells of the foveal walls support the structural stability of the foveal center. After tractional elevation of the inner layers of the foveal walls, possibly resulting in foveoschisis, Müller cells transmit tractional forces from the inner to the outer retina leading to central photoreceptor layer defects and a detachment of the neuroretina from the retinal pigment epithelium. This mechanism plays a role in the widening of outer lameller and full-thickness macular holes, and contributes to visual impairment in eyes with macular disorders caused by conractile epiretinal membranes. Müller cells of the foveal walls may seal holes in the outer fovea and mediate the regeneration of the fovea after closure of full-thickness holes. The latter is mediated by the formation of temporary glial scars whereas persistent glial scars impede regular foveal regeneration. Further research is required to improve our understanding of the roles of glial cells in the pathogenesis and healing of tractional macular disorders.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany.
| | - Jan Darius Unterlauft
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany
| | - Thomas Barth
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany
| | - Renate Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany
| | - Matus Rehak
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
8
|
Ablimit A, Abdureyim Z, Yang P, Azmat R, Shan W, Yao Q. Testicular AQP1 expression in a rat model of testicular Ischemia-Reperfusion injury. J Pediatr Urol 2021; 17:169.e1-169.e6. [PMID: 33358303 DOI: 10.1016/j.jpurol.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 12/03/2020] [Indexed: 11/27/2022]
Abstract
UNLABELLED Aquaporin 1 (AQP1) is the archetype of all aquaporins and involved in rapid cellular water fluxes and cell volume regulation. AN OBJECTIVE This study was conducted for the investigation of AQP1 expression in normal testicular tissues and those with I/R injury in a rat model. STUDY DESIGN A TT rat model was established using male Wister rats (4 weeks old, 180-220 g), and AQP1 distribution in the testicular tissues was detected by immunohistochemistry. The wet/dry (W/D) weight ratios of the testes were determined at 12 h, 24 h, 36 h, 48 h, or 5 days after the establishment of the TT model. At each time point, pathological sections were prepared and the mRNA and protein expression levels of AQP1 were determined by RT-qPCR and Western blotting, respectively. RESULTS Immunohistochemical staining indicated that AQP1 distributes in testicular vascular endothelial cells and interstitial connective tissues. The testicular edema was observed 12 and 24 h after TT, as indicated by the increase in wet/dry weight ratio and pathological changes, such as enlarged testicular interstitium, atrophy of spermatogenic tubules, and epineurium tubule exfoliation. Increase in the expression levels of Aqp1 mRNA and AQP1 protein levels peaked at 24 h. Edema was alleviated at 36 and 48 h, as manifested by the gradual thinning of the spermatogenic tubules epithelium with narrowed interstitium and weakened inflammatory cell infiltration. Meanwhile, the mRNA and protein levels of AQP1 dramatically decreased. At 5 days after TT, edema was nearly absent, and the mRNA and protein levels of AQP1 were restored to basal levels. DISCUSSION Testicular torsion increases AQP1 expression and W/D ratios in testis tissues. The upregulation of AQP1 expression and decline in AQP1 level are consistent to the development and alleviation of edema in testis tissues that underwent testicular torsion. CONCLUSION Changes in AQP1 expression were consistent with edema severity in the testes, indicating a close relationship between the expression of AQP1 and the extent of edema in testicular I/R.
Collapse
Affiliation(s)
- Abduxukur Ablimit
- Department of Histology and Embryology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| | - Zumrat Abdureyim
- Center of Morphology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| | - Pan Yang
- Department of Physiology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| | - Rozjan Azmat
- Department of Physiology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| | - Weibi Shan
- Department of Physiology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| | - Qiaoling Yao
- Department of Physiology, Basic Medical College, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
9
|
Zhang X, Xiao H, Liu C, Zhao L, Wang J, Li H, Wang R, Zhu Y, Chen C, Wu X, Lin D, Wang J, Liu X, Qiu W, Yu-Wai-Man P, Ting DS, Lin H. Comparison of macular structural and vascular changes in neuromyelitis optica spectrum disorder and primary open angle glaucoma: a cross-sectional study. Br J Ophthalmol 2021; 105:354-360. [PMID: 32430343 PMCID: PMC7907571 DOI: 10.1136/bjophthalmol-2020-315842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023]
Abstract
AIMS To compare macular structure and vasculature between neuromyelitis optica spectrum disorder (NMOSD) and primary open angle glaucoma (POAG) using optical coherence tomography angiography. METHODS NMOSD patients (n=124) with/without a history of optic neuritis (ON) (NMO+ON: 113 eyes; NMO-ON: 95 eyes), glaucomatous patients (n=102) with early/advanced glaucoma (G-E: 74 eyes; G-A: 50 eyes) and healthy controls (n=62; 90 eyes) were imaged. The main outcome measures were macular ganglion cell-inner plexiform layer (GC-IPL) thickness, vessel density (VD) and perfusion density (PD) in the superficial capillary plexus, and diagnostic capabilities of the parameters as calculated by area under the curve (AUC). RESULTS Significant losses in GC-IPL, VD and PD were detected in both patients with NMOSD and POAG. With matched losses in the peripapillary retinal nerve fibre layer, NMOSD group showed significant thinning of GC-IPL in the nasal-superior quadrant, whereas in POAG group, significant thinning was observed in the inferior and temporal-inferior quadrants. GC-IPL thinning was more prominent in the superior, nasal-superior and nasal-inferior quadrants in NMO+ON eyes. In G-A eyes, significant GC-IPL thinning was seen in the temporal-inferior quadrant. The specific structural parameters combining VD and foveal avascular zone (FAZ) indices showed the best diagnostic accuracies. The FAZ area in eyes with NMOSD was significantly smaller than the eyes of healthy controls and POAG. CONCLUSION NMOSD and POAG have specific patterns of macular structural and vascular changes associated with pathophysiology. Our results indicate that FAZ could be a sensitive biomarker of macular changes in NMOSD.
Collapse
Affiliation(s)
- Xiayin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chunxin Liu
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lanqin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jinghui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haiquan Li
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruixin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chuan Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Duoru Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingqi Wang
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Daniel S Ting
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Singapore National Eye Center, Duke-NUS Medical School, Singapore
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Center of Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Mori S, Kurimoto T, Miki A, Maeda H, Kusuhara S, Nakamura M. Aqp9 Gene Deletion Enhances Retinal Ganglion Cell (RGC) Death and Dysfunction Induced by Optic Nerve Crush: Evidence that Aquaporin 9 Acts as an Astrocyte-to-Neuron Lactate Shuttle in Concert with Monocarboxylate Transporters To Support RGC Function and Survival. Mol Neurobiol 2020; 57:4530-4548. [PMID: 32748371 PMCID: PMC7515957 DOI: 10.1007/s12035-020-02030-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Aquaporin 9 (AQP9) is an aquaglyceroporin that can transport lactate. Accumulating evidence suggests that astrocyte-to-neuron lactate shuttle (ANLS) plays a critical role in energy metabolism in neurons, including retinal ganglion cells (RGCs). To test the hypothesis that AQP9, in concert with monocarboxylate transporters (MCTs), participates in ANLS to maintain function and survival of RGCs, Aqp9-null mice and wild-type (WT) littermates were subjected to optic nerve crush (ONC) with or without intravitreal injection of an MCT2 inhibitor. RGC density was similar between the Aqp9-null mice and WT mice without ONC, while ONC resulted in significantly more RGC density reduction in the Aqp9-null mice than in the WT mice at day 7. Positive scotopic threshold response (pSTR) amplitude values were similar between the two groups without ONC, but were significantly more reduced in the Aqp9-null mice than in the WT mice 7days after ONC. MCT2 inhibitor injection accelerated RGC death and pSTR amplitude reduction only in the WT mice with ONC. Immunolabeling revealed that both RGCs and astrocytes expressed AQP9, that ONC predominantly reduced astrocytic AQP9 expression, and that MCTs 1, 2, and 4 were co-localized with AQP9 at the ganglion cell layer. These retinal MCTs were also co-immunoprecipitated with AQP9 in the WT mice. ONC decreased the co-immunoprecipitation of MCTs 1 and 4, but did not impact co-immunoprecipitation of MCT2. Retinal glucose transporter 1 expression was increased in Aqp9-null mice. Aqp9 gene deletion reduced and increased the intraretinal L-lactate and D-glucose concentrations, respectively. Results suggest that AQP9 acts as the ANLS to maintain function and survival of RGCs.
Collapse
Affiliation(s)
- Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuji Kurimoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Akiko Miki
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hidetaka Maeda
- Maeda Eye Clinic, 1-1-1, Uchihonmachi, Chuo-ku, Osaka, 540-0012, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
11
|
Katoozi S, Rao SB, Skauli N, Froehner SC, Ottersen OP, Adams ME, Amiry-Moghaddam M. Functional specialization of retinal Müller cell endfeet depends on an interplay between two syntrophin isoforms. Mol Brain 2020; 13:40. [PMID: 32178707 PMCID: PMC7074989 DOI: 10.1186/s13041-020-00581-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 11/10/2022] Open
Abstract
Retinal Müller cells are highly polarized macroglial cells with accumulation of the aquaporin-4 (AQP4) water channel and the inwardly rectifying potassium channel Kir4.1 at specialized endfoot membrane domains abutting microvessels and corpus vitreum. Proper water and potassium homeostasis in retina depends on these membrane specializations. Here we show that targeted deletion of β1-syntrophin leads to a partial loss of AQP4 from perivascular Müller cell endfeet and that a concomitant deletion of both α1- and β1-syntrophin causes a near complete loss of AQP4 from both perivascular and subvitreal endfoot membranes. α1-syntrophin is normally very weakly expressed in Müller cell endfeet but β1-syntrophin knockout mice display an increased amount of α1-syntrophin at these sites. We suggest that upregulation of perivascular α1-syntrophin restricts the effect of β1-syntrophin deletion. The present findings indicate that β1-syntrophin plays an important role in maintaining the functional polarity of Müller cells and that α1-syntrophin can partially substitute for β1-syntrophin in AQP4 anchoring. Functional polarization of Müller cells thus depends on an interplay between two syntrophin isoforms.
Collapse
Affiliation(s)
- Shirin Katoozi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway
| | - Shreyas B Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway
| | - Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195-7290, USA
| | - Ole Petter Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway.,Present Address: President's office, Karolinska Institutet, Nobels väg 6, 171 77, Stockholm, Sweden
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195-7290, USA
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway.
| |
Collapse
|
12
|
Chen Y, Shi C, Zhou L, Huang S, Shen M, He Z. The Detection of Retina Microvascular Density in Subclinical Aquaporin-4 Antibody Seropositive Neuromyelitis Optica Spectrum Disorders. Front Neurol 2020; 11:35. [PMID: 32117008 PMCID: PMC7026479 DOI: 10.3389/fneur.2020.00035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/10/2020] [Indexed: 01/07/2023] Open
Abstract
Purpose: To use optical coherence tomography (OCT) and OCT angiography (OCT-A) to measure changes in the retinal structure and microvasculature of patients with aquaporin-4 antibody-positive, neuromyelitis optica spectrum disorder (NMOSD) with a history of optic neuritis (NMOSD+ON) and those without it (NMOSD–ON). Methods: A total of 27 aquaporin-4 antibody-positive NMOSD patients and 31 age- and gender-matched healthy control (HC) participants were included. In 27 NMOSD patients, 19 of them had a history of optic neuritis (ON) and 8 of them had no history of ON. Peripapillary retinal nerve fiber layer (pRNFL) thickness and macular ganglion cell and inner plexiform layer (GCIPL) thickness were measured by OCT. Radial peripapillary capillary density (RPCD) and macular superficial vessel density (MSVD) were measured by OCT-A. Comparisons of retinal structural and microvascular parameters between the cohorts were performed using generalized estimating equation (GEE) models. Diagnostic accuracy was evaluated by the area under the receiver operating characteristics curve (AROC). Results: In NMOSD+ON eyes, the GCIPL and pRNFL thicknesses, 48.6 ± 7.1 and 61.7 ± 25.1 μm, respectively, were significantly thinner than in HC eyes (P < 0.001 for both). However, in NMOSD–ON eyes, the GCIPL and pRNFL thicknesses were not significantly thinner than in HC eyes (P > 0.05 for both). In NMOSD+ON eyes, the RPCD and MSVD, 37.8 ± 7.1 and 36.7 ± 5.0%, respectively, were significantly less dense than HC eyes (P < 0.001 for both). Similarly, the RPCD and MSVD in NMOSD–ON eyes, 49.0 ± 2.8 and 43.9 ± 4.2%, respectively, were also less dense than in HC eyes (P < 0.029 for RPCD, P < 0.023 for MSVD). The highest AROC, 0.845 (sensitivity = 88.5%, specificity = 78.0%), was achieved by the logistic regression combination of all of the variables, i.e., pRNFL, GCIPL, RPCD, and MSVD. Conclusions: Retinal microvascular changes were present in NMOSD–ON eyes. The combination of retinal structural and microvascular parameters might be helpful to discriminate NMOSD–ON eyes from HC eyes.
Collapse
Affiliation(s)
- Yihong Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.,Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ce Shi
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Lili Zhou
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghai Huang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Zhiyong He
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Bumetanide Suppression of Angiogenesis in a Rat Model of Oxygen-Induced Retinopathy. Int J Mol Sci 2020; 21:ijms21030987. [PMID: 32024231 PMCID: PMC7037744 DOI: 10.3390/ijms21030987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Aquaporins (AQPs) are involved in hypoxia-induced angiogenesis and retinal damage. Bumetanide is a diuretic agent, Na+/K+/Cl− cotransporter (NKCC1), and AQP 1–4 inhibitor. We tested the hypothesis that early postnatal treatment with bumetanide suppresses biomarkers of angiogenesis and decreases severe retinopathy oxygen-induced retinopathy (OIR). Neonatal rats were exposed at birth (P0) to either (1) room air (RA); (2) hyperoxia (50% O2); or (3) intermittent hypoxia (IH) consisting of 50% O2 with brief, clustered episodes of 12% O2 from P0 to postnatal day 14 (P14), during which they were treated intraperitoneally (IP) with bumetanide (0.1 mg/kg/day) or an equivalent volume of saline, on P0–P2. Pups were examined at P14 or allowed to recover in RA from P14–P21. Retinal angiogenesis, morphometry, pathology, AQPs, and angiogenesis biomarkers were determined at P14 and P21. Bumetanide reduced vascular abnormalities associated with severe OIR. This was associated with reductions in AQP-4 and VEGF. Bumetanide suppressed sVEGFR-1 in the serum and vitreous fluid, but levels were increased in the ocular tissues during recovery. Similar responses were noted for IGF-I. In this model, early systemic bumetanide administration reduces severe OIR, the benefits of which appear to be mediated via suppression of AQP-4 and VEGF. Further studies are needed to determine whether bumetanide at the right doses may be considered a potential pharmacologic agent to treat retinal neovascularization.
Collapse
|
14
|
Rao SB, Katoozi S, Skauli N, Froehner SC, Ottersen OP, Adams ME, Amiry-Moghaddam M. Targeted deletion of β1-syntrophin causes a loss of K ir 4.1 from Müller cell endfeet in mouse retina. Glia 2019; 67:1138-1149. [PMID: 30803043 DOI: 10.1002/glia.23600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/02/2023]
Abstract
Proper function of the retina depends heavily on a specialized form of retinal glia called Müller cells. These cells carry out important homeostatic functions that are contingent on their polarized nature. Specifically, the Müller cell endfeet that contact retinal microvessels and the corpus vitreum show a tenfold higher concentration of the inwardly rectifying potassium channel Kir 4.1 than other Müller cell plasma membrane domains. This highly selective enrichment of Kir 4.1 allows K+ to be siphoned through endfoot membranes in a special form of spatial buffering. Here, we show that Kir 4.1 is enriched in endfoot membranes through an interaction with β1-syntrophin. Targeted disruption of this syntrophin caused a loss of Kir 4.1 from Müller cell endfeet without affecting the total level of Kir 4.1 expression in the retina. Targeted disruption of α1-syntrophin had no effect on Kir 4.1 localization. Our findings show that the Kir 4.1 aggregation that forms the basis for K+ siphoning depends on a specific syntrophin isoform that colocalizes with Kir 4.1 in Müller endfoot membranes.
Collapse
Affiliation(s)
- Shreyas B Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Shirin Katoozi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, Western Australia
| | - Ole Petter Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, Western Australia
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res 2017; 63:20-68. [PMID: 29126927 DOI: 10.1016/j.preteyeres.2017.10.006] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Macular edema consists of intra- or subretinal fluid accumulation in the macular region. It occurs during the course of numerous retinal disorders and can cause severe impairment of central vision. Major causes of macular edema include diabetes, branch and central retinal vein occlusion, choroidal neovascularization, posterior uveitis, postoperative inflammation and central serous chorioretinopathy. The healthy retina is maintained in a relatively dehydrated, transparent state compatible with optimal light transmission by multiple active and passive systems. Fluid accumulation results from an imbalance between processes governing fluid entry and exit, and is driven by Starling equation when inner or outer blood-retinal barriers are disrupted. The multiple and intricate mechanisms involved in retinal hydro-ionic homeostasis, their molecular and cellular basis, and how their deregulation lead to retinal edema, are addressed in this review. Analyzing the distribution of junction proteins and water channels in the human macula, several hypotheses are raised to explain why edema forms specifically in the macular region. "Pure" clinical phenotypes of macular edema, that result presumably from a single causative mechanism, are detailed. Finally, diabetic macular edema is investigated, as a complex multifactorial pathogenic example. This comprehensive review on the current understanding of macular edema and its mechanisms opens perspectives to identify new preventive and therapeutic strategies for this sight-threatening condition.
Collapse
|
16
|
Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder. J Neurol 2016; 263:1343-8. [PMID: 27142716 DOI: 10.1007/s00415-016-8138-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
Abstract
Foveal thickness may be a more sensitive indicator of primary retinal pathology than retinal nerve fiber layer thickness since the fovea contains no or sparse retinal nerve fiber layer, which coalesces into axons of the optic nerve. To our knowledge, few quantitative in vivo studies have investigated foveal thickness. By using optical coherence tomography, we measured foveal thickness to evaluate intrinsic retinal pathology. Seventy-two neuromyelitis optica spectrum disorder patients (99 eyes with optic neuritis and 45 eyes without optic neuritis) and 34 age-matched controls were included. Foveal thinning was observed both in eyes with non-optic neuritis (185.1 µm, p < 0.001) and optic neuritis (185.0 µm, p < 0.001) relative to controls (205.0 µm). Compared to controls, eyes with non-optic neuritis did not have peripapillary retinal nerve fiber layer thinning, but showed foveal thinning (p < 0.001). In neuromyelitis optica spectrum disorder, foveal thickness correlated with 2.5 % low contrast visual acuity, while retinal nerve fiber layer thickness correlated with high or low contrast visual acuity, extended disability status scale, and disease duration. In this study, we observed foveal thinning irrespective of optic neuritis; thus, we believe that subclinical primary retinal pathology, prior to retinal nerve fiber layer thinning, may exist in neuromyelitis optica spectrum disorder.
Collapse
|
17
|
Abstract
PURPOSE Recent studies have shown that aquaporins (AQPs) play an important role in proliferating tumor microvessels and angiogenesis. In this study, the authors investigated the expression of aquaporin-1 (AQP1) and aquaporin-3 (AQP3) in pterygial and normal conjunctival tissues. METHODS Fifteen patients with pterygium were enrolled in the study. Pterygium was excised, and a conjunctival rotational flap or autograft was inserted. Normal conjunctival tissue was obtained from the flap or graft. Western blot analysis was performed to assess the expression of AQP1 and AQP3 in pterygial and normal conjunctival tissues. Tissue localization of AQP1 and AQP3 was determined by immunohistochemical analysis. RESULTS AQP1 and AQP3 are localized in the epithelial and subepithelial regions in pterygial and normal conjunctival tissues. Protein expression of both AQP1 and AQP3 was elevated in pterygia when compared with conjunctival tissues. The significant increase in protein expression of AQP1 was 3-fold in pterygium over normal conjunctiva (P = 0.004) and 2-fold increase in AQP3 expression of pterygium was detected (P = 0.02) according to densitometric analysis. CONCLUSIONS Elevated protein expression of AQP1 and AQP3 was observed in pterygial tissues when compared with normal conjunctiva. The data suggest that the increased expression of AQP1 and AQP3 in pterygial tissues may be involved in the pathogenesis of pterygia, and therefore, AQP1 and AQP3 are potential therapeutic targets for preventing or delaying the progression of the disease.
Collapse
|
18
|
Allen RS, Olsen TW, Sayeed I, Cale HA, Morrison KC, Oumarbaeva Y, Lucaciu I, Boatright JH, Pardue MT, Stein DG. Progesterone treatment in two rat models of ocular ischemia. Invest Ophthalmol Vis Sci 2015; 56:2880-91. [PMID: 26024074 DOI: 10.1167/iovs.14-16070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To determine whether the neurosteroid progesterone, shown to have protective effects in animal models of traumatic brain injury, stroke, and spinal cord injury, is also protective in ocular ischemia animal models. METHODS Progesterone treatment was tested in two ocular ischemia models in rats: a rodent anterior ischemic optic neuropathy (rAION) model, which induces permanent monocular optic nerve stroke, and the middle cerebral artery occlusion (MCAO) model, which causes transient ischemia in both the retina and brain due to an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. Visual function and retinal histology were assessed to determine whether progesterone attenuated retinal injury in these models. Additionally, behavioral testing and 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining in brains were used to compare progesterone's neuroprotective effects in both retina and brain using the MCAO model. RESULTS Progesterone treatment showed no effect on visual evoked potential (VEP) reduction and retinal ganglion cell loss in the permanent rAION model. In the transient MCAO model, progesterone treatment reduced (1) electroretinogram (ERG) deficits, (2) MCAO-induced upregulation of glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), and (3) retinal ganglion cell loss. As expected, progesterone treatment also had significant protective effects in behavioral tests and a reduction in infarct size in the brain. CONCLUSIONS Progesterone treatment showed protective effects in the retina following MCAO but not rAION injury, which may result from mechanistic differences with injury type and the therapeutic action of progesterone.
Collapse
Affiliation(s)
- Rachael S Allen
- Emergency Medicine Emory University, Atlanta, Georgia, United States 2Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 3Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - Timothy W Olsen
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Iqbal Sayeed
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | - Heather A Cale
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | | | - Yuliya Oumarbaeva
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | - Irina Lucaciu
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | - Jeffrey H Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 3Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 3Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - Donald G Stein
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| |
Collapse
|
19
|
Jha KA, Nag TC, Kumar V, Kumar P, Kumar B, Wadhwa S, Roy TS. Differential Expression of AQP1 and AQP4 in Avascular Chick Retina Exposed to Moderate Light of Variable Photoperiods. Neurochem Res 2015; 40:2153-66. [PMID: 26285902 DOI: 10.1007/s11064-015-1698-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/01/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022]
Abstract
Aquaporins (AQPs) are integral membrane proteins which maintain cellular water and ion homeostasis. Alterations in AQP expression have been reported in rod-dominated rodent retinas exposed to light. In rodents and also in birds, light of moderate intensities (700-2000 lux) damages the retina, though detailed changes were not examined in birds. The aim of our study was to see if light affects cone dominated retinas, which would be reflected in expression levels of AQPs. We examined AQP1 and AQP4 expressions in chick retina exposed to 2000 lux under 12 h light:12 h dark (12L:12D; normal photoperiod), 18L:6D (prolonged photoperiod) and 24L:0D (constant light). Additionally, morphological changes, apoptosis (by TUNEL) and levels of glutamate and GFAP (a marker of injury) in the retina were examined to correlate these with AQP expressions. Constant light caused damage in outer and inner nuclear layer (ONL, INL) and ganglion cell layer (GCL). Also, there were associated increases in GFAP and glutamate levels in retinal extracts. In normal photoperiod, AQP1 was expressed in GCL, outer part of INL and photoreceptor inner segments of. AQP4 was additionally expressed in nerve fiber layer. Immunohistochemistry and Western blotting revealed over all decreased AQP1 and AQP4 expression in constant light condition compared to those in other two groups. The elevated GFAP and glutamate levels might be involved in the reduction of AQPs in constant light group. Such decreases in AQP expressions are perhaps linked with retinal cell damage seen in constant light condition, while their relatively enhanced expression in two other conditions may help in maintaining a normal retinal architecture, indicating their neuroprotective potential.
Collapse
Affiliation(s)
- Kumar Abhiram Jha
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Vivek Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Binit Kumar
- Ocular Pharmacology Lab, Department of Pharmacology, DIPSAR, New Delhi, 110017, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
20
|
|
21
|
Thangaraj G, Christophel J, Bachmann G, Greif A, Layer PG. PEDF counteracts DL-α-aminoadipate toxicity and rescues gliotoxic damages in RPE-free chicken retinal explants. Exp Eye Res 2015; 134:111-22. [PMID: 25686916 DOI: 10.1016/j.exer.2015.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 01/03/2023]
Abstract
Gliotoxic responses complicate human eye diseases, the causes of which often remain obscure. Here, we activated Müller cells (MCs) by the gliotoxin DL-α-aminoadipate (AAA) and assayed possible protective effects by pigment epithelium-derived factor (PEDF) in RPE-free retinal explants of the E6 chick embryo. These models are suited to analyze gliotoxic reactions in vitro, since the avian retina contains only Müller cells (MCs) as glial components, and the RPE-free explants are devoid of a major PEDF source. ChAT- and AChE-immunohistochemistry (IHC) revealed that AAA treatment disrupted the differentiation of cholinergic amacrine cells in the inner plexiform layer. At the applied concentration of 1 mM AAA, apoptosis of MCs was slightly increased, as shown by TUNEL and caspase-3 activity assays. Concomitantly, cell-free gaps emerged in the middle of the retina, where MCs were swollen and amassed glutamine synthetase (shown by GS and Vimentin IHC). AAA treatment strongly activated MCs, as shown by GFAP IHC, and by an increase of stress-related catalase activity. Remarkably, nearly all effects of AAA on MCs were effectively counter-balanced by 50 ng/ml PEDF co-treatment, as also shown by RT-PCR. These findings suggest that supplementation with PEDF can protect the retina against gliotoxic attacks. Further studies should establish whether PEDF similarly protects a gliotoxic human retina.
Collapse
Affiliation(s)
- Gopenath Thangaraj
- Technische Universität Darmstadt, Entwicklungsbiologie und Neurogenetik, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Jeanette Christophel
- Technische Universität Darmstadt, Entwicklungsbiologie und Neurogenetik, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Gesine Bachmann
- Technische Universität Darmstadt, Entwicklungsbiologie und Neurogenetik, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Alexander Greif
- Technische Universität Darmstadt, Entwicklungsbiologie und Neurogenetik, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Paul G Layer
- Technische Universität Darmstadt, Entwicklungsbiologie und Neurogenetik, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany.
| |
Collapse
|
22
|
The role of inflammation in the pathogenesis of macular edema secondary to retinal vascular diseases. Mediators Inflamm 2014; 2014:432685. [PMID: 25152567 PMCID: PMC4134827 DOI: 10.1155/2014/432685] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/05/2014] [Accepted: 07/09/2014] [Indexed: 12/17/2022] Open
Abstract
Macular edema (ME) is a nonspecific sign of numerous retinal vascular diseases. This paper is an updated overview about the role of inflammatory processes in the genesis of both diabetic macular edema (DME) and ME secondary to retinal vein occlusion (RVO). We focus on the inflammatory mediators implicated, the effect of the different intravitreal therapies, the recruitment of leukocytes mediated by adhesion molecules, and the role of retinal Müller glial (RMG) cells.
Collapse
|
23
|
Schey KL, Wang Z, L Wenke J, Qi Y. Aquaporins in the eye: expression, function, and roles in ocular disease. Biochim Biophys Acta Gen Subj 2013; 1840:1513-23. [PMID: 24184915 DOI: 10.1016/j.bbagen.2013.10.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND All thirteen known mammalian aquaporins have been detected in the eye. Moreover, aquaporins have been identified as playing essential roles in ocular functions ranging from maintenance of lens and corneal transparency to production of aqueous humor to maintenance of cellular homeostasis and regulation of signal transduction in the retina. SCOPE OF REVIEW This review summarizes the expression and known functions of ocular aquaporins and discusses their known and potential roles in ocular diseases. MAJOR CONCLUSIONS Aquaporins play essential roles in all ocular tissues. Remarkably, not all aquaporin function as a water permeable channel and the functions of many aquaporins in ocular tissues remain unknown. Given their vital roles in maintaining ocular function and their roles in disease, aquaporins represent potential targets for future therapeutic development. GENERAL SIGNIFICANCE Since aquaporins play key roles in ocular physiology, an understanding of these functions is important to improving ocular health and treating diseases of the eye. It is likely that future therapies for ocular diseases will rely on modulation of aquaporin expression and/or function. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Jamie L Wenke
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Ying Qi
- Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
24
|
Abstract
Aquaporins are a group of proteins with high-selective permeability for water. A subgroup called aquaglyceroporins is also permeable to glycerol, urea and a few other solutes. Aquaporin function has mainly been studied in the brain, kidney, glands and skeletal muscle, while the information about aquaporins in the heart is still scarce. The current review explores the recent advances in this field, bringing aquaporins into focus in the context of myocardial ischemia, reperfusion, and blood osmolarity disturbances. Since the amount of data on aquaporins in the heart is still limited, examples and comparisons from better-studied areas of aquaporin biology have been used. The human heart expresses aquaporin-1, -3, -4 and -7 at the protein level. The potential roles of aquaporins in the heart are discussed, and some general phenomena that the myocardial aquaporins share with aquaporins in other organs are elaborated. Cardiac aquaporin-1 is mostly distributed in the microvasculature. Its main role is transcellular water flux across the endothelial membranes. Aquaporin-4 is expressed in myocytes, both in cardiac and in skeletal muscle. In addition to water flux, its function is connected to the calcium signaling machinery. It may play a role in ischemia-reperfusion injury. Aquaglyceroporins, especially aquaporin-7, may serve as a novel pathway for nutrient delivery into the heart. They also mediate toxicity of various poisons. Aquaporins cannot influence permeability by gating, therefore, their function is regulated by changes of expression-on the levels of transcription, translation (by microRNAs), post-translational modification, membrane trafficking, ubiquitination and subsequent degradation. Studies using mice genetically deficient for aquaporins have shown rather modest changes in the heart. However, they might still prove to be attractive targets for therapy directed to reduce myocardial edema and injury caused by ischemia and reperfusion.
Collapse
|
25
|
Vogler S, Pannicke T, Hollborn M, Grosche A, Busch S, Hoffmann S, Wiedemann P, Reichenbach A, Hammes HP, Bringmann A. Müller cell reactivity in response to photoreceptor degeneration in rats with defective polycystin-2. PLoS One 2013; 8:e61631. [PMID: 23755094 PMCID: PMC3670868 DOI: 10.1371/journal.pone.0061631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/12/2013] [Indexed: 12/18/2022] Open
Abstract
Background Retinal degeneration in transgenic rats that express a mutant cilia gene polycystin-2 (CMV-PKD2(1/703)HA) is characterized by initial photoreceptor degeneration and glial activation, followed by vasoregression and neuronal degeneration (Feng et al., 2009, PLoS One 4: e7328). It is unknown whether glial activation contributes to neurovascular degeneration after photoreceptor degeneration. We characterized the reactivity of Müller glial cells in retinas of rats that express defective polycystin-2. Methods Age-matched Sprague-Dawley rats served as control. Retinal slices were immunostained for intermediate filaments, the potassium channel Kir4.1, and aquaporins 1 and 4. The potassium conductance of isolated Müller cells was recorded by whole-cell patch clamping. The osmotic swelling characteristics of Müller cells were determined by superfusion of retinal slices with a hypoosmotic solution. Findings Müller cells in retinas of transgenic rats displayed upregulation of GFAP and nestin which was not observed in control cells. Whereas aquaporin-1 labeling of photoreceptor cells disappeared along with the degeneration of the cells, aquaporin-1 emerged in glial cells in the inner retina of transgenic rats. Aquaporin-4 was upregulated around degenerating photoreceptor cells. There was an age-dependent redistribution of Kir4.1 in retinas of transgenic rats, with a more even distribution along glial membranes and a downregulation of perivascular Kir4.1. Müller cells of transgenic rats displayed a slight decrease in their Kir conductance as compared to control. Müller cells in retinal tissues from transgenic rats swelled immediately under hypoosmotic stress; this was not observed in control cells. Osmotic swelling was induced by oxidative-nitrosative stress, mitochondrial dysfunction, and inflammatory lipid mediators. Interpretation Cellular swelling suggests that the rapid water transport through Müller cells in response to osmotic stress is altered as compared to control. The dislocation of Kir4.1 will disturb the retinal potassium and water homeostasis, and osmotic generation of free radicals and inflammatory lipids may contribute to neurovascular injury.
Collapse
Affiliation(s)
- Stefanie Vogler
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Antje Grosche
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Stephanie Busch
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sigrid Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
26
|
Ortak H, Cayli S, Ocaklı S, Söğüt E, Ekici F, Tas U, Demir S. Age-related changes of aquaporin expression patterns in the postnatal rat retina. Acta Histochem 2013; 115:382-8. [PMID: 23131425 DOI: 10.1016/j.acthis.2012.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 12/24/2022]
Abstract
Previous studies revealed that the rat retina contains numerous membrane-located water channels, the aquaporins (AQPs). Protein expression patterns of AQP1-4, 6 and 9 were examined by immunohistochemistry. In the present study, we investigated the immunolocalization of AQP1-4, 6 and 9 during postnatal development in the rat retina and examined the effect of age on the tissue distribution of these channels. AQP1, 3, 4, 6 and 9 showed gradually increased expression in rat retinas from postnatal week 1 to week 12, and decreased in the 40-week-old rat retinas. AQP2 expression was barely seen in the first week in rat retinas and displayed a significant increase from week 1 to week 4, however no significant alteration of AQP2 was observed after 4weeks of development. AQP1 and 4 immunoreactivities were present in the inner limiting membrane (ILM), the ganglion cell layer (GCL), inner nuclear layer (INL) and retinal pigment epithelium (RPE) in the 4-, 12- and 40-week-old rat retinas. The RPE, OLM and ILM showed a remarkable expression of AQP1-4, 6 and 9 in the 4, 12 and 40-week-old rat retinas. The reduced expression of AQPs in aged rat retinas may indicate the involvement of AQPs in the pathogenesis of age-related retinal diseases.
Collapse
Affiliation(s)
- Huseyin Ortak
- Department of Ophthalmology, Gaziosmanpasa University Faculty of Medicine, Tokat, Turkey.
| | | | | | | | | | | | | |
Collapse
|
27
|
Rutkovskiy A, Bliksøen M, Hillestad V, Amin M, Czibik G, Valen G, Vaage J, Amiry-Moghaddam M, Stensløkken KO. Aquaporin-1 in cardiac endothelial cells is downregulated in ischemia, hypoxia and cardioplegia. J Mol Cell Cardiol 2012; 56:22-33. [PMID: 23238222 DOI: 10.1016/j.yjmcc.2012.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/08/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Aquaporin-1 (AQP1) is expressed in human and mouse hearts, but little is known about its cellular and subcellular localization and regulation. The aim of this study was to investigate the localization of AQP1 in the mouse heart and to determine the effects of ischemia and hypoxia on its expression. Mouse myocardial cells were freshly isolated and split into cardiomyocyte and non-cardiomyocyte fractions. Isolated, Langendorff-perfused C57Bl6 mouse hearts (n=46) were harvested with no intervention, subjected to 35min of ischemia or ischemia followed by 60min of reperfusion. Eleven mouse hearts were perfusion-fixed for electron microscopy. Forty C57Bl6 mice were exposed to normobaric hypoxia for one or two weeks (n=12). Needle biopsies of human left ventricular myocardium were sampled (n=30) during coronary artery bypass surgery before cardioplegia and after 30min of reperfusion. Human umbilical vein endothelial cells (HUVECs) were subjected to 4h of hypoxia with reoxygenation for either 4 or 24h. AQP1 expression was studied by electron microscopy with immunogold labeling, Western blot, and qPCR. Expression of miR-214 and miR-320 in HUVECs with hypoxia was studied with qPCR. HUVECs were then transfected with precursors and inhibitors of miR-214. AQP1 expression was confined to cardiac endothelial cells, with no signal in cardiomyocytes or cardiac fibroblasts. Immunogold electron microscopy showed AQP1 expression in endothelial caveolae with equal distribution along the basal and apical membranes. Ischemia and reperfusion tended to decrease AQP1 mRNA expression in mouse hearts by 37±9% (p=0.06), while glycosylated AQP1 protein was reduced by 16±9% (p=0.03). No difference in expression was found between ischemia alone and ischemia-reperfusion. In human left ventricles AQP1 mRNA expression was reduced following cardioplegia and reperfusion (p=0.008). Hypoxia in mice reduced AQP1 mRNA expression by 20±7% (p<0.0001), as well as both glycosylated (-47±10%, p=0.03) and glycan-free protein (-34±16%, p=0.05). Hypoxia and reoxygenation in HUVECs downregulated glycan-free AQP1 protein (-34±24%, p=0.04) and upregulated miR-214 (+287±52%, p<0.05). HUVECs transfected with anti-miR-214 had increased glycosylated (1.5 fold) and glycan-free (2 fold) AQP1. AQP1 in mouse hearts is localized to endothelial cell membranes and caveolae. Cardioplegia, ischemia and hypoxia decrease AQP1 mRNA as well as total protein expression and glycosylation, possibly regulated by miR-214.
Collapse
Affiliation(s)
- Arkady Rutkovskiy
- Department of Emergency and Intensive Care at the Institute of Clinical Medicine, University of Oslo, Postbox 1171 Blindern, 0318 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rutkovskiy A, Stensløkken KO, Mariero LH, Skrbic B, Amiry-Moghaddam M, Hillestad V, Valen G, Perreault MC, Ottersen OP, Gullestad L, Dahl CP, Vaage J. Aquaporin-4 in the heart: expression, regulation and functional role in ischemia. Basic Res Cardiol 2012; 107:280. [DOI: 10.1007/s00395-012-0280-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 11/24/2022]
|
29
|
Beyond Polarity: Functional Membrane Domains in Astrocytes and Müller Cells. Neurochem Res 2012; 37:2513-23. [DOI: 10.1007/s11064-012-0824-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/01/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
|
30
|
Gan SW, Ran JH, Chen H, Ren ZQ, Sun SQ, Zhu SJ, Lu WT, Xu J, Zhang B, Huang J, Wang KJ, Chen Z. Lysosomal degradation of retinal glial AQP4 following its internalization induced by acute ocular hypertension. Neurosci Lett 2012; 516:135-40. [DOI: 10.1016/j.neulet.2012.03.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/13/2012] [Accepted: 03/24/2012] [Indexed: 11/26/2022]
|
31
|
Abstract
Retinal ischemia is a common clinical entity and, due to relatively ineffective treatment, remains a common cause of visual impairment and blindness. Generally, ischemic syndromes are initially characterized by low homeostatic responses which, with time, induce injury to the tissue due to cell loss by apoptosis. In this respect, retinal ischemia is a primary cause of neuronal death. It can be considered as a sort of final common pathway in retinal diseases and results in irreversible morphological and functional changes. This review summarizes the recent knowledge on the effects of ischemia in retinal tissue and points out experimental strategies/models performed to gain better comprehension of retinal ischemia diseases. In particular, the nature of the mechanisms leading to neuronal damage (i.e., excess of glutamate release, oxidative stress and inflammation) will be outlined as well as the potential and most intriguing retinoprotective approaches and the possible therapeutic use of naturally occurring molecules such as neuropeptides. There is a general agreement that a better understanding of the fundamental pathophysiology of retinal ischemia will lead to better management and improved clinical outcome. In this respect, to contrast this pathological state, specific pharmacological strategies need to be developed aimed at the many putative cascades generated during ischemia.
Collapse
|
32
|
Drechsler F, Köferl P, Hollborn M, Wiedemann P, Bringmann A, Kohen L, Rehak M. Effect of intravitreal anti-vascular endothelial growth factor treatment on the retinal gene expression in acute experimental central retinal vein occlusion. Ophthalmic Res 2011; 47:157-62. [PMID: 22116547 DOI: 10.1159/000330279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/19/2011] [Indexed: 11/19/2022]
Abstract
PURPOSE To determine the effect of intravitreal bevacizumab and anti-vascular endothelial growth factor (VEGF) antibodies on the gene expression in the neural retina in a rat model of central retinal vein occlusion (CRVO). METHODS The CRVO was induced by laser photocoagulation of all retinal veins. The animals were divided into 3 groups (in each, n = 16): group CRVO only without any further treatment, group CRVO with bevacizumab, and group CRVO with anti-VEGF antibodies. The intravitreal injection of bevacizumab or anti-VEGF antibodies was performed 15 min after CRVO induction. The left eyes in all animals served as untreated controls. The expression of factors which influence the development of vascular edema (VEGF-A, pigment epithelium-derived factor, PEDF), of channels implicated in retinal osmohomeostasis (Kir4.1, AQP4, AQP1) and of the proinflammatory cytokines interleukin (IL)-1β and IL-6 was determined by using real-time RT-PCR after 1 and 3 days of CRVO. RESULTS CRVO induced a rapid transient upregulation of Vegfa after 1 day, and a delayed upregulation of Pedf after 3 days of CRVO. The expression levels of Kir4.1, Aqp4 and Aqp1 were strongly decreased, and the levels of Il1β and Il6 were strikingly increased after CRVO. Intravitreal bevacizumab and anti-VEGF antibodies fully prevented the upregulation of Vegfa after 1 day, and the upregulation of Pedf after 3 days of CRVO, and decreased the upregulation of Il1β after 1 day of CRVO. Anti-VEGF treatment had no effect on the expression levels of Kir4.1, Aqp4, Aqp1, and Il6. CONCLUSIONS It is suggested that the inhibitory effect on the upregulation of Vegfa and Il1β contributes to the edema-resolving effect of anti-VEGF treatment.
Collapse
|
33
|
Selective over-expression of endothelin-1 in endothelial cells exacerbates inner retinal edema and neuronal death in ischemic retina. PLoS One 2011; 6:e26184. [PMID: 22053184 PMCID: PMC3203861 DOI: 10.1371/journal.pone.0026184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
The level of endothelin-1 (ET-1), a potent vasoconstrictor, was associated with retinopathy under ischemia. The effects of endothelial endothelin-1 (ET-1) over-expression in a transgenic mouse model using Tie-1 promoter (TET-1 mice) on pathophysiological changes of retinal ischemia were investigated by intraluminal insertion of a microfilament up to middle cerebral artery (MCA) to transiently block the ophthalmic artery. Two-hour occlusion and twenty-two-hour reperfusion were performed in homozygous (Hm) TET-1 mice and their non-transgenic (NTg) littermates. Presence of pyknotic nuclei in ganglion cell layer (GCL) was investigated in paraffin sections of ipsilateral (ischemic) and contralateral (non-ischemic) retinae, followed by measurement of the thickness of inner retinal layer. Moreover, immunocytochemistry of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS) and aquaporin-4 (AQP4) peptides on retinal sections were performed to study glial cell reactivity, glutamate metabolism and water accumulation, respectively after retinal ischemia. Similar morphology was observed in the contralateral retinae of NTg and Hm TET-1 mice, whereas ipsilateral retina of NTg mice showed slight structural and cellular changes compared with the corresponding contralateral retina. Ipsilateral retinae of Hm TET-1 mice showed more significant changes when compared with ipsilateral retina of NTg mice, including more prominent cell death in GCL characterized by the presence of pyknotic nuclei, elevated GS immunoreactivity in Müller cell bodies and processes, increased AQP-4 immunoreactivity in Müller cell processes, and increased inner retinal thickness. Thus, over-expression of endothelial ET-1 in TET-1 mice may contribute to increased glutamate-induced neurotoxicity on neuronal cells and water accumulation in inner retina leading to edema.
Collapse
|
34
|
Bringmann A, Wiedemann P. Müller glial cells in retinal disease. ACTA ACUST UNITED AC 2011; 227:1-19. [PMID: 21921569 DOI: 10.1159/000328979] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
Virtually all pathogenic stimuli activate Müller cells. Reactive Müller cells exert protective and toxic effects on photoreceptors and neurons. They contribute to oxidative stress and glutamate toxicity due to malfunctions of glutamate uptake and glutathione synthesis. Downregulation of potassium conductance disrupts transcellular potassium and water transport, resulting in neuronal hyperexcitability and edema. Protective effects of reactive Müller cells include upregulation of adenosine 5'-triphosphate (ATP)-degrading ectoenzymes, which enhances the extracellular availability of the neuroprotectant adenosine, abrogation of the osmotic release of ATP, which might protect retinal ganglion cells from apoptosis, and the release of antioxidants and neurotrophic factors. The dedifferentiation of reactive Müller cells to progenitor-like cells might have an impact on future therapeutic approaches. A better understanding of the gliotic mechanisms will be helpful in developing efficient therapeutic strategies aiming at increased protective and regenerative properties and decreased toxicity of reactive Müller cells.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
35
|
Wurm A, Pannicke T, Iandiev I, Francke M, Hollborn M, Wiedemann P, Reichenbach A, Osborne NN, Bringmann A. Purinergic signaling involved in Müller cell function in the mammalian retina. Prog Retin Eye Res 2011; 30:324-42. [DOI: 10.1016/j.preteyeres.2011.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
36
|
Hollborn M, Dukic-Stefanovic S, Pannicke T, Ulbricht E, Reichenbach A, Wiedemann P, Bringmann A, Kohen L. Expression of Aquaporins in the Retina of Diabetic Rats. Curr Eye Res 2011; 36:850-6. [DOI: 10.3109/02713683.2011.593108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Li SY, Yang D, Yeung CM, Yu WY, Chang RCC, So KF, Wong D, Lo ACY. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury. PLoS One 2011; 6:e16380. [PMID: 21298100 PMCID: PMC3027646 DOI: 10.1371/journal.pone.0016380] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/14/2010] [Indexed: 01/26/2023] Open
Abstract
Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R) injuries. Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are good for “eye health” according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), poly(ADP-ribose) (PAR) and nitrotyrosine (NT) were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB) was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL) and the inner nuclear layer (INL) of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature.
Collapse
Affiliation(s)
- Suk-Yee Li
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Di Yang
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chung-Man Yeung
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wing-Yan Yu
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Raymond Chuen-Chung Chang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kwok-Fai So
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - David Wong
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- St. Paul's Eye Unit, The Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Amy C. Y. Lo
- Eye Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
38
|
Pannicke T, Wurm A, Iandiev I, Hollborn M, Linnertz R, Binder DK, Kohen L, Wiedemann P, Steinhäuser C, Reichenbach A, Bringmann A. Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress. J Neurosci Res 2010; 88:2877-88. [PMID: 20544823 DOI: 10.1002/jnr.22437] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The glial water channel aquaporin-4 (AQP4) is implicated in the control of ion and osmohomeostasis in the sensory retina. Using retinal slices from AQP4-deficient and wild-type mice, we investigated whether AQP4 is involved in the regulation of glial cell volume under altered osmotic conditions. Superfusion of retinal slices with a hypoosmolar solution induced a rapid swelling of glial somata in tissues from AQP4 null mice but not from wild-type mice. The swelling was mediated by oxidative stress, inflammatory lipid mediators, and sodium influx into the cells and was prevented by activation of glutamatergic and purinergic receptors. Distinct inflammatory proteins, including interleukin-1 beta, interleukin-6, and inducible nitric oxide synthase, were up-regulated in the retina of AQP4 null mice compared with control, whereas cyclooxygenase-2 was down-regulated. The data suggest that water flux through AQP4 is involved in the rapid volume regulation of retinal glial (Müller) cells in response to osmotic stress and that deletion of AQP4 results in an inflammatory response of the retinal tissue. Possible implications of the data for understanding the pathophysiology of neuromyelitis optica, a human disease that has been suggested to involve serum antibodies to AQP4, are discussed.
Collapse
Affiliation(s)
- Thomas Pannicke
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fukuda M, Nakanishi Y, Fuse M, Yokoi N, Hamada Y, Fukagawa M, Negi A, Nakamura M. Altered expression of aquaporins 1 and 4 coincides with neurodegenerative events in retinas of spontaneously diabetic Torii rats. Exp Eye Res 2010; 90:17-25. [DOI: 10.1016/j.exer.2009.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 12/22/2022]
|
40
|
Robel S, Mori T, Zoubaa S, Schlegel J, Sirko S, Faissner A, Goebbels S, Dimou L, Götz M. Conditional deletion of β1-integrin in astroglia causes partial reactive gliosis. Glia 2009; 57:1630-47. [DOI: 10.1002/glia.20876] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
Qin Y, Xu G, Fan J, Witt RE, Da C. High-salt loading exacerbates increased retinal content of aquaporins AQP1 and AQP4 in rats with diabetic retinopathy. Exp Eye Res 2009; 89:741-7. [DOI: 10.1016/j.exer.2009.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 01/19/2023]
|
42
|
Qin Y, Fan J, Ye X, Xu G, Liu W, Da C. High salt loading alters the expression and localization of glial aquaporins in rat retina. Exp Eye Res 2009; 89:88-94. [PMID: 19268466 DOI: 10.1016/j.exer.2009.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
In the neural retina, glial cells control the ionic concentrations in part by mediation of transmembrane water fluxes through aquaporin (AQP) water channels. The expression and immunolocalization of two water channels, AQP1 and AQP4, in the rat retina during experimental high salt loading were investigated in this study. Six-week-old Wistar rats were allowed free access to rat chow with 8% NaCl concentration. Of these rats, 6 were killed after 2, 6, 10 and 20 weeks. Twelve-week-old and 26-week-old Wistar rats with a normal diet (0.5% NaCl concentration) were used as controls. Retinal tissues were collected. Ultrathin sections stained with uranyl acetate and lead citrate were photographed using a transmission electron microscope (TEM). Retinal whole mounts and cryosections were immunostained with AQP1 and AQP4 antibodies to detect the immunolocalization changes by confocal microscopy. The AQP1 and AQP4 contents were evaluated by western blot analysis. In control tissues, no intracellular edema and mitochondria swelling were observed by TEM. The immunoreactive AQP4 was expressed by glial cells (Müller cells and astrocytes) predominantly in the inner retina, and AQP1 was expressed in the outer retina. In the retinas of high salt loading animals, obvious intracellular edema was observed by TEM in retinal ganglion cell (RGC) and mitochondria swelling was observed in glial cells. Strong expression of AQP1 was found in glial cells located in the innermost retinal layers, mainly in astrocytes. The superficial retinal vessels were surrounded by AQP4 in control retinas, but by both AQP4 and AQP1 in retina of high salt loading animals. A similar alteration in the localization of AQP1 has been described in the rat retina after transient ischemia and diabetes. Western blot results supported the conclusion that the AQP1 expression increased during high salt diet. Our findings indicate that high salt loading may induce neural retina edema, and that altered glial cell-mediated water transport via AQP channels in the retina may be one of the reasons for intracellular edema in the neural retina.
Collapse
Affiliation(s)
- Yaowu Qin
- EENT Hospital, Eye Institute, Fudan University, Fenyang Road 83, Shanghai, China
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
AbstractMany diverse retinal disorders are characterized by retinal edema; yet, little experimental attention has been given to understanding the fundamental mechanisms underlying and contributing to these fluid-based disorders. Water transport in and out of cells is achieved by specialized membrane channels, with most rapid water transport regulated by transmembrane water channels known as aquaporins (AQPs). The predominant AQP in the mammalian retina is AQP4, which is expressed on the Müller glial cells. Müller cells have previously been shown to modulate neuronal activity by modifying the concentrations of ions, neurotransmitters, and other neuroactive substances within the extracellular space between the inner and the outer limiting membrane. In doing so, Müller cells maintain extracellular homeostasis, especially with regard to the spatial buffering of extracellular potassium (K+) via inward rectifying K+ channels (Kir channels). Recent studies of water transport and the spatial buffering of K+ through glial cells have highlighted the involvement of both AQP4 and Kir channels in regulating the extracellular environment in the brain and retina. As both glial functions are associated with neuronal activation, controversy exists in the literature as to whether the relationship is functionally dependent. It is argued in this review that as AQP4 channels are likely to be the conduit for facilitating fluid homeostasis in the inner retina during light activation, AQP4 channels are also likely to play a consequent role in the regulation of ocular volume and growth. Recent research has already shown that the level of AQP4 expression is associated with environmentally driven manipulations of light activity on the retina and the development of myopia.
Collapse
|
44
|
Iandiev I, Pannicke T, Reichenbach A, Wiedemann P, Bringmann A. Diabetes alters the localization of glial aquaporins in rat retina. Neurosci Lett 2007; 421:132-6. [PMID: 17566653 DOI: 10.1016/j.neulet.2007.04.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/16/2007] [Accepted: 04/16/2007] [Indexed: 11/25/2022]
Abstract
Glial cells control the water homeostasis in the neural retina, in part via water transport through aquaporin (AQP) water channels. We investigated whether the immunolocalization of two water channels, AQP1 and AQP4, alters in the rat retina during experimental diabetes. Wistar rats were rendered diabetic by a single dose of streptozotocin, and retinal tissues were immunostained following 4 and 6 months. In control tissues, immunoreactive AQP4 was expressed by glial cells (Müller cells and astrocytes) predominantly in the inner retina, and AQP1 was expressed in the outer retina and by distinct amacrine cells. In diabetic retinas, additional strong expression of AQP1 was found in glial cells located in the innermost retinal layers. The superficial retinal vessels were surrounded by AQP4 in control retinas, and by AQP1 in diabetic retinas. A similar alteration in the localization of AQP1 and AQP4 has been described in the rat retina after transient ischemia. The data suggest that the glial cell-mediated water transport in the retina of diabetic animals is altered especially at the superficial vessel plexus.
Collapse
Affiliation(s)
- Ianors Iandiev
- Translational Center for Regenerative Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|