1
|
Saad AK, Akour A, Mahboob A, AbuRuz S, Sadek B. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals (Basel) 2022; 15:612. [PMID: 35631438 PMCID: PMC9144645 DOI: 10.3390/ph15050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.
Collapse
Affiliation(s)
- Ali K. Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Abdulla Mahboob
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein AbuRuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
2
|
López JM, Morales L, González A. Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:127-146. [DOI: 10.1159/000449278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
The present immunohistochemical study represents a detailed spatiotemporal analysis of the localization of orexin-immunoreactive (OX-ir) cells and fibers throughout development in the brain of the anuran amphibian Xenopus laevis, a model frequently used in developmental studies. Anurans undergo remarkable physiological changes during the early life stages, and very little is known about the ontogeny and the localization of the centers that control functions such as appetite and feed ingestion in the developing brain. We examined the onset of the orexinergic system, demonstrated to be involved in appetite regulation, using antibodies against mammalian orexin-A and orexin-B peptides. Simultaneous detection of orexins with other territorial markers was used to assess the precise location of the orexinergic cells in the hypothalamus, analyzed within a segmental paradigm. Double staining of orexins and tyrosine hydroxylase served to evaluate possible interactions with the catecholaminergic systems. At early embryonic stages, the first OX-ir cells were detected in the hypothalamus and, soon after, long descending projections were observed through the brainstem to the spinal cord. As brain development proceeded, the double-staining techniques demonstrated that this OX-ir cell group was located in the suprachiasmatic nucleus within the alar hypothalamus. Throughout larval development, the number of OX-ir cells increased notably and a widespread fiber network that innervated the main areas of the forebrain and brainstem was progressively formed, including innervation in the posterior tubercle and mesencephalon, the locus coeruleus, and the nucleus of the solitary tract where catecholaminergic cells are present. In addition, orexinergic cells were detected in the preoptic area and the tuberal hypothalamus only at late prometamorphic stages. The final distribution pattern, largely similar to that of the adult, was achieved through metamorphic climax. The early expression of orexins in Xenopus suggests important roles in brain development in the embryonic period before feeding, and the progression of the temporal and spatial complexity of the orexinergic system might be correlated to the maturation of appetite control regulation, among other functions.
Collapse
|
3
|
Godden KE, Landry JP, Slepneva N, Migues PV, Pompeiano M. Early expression of hypocretin/orexin in the chick embryo brain. PLoS One 2014; 9:e106977. [PMID: 25188307 PMCID: PMC4154820 DOI: 10.1371/journal.pone.0106977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/11/2014] [Indexed: 01/20/2023] Open
Abstract
Hypocretin/Orexin (H/O) neuropeptides are released by a discrete group of neurons in the vertebrate hypothalamus which play a pivotal role in the maintenance of waking behavior and brain state control. Previous studies have indicated that the H/O neuronal development differs between mammals and fish; H/O peptide-expressing cells are detectable during the earliest stages of brain morphogenesis in fish, but only towards the end of brain morphogenesis (by ∼85% of embryonic development) in rats. The developmental emergence of H/O neurons has never been previously described in birds. With the goal of determining whether the chick developmental pattern was more similar to that of mammals or of fish, we investigated the emergence of H/O-expressing cells in the brain of chick embryos of different ages using immunohistochemistry. Post-natal chick brains were included in order to compare the spatial distribution of H/O cells with that of other vertebrates. We found that H/O-expressing cells appear to originate from two separate places in the region of the diencephalic proliferative zone. These developing cells express the H/O neuropeptide at a comparatively early age relative to rodents (already visible at 14% of the way through fetal development), thus bearing a closer resemblance to fish. The H/O-expressing cell population proliferates to a large number of cells by a relatively early embryonic age. As previously suggested, the distribution of H/O neurons is intermediate between that of mammalian and non-mammalian vertebrates. This work suggests that, in addition to its roles in developed brains, the H/O peptide may play an important role in the early embryonic development of non-mammalian vertebrates.
Collapse
Affiliation(s)
- Kyle E. Godden
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Jeremy P. Landry
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Natalya Slepneva
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Paola V. Migues
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Maria Pompeiano
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
4
|
Aran A, Shors I, Lin L, Mignot E, Schimmel MS. CSF levels of hypocretin-1 (orexin-A) peak during early infancy in humans. Sleep 2012; 35:187-91. [PMID: 22294808 PMCID: PMC3250357 DOI: 10.5665/sleep.1618] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Hypocretin (orexin) is a unique neuropeptide involved in the consolidation of wakefulness and sleep. Although hypocretin-1 levels in the cerebrospinal fluid (CSF) are stable after infancy, how levels change in preterm and term human infants is unknown. DESIGN, PATIENTS, AND SETTING Hypocretin-1 levels were measured in CSF samples, obtained from 284 preterm (25-37 gestational weeks) and full-term infants in the first 4 months of life and 35 older children (ages 0.5-13 years), in a tertiary hospital. MEASUREMENTS AND RESULTS Detailed clinical and laboratory data were collected for each of the 319 participants. Based on that data, 108 neurologically intact children were selected (95 infants [43 preterm and 52 term] and 13 older children). CSF hypocretin-1 was measured by direct radioimmunoassay. Hypocretin-1 levels at the first weeks of the 3rd embryonic trimester (gestational age [GA] 28-34 weeks) were 314 ± 65 pg/mL (n = 17). The levels linearly increased during the third trimester and early infancy (r = 0.6), peaking in infants of 2-4 months ages (476 ± 72 pg/mL; n = 16) and decreasing thereafter; hypocretin levels in 2- to 4-month-old infants were significantly higher than those in children 0.5-13 years old (353 ± 78 pg/mL, n = 13; P = 0.0001). CONCLUSIONS The present findings indicate that in human infants, CSF hypocretin-1 increases during the third embryonic trimester and is highest at 4 months of life. Thereafter, and consistent with previously published results, hypocretin levels are lower and stable until the geriatric age. This pattern may reflect the role of hypocretin in the dramatic process of sleep and wakefulness consolidation that occurs during early infancy.
Collapse
Affiliation(s)
- Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, Hebrew University, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
5
|
Kotagal S. The emerging role of hypocretin (orexin-A) in the developing central nervous system. Sleep 2012; 35:171-2. [PMID: 22294804 DOI: 10.5665/sleep.1610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Suresh Kotagal
- Department of Neurology, Center for Sleep Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
6
|
Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet 2010; 19:4895-905. [DOI: 10.1093/hmg/ddq424] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fabienne Schaller
- Institute of Biology of Development of Marseille Luminy, CNRS UMR 6126 and
- Mediterranean Institute of Neurobiology (INMED), INSERM U901, Parc Scientifique de Luminy, BP 13, 13273 Marseille Cedex 09, France and
- Université de la Méditerranée, UMR S901 Aix-Marseille 2, 13009Marseille, France
| | - Françoise Watrin
- Institute of Biology of Development of Marseille Luminy, CNRS UMR 6126 and
- Mediterranean Institute of Neurobiology (INMED), INSERM U901, Parc Scientifique de Luminy, BP 13, 13273 Marseille Cedex 09, France and
- Université de la Méditerranée, UMR S901 Aix-Marseille 2, 13009Marseille, France
| | - Rachel Sturny
- Institute of Biology of Development of Marseille Luminy, CNRS UMR 6126 and
- Université de la Méditerranée, UMR S901 Aix-Marseille 2, 13009Marseille, France
| | - Annick Massacrier
- Mediterranean Institute of Neurobiology (INMED), INSERM U901, Parc Scientifique de Luminy, BP 13, 13273 Marseille Cedex 09, France and
- Université de la Méditerranée, UMR S901 Aix-Marseille 2, 13009Marseille, France
| | - Pierre Szepetowski
- Mediterranean Institute of Neurobiology (INMED), INSERM U901, Parc Scientifique de Luminy, BP 13, 13273 Marseille Cedex 09, France and
- Université de la Méditerranée, UMR S901 Aix-Marseille 2, 13009Marseille, France
| | - Françoise Muscatelli
- Institute of Biology of Development of Marseille Luminy, CNRS UMR 6126 and
- Mediterranean Institute of Neurobiology (INMED), INSERM U901, Parc Scientifique de Luminy, BP 13, 13273 Marseille Cedex 09, France and
- Université de la Méditerranée, UMR S901 Aix-Marseille 2, 13009Marseille, France
| |
Collapse
|
7
|
Van Der Kolk N, Madison FN, Mohr M, Eberhard N, Kofler B, Fraley GS. Alarin stimulates food intake in male rats and LH secretion in castrated male rats. Neuropeptides 2010; 44:333-40. [PMID: 20434770 PMCID: PMC2908946 DOI: 10.1016/j.npep.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 03/02/2010] [Accepted: 04/02/2010] [Indexed: 12/31/2022]
Abstract
Alarin is a newly identified member of the galanin family of neuropeptides that includes galanin-like peptide (GALP) and galanin. Alarin was discovered as an alternate transcript of the GALP gene in neuroblastoma cells, and subsequently alarin mRNA was detected in the brain of rodents. GALP and galanin are important central regulators of both feeding and reproductive behavior. We hypothesized, that, as a member of the galanin family of peptides, alarin would also have central effects on feeding and reproduction. To test this hypothesis, we treated male rats with alarin intracerebroventricularly (i.c.v.) and measured its effects on food intake and energy homeostasis as well as sexual behavior and luteinizing hormone (LH) secretion. We observed that i.c.v. injection of 1.0 nmol alarin significantly increased food intake (p<0.01) and body weight (p<0.05). Alarin did not affect sexual behavior in male rats; however, alarin did significantly (p<0.01) increase LH levels in castrated, but not intact, male rats. Alarin immunoreactive cell bodies were detected within the locus coeruleus and locus subcoeruleus of the midbrain, which is a brainstem nucleus involved in coordinating many physiological activities, including food intake and reproduction. Lastly, alarin stimulated Fos induction in hypothalamic nuclei, such as the paraventricular nucleus and the nucleus of the tractus solitarious. Our studies demonstrate that alarin, like other members of the galanin family, is a neuromediator of food intake and body weight.
Collapse
Affiliation(s)
- Nicole Van Der Kolk
- Department of Biology and Neuroscience Program, Hope College, Holland, MI 49423, USA
| | - Farrah N. Madison
- Department of Biology and Neuroscience Program, Hope College, Holland, MI 49423, USA
| | - Margaret Mohr
- Department of Biology and Neuroscience Program, Hope College, Holland, MI 49423, USA
| | - Nicole Eberhard
- Department of Pediatrics, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Gregory S. Fraley
- Department of Biology and Neuroscience Program, Hope College, Holland, MI 49423, USA
| |
Collapse
|