1
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2025; 292:2433-2478. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Galiza Soares JA, Sutley-Koury SN, Pomrenze MB, Tucciarone JM. Opioidergic tuning of social attachment: reciprocal relationship between social deprivation and opioid abuse. Front Neuroanat 2025; 18:1521016. [PMID: 39917739 PMCID: PMC11798945 DOI: 10.3389/fnana.2024.1521016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
Individuals misusing opioids often report heightened feelings of loneliness and decreased ability to maintain social connections. This disruption in social functioning further promotes addiction, creating a cycle in which increasing isolation drives drug use. Social factors also appear to impact susceptibility and progression of opioid dependence. In particular, increasing evidence suggests that poor early social bond formation and social environments may increase the risk of opioid abuse later in life. The brain opioid theory of social attachment suggests that endogenous opioids are key to forming and sustaining social bonds. Growing literature describes the opioid system as a powerful modulator of social separation distress and attachment formation in rodents and primates. In this framework, disruptions in opioidergic signaling due to opioid abuse may mediate social reward processing and behavior. While changes in endogenous opioid peptides and receptors have been reported in these early-life adversity models, the underlying mechanisms remain poorly understood. This review addresses the apparent bidirectional causal relationship between social deprivation and opioid addiction susceptibility, investigating the role of opioid transmission in attachment bond formation and prosocial behavior. We propose that early social deprivation disrupts the neurobiological substrates associated with opioid transmission, leading to deficits in social attachment and reinforcing addictive behaviors. By examining the literature, we discuss potential overlapping neural pathways between social isolation and opioid addiction, focusing on major reward-aversion substrates known to respond to opioids.
Collapse
Affiliation(s)
- Julia A. Galiza Soares
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Samantha N. Sutley-Koury
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jason M. Tucciarone
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
3
|
Pitcairn SR, Ortelli OA, Weiner JL. Effects of early social isolation and adolescent single prolonged stress on anxiety-like behaviors and voluntary ethanol consumption in female Long Evans rats. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1586-1599. [PMID: 39031683 PMCID: PMC11568547 DOI: 10.1111/acer.15397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Exposure to stress during childhood and adolescence is a risk factor for alcohol use disorder (AUD) and comorbid conditions, including posttraumatic stress disorder (PTSD). We previously established an adolescent social isolation (SI) model that leads to the emergence of a wide range of behavioral risk factors for AUD, including increased anxiety-like behavior, locomotor activity, and ethanol consumption in male and female rats. Here, we sought to test the hypothesis that SI may increase vulnerability to single prolonged stress (SPS), a rodent model of PTSD. METHODS Female Long Evans rats (n = 8/group) were either single-housed or group-housed (GH) (4/cage) on postnatal day 21. One week later, rats underwent testing in the open field test (OFT), elevated plus-maze (EPM), and successive alleys test (SAT). Following initial behavioral testing, a subset of SI/GH rats were exposed to SPS. All rats were then tested on the novelty-suppressed feeding test (NSFT) followed by fear conditioning and home cage two-bottle choice to assess ethanol consumption. RESULTS SI significantly increased activity in the OFT and anxiety-like behavior on the SAT, but not the EPM. While SI and SPS alone had no effect on the NSFT, exposure to both stressors significantly increased approach latency. Complex effects of stress history were observed across a 3-day fear conditioning paradigm and no group differences were observed with home cage ethanol consumption, regardless of prior ethanol exposure. CONCLUSIONS The results from this study provide novel evidence that SI interacts with SPS in female rats to influence behavior in assays of unconditioned anxiety-like behavior (NSFT) and conditioned fear. Surprisingly, stress exposure had no effect on home cage ethanol consumption. Ultimately, these models provide useful avenues to examine the interaction between stressful experiences, alcohol exposure, biological sex, and the neurobiological adaptations underlying potential risk factors for psychiatric conditions.
Collapse
Affiliation(s)
- Stacy R Pitcairn
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Olivia A Ortelli
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeffrey L Weiner
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
4
|
Prvulovic M, Sokanovic S, Simeunovic V, Vukojevic A, Jovic M, Todorovic S, Mladenovic A. The complex relationship between late-onset caloric restriction and synaptic plasticity in aged Wistar rats. IUBMB Life 2024; 76:548-562. [PMID: 38390757 DOI: 10.1002/iub.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Age-related reduction in spine density, synaptic marker expression, and synaptic efficiency are frequently reported. These changes provide the cellular and molecular basis for the cognitive decline characteristic for old age. Nevertheless, there are several approaches that have the potential to ameliorate these processes and improve cognition, caloric restriction being one of the most promising and widely studied. While lifelong caloric restriction is known for its numerous beneficial effects, including improved cognitive abilities and increased expression of proteins essential for synaptic structure and function, the effects of late-onset and/or short-term CR on synaptic plasticity have yet to be investigated. We have previously documented that the effects of CR are strongly dependent on whether CR is initiated in young or old subjects. With this in mind, we conducted a long-term study in aging Wistar rats to examine changes in the expression of several key synaptic markers under the regimen of CR started at different time points in life. We found a significant increase in the expression of both presynaptic and postsynaptic markers. However, taking into account previously reported changes in the behavior detected in these animals, we consider that this increase cannot represent beneficial effect of CR.
Collapse
Affiliation(s)
- Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Srdjan Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Simeunovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjela Vukojevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Jovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Yost RT, Scott AM, Kurbaj JM, Walshe-Roussel B, Dukas R, Simon AF. Recovery from social isolation requires dopamine in males, but not the autism-related gene nlg3 in either sex. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240604. [PMID: 39086833 PMCID: PMC11288677 DOI: 10.1098/rsos.240604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
Social isolation causes profound changes in social behaviour in a variety of species. However, the genetic and molecular mechanisms modulating behavioural responses to social isolation and social recovery remain to be elucidated. Here, we quantified the behavioural response of vinegar flies to social isolation using two distinct protocols (social space preference and sociability, the spontaneous tendencies to form groups). We found that social isolation increased social space and reduced sociability. These effects of social isolation were reversible and could be reduced after 3 days of group housing. Flies with a loss of function of neuroligin3 (orthologue of autism-related neuroligin genes) with known increased social space in a socially enriched environment were still able to recover from social isolation. We also show that dopamine (DA) is needed for a response to social isolation and recovery in males but not in females. Furthermore, only in males, DA levels are reduced after isolation and are not recovered after group housing. Finally, in socially enriched flies mutant for neuroligin3, DA levels are reduced in males, but not in females. We propose a model to explain how DA and neuroligin3 are involved in the behavioural response to social isolation and its recovery in a dynamic and sex-specific manner.
Collapse
Affiliation(s)
- Ryley T. Yost
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Judy M. Kurbaj
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Reuven Dukas
- Department of Psychology, Neuroscience and Behaviour, Animal Behaviour Group, McMaster University, Hamilton, Ontario, Canada
| | - Anne F. Simon
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Agus S, Yavuz Y, Atasoy D, Yilmaz B. Postweaning Social Isolation Alters Puberty Onset by Suppressing Electrical Activity of Arcuate Kisspeptin Neurons. Neuroendocrinology 2024; 114:439-452. [PMID: 38271999 PMCID: PMC11098025 DOI: 10.1159/000535721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Postweaning social isolation (PWSI) in rodents is an advanced psychosocial stress model in early life. Some psychosocial stress, such as restrain and isolation, disrupts reproductive physiology in young and adult periods. Mechanisms of early-life stress effects on central regulation of reproduction need to be elucidated. We have investigated the effects of PWSI on function of arcuate kisspeptin (ARCKISS1) neurons by using electrophysiological techniques combining with monitoring of puberty onset and estrous cycle in male and female Kiss1-Cre mice. METHODS Female mice were monitored for puberty onset with vaginal opening examination during social isolation. After isolation, the estrous cycle of female mice was monitored with vaginal cytology. Anxiety-like behavior of mice was determined by an elevated plus maze test. Effects of PWSI on electrophysiology of ARCKISS1 neurons were investigated by the patch clamp method after intracranial injection of AAV-GFP virus into arcuate nucleus of Kiss1-Cre mice after the isolation period. RESULTS We found that both male and female isolated mice showed anxiety-like behavior. PWSI caused delay in vaginal opening and extension in estrous cycle length. Spontaneous-firing rates of ARCKISS1 neurons were significantly lower in the isolated male and female mice. The peak amplitude of inhibitory postsynaptic currents to ARCKISS1 neurons was higher in the isolated mice, while frequency of excitatory postsynaptic currents was higher in group-housed mice. CONCLUSION These findings demonstrate that PWSI alters pre- and postpubertal reproductive physiology through metabolic and electrophysiological pathways.
Collapse
Affiliation(s)
- Sami Agus
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Yavuz Yavuz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Deniz Atasoy
- University of Iowa, Carver College of Medicine, Department of Neuroscience and Pharmacology, Iowa City, IA, USA
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
7
|
Ruotolo F, Ruggiero G, Cattaneo Z, Arioli M, Candini M, Frassinetti F, Pazzaglia F, Fornara F, Bosco A, Iachini T. Psychological Reactions during and after a Lockdown: Self-Efficacy as a Protective Factor of Mental Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6679. [PMID: 37681819 PMCID: PMC10488210 DOI: 10.3390/ijerph20176679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
The aim of the present study was to investigate the effects of home confinement/social isolation (i.e., lockdown), imposed to reduce large-scale spread of a disease in the population, on the mental health of individuals. Through an online survey during the lockdown (DL) related to COVID-19 (1085 respondents, 627 females, agerange: 18-82) (Italy, 23 April-2 May 2020), we revealed that situational factors, i.e., the presence of children at home and female gender, and psychological factors, i.e., a greater sense of isolation, lower perception of safety outside the home and higher trait anxiety, predicted higher levels of state anxiety (R2 = 0.58). The same factors, but with young age instead of the presence of children, predicted higher levels of perceived stress (R2 = 0.63). Then, these data were compared with those collected after the lockdown (AL) (174 respondents, 128 females, agerange: 19-78) (Italy, 1 July-31 October 2021). The results showed that along with a reduced sense of isolation (DL = 2.90 vs. AL = 2.10) and an increased perception of safety outside the home (DL = 2.63 vs. AL = 3.05), a reduction in state anxiety (DL = 45.76 vs. AL= 40.88) and stress appeared (DL = 18.84 vs. AL = 17.63). However, the situation was better for men than for women. Perceived self-efficacy emerged as a protective factor for mental health (R2range: 0.03-0.27). The results are discussed in light of the evidence on the effects of lockdown on individuals worldwide. These results may be used to make more educated decisions on targeted help for individuals who may be most adversely affected by the adoption of lockdowns in the future.
Collapse
Affiliation(s)
- Francesco Ruotolo
- Department of Psychology, Università degli Studi della Campania “L. Vanvitelli”, 81100 Caserta, Italy; (G.R.); (T.I.)
| | - Gennaro Ruggiero
- Department of Psychology, Università degli Studi della Campania “L. Vanvitelli”, 81100 Caserta, Italy; (G.R.); (T.I.)
| | - Zaira Cattaneo
- Department of Social and Human Sciences, University of Bergamo, 24129 Bergamo, Italy; (Z.C.); (M.A.)
| | - Maria Arioli
- Department of Social and Human Sciences, University of Bergamo, 24129 Bergamo, Italy; (Z.C.); (M.A.)
| | - Michela Candini
- Department of Psychology, University of Bologna, 40126 Bologna, Italy; (M.C.)
| | | | | | - Ferdinando Fornara
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09124 Cagliari, Italy;
| | - Andrea Bosco
- Department of Educational Sciences, Psychology, Communication, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Tina Iachini
- Department of Psychology, Università degli Studi della Campania “L. Vanvitelli”, 81100 Caserta, Italy; (G.R.); (T.I.)
| |
Collapse
|
8
|
Davari S, D'Costa N, Ramezan R, Mielke JG. Chronic Early-Life Social Isolation Enhances Spatial Memory in Male and Female Rats. Behav Brain Res 2023; 447:114433. [PMID: 37037406 DOI: 10.1016/j.bbr.2023.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Social adversity during childhood and adolescence can alter brain development in ways that may increase the likelihood of many prominent mental illnesses. To determine the underlying mechanisms, several animal models have been developed, such as Chronic Early-Life Social Isolation (CELSI), which sees rats isolated for several weeks after weaning. Although such a paradigm does cause many consistent changes in adult behaviour, one area where uncertainty exists concerns its effect upon hippocampal-dependent learning and memory. To help sort out how CELSI affects spatial learning and memory, male and female siblings from 15 Sprague-Dawley rat litters were stratified by sex and then randomly assigned to either group-housing (3 animals/cage), or social isolation (1 animal/cage) for 7 weeks. Spatial learning and memory were then tested over 5 days using the Morris water maze. Next, the animals were euthanised, and stress-sensitive biometrics, including serum corticosterone levels, were collected. Lastly, to determine whether CELSI affected neural cell density, the expression of key neuronal and glial proteins (such as PSD-95 and GFAP, respectively) was assessed in isolated hippocampal tissue using immunoblotting. Notably, both male and female rats that had experienced post-weaning social isolation displayed stronger spatial learning and memory abilities than their group-housed counterparts. As well, socially isolated male rats exhibited a clear increase in expression of PSD-95. However, housing condition did not seem to affect either stress-sensitive biometrics, or hippocampal GFAP expression. Our results support the possibility that CELSI may enhance some aspects of hippocampal-dependent behaviour in a fashion similar among male and female rats.
Collapse
Affiliation(s)
- Saeideh Davari
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Nicole D'Costa
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Reza Ramezan
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - John G Mielke
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
9
|
Lanooij SD, Eisel ULM, Drinkenburg WHIM, van der Zee EA, Kas MJH. Influencing cognitive performance via social interactions: a novel therapeutic approach for brain disorders based on neuroanatomical mapping? Mol Psychiatry 2023; 28:28-33. [PMID: 35858991 PMCID: PMC9812764 DOI: 10.1038/s41380-022-01698-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023]
Abstract
Many psychiatric and neurological disorders present deficits in both the social and cognitive domain. In this perspectives article, we provide an overview and the potential of the existence of an extensive neurobiological substrate underlying the close relationship between these two domains. By mapping the rodent brain regions involved in the social and/or cognitive domain, we show that the vast majority of brain regions involved in the cognitive domain are also involved in the social domain. The identified neuroanatomical overlap has an evolutionary basis, as complex social behavior requires cognitive skills, and aligns with the reported functional interactions of processes underlying cognitive and social performance. Based on the neuroanatomical mapping, recent (pre-)clinical findings, and the evolutionary perspective, we emphasize that the social domain requires more focus as an important treatment target and/or biomarker, especially considering the presently limited treatment strategies for these disorders.
Collapse
Affiliation(s)
- Suzanne D. Lanooij
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ulrich L. M. Eisel
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Wilhelmus H. I. M. Drinkenburg
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands ,grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Eddy A. van der Zee
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Martien J. H. Kas
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Plaza-Diaz J, Radar AM, Baig AT, Leyba MF, Costabel MM, Zavala-Crichton JP, Sanchez-Martinez J, MacKenzie AE, Solis-Urra P. Physical Activity, Gut Microbiota, and Genetic Background for Children and Adolescents with Autism Spectrum Disorder. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1834. [PMID: 36553278 PMCID: PMC9777368 DOI: 10.3390/children9121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
It is estimated that one in 100 children worldwide has been diagnosed with autism spectrum disorder (ASD). Children with ASD frequently suffer from gut dysbiosis and gastrointestinal issues, findings which possibly play a role in the pathogenesis and/or severity of their condition. Physical activity may have a positive effect on the composition of the intestinal microbiota of healthy adults. However, the effect of exercise both on the gastrointestinal problems and intestinal microbiota (and thus possibly on ASD) itself in affected children is unknown. In terms of understanding the physiopathology and manifestations of ASD, analysis of the gut-brain axis holds some promise. Here, we discuss the physiopathology of ASD in terms of genetics and microbiota composition, and how physical activity may be a promising non-pharmaceutical approach to improve ASD-related symptoms.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ana Mei Radar
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Aiman Tariq Baig
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Marcos Federico Leyba
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Maria Macarena Costabel
- Children’s Hospital of Eastern Ontario, Division of Urology, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | | | - Javier Sanchez-Martinez
- Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Viña del Mar 2520298, Chile
| | - Alex E. MacKenzie
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patricio Solis-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile
- PROFITH “PROmoting FITness and Health through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
11
|
Grigoryan GA, Pavlova IV, Zaichenko MI. Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:722-738. [PMID: 36119650 PMCID: PMC9471030 DOI: 10.1007/s11055-022-01297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
This review describes the role of social isolation in the development of anxiety and depression-like behavior in rodents. The duration of social isolation, age from onset of social isolation, sex, species, and strain of animals, the nature of the model used, and other factors have been shown to have influences. The molecular-cellular mechanisms of development of anxiety and depression-like behavior under the influence of social isolation and the roles of the HHAS, oxidative and nitrosative stress, neuroinflammation, BDNF, neurogenesis, synaptic plasticity, as well as monoamines in these mechanisms are discussed. This review presents data on sex differences in the effects of social isolation, along with the effects of interactions with other types of stress, and the roles of an enriched environment and other factors in ameliorating the negative sequelae of social isolation.
Collapse
Affiliation(s)
- G. A. Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I. V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. I. Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Guven EB, Pranic NM, Unal G. The differential effects of brief environmental enrichment following social isolation in rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:818-832. [PMID: 35199313 PMCID: PMC8865499 DOI: 10.3758/s13415-022-00989-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 11/08/2022]
Abstract
Environmental enrichment (EE) in rodents is associated with a wide range of physiological, affective, and cognitive benefits. A seemingly opposite housing condition, social isolation (SI), is used as a rodent model of stress, negatively affecting several neurobiological mechanisms and hampering cognitive performance. Experimental designs that involve switching between these housing conditions produced mixed results. We evaluated different behavioral and cognitive effects of brief EE following long-term, SI-induced stress. We revealed the influence of enrichment after 30 days of isolation on behavioral despair, anxiety-like behavior, and spatial working memory in adult male Wistar rats and found a substantial anxiolytic effect in the experimental (SI to EE) group. Interestingly, rats exposed to EE also showed increased behavioral despair compared with the control (continuous SI) group. There was no difference in spatial working memory performance at the end of a 5-day water Y-maze (WYM) test. However, the SI to EE animals displayed better memory performance in the first 2 days of the WYM, indicating faster learning. In line with this difference, we recorded significantly more c-Fos-immunopositive (c-Fos+) cells in the retrosplenial and perirhinal cortices of the SI to EE animals. The lateral and basolateral nuclei of the amygdala showed no such difference. These results suggest that brief enrichment following isolation stress leads to differential results in affective and cognitive systems.
Collapse
Affiliation(s)
- Elif Beyza Guven
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Nicole Melisa Pranic
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Gunes Unal
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
13
|
Hamilton A, Rizzo R, Brod S, Ono M, Perretti M, Cooper D, D'Acquisto F. The immunomodulatory effects of social isolation in mice are linked to temperature control. Brain Behav Immun 2022; 102:179-194. [PMID: 35217174 DOI: 10.1016/j.bbi.2022.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Living in isolation is considered an emerging societal problem that negatively affects the physical wellbeing of its sufferers in ways that we are just starting to appreciate. This study investigates the immunomodulatory effects of social isolation in mice, utilising a two-week program of sole cage occupancy followed by the testing of immune-inflammatory resilience to bacterial sepsis. Our results revealed that mice housed in social isolation showed an increased ability to clear bacterial infection compared to control socially housed animals. These effects were associated with specific changes in whole blood gene expression profile and an increased production of classical pro-inflammatory cytokines. Interestingly, equipping socially isolated mice with artificial nests as a substitute for their natural huddling behaviour reversed the increased resistance to bacterial sepsis. Together these results suggest that the control of body temperature through social housing and huddling behaviour are important factors in the regulation of the host immune response to infection in mice and might provide another example of the many ways by which living conditions influence immunity.
Collapse
Affiliation(s)
- Alice Hamilton
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raffaella Rizzo
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Samuel Brod
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Masahiro Ono
- University of London Imperial College Science Technology & Medicine, Department of Life Science, Faculty of Natural Science, London SW7 2AZ, England
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; School of Life and Health Science, University of Roehampton, London SW15, 4JD, UK.
| |
Collapse
|
14
|
Pavlova IV, Broshevitskaya ND. The Influence of Social Isolation and Enriched Environment on Fear Conditioning in Rats after Early Proinflammatory Stress. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Gao WJ, Mack NR. From Hyposociability to Hypersociability-The Effects of PSD-95 Deficiency on the Dysfunctional Development of Social Behavior. Front Behav Neurosci 2021; 15:618397. [PMID: 33584217 PMCID: PMC7876227 DOI: 10.3389/fnbeh.2021.618397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/05/2021] [Indexed: 01/11/2023] Open
Abstract
Abnormal social behavior, including both hypo- and hypersociability, is often observed in neurodevelopmental disorders such as autism spectrum disorders. However, the mechanisms associated with these two distinct social behavior abnormalities remain unknown. Postsynaptic density protein-95 (PSD-95) is a highly abundant scaffolding protein in the excitatory synapses and an essential regulator of synaptic maturation by binding to NMDA and AMPA receptors. The DLG4 gene encodes PSD-95, and it is a risk gene for hypersocial behavior. Interestingly, PSD-95 knockout mice exhibit hyposociability during adolescence but hypersociability in adulthood. The adolescent hyposociability is accompanied with an NMDAR hyperfunction in the medial prefrontal cortex (mPFC), an essential part of the social brain for control of sociability. The maturation of mPFC development is delayed until young adults. However, how PSD-95 deficiency affects the functional maturation of mPFC and its connection with other social brain regions remains uncharacterized. It is especially unknown how PSD-95 knockout drives the switch of social behavior from hypo- to hyper-sociability during adolescent-to-adult development. We propose an NMDAR-dependent developmental switch of hypo- to hyper-sociability. PSD-95 deficiency disrupts NMDAR-mediated synaptic connectivity of mPFC and social brain during development in an age- and pathway-specific manner. By utilizing the PSD-95 deficiency mouse, the mechanisms contributing to both hypo- and hyper-sociability can be studied in the same model. This will allow us to assess both local and long-range connectivity of mPFC and examine how they are involved in the distinct impairments in social behavior and how changes in these connections may mature over time.
Collapse
Affiliation(s)
- Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | | |
Collapse
|
16
|
Sánchez-González A, Oliveras I, Río-Álamos C, Piludu MA, Gerbolés C, Tapias-Espinosa C, Tobeña A, Aznar S, Fernández-Teruel A. Dissociation between schizophrenia-relevant behavioral profiles and volumetric brain measures after long-lasting social isolation in Roman rats. Neurosci Res 2019; 155:43-55. [PMID: 31306676 DOI: 10.1016/j.neures.2019.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022]
Abstract
Social isolation rearing of rodents is an environmental manipulation known to induce or potentiate psychotic-like symptoms and attentional and cognitive impairments relevant for schizophrenia. When subjected to a 28-week isolation rearing treatment, the Roman high-avoidance (RHA-I) rats display the common behavioral social isolation syndrome, with prepulse inhibition (PPI) deficits, hyperactivity, increased anxiety responses and learning/memory impairments when compared to their low-avoidance (RLA-I) counterparts. These results add face validity to the RHA-I rats as an animal model for schizophrenia-relevant behavioral and cognitive profiles and confirm previous results. The aim here was to further investigate the neuroanatomical effects of the isolation rearing, estimated through volume differences in medial prefrontal cortex (mPFC), dorsal striatum (dSt) and hippocampus (HPC). Results showed a global increase in volume in the mPFC in the isolated rats of both strains, as well as strain effects (RLA > RHA) in the three brain regions. These unexpected but robust results, might have unveiled some kind of compensatory mechanisms due to the particularly long-lasting isolation rearing period, much longer than those commonly used in the literature (which usually range from 4 to 12 weeks).
Collapse
Affiliation(s)
- A Sánchez-González
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - I Oliveras
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - C Río-Álamos
- Dept. Psychology, School of Medicine, Austral University of Chile, Valdivia, Chile
| | - M A Piludu
- Dept. of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - C Gerbolés
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - C Tapias-Espinosa
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - A Tobeña
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - S Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark.
| | - A Fernández-Teruel
- Dept. Psychiatry & Forensic Medicine, Institute of Neurosciences, Universidad Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Yamamuro K, Yoshino H, Ogawa Y, Makinodan M, Toritsuka M, Yamashita M, Corfas G, Kishimoto T. Social Isolation During the Critical Period Reduces Synaptic and Intrinsic Excitability of a Subtype of Pyramidal Cell in Mouse Prefrontal Cortex. Cereb Cortex 2019; 28:998-1010. [PMID: 28158488 DOI: 10.1093/cercor/bhx010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Juvenile social experience is crucial for the functional development of forebrain regions, especially the prefrontal cortex (PFC). We previously reported that social isolation for 2 weeks after weaning induces prefrontal cortex dysfunction and hypomyelination. However, the effect of social isolation on physiological properties of PFC neuronal circuit remained unknown. Since hypomyelination due to isolation is prominent in deep-layer of medial PFC (mPFC), we focused on 2 types of Layer-5 pyramidal cells in the mPFC: prominent h-current (PH) cells and nonprominent h-current (non-PH) cells. We found that a 2-week social isolation after weaning leads to a specific deterioration in action potential properties and reduction in excitatory synaptic inputs in PH cells. The effects of social isolation on PH cells, which involve reduction in functional glutamatergic synapses and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate charge ratio, are specific to the 2 weeks after weaning and to the mPFC. We conclude that juvenile social experience plays crucial roles in the functional development in a subtype of Layer-5 pyramidal cells in the mPFC. Since these neurons project to subcortical structures, a deficit in social experience during the critical period may result in immature neural circuitry between mPFC and subcortical targets.
Collapse
Affiliation(s)
- Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroki Yoshino
- Department of Psychiatry, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yoichi Ogawa
- Department of Physiology I, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Masayuki Yamashita
- Center for Medical Science, International University of Health and Welfare, Ohtawara, Tochigi 324-8501, Japan
| | - Gabriel Corfas
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
18
|
Millard SJ, Lum JS, Fernandez F, Weston-Green K, Newell KA. Perinatal exposure to fluoxetine increases anxiety- and depressive-like behaviours and alters glutamatergic markers in the prefrontal cortex and hippocampus of male adolescent rats: A comparison between Sprague-Dawley rats and the Wistar-Kyoto rat model of depression. J Psychopharmacol 2019; 33:230-243. [PMID: 30698051 DOI: 10.1177/0269881118822141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND With approximately 10% of pregnant women prescribed antidepressant drugs for the treatment of depressive disorders, there is growing concern regarding the potential long-term effects of this exposure on offspring. Research is needed in clinically relevant models to determine the effects on offspring behaviour and associated neurobiological systems. AIM The aim of this study was to determine the effects of maternal fluoxetine treatment on anxiety-like and depressive-like behaviours in adolescent offspring as well as associated glutamatergic markers, using a clinically relevant rodent model of depression. METHODS Wistar-Kyoto (model of innate depression) and Sprague-Dawley rats were treated with fluoxetine (10 mg/kg) from gestational day 0 to postnatal day 14. Male offspring underwent behavioural testing (open field, elevated plus maze, forced swim test) at adolescence followed by quantitative immuno-detection of glutamatergic markers in the prefrontal cortex and ventral hippocampus. RESULTS Perinatal fluoxetine exposure exacerbated the anxiety-like and depressive-like phenotype in Wistar-Kyoto offspring and induced an anxiety-like and depressive-like phenotype in Sprague-Dawley offspring. Wistar-Kyoto offspring showed reductions in NMDA receptor NR1, NR2A and NR2B subunits, as well as post-synaptic density 95 (PSD-95) and metabotropic glutamate receptor subtype 1 (mGluR1) in the prefrontal cortex; perinatal fluoxetine exposure further reduced NR1, NR2A, PSD-95 and mGluR1 expression in Wistar-Kyoto as well as Sprague-Dawley offspring. In the ventral hippocampus perinatal fluoxetine exposure reduced PSD-95 and increased metabotropic glutamate receptor subtype 5 (mGluR5) and Homer1b/c in both Sprague-Dawley and Wistar-Kyoto strains. CONCLUSION These findings suggest that maternal fluoxetine treatment exacerbates effects of underlying maternal depression on offspring behaviour, which may be mediated through alterations in the glutamatergic system. Further research investigating how to minimise these effects, whilst ensuring optimal treatment for mothers, is essential to move the field forward.
Collapse
Affiliation(s)
- Samuel J Millard
- 1 Molecular Horizons and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Jeremy S Lum
- 1 Molecular Horizons and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Francesca Fernandez
- 3 School of Science, Australian Catholic University, Brisbane, QLD, Australia
| | - Katrina Weston-Green
- 1 Molecular Horizons and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Kelly A Newell
- 1 Molecular Horizons and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- 2 Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
19
|
Blanco-Gandía MC, Montagud-Romero S, Aguilar MA, Miñarro J, Rodríguez-Arias M. Housing conditions modulate the reinforcing properties of cocaine in adolescent mice that binge on fat. Physiol Behav 2018; 183:18-26. [DOI: 10.1016/j.physbeh.2017.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
|
20
|
Effect of post-weaning isolation on anxiety- and depressive-like behaviors of C57BL/6J mice. Exp Brain Res 2017; 235:2893-2899. [PMID: 28695280 DOI: 10.1007/s00221-017-5021-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 06/29/2017] [Indexed: 01/14/2023]
Abstract
Effects of post-weaning isolation on depressive- and anxiety-like behaviors in rodents have been well studied in the past. However, few studies included both sexes in a single experiment to study the sex difference in this animal model. The present study investigated the effect of post-weaning isolation on anxiety- and depressive-like behaviors in both male and female C57BL/6 J mice. Mice were individually or grouped housed from postnatal day 21 for 5 weeks until behavioral tests began. The results showed that social isolation resulted in increased anxiety in the open field. Isolated-reared female, but not male mice showed an increased transition between two compartments in the light-dark box and a decreased immobile time in the forced swim test. We conclude that post-weaning isolation has a sex-specific effect on emotional behaviors.
Collapse
|
21
|
Fulcher N, Tran S, Shams S, Chatterjee D, Gerlai R. Neurochemical and Behavioral Responses to Unpredictable Chronic Mild Stress Following Developmental Isolation: The Zebrafish as a Model for Major Depression. Zebrafish 2017; 14:23-34. [DOI: 10.1089/zeb.2016.1295] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Niveen Fulcher
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Steven Tran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Soaleha Shams
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Kumar D, Thakur MK. Anxiety like behavior due to perinatal exposure to Bisphenol-A is associated with decrease in excitatory to inhibitory synaptic density of male mouse brain. Toxicology 2017; 378:107-113. [PMID: 28089772 DOI: 10.1016/j.tox.2017.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/24/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
Bisphenol-A (BPA) is a synthetic endocrine disruptor which causes anxiety like behavior in rodents, though the underlying mechanism is not clearly understood. As excitatory-inhibitory synaptic proteins are the key regulators of anxiety, we have examined the effect of perinatal exposure to BPA on this behavior and the expression of excitatory (PSD95), inhibitory (gephyrin) and presynaptic density marker (synaptophysin) proteins in cerebral cortex and hippocampus of 3 and 8 weeks postnatal male mice. In open field (OF) test, BPA exposure reduced the time spent, number of entries and distance travelled in the central zone as compared to control in 8 weeks mice. On the other hand, elevated plus maze (EPM) results showed decrease in time spent and number of entries to the open arms. Immunoblotting and immunofluorescence analysis showed significant downregulation of PSD95 and synaptophysin, but upregulation of gephyrin, leading to reduction in excitatory to inhibitory protein ratio and synaptic density in postnatal 3 and 8 weeks mice. Thus, our findings show that the anxiety like behavior due to perinatal exposure to BPA is associated with decrease in excitatory to inhibitory synaptic density in postnatal male mice.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - M K Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
23
|
Concordance and incongruence in preclinical anxiety models: Systematic review and meta-analyses. Neurosci Biobehav Rev 2016; 68:504-529. [PMID: 27328783 DOI: 10.1016/j.neubiorev.2016.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/19/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Rodent defense behavior assays have been widely used as preclinical models of anxiety to study possibly therapeutic anxiety-reducing interventions. However, some proposed anxiety-modulating factors - genes, drugs and stressors - have had discordant effects across different studies. To reconcile the effect sizes of purported anxiety factors, we conducted systematic review and meta-analyses of the literature on ten anxiety-linked interventions, as examined in the elevated plus maze, open field and light-dark box assays. Diazepam, 5-HT1A receptor gene knockout and overexpression, SERT gene knockout and overexpression, pain, restraint, social isolation, corticotropin-releasing hormone and Crhr1 were selected for review. Eight interventions had statistically significant effects on rodent anxiety, while Htr1a overexpression and Crh knockout did not. Evidence for publication bias was found in the diazepam, Htt knockout, and social isolation literatures. The Htr1a and Crhr1 results indicate a disconnect between preclinical science and clinical research. Furthermore, the meta-analytic data confirmed that genetic SERT anxiety effects were paradoxical in the context of the clinical use of SERT inhibitors to reduce anxiety.
Collapse
|
24
|
Longo A, Oberto A, Mele P, Mattiello L, Pisu MG, Palanza P, Serra M, Eva C. NPY-Y1 coexpressed with NPY-Y5 receptors modulate anxiety but not mild social stress response in mice. GENES BRAIN AND BEHAVIOR 2015; 14:534-42. [PMID: 26178014 DOI: 10.1111/gbb.12232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/02/2015] [Accepted: 07/05/2015] [Indexed: 12/18/2022]
Abstract
The Y1 and Y5 receptors for neuropeptide Y have overlapping functions in regulating anxiety. We previously demonstrated that conditional removal of the Y1 receptor in the Y5 receptor expressing neurons in juvenile Npy1r(Y5R-/-) mice leads to higher anxiety but no changes in hypothalamus-pituitary-adrenocortical axis activity, under basal conditions or after acute restraint stress. In the present study, we used the same conditional system to analyze the specific contribution of limbic neurons coexpressing Y1 and Y5 receptors on the emotional and neuroendocrine responses to social chronic stress, using different housing conditions (isolation vs. group-housing) as a model. We demonstrated that control Npy1r(2lox) male mice housed in groups show increased anxiety and hypothalamus-pituitary-adrenocortical axis activity compared with Npy1r(2lox) mice isolated for six weeks immediately after weaning. Conversely, Npy1r(Y5R-/-) conditional mutants display an anxious-like behavior but no changes in hypothalamus-pituitary-adrenocortical axis activity as compared with their control littermates, independently of housing conditions. These results suggest that group housing constitutes a mild social stress for our B6129S mouse strain and they confirm that the conditional inactivation of Y1 receptors specifically in Y5 receptor containing neurons increases stress-related anxiety without affecting endocrine stress responses.
Collapse
Affiliation(s)
- A Longo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation Orbassano (Turin), Turin.,Department of Neuroscience, University of Turin, Turin
| | - A Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation Orbassano (Turin), Turin.,Department of Neuroscience, University of Turin, Turin.,Neuroscience Institute of Turin, Turin
| | - P Mele
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation Orbassano (Turin), Turin.,Department of Neuroscience, University of Turin, Turin
| | - L Mattiello
- Department of Clinical and Biological Sciences, University of Turin, Turin
| | - M G Pisu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - P Palanza
- Department of Neuroscience, University of Parma, Parma
| | - M Serra
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy.,Department of Life and Environmental Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - C Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation Orbassano (Turin), Turin.,Department of Neuroscience, University of Turin, Turin.,Neuroscience Institute of Turin, Turin
| |
Collapse
|
25
|
Savioz A, Leuba G, Vallet PG. A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer's disease. Ageing Res Rev 2014; 18:86-94. [PMID: 25264360 DOI: 10.1016/j.arr.2014.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
The postsynaptic density protein PSD-95 is a major element of synapses. PSD-95 is involved in aging, Alzheimer's disease (AD) and numerous psychiatric disorders. However, contradictory data about PSD-95 expression in aging and AD have been reported. Indeed in AD versus control brains PSD-95 varies according to regions, increasing in the frontal cortex, at least in a primary stage, and decreasing in the temporal cortex. In contrast, in transgenic mouse models of aging and AD PSD-95 expression is decreased, in behaviorally aged impaired versus unimpaired rodents it can decrease or increase and finally, it is increased in rodents grown in enriched environments. Different factors explain these contradictory results in both animals and humans, among others concomitant psychiatric endophenotypes, such as depression. The possible involvement of PSD-95 in reactive and/or compensatory mechanisms during AD progression is underscored, at least before the occurrence of important synaptic elimination. Thus, in AD but not in AD transgenic mice, enhanced expression might precede the diminution commonly observed in advanced aging. A two-compartments cell model, separating events taking place in cell bodies and synapses, is presented. Overall these data suggest that AD research will progress by untangling pathological from protective events, a prerequisite for effective therapeutic strategies.
Collapse
|
26
|
Klarer M, Arnold M, Günther L, Winter C, Langhans W, Meyer U. Gut vagal afferents differentially modulate innate anxiety and learned fear. J Neurosci 2014; 34:7067-76. [PMID: 24849343 PMCID: PMC6608191 DOI: 10.1523/jneurosci.0252-14.2014] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/17/2014] [Accepted: 04/07/2014] [Indexed: 12/26/2022] Open
Abstract
Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.
Collapse
Affiliation(s)
- Melanie Klarer
- Physiology and Behavior Laboratory, ETH Zurich, 8603 Schwerzenbach, Switzerland and
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, 8603 Schwerzenbach, Switzerland and
| | - Lydia Günther
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, 8603 Schwerzenbach, Switzerland and
| | - Urs Meyer
- Physiology and Behavior Laboratory, ETH Zurich, 8603 Schwerzenbach, Switzerland and
| |
Collapse
|
27
|
Butler TR, Ariwodola OJ, Weiner JL. The impact of social isolation on HPA axis function, anxiety-like behaviors, and ethanol drinking. Front Integr Neurosci 2014; 7:102. [PMID: 24427122 PMCID: PMC3877772 DOI: 10.3389/fnint.2013.00102] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/14/2013] [Indexed: 01/27/2023] Open
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is often observed in alcoholics and humans subjected to early life stress, and animal models of ethanol (EtOH) dependence. We examined HPA axis function in a rodent model of early life stress that engenders increases in behavioral and neurobiological risk factors of alcoholism. Long-Evans male rats were group housed (GH) or socially isolated (SI) for 6 weeks during adolescence. We examined the corticosterone (CORT) response to stress with and without dexamethasone (DEX) and anxiety-like behaviors. Following the DEX suppression test and behavioral assays, half of the cohort engaged in 6 weeks of EtOH drinking in a homecage, two-bottle choice intermittent access model. A subset of the cohort was not exposed to EtOH, but was used for electrophysiological measurement of glutamatergic synaptic plasticity in the basolateral amygdala (BLA). Correlational analyses examined relationships between measures of CORT, anxiety-like behaviors, and EtOH intake/preference. With DEX pre-treatment, SI rats failed to suppress CORT in response to an acute stress; GH rats showed a significant suppression. In SI rats, there was a significant negative correlation between baseline CORT and elevated plus maze open arm time, as well as significant positive correlations between baseline CORT and both EtOH intake and preference. No significant relationships between baseline CORT and behavioral measures were observed in GH rats. Glutamatergic plasticity in the BLA was similar in magnitude between GH and SI rats, and was not altered by exogenous application of CORT. These data suggest that HPA axis function is affected by SI, and this is related to antecedent anxiety-like behavior and may predispose for future EtOH self-administration. Relationships between HPA axis function, anxiety, and EtOH measures in SI rats further strengthens the utility of this paradigm in modeling vulnerability for affective disorders and alcoholism.
Collapse
Affiliation(s)
- Tracy R Butler
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | - Olusegun J Ariwodola
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
28
|
Murck H. Ketamine, magnesium and major depression--from pharmacology to pathophysiology and back. J Psychiatr Res 2013; 47:955-65. [PMID: 23541145 DOI: 10.1016/j.jpsychires.2013.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/14/2013] [Accepted: 02/26/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED The glutamatergic mechanism of antidepressant treatments is now in the center of research to overcome the limitations of monoamine-based approaches. There are several unresolved issues. For the action of the model compound, ketamine, NMDA-receptor block, AMPA-receptor activation and BDNF release appear to be involved in a mechanism, which leads to synaptic sprouting and strengthened synaptic connections. The link to the pathophysiology of depression is not clear. An overlooked connection is the role of magnesium, which acts as physiological NMDA-receptor antagonist: 1. There is overlap between the actions of ketamine with that of high doses of magnesium in animal models, finally leading to synaptic sprouting. 2. Magnesium and ketamine lead to synaptic strengthening, as measured by an increase in slow wave sleep in humans. 3. Pathophysiological mechanisms, which have been identified as risk factors for depression, lead to a reduction of (intracellular) magnesium. These are neuroendocrine changes (increased cortisol and aldosterone) and diabetes mellitus as well as Mg(2+) deficiency. 4. Patients with therapy refractory depression appear to have lower CNS Mg(2+) levels in comparison to health controls. 5. Experimental Mg(2+) depletion leads to depression- and anxiety like behavior in animal models. 6. Ketamine, directly or indirectly via non-NMDA glutamate receptor activation, acts to increase brain Mg(2+) levels. Similar effects have been observed with other classes of antidepressants. 7. Depressed patients with low Mg(2+) levels tend to be therapy refractory. Accordingly, administration of Mg(2+) either alone or in combination with standard antidepressants acts synergistically on depression like behavior in animal models. CONCLUSION On the basis of the potential pathophysiological role of Mg(2+)-regulation, it may be possible to predict the action of ketamine and of related compounds based on Mg(2+) levels. Furthermore, screening for compounds to increase neuronal Mg(2+) concentration could be a promising instrument to identify new classes of antidepressants. Overall, any discussion of the glutamatergic system in affective disorders should consider the role of Mg(2+).
Collapse
|
29
|
Ago Y, Araki R, Tanaka T, Sasaga A, Nishiyama S, Takuma K, Matsuda T. Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice. Neuropsychopharmacology 2013; 38:1535-47. [PMID: 23426384 PMCID: PMC3682148 DOI: 10.1038/npp.2013.52] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Isolation-reared male rodents show abnormal behaviors such as hyperlocomotion, aggressive behaviors, deficits of prepulse inhibition, and depression- and anxiety-like behaviors, but the neurochemical mechanism for the effects of psychological stress in these animals is not fully understood. This study examined the effects of social interactions between isolation-reared mice and intruder mice on brain monoaminergic systems. A cage was divided into two compartments by a mesh partition to prevent direct physical interactions. The 20-min encounter with an intruder elicited a restless and hyperexcitable state (hyperactivity) in male, but not in female, isolation-reared mice, whereas encounters with a sleeping intruder or a novel object did not. Although the encounter did not affect prefrontal neuronal-activity-marker c-Fos expression, dopamine (DA) levels, or serotonin (5-HT) levels in male group-reared mice or female isolation-reared mice, it increased prefrontal c-Fos expression, DA levels, and 5-HT levels in male isolation-reared mice. Furthermore, encounter-induced increases in c-Fos expression in the dorsal raphe nucleus and ventral tegmental area, but not in the nucleus accumbens shell, were much greater in isolation-reared than group-reared male mice. A 5-HT1A receptor agonist, a metabotropic glutamate 2/3 receptor agonist, and a gamma-aminobutyric acid A receptor agonist attenuated isolation-induced aggressive behaviors and encounter-induced hyperactivity, c-Fos expression in the prefrontal cortex and dorsal raphe nucleus, and increases in prefrontal 5-HT levels. These findings suggest that the prefrontal DA and 5-HT systems are activated by encounter stimulation in male isolation-reared mice, and the encounter-induced activation of 5-HT system triggers the induction of some abnormal behaviors in male isolation-reared mice. Furthermore, this study implies that the encounter stimulation-induced signal has a pharmacological significance.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Ryota Araki
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tatsunori Tanaka
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Asuka Sasaga
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Saki Nishiyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kazuhiro Takuma
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan,Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan, Tel: +81 6 6879 8161, Fax: +81 6 6879 8159, E-mail:
| |
Collapse
|
30
|
Zufferey V, Vallet PG, Moeri M, Moulin-Sallanon M, Piotton F, Marin P, Savioz A. Maladaptive exploratory behavior and neuropathology of the PS-1 P117L Alzheimer transgenic mice. Brain Res Bull 2013; 94:17-22. [DOI: 10.1016/j.brainresbull.2013.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/22/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|