1
|
Son SM, Siddiqi FH, Lopez A, Ansari R, Tyrkalska SD, Park SJ, Kunath T, Metzakopian E, Fleming A, Rubinsztein DC. Alpha-synuclein mutations mislocalize cytoplasmic p300 compromising autophagy, which is rescued by ACLY inhibition. Neuron 2025:S0896-6273(25)00247-8. [PMID: 40262613 DOI: 10.1016/j.neuron.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Triplications and certain point mutations in the SNCA gene, encoding alpha-synuclein (α-Syn), cause Parkinson's disease (PD). Here, we demonstrate that the PD-causing A53T α-Syn mutation and elevated α-Syn expression perturb acetyl-coenzyme A (CoA) and p300 biology in human neurons and in the CNS of zebrafish and mice. This dysregulation is mediated by activation of ATP-citrate lyase (ACLY), a key enzyme that generates acetyl-CoA in the cytoplasm, via two mechanisms. First, ACLY activity increases acetyl-CoA levels, which activate p300. Second, ACLY activation increases LKB1 acetylation, which inhibits AMPK, leading to increased cytoplasmic and decreased nuclear p300. This lowers histone acetylation and increases acetylation of cytoplasmic p300 substrates, like raptor, which causes mechanistic target of rapamycin complex 1 (mTORC1) hyperactivation, thereby impairing autophagy. ACLY inhibitors rescue pathological phenotypes in PD neurons, organoids, zebrafish, and mouse models, suggesting that this pathway is a core feature of α-Syn toxicity and that ACLY may be a suitable therapeutic target.
Collapse
Affiliation(s)
- Sung Min Son
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Farah H Siddiqi
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Ana Lopez
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Sylwia D Tyrkalska
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - So Jung Park
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK; bit.bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge, UK
| | - Angeleen Fleming
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Smith AN, Gregor A, Baker L, Sharp DJ, Byrnes KR. Downregulation of Fidgetin-Like 2 Increases Microglial Function: The Relationship Between Microtubules, Morphology, and Activity. Mol Neurobiol 2025; 62:2726-2739. [PMID: 39160390 PMCID: PMC11790376 DOI: 10.1007/s12035-024-04404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024]
Abstract
The microtubule cytoskeleton regulates microglial morphology, motility, and effector functions. The microtubule-severing enzyme, fidgetin-like 2 (FL2), negatively regulates cell motility and nerve regeneration, making it a promising therapeutic target for central nervous system injury. Microglia perform important functions in response to inflammation and injury, but how FL2 affects microglia is unclear. In this study, we investigated the role of FL2 in microglial morphology and injury responses in vitro. We first determined that the pro-inflammatory stimulus, lipopolysaccharide (LPS), induced a dose- and time-dependent reduction in FL2 expression associated with reduced microglial ramification. We then administered nanoparticle-encapuslated FL2 siRNA to knockdown FL2 and assess microglial functions compared to negative control siRNA and vehicle controls. Time-lapse live-cell microscopy showed that FL2 knockdown increased the velocity of microglial motility. After incubation with fluorescently labeled IgG-opsonized beads, FL2 knockdown increased phagocytosis. Microglia were exposed to low-dose LPS after nanoparticle treatment to model injury-induced cytokine secretion. FL2 knockdown enhanced LPS-induced cytokine secretion of IL-1α, IL-1β, and TNFα. These results identify FL2 as a regulator of microglial morphology and suggest that FL2 can be targeted to increase or accelerate microglial injury responses.
Collapse
Affiliation(s)
- Austin N Smith
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alison Gregor
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - David J Sharp
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kimberly R Byrnes
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
3
|
González Molina LA, Dolga AM, Rots MG, Sarno F. The Promise of Epigenetic Editing for Treating Brain Disorders. Subcell Biochem 2025; 108:111-190. [PMID: 39820862 DOI: 10.1007/978-3-031-75980-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Brain disorders, especially neurodegenerative diseases, affect millions of people worldwide. There is no causal treatment available; therefore, there is an unmet clinical need for finding therapeutic options for these diseases. Epigenetic research has resulted in identification of various genomic loci with differential disease-specific epigenetic modifications, mainly DNA methylation. These biomarkers, although not yet translated into clinically approved options, offer therapeutic targets as epigenetic modifications are reversible. Indeed, clinical trials are designed to inhibit epigenetic writers, erasers, or readers using epigenetic drugs to interfere with epigenetic dysregulation in brain disorders. However, since such drugs elicit genome-wide effects and potentially cause toxicity, the recent developments in the field of epigenetic editing are gaining widespread attention. In this review, we provide examples of epigenetic biomarkers and epi-drugs, while describing efforts in the field of epigenetic editing, to eventually make a difference for the currently incurable brain disorders.
Collapse
Affiliation(s)
- Luis A González Molina
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Federica Sarno
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Singh R, Rathore AS, Dilnashin H, Keshri PK, Gupta NK, Prakash SAS, Zahra W, Singh S, Singh SP. HAT and HDAC: Enzyme with Contradictory Action in Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9110-9124. [PMID: 38587698 DOI: 10.1007/s12035-024-04115-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
In view of the increasing risk of neurodegenerative diseases, epigenetics plays a fundamental role in the field of neuroscience. Several modifications have been studied including DNA methylation, histone acetylation, histone phosphorylation, etc. Histone acetylation and deacetylation regulate gene expression, and the regular activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) provides regulatory stages for gene expression and cell cycle. Imbalanced homeostasis in these enzymes causes a detrimental effect on neurophysiological function. Intriguingly, epigenetic remodelling via histone acetylation in certain brain areas has been found to play a key role in the neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. It has been demonstrated that a number of HATs have a role in crucial brain processes such regulating neuronal plasticity and memory formation. The most recent therapeutic methods involve the use of small molecules known as histone deacetylase (HDAC) inhibitors that antagonize HDAC activity thereby increase acetylation levels in order to prevent the loss of HAT function in neurodegenerative disorders. The target specificity of the HDAC inhibitors now in use raises concerns about their applicability, despite the fact that this strategy has demonstrated promising therapeutic outcomes. The aim of this review is to summarize the cross-linking between histone modification and its regulation in the pathogenesis of neurological disorders. Furthermore, these findings also support the notion of new pharmacotherapies that target particular areas of the brain using histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Nitesh Kumar Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Singh Ankit Satya Prakash
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India.
| |
Collapse
|
5
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
6
|
Firdaus Z, Li X. Epigenetic Explorations of Neurological Disorders, the Identification Methods, and Therapeutic Avenues. Int J Mol Sci 2024; 25:11658. [PMID: 39519209 PMCID: PMC11546397 DOI: 10.3390/ijms252111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative disorders are major health concerns globally, especially in aging societies. The exploration of brain epigenomes, which consist of multiple forms of DNA methylation and covalent histone modifications, offers new and unanticipated perspective into the mechanisms of aging and neurodegenerative diseases. Initially, chromatin defects in the brain were thought to be static abnormalities from early development associated with rare genetic syndromes. However, it is now evident that mutations and the dysregulation of the epigenetic machinery extend across a broader spectrum, encompassing adult-onset neurodegenerative diseases. Hence, it is crucial to develop methodologies that can enhance epigenetic research. Several approaches have been created to investigate alterations in epigenetics on a spectrum of scales-ranging from low to high-with a particular focus on detecting DNA methylation and histone modifications. This article explores the burgeoning realm of neuroepigenetics, emphasizing its role in enhancing our mechanistic comprehension of neurodegenerative disorders and elucidating the predominant techniques employed for detecting modifications in the epigenome. Additionally, we ponder the potential influence of these advancements on shaping future therapeutic approaches.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Sharma R, Bisht P, Kesharwani A, Murti K, Kumar N. Epigenetic modifications in Parkinson's disease: A critical review. Eur J Pharmacol 2024; 975:176641. [PMID: 38754537 DOI: 10.1016/j.ejphar.2024.176641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder expected to increase by over 50% by 2030 due to increasing life expectancy. The disease's hallmarks include slow movement, tremors, and postural instability. Impaired protein processing is a major factor in the pathophysiology of PD, leading to the buildup of aberrant protein aggregates, particularly misfolded α-synuclein, also known as Lewy bodies. These Lewy bodies lead to inflammation and further death of dopaminergic neurons, leading to imbalances in excitatory and inhibitory neurotransmitters, causing excessive uncontrollable movements called dyskinesias. It was previously suggested that a complex interplay involving hereditary and environmental variables causes the specific death of neurons in PD; however, the exact mechanism of the association involving the two primary modifiers is yet unknown. An increasing amount of research points to the involvement of epigenetics in the onset and course of several neurological conditions, such as PD. DNA methylation, post-modifications of histones, and non-coding RNAs are the primary examples of epigenetic alterations, that is defined as alterations to the expression of genes and functioning without modifications in DNA sequence. Epigenetic modifications play a significant role in the development of PD, with genes such as Parkin, PTEN-induced kinase 1 (PINK1), DJ1, Leucine-Rich Repeat Kinase 2 (LRRK2), and alpha-synuclein associated with the disease. The aberrant epigenetic changes implicated in the pathophysiology of PD and their impact on the design of novel therapeutic approaches are the primary focus of this review.
Collapse
Affiliation(s)
- Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
8
|
Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci 2024; 25:6168. [PMID: 38892355 PMCID: PMC11172855 DOI: 10.3390/ijms25116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson's have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson's disease. We will also discuss the limitations of current epigenetic research in Parkinson's disease, the advantages of simultaneously studying genetics and epigenetics, and putative novel epigenetic therapies.
Collapse
Affiliation(s)
| | - Anna Migdalska-Richards
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK;
| |
Collapse
|
9
|
Słowikowski B, Owecki W, Jeske J, Jezierski M, Draguła M, Goutor U, Jagodziński PP, Kozubski W, Dorszewska J. Epigenetics and the neurodegenerative process. Epigenomics 2024; 16:473-491. [PMID: 38511224 DOI: 10.2217/epi-2023-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Neurological diseases are multifactorial, genetic and environmental. Environmental factors such as diet, physical activity and emotional state are epigenetic factors. Environmental markers are responsible for epigenetic modifications. The effect of epigenetic changes is increased inflammation of the nervous system and neuronal damage. In recent years, it has been shown that epigenetic changes may cause an increased risk of neurological disorders but, currently, the relationship between epigenetic modifications and neurodegeneration remains unclear. This review summarizes current knowledge about neurological disorders caused by epigenetic changes in diseases such as Alzheimer's disease, Parkinson's disease, stroke and epilepsy. Advances in epigenetic techniques may be key to understanding the epigenetics of central changes in neurological diseases.
Collapse
Affiliation(s)
- Bartosz Słowikowski
- Department of Biochemistry & Molecular Biology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Wojciech Owecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Jan Jeske
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Michał Jezierski
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Michał Draguła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Ulyana Goutor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry & Molecular Biology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Wojciech Kozubski
- Chair & Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| |
Collapse
|
10
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
11
|
Scordino M, Urone G, Frinchi M, Valenza C, Bonura A, Cipollina C, Ciriminna R, Meneguzzo F, Pagliaro M, Mudò G, Di Liberto V. Anti-Apoptotic and Anti-Inflammatory Properties of Grapefruit IntegroPectin on Human Microglial HMC3 Cell Line. Cells 2024; 13:355. [PMID: 38391968 PMCID: PMC10886616 DOI: 10.3390/cells13040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, we investigated the beneficial effects of grapefruit IntegroPectin, derived from industrial waste grapefruit peels via hydrodynamic cavitation, on microglia cells exposed to oxidative stress conditions. Grapefruit IntegroPectin fully counteracted cell death and the apoptotic process induced by cell exposure to tert-butyl hydroperoxide (TBH), a powerful hydroperoxide. The protective effects of the grapefruit IntegroPectin were accompanied with a decrease in the amount of ROS, and were strictly dependent on the activation of the phosphoinositide 3-kinase (PI3K)/Akt cascade. Finally, IntegroPectin treatment inhibited the neuroinflammatory response and the basal microglia activation by down-regulating the PI3K- nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)- inducible nitric oxide synthase (iNOS) cascade. These data strongly support further investigations aimed at exploring IntegroPectin's therapeutic role in in vivo models of neurodegenerative disorders, characterized by a combination of chronic neurodegeneration, oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Miriana Scordino
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Giulia Urone
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Monica Frinchi
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Chiara Valenza
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
- Istituto di Farmacologia Traslazionale, CNR, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Angela Bonura
- Istituto di Farmacologia Traslazionale, CNR, Via U. La Malfa 153, 90146 Palermo, Italy;
| | | | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo, Italy; (R.C.); (M.P.)
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy;
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, 90146 Palermo, Italy; (R.C.); (M.P.)
| | - Giuseppa Mudò
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy; (M.S.); (G.U.); (M.F.); (C.V.); (G.M.)
| |
Collapse
|
12
|
Li W, Li HL, Wang JZ, Liu R, Wang X. Abnormal protein post-translational modifications induces aggregation and abnormal deposition of protein, mediating neurodegenerative diseases. Cell Biosci 2024; 14:22. [PMID: 38347638 PMCID: PMC10863199 DOI: 10.1186/s13578-023-01189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/23/2023] [Indexed: 02/15/2024] Open
Abstract
Protein post-translational modifications (PPTMs) refer to a series of chemical modifications that occur after the synthesis of protein. Proteins undergo different modifications such as phosphorylation, acetylation, ubiquitination, and so on. These modifications can alter the protein's structure, function, and interaction, thereby regulating its biological activity. In neurodegenerative diseases, several proteins undergo abnormal post-translational modifications, which leads to aggregation and abnormal deposition of protein, thus resulting in neuronal death and related diseases. For example, the main pathological features of Alzheimer's disease are the aggregation of beta-amyloid protein and abnormal phosphorylation of tau protein. The abnormal ubiquitination and loss of α-synuclein are related to the onset of Parkinson's disease. Other neurodegenerative diseases such as Huntington's disease, amyotrophic lateral sclerosis, and so on are also connected with abnormal PPTMs. Therefore, studying the abnormal PPTMs in neurodegenerative diseases is critical for understanding the mechanism of these diseases and the development of significant therapeutic strategies. This work reviews the implications of PPTMs in neurodegenerative diseases and discusses the relevant therapeutic strategies.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, JS, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Wuhan, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, JS, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Wuhan, China.
| |
Collapse
|
13
|
Nohesara S, Abdolmaleky HM, Thiagalingam S, Zhou JR. Gut microbiota defined epigenomes of Alzheimer's and Parkinson's diseases reveal novel targets for therapy. Epigenomics 2024; 16:57-77. [PMID: 38088063 PMCID: PMC10804213 DOI: 10.2217/epi-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| |
Collapse
|
14
|
Harvey J, Pishva E, Chouliaras L, Lunnon K. Elucidating distinct molecular signatures of Lewy body dementias. Neurobiol Dis 2023; 188:106337. [PMID: 37918758 DOI: 10.1016/j.nbd.2023.106337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
Dementia with Lewy bodies and Parkinson's disease dementia are common neurodegenerative diseases that share similar neuropathological profiles and spectra of clinical symptoms but are primarily differentiated by the order in which symptoms manifest. The question of whether a distinct molecular pathological profile could distinguish these disorders is yet to be answered. However, in recent years, studies have begun to investigate genomic, epigenomic, transcriptomic and proteomic differences that may differentiate these disorders, providing novel insights in to disease etiology. In this review, we present an overview of the clinical and pathological hallmarks of Lewy body dementias before summarizing relevant research into genetic, epigenetic, transcriptional and protein signatures in these diseases, with a particular interest in those resolving "omic" level changes. We conclude by suggesting future research directions to address current gaps and questions present within the field.
Collapse
Affiliation(s)
- Joshua Harvey
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Leonidas Chouliaras
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, Epping, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
15
|
Zhang D, Zhang J, Wang Y, Wang G, Tang P, Liu Y, Zhang Y, Ouyang L. Targeting epigenetic modifications in Parkinson's disease therapy. Med Res Rev 2023; 43:1748-1777. [PMID: 37119043 DOI: 10.1002/med.21962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Parkinson's disease (PD) is a multifactorial disease due to a complex interplay between genetic and epigenetic factors. Recent efforts shed new light on the epigenetic mechanisms involved in regulating pathways related to the development of PD, including DNA methylation, posttranslational modifications of histones, and the presence of microRNA (miRNA or miR). Epigenetic regulators are potential therapeutic targets for neurodegenerative disorders. In the review, we aim to summarize mechanisms of epigenetic regulation in PD, and describe how the DNA methyltransferases, histone deacetylases, and histone acetyltransferases that mediate the key processes of PD are attractive therapeutic targets. We discuss the use of inhibitors and/or activators of these regulators in PD models or patients, and how these small molecule epigenetic modulators elicit neuroprotective effects. Further more, given the importance of miRNAs in PD, their contributions to the underlying mechanisms of PD will be discussed as well, together with miRNA-based therapies.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yuxi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Pan Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yun Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
16
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
17
|
Song H, Chen J, Huang J, Sun P, Liu Y, Xu L, Wei C, Mu X, Lu X, Wang W, Zhang N, Shang M, Mo M, Zhang W, Zhao H, Han F. Epigenetic modification in Parkinson's disease. Front Cell Dev Biol 2023; 11:1123621. [PMID: 37351278 PMCID: PMC10283008 DOI: 10.3389/fcell.2023.1123621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/18/2023] [Indexed: 06/24/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder caused by genetic, epigenetic, and environmental factors. Recent advance in genomics and epigenetics have revealed epigenetic mechanisms in PD. These epigenetic modifications include DNA methylation, post-translational histone modifications, chromatin remodeling, and RNA-based mechanisms, which regulate cellular functions in almost all cells. Epigenetic alterations are involved in multiple aspects of neuronal development and neurodegeneration in PD. In this review, we discuss current understanding of the epigenetic mechanisms that regulate gene expression and neural degeneration and then highlight emerging epigenetic targets and diagnostic and therapeutic biomarkers for treating or preventing PD.
Collapse
Affiliation(s)
- Hao Song
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jin Huang
- Laboratory of Basic Medical Research, PLA Strategic Support Force Characteristic Medical Centre, Beijing, China
| | - Peng Sun
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanming Liu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Li Xu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Chuanfei Wei
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xin Mu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xianjie Lu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Wei Wang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Nan Zhang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Miwei Shang
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mei Mo
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- Affiliated Yidu Central Hospital, Weifang Medical University, Weifang, China
| | - Hui Zhao
- Zhengzhou Revogene Scientific Co., LTD., Zhengzhou, Henan, China
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Zhengzhou Revogene Scientific Co., LTD., Zhengzhou, Henan, China
| |
Collapse
|
18
|
Uppala SN, Tryphena KP, Naren P, Srivastava S, Singh SB, Khatri DK. Involvement of miRNA on Epigenetics landscape of Parkinson's disease: From pathogenesis to therapeutics. Mech Ageing Dev 2023:111826. [PMID: 37268278 DOI: 10.1016/j.mad.2023.111826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
The development of novel therapeutics for the effective management of Parkinson's disease (PD) is undertaken seriously by the scientific community as the burden of PD continues to increase. Several molecular pathways are being explored to identify novel therapeutic targets. Epigenetics is strongly implicated in several neurodegenerative diseases (NDDs) including PD. Several epigenetic mechanisms were found to dysregulated in various studies. These mechanisms are regulated by several miRNAs which are associated with a variety of pathogenic mechanisms in PD. This concept is extensively investigated in several cancers but not well documented in PD. Identifying the miRNAs with dual role i.e., regulation of epigenetic mechanisms as well as modulation of proteins implicated in the pathogenesis of PD could pave way for the development of novel therapeutics to target them. These miRNAs could also serve as potential biomarkers and can be useful in the early diagnosis or assessment of disease severity. In this article we would like to discuss about various epigenetic changes operating in PD and how miRNAs are involved in the regulation of these mechanisms and their potential to be novel therapeutic targets in PD.
Collapse
Affiliation(s)
- Sai Nikhil Uppala
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Kamatham Pushpa Tryphena
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Padmashri Naren
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Shashi Bala Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037.
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037.
| |
Collapse
|
19
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Gladkova MG, Leidmaa E, Anderzhanova EA. Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on? Cells 2023; 12:1464. [PMID: 37296584 PMCID: PMC10253154 DOI: 10.3390/cells12111464] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Marina G. Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | | |
Collapse
|
21
|
Naren P, Samim KS, Tryphena KP, Vora LK, Srivastava S, Singh SB, Khatri DK. Microtubule acetylation dyshomeostasis in Parkinson's disease. Transl Neurodegener 2023; 12:20. [PMID: 37150812 PMCID: PMC10165769 DOI: 10.1186/s40035-023-00354-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The inter-neuronal communication occurring in extensively branched neuronal cells is achieved primarily through the microtubule (MT)-mediated axonal transport system. This mechanistically regulated system delivers cargos (proteins, mRNAs and organelles such as mitochondria) back and forth from the soma to the synapse. Motor proteins like kinesins and dynein mechanistically regulate polarized anterograde (from the soma to the synapse) and retrograde (from the synapse to the soma) commute of the cargos, respectively. Proficient axonal transport of such cargos is achieved by altering the microtubule stability via post-translational modifications (PTMs) of α- and β-tubulin heterodimers, core components constructing the MTs. Occurring within the lumen of MTs, K40 acetylation of α-tubulin via α-tubulin acetyl transferase and its subsequent deacetylation by HDAC6 and SIRT2 are widely scrutinized PTMs that make the MTs highly flexible, which in turn promotes their lifespan. The movement of various motor proteins, including kinesin-1 (responsible for axonal mitochondrial commute), is enhanced by this PTM, and dyshomeostasis of neuronal MT acetylation has been observed in a variety of neurodegenerative conditions, including Alzheimer's disease and Parkinson's disease (PD). PD is the second most common neurodegenerative condition and is closely associated with impaired MT dynamics and deregulated tubulin acetylation levels. Although the relationship between status of MT acetylation and progression of PD pathogenesis has become a chicken-and-egg question, our review aims to provide insights into the MT-mediated axonal commute of mitochondria and dyshomeostasis of MT acetylation in PD. The enzymatic regulators of MT acetylation along with their synthetic modulators have also been briefly explored. Moving towards a tubulin-based therapy that enhances MT acetylation could serve as a disease-modifying treatment in neurological conditions that lack it.
Collapse
Affiliation(s)
- Padmashri Naren
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Khan Sabiya Samim
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
22
|
Nandave M, Acharjee R, Bhaduri K, Upadhyay J, Rupanagunta GP, Ansari MN. A pharmacological review on SIRT 1 and SIRT 2 proteins, activators, and inhibitors: Call for further research. Int J Biol Macromol 2023; 242:124581. [PMID: 37105251 DOI: 10.1016/j.ijbiomac.2023.124581] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Sirtuins or Sir (Silent information regulator) are NAD+-dependent enzymes playing an important part in the pathogenesis and treatment of various disorders. They have ubiquitously expressed protein deacetylases. They are implicated in several cellular activities like DNA repair, cellular metabolism, mitochondrial function, and inflammation. Deletion of sirtuin protein, SIRT1 in the organs like brain, heart, liver and pancreas can cause inflammation and increases the level of free radical ions causing oxidative stress. Inflammation and oxidative stress are closely associated with pathophysiological events in many chronic diseases, like diabetes, cancer, cardiovascular, osteoporosis, and neurodegenerative diseases. Modulation of SIRT1 gene expression might help in preventing the progression of chronic diseases related to the brain, heart, liver, and pancreas. SIRT2 proteins play an essential role in tumorigenesis, including tumor-suppressing and tumor-promoting functions. Sirtuin activators are molecules that upregulate the activity of Sirtuins in the body. Their multifaceted uses have surprised the global scientific community. They are found to control obesity, lower cardiac risks, battle cancer, etc. This article provides an update on the pharmacological effect of SIRT1 and SIRT 2 proteins, their activators and inhibitors, and their molecular mechanism. It provides novel insights for future research in targeted therapy and drug development.
Collapse
Affiliation(s)
- Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rituparna Acharjee
- SPP School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Kinkini Bhaduri
- SPP School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Jyoti Upadhyay
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| | | | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
23
|
Wang L, Liu L, Han C, Jiang H, Ma K, Guo S, Xia Y, Wan F, Huang J, Xiong N, Wang T. Histone Deacetylase 4 Inhibition Reduces Rotenone-Induced Alpha-Synuclein Accumulation via Autophagy in SH-SY5Y Cells. Brain Sci 2023; 13:brainsci13040670. [PMID: 37190635 DOI: 10.3390/brainsci13040670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: Parkinson's disease (PD) is the most common movement disorder. Imbalanced protein homeostasis and α-syn aggregation are involved in PD pathogenesis. Autophagy is related to the occurrence and development of PD and can be regulated by histone deacetylases (HDACs). Various inhibitors of HDACs exert neuroprotective effects within in vitro and in vivo models of PD. HDAC4, a class Ⅱ HDAC, colocalizes with α-synuclein and ubiquitin in Lewy bodies and also accumulates in the nuclei of dopaminergic neurons in PD models. (2) Methods: In the present study, the gene expression profile of HDACs from two previously reported datasets in the GEO database was analyzed, and the RNA levels of HDAC4 in brain tissues were compared between PD patients and healthy controls. In vitro, SH-SY5Y cells transfected with HDAC4 shRNA or pretreated with mc1568 were treated with 1 μM of rotenone for 24 h. Then, the levels of α-syn, LC3, and p62 were detected using Western blot analysis and immunofluorescent staining, and cell viabilities were detected using Cell Counting Kit-8 (CCK-8). (3) Results: HDAC4 was highly expressed in PD substantia nigra and locus coeruleus. Mc1568, an inhibitor of HDAC4, decreased α-synuclein levels in rotenone-treated SH-SY5Y cells in a concentration-dependent manner and activated autophagy, which was impaired by rotenone. The knockdown of HDAC4 reversed rotenone-induced α-syn accumulation in SH-SY5Y cells and protected the neurons by enhancing autophagy. (4) Conclusions: HDAC4 is a potential therapeutic target for PD. The inhibition of HDAC4 by mc1568 or a gene block can reduce α-syn levels by regulating the autophagy process in PD. Mc1568 is a promising therapeutic agent for PD and other disorders related to α-syn accumulation.
Collapse
Affiliation(s)
- Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
24
|
Cartas-Cejudo P, Lachén-Montes M, Ferrer I, Fernández-Irigoyen J, Santamaría E. Sex-divergent effects on the NAD+-dependent deacetylase sirtuin signaling across the olfactory-entorhinal-amygdaloid axis in Alzheimer's and Parkinson's diseases. Biol Sex Differ 2023; 14:5. [PMID: 36755296 PMCID: PMC9906849 DOI: 10.1186/s13293-023-00487-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Smell impairment is one of the earliest features in Alzheimer's (AD) and Parkinson's diseases (PD). Due to sex differences exist in terms of smell and olfactory structures as well as in the prevalence and manifestation of both neurological syndromes, we have applied olfactory proteomics to favor the discovery of novel sex-biased physio-pathological mechanisms and potential therapeutic targets associated with olfactory dysfunction. METHODS SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) and bioinformatic workflows were applied in 57 post-mortem olfactory tracts (OT) derived from controls with no known neurological history (n = 6F/11M), AD (n = 4F/13M) and PD (n = 7F/16M) subjects. Complementary molecular analyses by Western-blotting were performed in the olfactory bulb (OB), entorhinal cortex (EC) and amygdala areas. RESULTS 327 and 151 OT differentially expressed proteins (DEPs) were observed in AD women and AD men, respectively (35 DEPs in common). With respect to PD, 198 DEPs were identified in PD women, whereas 95 DEPs were detected in PD men (20 DEPs in common). This proteome dyshomeostasis induced a disruption in OT protein interaction networks and widespread sex-dependent pathway perturbations in a disease-specific manner, among them Sirtuin (SIRT) signaling. SIRT1, SIRT2, SIRT3 and SIRT5 protein levels unveiled a tangled expression profile across the olfactory-entorhinal-amygdaloid axis, evidencing disease-, sex- and brain structure-dependent changes in olfactory protein acetylation. CONCLUSIONS Alteration in the OT proteostasis was more severe in AD than in PD. Moreover, protein expression changes were more abundant in women than men independent of the neurological syndrome. Mechanistically, the tangled SIRT profile observed across the olfactory pathway-associated brain regions in AD and PD indicates differential NAD (+)-dependent deacetylase mechanisms between women and men. All these data shed new light on differential olfactory mechanisms across AD and PD, pointing out that the evaluation of the feasibility of emerging sirtuin-based therapies against neurodegenerative diseases should be considered with caution, including further sex dimension analyses in vivo and in clinical studies.
Collapse
Affiliation(s)
- Paz Cartas-Cejudo
- grid.410476.00000 0001 2174 6440Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Mercedes Lachén-Montes
- grid.410476.00000 0001 2174 6440Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Isidro Ferrer
- grid.5841.80000 0004 1937 0247Department of Pathology and Experimental Therapeutics, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Institute of Health Carlos III, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- grid.410476.00000 0001 2174 6440Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008, Pamplona, Spain.
| |
Collapse
|
25
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
26
|
Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. Int J Mol Sci 2022; 23:ijms232012609. [PMID: 36293477 PMCID: PMC9604074 DOI: 10.3390/ijms232012609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrPC) to an abnormal, infectious isoform called PrPSc. Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.
Collapse
|
27
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
28
|
Ashraf H, Solla P, Sechi LA. Current Advancement of Immunomodulatory Drugs as Potential Pharmacotherapies for Autoimmunity Based Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15091077. [PMID: 36145298 PMCID: PMC9504155 DOI: 10.3390/ph15091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dramatic advancement has been made in recent decades to understand the basis of autoimmunity-mediated neurological diseases. These diseases create a strong influence on the central nervous system (CNS) and the peripheral nervous system (PNS), leading to various clinical manifestations and numerous symptoms. Multiple sclerosis (MS) is the most prevalent autoimmune neurological disease while NMO spectrum disorder (NMOSD) is less common. Furthermore, evidence supports the presence of autoimmune mechanisms contributing to the pathogenesis of amyotrophic lateral sclerosis (ALS), which is a neurodegenerative disorder characterized by the progressive death of motor neurons. Additionally, autoimmunity is believed to be involved in the basis of Alzheimer’s and Parkinson’s diseases. In recent years, the prevalence of autoimmune-based neurological disorders has been elevated and current findings strongly suggest the role of pharmacotherapies in controlling the progression of autoimmune diseases. Therefore, this review focused on the current advancement of immunomodulatory drugs as novel approaches in the management of autoimmune neurological diseases and their future outlook.
Collapse
Affiliation(s)
- Hajra Ashraf
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Paolo Solla
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Leonardo Atonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Complex Structure of Microbology and Virology, AOU Sassari, 07100 Sassari, Italy
- Correspondence:
| |
Collapse
|
29
|
Watroba M, Szukiewicz D. Sirtuins promote brain homeostasis, preventing Alzheimer’s disease through targeting neuroinflammation. Front Physiol 2022; 13:962769. [PMID: 36045741 PMCID: PMC9420839 DOI: 10.3389/fphys.2022.962769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Both basic pathomechanisms underlying Alzheimer’s disease and some premises for stipulating a possible preventive role of some sirtuins, especially SIRT1 and SIRT3, protective against Alzheimer’s disease-related pathology, are discussed in this article. Sirtuins can inhibit some processes that underlie Alzheimer’s disease-related molecular pathology (e.g., neuroinflammation, neuroinflammation-related oxidative stress, Aβ aggregate deposition, and neurofibrillary tangle formation), thus preventing many of those pathologic alterations at relatively early stages of their development. Subsequently, the authors discuss in details which mechanisms of sirtuin action may prevent the development of Alzheimer’s disease, thus promoting brain homeostasis in the course of aging. In addition, a rationale for boosting sirtuin activity, both with allosteric activators and with NAD+ precursors, has been presented.
Collapse
|
30
|
Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 2022; 7:217. [PMID: 35794091 PMCID: PMC9259618 DOI: 10.1038/s41392-022-01078-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and microRNA expression, play critical roles in cell differentiation and organ development through spatial and temporal gene regulation. Neurogenesis is a sophisticated and complex process by which neural stem cells differentiate into specialized brain cell types at specific times and regions of the brain. A growing body of evidence suggests that epigenetic mechanisms, such as histone modifications, allow the fine-tuning and coordination of spatiotemporal gene expressions during neurogenesis. Aberrant histone modifications contribute to the development of neurodegenerative and neuropsychiatric diseases. Herein, recent progress in understanding histone modifications in regulating embryonic and adult neurogenesis is comprehensively reviewed. The histone modifications implicated in neurodegenerative and neuropsychiatric diseases are also covered, and future directions in this area are provided.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
31
|
Liu T, Woo JAA, Bukhari MZ, Wang X, Yan Y, Buosi SC, Ermekbaeva A, Sista A, Kotsiviras P, LePochat P, Chacko A, Zhao X, Kang DE. Modulation of synaptic plasticity, motor unit physiology, and TDP-43 pathology by CHCHD10. Acta Neuropathol Commun 2022; 10:95. [PMID: 35787294 PMCID: PMC9254494 DOI: 10.1186/s40478-022-01386-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations in CHCHD10, a gene coding for a mitochondrial intermembrane space protein, are associated with Frontotemporal dementia (FTD)-Amyotrophic lateral sclerosis (ALS) spectrum disorders, which are pathologically characterized by cytoplasmic inclusions containing TDP-43. FTD/ALS-linked CHCHD10 mutations and TDP-43 inclusions similarly induce mitochondrial defects in respiration, fusion/fission, mtDNA stability, and cristae structure, while sizeable amounts of cytoplasmic TDP-43 aggregates are found in mitochondria. However, the mechanistic link between CHCHD10 and TDP-43 pathogenesis remains unclear. In this study, we present immunohistochemical and biochemical evidence demonstrating that insoluble CHCHD10 aggregates accumulate and colocalize with phospho-TDP-43 inclusions in brains of FTLD-TDP and AD patients, and that insoluble CHCHD10 levels tightly correlate with insoluble TDP-43 levels in control and FTLD-TDP brains. In an experimental exploration of this pathological phenotype, transgenic mice neuronally expressing FTD/ALS-linked CHCHD10R15L or CHCHDS59L mutations but not CHCHD10WT transgenic mice exhibit significantly increased CHCHD10 aggregation and phospho-TDP-43 pathology, which often colocalize within the same inclusions. Such pathologies are reflected in poor functional outcomes in long-term synaptic plasticity, motor unit physiology, and behavior in CHCHD10R15L and CHCHDS59L transgenic mice. In contrast, expression of CHCHD10WT in hTDP-43 transgenic mice (TAR4;CHCHD10WT) significantly mitigates phospho-TDP-43 pathology and rescues TDP-43-induced impairments in synaptic integrity and long-term synaptic plasticity. In isolated mitochondria, the S59L mutation induces the aggregation of resident CHCHD10S59L protein as well as the aggregation and slower turnover of recombinant TDP-43 imported into mitochondria. Likewise, in an in vitro cell-free system, the S59L mutation induces the aggregation of CHCHD10S59L protein while simultaneously enhancing the aggregation of recombinant TDP-43, as evidenced by filter trap assays and atomic force microscopy. In contrast, recombinant CHCHD10WT inhibits the growth of TDP-43 aggregates. These results in human brains, transgenic mice, and in vitro systems substantiate the role of wild type and mutant CHCHD10 in modulating mitochondrial CHCHD10 and TDP-43 pathogenesis together with associated phenotypes in long-term synaptic plasticity and motor unit physiology in mice and humans.
Collapse
Affiliation(s)
- Tian Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Jung-A A Woo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Mohammed Zaheen Bukhari
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Xinming Wang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yan Yan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Sara Cazzaro Buosi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Aizara Ermekbaeva
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Apoorva Sista
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Peter Kotsiviras
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Patrick LePochat
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Ann Chacko
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Xingyu Zhao
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA
| | - David E Kang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Louis Strokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Department of Molecular Medicine, Byrd Alzheimer's Center & Research Institute, USF Health Morsani College of Medicine, Tampa, FL, 33613, USA.
| |
Collapse
|
32
|
Li Y, Gu Z, Lin S, Chen L, Dzreyan V, Eid M, Demyanenko S, He B. Histone Deacetylases as Epigenetic Targets for Treating Parkinson's Disease. Brain Sci 2022; 12:672. [PMID: 35625059 PMCID: PMC9140162 DOI: 10.3390/brainsci12050672] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease that is increasingly becoming a global threat to the health and life of the elderly worldwide. Although there are some drugs clinically available for treating PD, these treatments can only alleviate the symptoms of PD patients but cannot completely cure the disease. Therefore, exploring other potential mechanisms to develop more effective treatments that can modify the course of PD is still highly desirable. Over the last two decades, histone deacetylases, as an important group of epigenetic targets, have attracted much attention in drug discovery. This review focused on the current knowledge about histone deacetylases involved in PD pathophysiology and their inhibitors used in PD studies. Further perspectives related to small molecules that can inhibit or degrade histone deacetylases to treat PD were also discussed.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Moez Eid
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Stachki Ave. 194/1, 344090 Rostov-on-Don, Russia; (V.D.); (M.E.)
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China; (Y.L.); (Z.G.); (S.L.); (L.C.)
| |
Collapse
|
33
|
Dong Y, Cui C. The role of short-chain fatty acids in central nervous system diseases. Mol Cell Biochem 2022; 477:2595-2607. [PMID: 35596843 DOI: 10.1007/s11010-022-04471-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Previous studies have found that intracorporal short-chain fatty acids (SCFAs), as the main metabolites of the gut microbiota, play important roles in the intestinal physiology and immune function. Along with the in-depth study of the brain-gut axis, the attention to the roles of SCFAs in central nervous system (CNS) has been raised. It has been found that SCFAs function in CNS diseases by regulating inflammatory response, neuronal apoptosis, oxidative stress, the integrity of the blood-brain barrier (BBB) and so on. Here, the changes, the effects and the mechanisms of different SCFA as individual or mixture in different CNS diseases were summarized. It is expected to lead to increased interest in SCFAs studies as an important regulator in CNS diseases and provide feasible suggestions based on SCFAs for the therapy of CNS diseases in the future.
Collapse
Affiliation(s)
- Yin Dong
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chun Cui
- Wuxi Medical School, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
34
|
Monayo SM, Liu X. The Prospective Application of Melatonin in Treating Epigenetic Dysfunctional Diseases. Front Pharmacol 2022; 13:867500. [PMID: 35668933 PMCID: PMC9163742 DOI: 10.3389/fphar.2022.867500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
In the past, different human disorders were described by scientists from the perspective of either environmental factors or just by genetically related mechanisms. The rise in epigenetic studies and its modifications, i.e., heritable alterations in gene expression without changes in DNA sequences, have now been confirmed in diseases. Modifications namely, DNA methylation, posttranslational histone modifications, and non-coding RNAs have led to a better understanding of the coaction between epigenetic alterations and human pathologies. Melatonin is a widely-produced indoleamine regulator molecule that influences numerous biological functions within many cell types. Concerning its broad spectrum of actions, melatonin should be investigated much more for its contribution to the upstream and downstream mechanistic regulation of epigenetic modifications in diseases. It is, therefore, necessary to fill the existing gaps concerning corresponding processes associated with melatonin with the physiological abnormalities brought by epigenetic modifications. This review outlines the findings on melatonin’s action on epigenetic regulation in human diseases including neurodegenerative diseases, diabetes, cancer, and cardiovascular diseases. It summarizes the ability of melatonin to act on molecules such as proteins and RNAs which affect the development and progression of diseases.
Collapse
|
35
|
Mazzocchi M, Goulding SR, Morales-Prieto N, Foley T, Collins LM, Sullivan AM, O'Keeffe GW. Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson's disease. Brain Behav Immun 2022; 102:151-160. [PMID: 35217173 DOI: 10.1016/j.bbi.2022.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by nigrostriatal dopaminergic (DA) neurodegeneration. There is a critical need for neuroprotective therapies, particularly those that do not require direct intracranial administration. Small molecule inhibitors of histone deacetylases (HDIs) are neuroprotective in in vitro and in vivo models of PD, however it is unknown whether Class IIa-specific HDIs are neuroprotective when administered peripherally. Here we show that 6-hydroxydopamine (6-OHDA) treatment induces protein kinase C (PKC)-dependent nuclear accumulation of the Class IIa histone deacetylase (HDAC)5 in SH-SY5Y cells and cultured DA neurons in vitro. Treatment of these cultures with the Class IIa-specific HDI, MC1568, partially protected against 6-OHDA-induced cell death. In the intrastriatal 6-OHDA lesion in vivo rat model of PD, MC1568 treatment (0.5 mg/kg i.p.) for 7 days reduced forelimb akinesia and partially protected DA neurons in the substantia nigra and their striatal terminals from 6-OHDA-induced neurodegeneration. MC1568 treatment prevented 6-OHDA-induced increases in microglial activation in the striatum and substantia nigra. Furthermore, MC1568 treatment decreased 6-OHDA-induced increases in nuclear HDAC5 in nigral DA neurons. These data suggest that peripheral administration of Class IIa-specific HDIs may be a potential therapy for neuroprotective in PD.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Susan R Goulding
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | | | - Tara Foley
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Louise M Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Department of Physiology, UCC, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
36
|
Yan J, Zhang P, Tan J, Li M, Xu X, Shao X, Fang F, Zou Z, Zhou Y, Tian B. Cdk5 phosphorylation-induced SIRT2 nuclear translocation promotes the death of dopaminergic neurons in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:46. [PMID: 35443760 PMCID: PMC9021196 DOI: 10.1038/s41531-022-00311-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
NAD-dependent protein deacetylase Sirtuin 2 (SIRT2), which regulates several cellular pathways by deacetylating multiple substrates, has been extensively studied in the context of Parkinson’s disease (PD). Although several studies based on the MPTP model of PD show that SIRT2 deletion can protect against dopaminergic neuron loss, the precise mechanisms of SIRT2-mediated neuronal death have largely remained unknown. Here, we show that SIRT2 knockout can effectively ameliorate anomalous behavioral phenotypes in transgenic mouse models of PD. Importantly, in both cellular and animal models of PD, it was observed that SIRT2 translocates from the cytoplasm to the nucleus. Further, the nuclear translocation of SIRT2 promotes neuronal death. Moreover, the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of SIRT2 at the Ser331 and Ser335 sites appears to be necessary for such nuclear translocation. Taken together, the results provide insights into the mechanisms involved in the regulation of neuronal death during PD progression via the Cdk5-dependent nuclear–cytoplasmic shuttling of SIRT2.
Collapse
Affiliation(s)
- Jianguo Yan
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei Province, 430030, P. R. China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Mao Li
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Xingfeng Xu
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Xiaoyun Shao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Fang Fang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China
| | - Yali Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China. .,Department of Microbiology, Faculty of Basic Medical Science, Guilin Medical University, 1 Zhiyuan Road, Guilin, Guangxi Province, 541199, P. R. China.
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei Province, 430030, P. R. China.
| |
Collapse
|
37
|
Günaydın C, Çelik ZB, Bilge SS. CIITA expression is regulated by histone deacetylase enzymes and has a role in α-synuclein pre-formed fibril-induced antigen presentation in murine microglial cell line. Immunopharmacol Immunotoxicol 2022; 44:447-455. [PMID: 35291899 DOI: 10.1080/08923973.2022.2054427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIM Parkinson's disease(PD) is a chronic neurodegenerative disorder related with several genetic and epigenetic factors. In the context of epigenetic factors, histone acetylation is one of the most associated mechanisms with Parkinson's disease progression. This study investigates the effects of the increased histone acetylation on antigen presentation in microglial cells which were induced by pre-formed fibrils of α-synuclein(pFF α-synuclein). METHODS Parkinson's disease model was created with pFF α-synuclein administration to the BV-2 microglial cells. BV-2 cells were co-treated with CUDC-907 and TMP-195 to increase histone acetylation in the presence of α-synuclein. Antigen representation was evaluated by determining expression levels of major histocompatibility complex-II(MHC-II) and class-II major histocompatibility complex(CIITA). RESULTS Our results showed that pFF α-synuclein significantly increased MHC-II expression, and that effect was most severe at 6 hours of administration of α-synuclein. Increasing histone acetylation via CUDC-907 and TMP-195 enhanced MHC-II levels expression, which was more severe in CUDC-907. Additionally, CIITA expression levels were significantly increased with pFF α-synuclein administration and intensified with the co-treatment of CUDC-907 and TMP-195. Furthermore, pFF α-synuclein caused a time-dependent increase in the IFN-gamma(IFN-ɣ) and interleukin-16(IL-16) levels, and that increase was potentiated with CUDC-907 and TMP-195. CONCLUSION Changes in MHC-II and CIITA expression indicate that histone acetylation increases the antigen presentation properties of microglial cells after pFF α-synuclein or histone deacetylase inhibitor(HDACi) administration. Our results show that microglial antigen presentation might have an essential role in the pathology of Parkinson's disease, and α-synuclein likely to play a primary role in this mechanism.
Collapse
Affiliation(s)
- Caner Günaydın
- Samsun University, School of Medicine, Department of Pharmacology, Samsun, Turkey
| | - Z Betül Çelik
- Ondokuz Mayıs University, School of Medicine, Department of Histology and Embryology, Samsun, Turkey
| | - S Sırrı Bilge
- Ondokuz Mayıs University, School of Medicine, Department of Pharmacology, Samsun, Turkey
| |
Collapse
|
38
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
39
|
Fernando KKM, Wijayasinghe YS. Sirtuins as Potential Therapeutic Targets for Mitigating Neuroinflammation Associated With Alzheimer's Disease. Front Cell Neurosci 2021; 15:746631. [PMID: 34630044 PMCID: PMC8492950 DOI: 10.3389/fncel.2021.746631] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, which is associated with memory deficit and global cognitive decline. Age is the greatest risk factor for AD and, in recent years, it is becoming increasingly appreciated that aging-related neuroinflammation plays a key role in the pathogenesis of AD. The presence of β-amyloid plaques and neurofibrillary tangles are the primary pathological hallmarks of AD; defects which can then activate a cascade of molecular inflammatory pathways in glial cells. Microglia, the resident macrophages in the central nervous system (CNS), are the major triggers of inflammation; a response which is typically intended to prevent further damage to the CNS. However, persistent microglial activation (i.e., neuroinflammation) is toxic to both neurons and glia, which then leads to neurodegeneration. Growing evidence supports a central role for sirtuins in the regulation of neuroinflammation. Sirtuins are NAD+-dependent protein deacetylases that modulate a number of cellular processes associated with inflammation. This review examines the latest findings regarding AD-associated neuroinflammation, mainly focusing on the connections among the microglial molecular pathways of inflammation. Furthermore, we highlight the biology of sirtuins, and their role in neuroinflammation. Suppression of microglial activity through modulation of the sirtuin activity has now become a key area of research, where progress in therapeutic interventions may slow the progression of Alzheimer's disease.
Collapse
|
40
|
Zhang S, Zhan L, Li X, Yang Z, Luo Y, Zhao H. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells. Int J Biol Sci 2021; 17:3381-3400. [PMID: 34512154 PMCID: PMC8416716 DOI: 10.7150/ijbs.62001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic changes are difficult to reverse; thus, epigenetic aberrations, including changes in DNA methylation, histone modifications, and noncoding RNAs, with potential reversibility, have attracted attention as pharmaceutical targets. The current paradigm is that histone deacetylases (HDACs) regulate gene expression via deacetylation of histone and nonhistone proteins or by forming corepressor complexes with transcription factors. The emergence of epigenetic tools related to HDACs can be used as diagnostic and therapeutic markers. HDAC inhibitors that block specific or a series of HDACs have proven to be a powerful therapeutic treatment for immune-related diseases. Here, we summarize the various roles of HDACs and HDAC inhibitors in the development and function of innate and adaptive immune cells and their implications for various diseases and therapies.
Collapse
Affiliation(s)
- Sijia Zhang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingjun Zhan
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
41
|
Huang M, Lou D, Charli A, Kong D, Jin H, Zenitsky G, Anantharam V, Kanthasamy A, Wang Z, Kanthasamy AG. Mitochondrial dysfunction-induced H3K27 hyperacetylation perturbs enhancers in Parkinson's disease. JCI Insight 2021; 6:138088. [PMID: 34494552 PMCID: PMC8492320 DOI: 10.1172/jci.insight.138088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is a major pathophysiological contributor to the progression of Parkinson's disease (PD); however, whether it contributes to epigenetic dysregulation remains unknown. Here, we show that both chemically and genetically driven mitochondrial dysfunctions share a common mechanism of epigenetic dysregulation. Under both scenarios, lysine 27 acetylation of likely variant H3.3 (H3.3K27ac) increased in dopaminergic neuronal models of PD, thereby opening that region to active enhancer activity via H3K27ac. These vulnerable epigenomic loci represent potential transcription factor motifs for PD pathogenesis. We further confirmed that mitochondrial dysfunction induces H3K27ac in ex vivo and in vivo (MitoPark) neurodegenerative models of PD. Notably, the significantly increased H3K27ac in postmortem PD brains highlights the clinical relevance to the human PD population. Our results reveal an exciting mitochondrial dysfunction-metabolism-H3K27ac-transcriptome axis for PD pathogenesis. Collectively, the mechanistic insights link mitochondrial dysfunction to epigenetic dysregulation in dopaminergic degeneration and offer potential new epigenetic intervention strategies for PD.
Collapse
Affiliation(s)
- Minhong Huang
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Dan Lou
- Laboratory of Environmental Epigenomes, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adhithiya Charli
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Dehui Kong
- Laboratory of Environmental Epigenomes, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Gary Zenitsky
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Arthi Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Zhibin Wang
- Laboratory of Environmental Epigenomes, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Anumantha G. Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
42
|
Roles for α-Synuclein in Gene Expression. Genes (Basel) 2021; 12:genes12081166. [PMID: 34440340 PMCID: PMC8393936 DOI: 10.3390/genes12081166] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
α-Synuclein (α-Syn) is a small cytosolic protein associated with a range of cellular compartments, including synaptic vesicles, the nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. In addition to its physiological role in regulating presynaptic function, the protein plays a central role in both sporadic and familial Parkinson’s disease (PD) via a gain-of-function mechanism. Because of this, several recent strategies propose to decrease α-Syn levels in PD patients. While these therapies may offer breakthroughs in PD management, the normal functions of α-Syn and potential side effects of its depletion require careful evaluation. Here, we review recent evidence on physiological and pathological roles of α-Syn in regulating activity-dependent signal transduction and gene expression pathways that play fundamental role in synaptic plasticity.
Collapse
|
43
|
Potent inhibitors of toxic alpha-synuclein identified via cellular time-resolved FRET biosensors. NPJ Parkinsons Dis 2021; 7:52. [PMID: 34183676 PMCID: PMC8238948 DOI: 10.1038/s41531-021-00195-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
We have developed a high-throughput drug discovery platform, measuring fluorescence resonance energy transfer (FRET) with fluorescent alpha-synuclein (αSN) biosensors, to detect spontaneous pre-fibrillar oligomers in living cells. Our two αSN FRET biosensors provide complementary insight into αSN oligomerization and conformation in order to improve the success of drug discovery campaigns for the treatment of Parkinson's disease. We measure FRET by fluorescence lifetime, rather than traditional fluorescence intensity, providing a structural readout with greater resolution and precision. This facilitates identification of compounds that cause subtle but significant conformational changes in the ensemble of oligomeric states that are easily missed using intensity-based FRET. We screened a 1280-compound small-molecule library and identified 21 compounds that changed the lifetime by >5 SD. Two of these compounds have nanomolar potency in protecting SH-SY5Y cells from αSN-induced death, providing a nearly tenfold improvement over known inhibitors. We tested the efficacy of several compounds in a primary mouse neuron assay of αSN pathology (phosphorylation of mouse αSN pre-formed fibrils) and show rescue of pathology for two of them. These hits were further characterized with biophysical and biochemical assays to explore potential mechanisms of action. In vitro αSN oligomerization, single-molecule FRET, and protein-observed fluorine NMR experiments demonstrate that these compounds modulate αSN oligomers but not monomers. Subsequent aggregation assays further show that these compounds also deter or block αSN fibril assembly.
Collapse
|
44
|
Epigenetic Modulation of Microglia Function and Phenotypes in Neurodegenerative Diseases. Neural Plast 2021; 2021:9912686. [PMID: 34194489 PMCID: PMC8181095 DOI: 10.1155/2021/9912686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia-mediated neuroinflammation is one of the most remarkable hallmarks of neurodegenerative diseases (NDDs), including AD, PD, and ALS. Accumulating evidence indicates that microglia play both neuroprotective and detrimental roles in the onset and progression of NDDs. Yet, the specific mechanisms of action surrounding microglia are not clear. Modulation of microglia function and phenotypes appears to be a potential strategy to reverse NDDs. Until recently, research into the epigenetic mechanisms of diseases has been gradually developed, making it possible to elucidate the molecular mechanisms underlying the epigenetic regulation of microglia in NDDs. This review highlights the function and phenotypes of microglia, elucidates the relationship between microglia, epigenetic modifications, and NDDs, as well as the possible mechanisms underlying the epigenetic modulation of microglia in NDDs with a focus on potential intervention strategies.
Collapse
|
45
|
Chen X, Lu W, Wu D. Sirtuin 2 (SIRT2): Confusing Roles in the Pathophysiology of Neurological Disorders. Front Neurosci 2021; 15:614107. [PMID: 34108853 PMCID: PMC8180884 DOI: 10.3389/fnins.2021.614107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/12/2021] [Indexed: 01/05/2023] Open
Abstract
As a type of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 2 (SIRT2) is predominantly found in the cytoplasm of cells in the central nervous system (CNS), suggesting its potential role in neurological disorders. Though SIRT2 is generally acknowledged to accelerate the development of neurological pathologies, it protects the brain from deterioration in certain circumstances. This review summarized the complex roles SIRT2 plays in the pathophysiology of diverse neurological disorders, compared and analyzed the discrete roles of SIRT2 in different conditions, and provided possible explanations for its paradoxical functions. In the future, the rapid growth in SIRT2 research may clarify its impacts on neurological disorders and develop therapeutic strategies targeting this protein.
Collapse
Affiliation(s)
- Xiuqi Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wenmei Lu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Rasheed M, Liang J, Wang C, Deng Y, Chen Z. Epigenetic Regulation of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:4956. [PMID: 34066949 PMCID: PMC8125491 DOI: 10.3390/ijms22094956] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is one of the most significant factors involved in the initiation and progression of Parkinson's disease. PD is a neurodegenerative disorder with a motor disability linked with various complex and diversified risk factors. These factors trigger myriads of cellular and molecular processes, such as misfolding defective proteins, oxidative stress, mitochondrial dysfunction, and neurotoxic substances that induce selective neurodegeneration of dopamine neurons. This neuronal damage activates the neuronal immune system, including glial cells and inflammatory cytokines, to trigger neuroinflammation. The transition of acute to chronic neuroinflammation enhances the susceptibility of inflammation-induced dopaminergic neuron damage, forming a vicious cycle and prompting an individual to PD development. Epigenetic mechanisms recently have been at the forefront of the regulation of neuroinflammatory factors in PD, proposing a new dawn for breaking this vicious cycle. This review examined the core epigenetic mechanisms involved in the activation and phenotypic transformation of glial cells mediated neuroinflammation in PD. We found that epigenetic mechanisms do not work independently, despite being coordinated with each other to activate neuroinflammatory pathways. In this regard, we attempted to find the synergic correlation and contribution of these epigenetic modifications with various neuroinflammatory pathways to broaden the canvas of underlying pathological mechanisms involved in PD development. Moreover, this study highlighted the dual characteristics (neuroprotective/neurotoxic) of these epigenetic marks, which may counteract PD pathogenesis and make them potential candidates for devising future PD diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (J.L.); (C.W.); (Y.D.)
| |
Collapse
|
47
|
Toker L, Tran GT, Sundaresan J, Tysnes OB, Alves G, Haugarvoll K, Nido GS, Dölle C, Tzoulis C. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson's disease brain. Mol Neurodegener 2021; 16:31. [PMID: 33947435 PMCID: PMC8097820 DOI: 10.1186/s13024-021-00450-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a complex, age-related neurodegenerative disorder of largely unknown etiology. PD is strongly associated with mitochondrial respiratory dysfunction, which can lead to epigenetic dysregulation and specifically altered histone acetylation. Nevertheless, and despite the emerging role of epigenetics in age-related brain disorders, the question of whether aberrant histone acetylation is involved in PD remains unresolved. METHODS We studied fresh-frozen brain tissue from two independent cohorts of individuals with idiopathic PD (n = 28) and neurologically healthy controls (n = 21). We performed comprehensive immunoblotting to identify histone sites with altered acetylation levels in PD, followed by chromatin immunoprecipitation sequencing (ChIP-seq). RNA sequencing data from the same individuals was used to assess the impact of altered histone acetylation on gene expression. RESULTS Immunoblotting analyses revealed increased acetylation at several histone sites in PD, with the most prominent change observed for H3K27, a marker of active promoters and enhancers. ChIP-seq analysis further indicated that H3K27 hyperacetylation in the PD brain is a genome-wide phenomenon with a strong predilection for genes implicated in the disease, including SNCA, PARK7, PRKN and MAPT. Integration of the ChIP-seq with transcriptomic data from the same individuals revealed that the correlation between promoter H3K27 acetylation and gene expression is attenuated in PD patients, suggesting that H3K27 acetylation may be decoupled from transcription in the PD brain. Strikingly, this decoupling was most pronounced among nuclear-encoded mitochondrial genes, corroborating the notion that impaired crosstalk between the nucleus and mitochondria is involved in the pathogenesis of PD. Our findings independently replicated in the two cohorts. CONCLUSIONS Our findings strongly suggest that aberrant histone acetylation and altered transcriptional regulation are involved in the pathophysiology of PD. We demonstrate that PD-associated genes are particularly prone to epigenetic dysregulation and identify novel epigenetic signatures associated with the disease.
Collapse
Affiliation(s)
- Lilah Toker
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Gia T. Tran
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Janani Sundaresan
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Pb 8100, 4068 Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, 4062 Stavanger, Norway
| | - Kristoffer Haugarvoll
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Gonzalo S. Nido
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| |
Collapse
|
48
|
Sola-Sevilla N, Ricobaraza A, Hernandez-Alcoceba R, Aymerich MS, Tordera RM, Puerta E. Understanding the Potential Role of Sirtuin 2 on Aging: Consequences of SIRT2.3 Overexpression in Senescence. Int J Mol Sci 2021; 22:3107. [PMID: 33803627 PMCID: PMC8003096 DOI: 10.3390/ijms22063107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Sirtuin 2 (SIRT2) has been associated to aging and age-related pathologies. Specifically, an age-dependent accumulation of isoform 3 of SIRT2 in the CNS has been demonstrated; however, no study has addressed the behavioral or molecular consequences that this could have on aging. In the present study, we have designed an adeno-associated virus vector (AAV-CAG-Sirt2.3-eGFP) for the overexpression of SIRT2.3 in the hippocampus of 2 month-old SAMR1 and SAMP8 mice. Our results show that the specific overexpression of this isoform does not induce significant behavioral or molecular effects at short or long term in the control strain. Only a tendency towards a worsening in the performance in acquisition phase of the Morris Water Maze was found in SAMP8 mice, together with a significant increase in the pro-inflammatory cytokine Il-1β. These results suggest that the age-related increase of SIRT2.3 found in the brain is not responsible for induction or prevention of senescence. Nevertheless, in combination with other risk factors, it could contribute to the progression of age-related processes. Understanding the specific role of SIRT2 on aging and the underlying molecular mechanisms is essential to design new and more successful therapies for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ana Ricobaraza
- Gene Therapy Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Maria S Aymerich
- Departamento de Bioquímica y Genética, Facultad de Ciencias, Universidad de Navarra, 31008 Pamplona, Spain
- Neuroscience Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Rosa M Tordera
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Elena Puerta
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
49
|
Epigenetics and Communication Mechanisms in Microglia Activation with a View on Technological Approaches. Biomolecules 2021; 11:biom11020306. [PMID: 33670563 PMCID: PMC7923060 DOI: 10.3390/biom11020306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Microglial cells, the immune cells of the central nervous system (CNS), play a crucial role for the proper brain development and function and in CNS homeostasis. While in physiological conditions, microglia continuously check the state of brain parenchyma, in pathological conditions, microglia can show different activated phenotypes: In the early phases, microglia acquire the M2 phenotype, increasing phagocytosis and releasing neurotrophic and neuroprotective factors. In advanced phases, they acquire the M1 phenotype, becoming neurotoxic and contributing to neurodegeneration. Underlying this phenotypic change, there is a switch in the expression of specific microglial genes, in turn modulated by epigenetic changes, such as DNA methylation, histones post-translational modifications and activity of miRNAs. New roles are attributed to microglial cells, including specific communication with neurons, both through direct cell–cell contact and by release of many different molecules, either directly or indirectly, through extracellular vesicles. In this review, recent findings on the bidirectional interaction between neurons and microglia, in both physiological and pathological conditions, are highlighted, with a focus on the complex field of microglia immunomodulation through epigenetic mechanisms and/or released factors. In addition, advanced technologies used to study these mechanisms, such as microfluidic, 3D culture and in vivo imaging, are presented.
Collapse
|
50
|
Tapias A, Lázaro D, Yin BK, Rasa SMM, Krepelova A, Kelmer Sacramento E, Grigaravicius P, Koch P, Kirkpatrick J, Ori A, Neri F, Wang ZQ. HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. eLife 2021; 10:61531. [PMID: 33594975 PMCID: PMC7939550 DOI: 10.7554/elife.61531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/16/2021] [Indexed: 01/22/2023] Open
Abstract
Brain homeostasis is regulated by the viability and functionality of neurons. HAT (histone acetyltransferase) and HDAC (histone deacetylase) inhibitors have been applied to treat neurological deficits in humans; yet, the epigenetic regulation in neurodegeneration remains elusive. Mutations of HAT cofactor TRRAP (transformation/transcription domain-associated protein) cause human neuropathies, including psychosis, intellectual disability, autism, and epilepsy, with unknown mechanism. Here we show that Trrap deletion in Purkinje neurons results in neurodegeneration of old mice. Integrated transcriptomics, epigenomics, and proteomics reveal that TRRAP via SP1 conducts a conserved transcriptomic program. TRRAP is required for SP1 binding at the promoter proximity of target genes, especially microtubule dynamics. The ectopic expression of Stathmin3/4 ameliorates defects of TRRAP-deficient neurons, indicating that the microtubule dynamics is particularly vulnerable to the action of SP1 activity. This study unravels a network linking three well-known, but up-to-date unconnected, signaling pathways, namely TRRAP, HAT, and SP1 with microtubule dynamics, in neuroprotection.
Collapse
Affiliation(s)
- Alicia Tapias
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - David Lázaro
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Bo-Kun Yin
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Anna Krepelova
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | | | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|