1
|
Ren ZL, Lan X, Cheng JL, Zheng YX, Chen CA, Liu Y, He YH, Han JH, Wang QG, Cheng FF, Li CX, Wang XQ. Astrocyte-neuron metabolic crosstalk in ischaemic stroke. Neurochem Int 2025; 185:105954. [PMID: 39988284 DOI: 10.1016/j.neuint.2025.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/20/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Ischemic stroke (IS) is caused by temporary or permanent obstruction of the brain's blood supply. The disruption in glucose and oxygen delivery that results from the drop in blood flow impairs energy metabolism. A significant pathological feature of IS impaired energy metabolism. Astrocytes, as the most prevalent glial cells in the brain, sit in between neurons and the microvasculature. By taking advantage of their special anatomical location, they play a crucial part in regulating cerebral blood flow (CBF) and metabolism. Astrocytes can withstand hypoxic and ischemic conditions better than neurons do. Additionally, astrocytes are essential for maintaining the metabolism and function of neurons. Therefore, the "neurocentric" perspective on neuroenergetics is gradually giving way to a more comprehensive perspective that takes into account metabolic interaction between astrocytes and neurons. Since neurons in the core region of the infarct are unable to undergo oxidative metabolism, the focus of attention in this review is on neurons in the peri-infarct region. We'll go over the metabolic crosstalk of astrocytes and neurons during the acute phase of IS using three different types of metabolites: lactate, fatty acids (FAs), and amino acids, as well as the mitochondria. After IS, astrocytes in the peri-infarct zone can produce lactate, ketone bodies (KBs), glutamine (Gln), and l-serine, shuttling these metabolites, along with mitochondria, to neurons. This process helps maintain the energy requirements of neurons, preserves their redox state, and regulates neurotransmitter receptor activity.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Lan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jia-Lin Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Xiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Ai Chen
- Beijing Chinese Medicine Hospital, Capital Medical University, Beijing, 100010, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Hui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin-Hua Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Cibelli A, Spray DC, Mola MG. Editorial: Glial cells in homeostasis, neurodevelopment, and repair. Front Cell Neurosci 2025; 19:1575105. [PMID: 40083635 PMCID: PMC11903435 DOI: 10.3389/fncel.2025.1575105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Affiliation(s)
- Antonio Cibelli
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - David C. Spray
- Dominique P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Maria Grazia Mola
- Department of Medicine and Surgery, Libera Università Mediterranea ”Giuseppe Degennaro“, Casamassima, Italy
| |
Collapse
|
4
|
Hall C, Nguyen DT, Mendoza K, Tan C, Chauhan A. Inhibition of IL-6 trans-signaling promotes post-stroke functional recovery in a sex and dose-dependent manner. J Neuroinflammation 2025; 22:52. [PMID: 40011978 DOI: 10.1186/s12974-025-03365-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/01/2025] [Indexed: 02/28/2025] Open
Abstract
INTRODUCTION Elevated circulating IL-6 levels are associated with poorer outcomes after stroke, and increased serum IL-6 levels are linked to a higher risk of stroke. IL-6 binds to soluble IL-6 receptors (sIL-6R) and subsequently to ubiquitously expressed gp130, initiating proinflammatory trans-signaling. This study tested the hypothesis that inhibiting IL-6 trans-signaling by administering soluble (s) gp130 improves long-term functional outcomes in young mice after stroke. METHODS Recombinant mouse gp130Fc chimera (sgp130) was administered one hour after middle cerebral artery occlusion (MCAO) followed by twice-weekly administration for 2 weeks in mice (8-15 weeks old). Behavioral assessments were done on days 7 and 28 post-MCAO for chronic studies. Flow cytometry was performed on days 3 (blood) and 7 (spleen and brain) to assess IL-6, mIL-6R, and phosphorylated STAT3 expression. RESULTS Improved long-term functional outcomes were observed in male, but not female mice. To investigate the differential response in females, ELISA analyses revealed that plasma IL-6 levels increased in both sexes after MCAO, with a more pronounced induction in females. Additionally, circulating sIL-6R levels were significantly higher in females compared to males (p < 0.05) at 24 h post-MCAO. Administering a higher dose of sgp130 (1 mg/kg) to females improved long-term functional outcomes, suggesting that a higher dose is needed to inhibit IL-6 trans-signaling in females effectively. Mechanistically, sgp130 treatment reduced phosphorylated STAT3 expression in brain F4/80 macrophages and increased the expression of mIL-6R on splenic immune cells at day 7 post-MCAO in both sexes. CONCLUSION These findings demonstrate that inhibition of IL-6 trans-signaling with gp130Fc improves long-term functional outcomes in both male and female mice, albeit in a dose-dependent manner. This study provides novel insights into potential therapeutic strategies targeting IL-6 signaling pathways following stroke.
Collapse
Affiliation(s)
- Cassandra Hall
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Dustin T Nguyen
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Kate Mendoza
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA.
| |
Collapse
|
5
|
Stadler J, Garmo LG, Doyle D, Cheng CI, Richardson G, Waheed Z, Tofan T, Srinageshwar B, Sharma A, Petersen RB, Dunbar GL, Rossignol J. Curcumin encapsulated in PAMAM dendrimers for the therapeutic treatment of ischemic stroke in rats. Front Cell Dev Biol 2025; 12:1467417. [PMID: 39834388 PMCID: PMC11743639 DOI: 10.3389/fcell.2024.1467417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Ischemic stroke is a devastating neurovascular condition that occurs when cerebral tissue fails to receive an adequate supply of oxygen. Despite being a leading cause of death and disability worldwide, therapeutic interventions are currently limited. Polyamidoamine (PAMAM) dendrimers are nanomolecules commonly used in biomedical applications due to their ability to encapsulate small-molecules and improve their pharmacokinetic properties. Curcumin is known to have anti-inflammatory and antioxidant effects yet suffers from poor solubility and bioavailability. The purpose of this study is to investigate the efficacy of curcumin encapsulated in PAMAM dendrimers as a potential therapeutic treatment for ischemic stroke by studying post-stroke lesion size, astrocyte reactivity, and functional recovery in a rat model of cerebral ischemia. Methods Forty-eight male and female Sprague-Dawley rats (280-380 g) underwent either a 90-min middle cerebral artery occlusion (MCAo) or sham surgery before receiving one of four treatments: (1) Hanks' balanced salt solution (HBSS) control, (2) empty dendrimer control, (3) curcumin control, or (4) curcumin encapsulated in PAMAM dendrimer. Neurobehavioral outcomes were evaluated at 1-, 3-, 5-, and 7-day post-surgery, after which animals were euthanized on day 8 to assess infarct volume and GFAP immunoreactivity. Results Animals that received formulations containing dendrimers (curcumin encapsulated in dendrimers or empty dendrimers) demonstrated significantly lower levels of GFAP immunoreactivity and improved functional recovery, including weight and neurobehavioral scores, compared to the formulations that did not contain dendrimers (curcumin and HBSS control). Additionally, the dendrimer-curcumin treatment group exhibited a significantly improved paw laterality index over the course of the study compared with the other three treatment groups. Conclusion Although the post-stroke administration of curcumin encapsulated in PAMAM dendrimers modulates the astrocytic response and promotes functional recovery following ischemic stroke in rats, its therapeutic benefits may be driven by PAMAM dendrimers as the empty dendrimer treatment group also showed significant improvements post-stroke. Further investigation regarding PAMAM dendrimers in treating neuroinflammatory conditions remains warranted.
Collapse
Affiliation(s)
- Justin Stadler
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Lucas G. Garmo
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - David Doyle
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Chin-I. Cheng
- Department of Statistics, Actuarial and Data Science, Central Michigan University, Mt. Pleasant, MI, United States
| | - Garrett Richardson
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Zain Waheed
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Tim Tofan
- School of Business, Wayne State University, Detroit, MI, United States
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Ajit Sharma
- Department of Chemistry & Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
| | - Robert B. Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Gary L. Dunbar
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
6
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 PMCID: PMC11748647 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Qian J, Jiang M, Ding Z, Gu D, Bai H, Cai M, Yao D. Role of Long Non-coding RNA in Nerve Regeneration. Int J Neurosci 2025; 135:18-31. [PMID: 37937941 DOI: 10.1080/00207454.2023.2280446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Nerve injury can be caused by a variety of factors. It often takes a long time to repair a nerve injury and severe nerve injury is even difficult to heal. Therefore, increasing attention has focused on nerve injury and repair. Long non-coding RNA (lncRNA) is a newly discovered non-coding RNA with a wide range of biological activities. Numerous studies have shown that a variety of lncRNAs undergo changes in expression after nerve injury, indicating that lncRNAs may be involved in various biological processes of nerve repair and regeneration. Herein, we summarize the biological roles of lncRNAs in neurons, glial cells and other cells during nerve injury and regeneration, which will help lncRNAs to be better applied in nerve injury and regeneration in the future.
Collapse
Affiliation(s)
- Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Min Cai
- Medical School of Nantong University, Nantong, P.R. China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| |
Collapse
|
8
|
Liu P, Xu J, Chen Y, Xu Q, Zhang W, Hu B, Li A, Zhu Q. Electrophysiological Signatures in Global Cerebral Ischemia: Neuroprotection Via Chemogenetic Inhibition of CA1 Pyramidal Neurons in Rats. J Am Heart Assoc 2024; 13:e036146. [PMID: 39673154 PMCID: PMC11935537 DOI: 10.1161/jaha.124.036146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Although there has been limited research into the perturbation of electrophysiological activity in the brain after ischemia, the activity signatures during ischemia and reperfusion remain to be fully elucidated. We aim to comprehensively describe these electrophysiological signatures and interrogate their correlation with ischemic damage during global cerebral ischemia and reperfusion. METHODS AND RESULTS We used the 4-vessel occlusion method of inducing global cerebral ischemia in rats. We used in vivo electrophysiological techniques to simultaneously record single units, scalp electroencephalogram, and local field potentials in awake animals. Neuronal damage and astrocyte reactivation were examined by immunofluorescence, immunoblotting, and quantitative real-time reverse-transcription polymerase chain reaction under chemogenetic inhibition of glutamatergic neurons. Electroencephalogram/local field potentials power and phase-amplitude coupling of the theta and low-gamma bands were reduced during ischemia and the acute phase of reperfusion. The firing rate of single units was enhanced by ischemia-reperfusion, and the phase relationship between the local field potentials theta band and neuronal firing was altered. Precise inhibition of hippocampus CA1 pyramidal neuron hyperactivity by chemogenetics rescued the firing dysfunction, ischemic neuronal damage, and A1 astrocyte activation. CONCLUSIONS Our results provide a comprehensive description of the characteristics of electrophysiological activity that accompany ischemia-reperfusion and highlight the significance of this activity in ischemic damage.
Collapse
Affiliation(s)
- Penglai Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Jiang Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Yilan Chen
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Qi Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Wei Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Bin Hu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Qiuju Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
9
|
Meng F, Cui J, Wang P, Wang J, Sun J, Li L. The Phenotype Changes of Astrocyte During Different Ischemia Conditions. Brain Sci 2024; 14:1256. [PMID: 39766455 PMCID: PMC11674399 DOI: 10.3390/brainsci14121256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES Dementia is becoming a major health problem in the world, and chronic brain ischemia is an established important risk factor in predisposing this disease. Astrocytes, as one major part of the blood-brain barrier (BBB), are activated during chronic cerebral blood flow hypoperfusion. Reactive astrocytes have been classified into phenotype pro-inflammatory type A1 or neuroprotective type A2. However, the specific subtype change of astrocyte and the mechanisms of chronic brain ischemia are still unknown. METHODS In order to depict the phenotype changes and their possible roles during this process, a rat bilateral common carotid artery occlusion model (BCAO) was employed in the present study. Meanwhile, the signaling pathways that possibly regulate these changes were investigated as well. RESULTS After four-week occlusion, astrocytes in the cortex of BCAO rats were shown to be the A2 phenotype, identified by the significant up-regulation of S100a10 accompanied by the down-regulation of Connexin 43 (CX43) protein. Next, we established in vitro hypoxia models, which were set up by stimulating primary astrocyte cultures from rat cortex with cobalt chloride, low glucose, or/and fibrinogen. Consistent with in vivo data, the cultured astrocytes also transformed into the A2 phenotype with the up-regulation of S100a10 and the down-regulation of CX43. In order to explore the mechanism of CX43 protein changes, C6 astrocyte cells were handled in both hypoxia and low-glucose stimulus, in which decreased pERK and pJNK expression were found. CONCLUSIONS In conclusion, our data suggest that in chronic cerebral ischemia conditions, the gradual ischemic insults could promote the transformation of astrocytes into A2 type instead of A1 type, and the phosphorylation of CX43 was negatively regulated by the phosphorylation of ERK and JNK. Also, our data could provide some new evidence of how to leverage the endogenous astrocytes phenotype changes during CNS injury by promoting them to be "protector" and not "culprit".
Collapse
Affiliation(s)
- Fei Meng
- Cardiac Valve Center, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 101100, China;
| | - Jing Cui
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (J.C.); (J.S.)
| | - Peng Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan 250012, China;
| | - Junhui Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada;
| | - Jing Sun
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (J.C.); (J.S.)
| | - Liang Li
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (J.C.); (J.S.)
| |
Collapse
|
10
|
Wang M, Li T, Li W, Song T, Zhao C, Wu Q, Cui W, Hao Y, Hou Y, Zhu P. Unraveling the neuroprotective potential of scalp electroacupuncture in ischemic stroke: A key role for electrical stimulation. Neuroscience 2024; 562:160-181. [PMID: 39401739 DOI: 10.1016/j.neuroscience.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
This study aims to explore the neuroprotective effects of scalp Electroacupuncture (EA) on ischemic stroke, with a specific focus on the role of electrical stimulation (ES). Employing a rat model of middle cerebral artery occlusion (MCAO), we used methods such as Triphenyl tetrazolium chloride staining, micro-CT scanning, Enzyme linked immunosorbent assay (ELISA), and immunofluorescence to assess the impacts of EA. We further conducted RNA-seq analysis and in vitro experiments with organotypic brain slices and cerebral organoids to explore the underlying mechanisms. Our research revealed that EA notably reduced cerebral infarct volume and improved regional cerebral blood flow in rats following MCAO. Micro-CT imaging showed improved vascular integrity in EA-treated groups. Histological analyses, including HE staining, indicated reduced brain tissue damage. ELISA demonstrated a decrease in pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, suggesting improved blood-brain barrier function. Immunofluorescence and Western blot analyses revealed that EA treatment significantly inhibited microglial and astrocytic overactivation. RNA-seq analysis of brain tissues highlighted a downregulation of immune pathways and inflammatory responses, confirming the neuroprotective role of EA. This was further corroborated by in vitro experiments using organotypic brain slices and cerebral organoids, which showcased the efficacy of electrical stimulation in reducing neuroinflammation and protecting neuronal cells. The study highlights the potential of scalp EA, particularly its ES component, in treating ischemic stroke. It provides new insights into the mechanisms of EA, emphasizing its efficacy in neuroprotection and modulation of neuroinflammation, and suggests avenues for optimized treatment strategies in stroke therapy.
Collapse
Affiliation(s)
- Mingye Wang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China
| | - Tongtong Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China
| | - Wenyan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China
| | - Tao Song
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, New Drug Evaluation Center, No.238, the South of Tianshan Street, Shijiazhuang 050035, Hebei, China
| | - Chi Zhao
- Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China
| | - Qiulan Wu
- Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China
| | - Wenwen Cui
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, New Drug Evaluation Center, No.238, the South of Tianshan Street, Shijiazhuang 050035, Hebei, China
| | - Yuanyuan Hao
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, New Drug Evaluation Center, No.238, the South of Tianshan Street, Shijiazhuang 050035, Hebei, China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, No.326, Xinshi South Road, Shijiazhuang 050091, Hebei, China; Shijiazhuang Yiling Pharmaceutical Co., Ltd, New Drug Evaluation Center, No.238, the South of Tianshan Street, Shijiazhuang 050035, Hebei, China; Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang 050011, Hebei, China; National Key Laboratory for Innovation and Transformation of Luobing Theory, No.238, the South of Tianshan Street, Shijiazhuang 050035, Hebei, China; Key Laboratory of State Administration of TCM Cardio-Cerebral Vessel Collateral Disease, No.238, the South of Tianshan Street, Shijiazhuang, 050035, Hebei, China.
| | - Pengyu Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 411, The Street of Guogeli, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
11
|
Castro E Silva JH, Pieropan F, Rivera AD, Butt AM, Costa SL. Agathisflavone Modulates Reactive Gliosis After Trauma and Increases the Neuroblast Population at the Subventricular Zone. Nutrients 2024; 16:4053. [PMID: 39683446 DOI: 10.3390/nu16234053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Reactive astrogliosis and microgliosis are coordinated responses to CNS insults and are pathological hallmarks of traumatic brain injury (TBI). In these conditions, persistent reactive gliosis can impede tissue repopulation and limit neurogenesis. Thus, modulating this phenomenon has been increasingly recognized as potential therapeutic approach. METHODS In this study, we investigated the potential of the flavonoid agathisflavone to modulate astroglial and microglial injury responses and promote neurogenesis in the subventricular zone (SVZ) neurogenic niche. Agathisflavone, or the vehicle in controls, was administered directly into the lateral ventricles in postnatal day (P)8-10 mice by twice daily intracerebroventricular (ICV) injections for 3 days, and brains were examined at P11. RESULTS In the controls, ICV injection caused glial reactivity along the needle track, characterised immunohistochemically by increased astrocyte expression of glial fibrillary protein (GFAP) and the number of Iba-1+ microglia at the lesion site. Treatment with agathisflavone decreased GFAP expression, reduced both astrocyte reactivity and the number of Iba-1+ microglia at the core of the lesion site and the penumbra, and induced a 2-fold increase on the ratio of anti-inflammatory CD206+ to pro-inflammatory CD16/32+ microglia. Notably, agathisflavone increased the population of neuroblasts (GFAP+ type B cells) in all SVZ microdomains by up to double, without significantly increasing the number of neuronal progenitors (DCX+). CONCLUSIONS Although future studies should investigate the underlying molecular mechanisms driving agathisflavone effects on microglial polarization and neurogenesis at different timepoints, these data indicate that agathisflavone could be a potential adjuvant treatment for TBI or central nervous system disorders that have reactive gliosis as a common feature.
Collapse
Affiliation(s)
- Juliana Helena Castro E Silva
- Laboratory of Neurochemistry and Cellular Biology, Department of Biofunction, Health Sciences Institute, Federal University of Bahia, Salvador 40231-300, Brazil
| | - Francesca Pieropan
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
- Southampton Solent University, E Park Terrace, Southampton SO14 0YN, UK
| | - Andrea Domenico Rivera
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Arthur Morgan Butt
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Department of Biofunction, Health Sciences Institute, Federal University of Bahia, Salvador 40231-300, Brazil
| |
Collapse
|
12
|
Li Q, Gao S, Qi Y, Shi N, Wang Z, Saiding Q, Chen L, Du Y, Wang B, Yao W, Sarmento B, Yu J, Lu Y, Wang J, Cui W. Regulating Astrocytes via Short Fibers for Spinal Cord Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406742. [PMID: 39120009 PMCID: PMC11538653 DOI: 10.1002/advs.202406742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Reactive astrogliosis is the main cause of secondary injury to the central nerves. Biomaterials can effectively suppress astrocyte activation, but the mechanism remains unclear. Herein, Differentially Expressed Genes (DEGs) are identified through whole transcriptome sequencing in a mouse model of spinal cord injury, revealing the VIM gene as a pivotal regulator in the reactive astrocytes. Moreover, DEGs are predominantly concentrated in the extracellular matrix (ECM). Based on these, 3D injectable electrospun short fibers are constructed to inhibit reactive astrogliosis. Histological staining and functional analysis indicated that fibers with unique 3D network spatial structures can effectively constrain the reactive astrocytes. RNA sequencing and single-cell sequencing results reveal that short fibers downregulate the expression of the VIM gene in astrocytes by modulating the "ECM receptor interaction" pathway, inhibiting the transcription of downstream Vimentin protein, and thereby effectively suppressing reactive astrogliosis. Additionally, fibers block the binding of Vimentin protein with inflammation-related proteins, downregulate the NF-κB signaling pathway, inhibit neuron apoptosis, and consequently promote the recovery of spinal cord neural function. Through mechanism elucidation-material design-feedback regulation, this study provides a detailed analysis of the mechanism chain by which short fibers constrain the abnormal spatial expansion of astrocytes and promote spinal cord neural function.
Collapse
Affiliation(s)
- Qianyi Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Shuaiyun Gao
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Yang Qi
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Nuo Shi
- Peterson's LabShanghai200030P. R. China
| | | | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Liang Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Bo Wang
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Wenfei Yao
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Bruno Sarmento
- I3‐Instituto de Investigação e Inovação Em Saúde and INEB‐Instituto de Engenharia BiomédicaUniversidade Do PortoRua Alfredo Allen 208Porto4200‐135Portugal
- IUCS‐Instituto Universitário de Ciências da SaúdeCESPURua Central de Gandra 1317Gandra4585‐116Portugal
| | - Jie Yu
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Yiming Lu
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
- Division of Critical CareNanxiang Hospital of Jiading DistrictShanghai201802P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
13
|
Park JH, Shin MJ, Youn GS, Yeo HJ, Yeo EJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Kim SM, Cho YJ, Lee SH, Jung HY, Kim DW, Eum WS, Choi SY. PEP-1-PIN1 Promotes Hippocampal Neuronal Cell Survival by Inhibiting Cellular ROS and MAPK Phosphorylation. Biomedicines 2024; 12:2352. [PMID: 39457664 PMCID: PMC11504513 DOI: 10.3390/biomedicines12102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The peptidyl-prolyl isomerase (PIN1) plays a vital role in cellular processes, including intracellular signaling and apoptosis. While oxidative stress is considered one of the primary mechanisms of pathogenesis in brain ischemic injury, the precise function of PIN1 in this disease remains to be elucidated. Objective: We constructed a cell-permeable PEP-1-PIN1 fusion protein and investigated PIN1's function in HT-22 hippocampal cells as well as in a brain ischemic injury gerbil model. Methods: Transduction of PEP-1-PIN1 into HT-22 cells and signaling pathways were determined by Western blot analysis. Intracellular reactive oxygen species (ROS) production and DNA damage was confirmed by DCF-DA and TUNEL staining. Cell viability was determined by MTT assay. Protective effects of PEP-1-PIN1 against ischemic injury were examined using immunohistochemistry. Results: PEP-1-PIN1, when transduced into HT-22 hippocampal cells, inhibited cell death in H2O2-treated cells and markedly reduced DNA fragmentation and ROS production. This fusion protein also reduced phosphorylation of mitogen-activated protein kinase (MAPK) and modulated expression levels of apoptosis-signaling proteins in HT-22 cells. Furthermore, PEP-1-PIN1 was distributed in gerbil hippocampus neuronal cells after passing through the blood-brain barrier (BBB) and significantly protected against neuronal cell death and also decreased activation of microglia and astrocytes in an ischemic injury gerbil model. Conclusions: These results indicate that PEP-1-PIN1 can inhibit ischemic brain injury by reducing cellular ROS levels and regulating MAPK and apoptosis-signaling pathways, suggesting that PIN1 plays a protective role in H2O2-treated HT-22 cells and ischemic injury gerbil model.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Na Yeon Kim
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Su Yeon Kwon
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Su Min Kim
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Republic of Korea;
| | - Sung Ho Lee
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
- Genesen Inc., Teheran-ro, Gangnam-gu, Seoul 06181, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea; (J.H.P.); (M.J.S.); (G.S.Y.); (H.J.Y.); (E.J.Y.); (H.J.K.); (L.R.L.); (N.Y.K.); (S.Y.K.); (S.M.K.); (S.H.L.)
| |
Collapse
|
14
|
Wang Z, Wang M, Zhao H. Acupuncture and its role in the treatment of ischemic stroke: A review. Medicine (Baltimore) 2024; 103:e39820. [PMID: 39465714 PMCID: PMC11460937 DOI: 10.1097/md.0000000000039820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 10/29/2024] Open
Abstract
Acupuncture is a traditional Chinese medicine therapy that is treatment by placing a needle or pressure in a specific position on the patient's skin. Although used in the treatment of various diseases, acupuncture is effective in the treatment of ischemic stroke (IS), and has made some progress in the mechanism of action of the treatment of this disease. IS is difficult to treat, and there is a high rate of disability. Drug therapy is usually the first line of treatment, but adjuvant therapy has outstanding efficacy in promoting the rehabilitation of the disease and preventing sequelae. Among them, acupuncture is getting more and more attention as a more popular treatment method. Therefore, this study excavates the high-quality randomized controlled trials and meta-analysis of acupuncture for IS in recent years to further summarize the efficacy of acupuncture for IS. In this review, we provide an overview of the current understanding of acupuncture and IS, and the current studies investigating the effectiveness of acupuncture in the treatment of IS.
Collapse
Affiliation(s)
- Zuoshan Wang
- Helen Hospital of Traditional Chinese Medicine, Suihua City, Heilongjiang Province, China
| | - Manya Wang
- Shanghai Pudong New Area Nanhui Xincheng Community Health Service Center, Pudong New Area, Shanghai Province, China
| | - Haishen Zhao
- Shanghai Pudong New Area Nanhui Xincheng Community Health Service Center, Pudong New Area, Shanghai Province, China
| |
Collapse
|
15
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
16
|
Corrêa FI, Uehara L, de Andrade ML, da Silva GO, De Angelis K, Viana A, Bertani CNS, Corrêa JCF, Fregni F. The Impact of Stimulation Parameters on Cardiovascular Outcomes in Chronic Stroke Patients Following Transcranial Direct Current Stimulation-A Pilot Controlled, Randomized, Double-Blind Crossover Trial. Biomedicines 2024; 12:1998. [PMID: 39335512 PMCID: PMC11428280 DOI: 10.3390/biomedicines12091998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Stroke survivors often experience autonomic nervous system (ANS) dysfunction. While Transcranial Direct Current Stimulation (tDCS) has been shown to modulate the ANS when applied to the left hemisphere, its effects on the right hemisphere remain unexplored. OBJECTIVE We aimed to compare the effects of tDCS applied to both the injured and the contralateral hemispheres on heart rate variability (HRV) and functional capacity in individuals post-stroke. METHODS Twenty individuals with cerebral hemisphere lesions (ten with right-hemisphere lesions and ten with left-hemisphere lesions) were randomized into four groups: anodal and sham tDCS on the left temporal cortex (T3) and anodal and sham tDCS on the right temporal cortex (T4). HRV was assessed before the intervention, after the six-minute walk test (6MWT), and following tDCS. HRV data were categorized into frequency ranges: low frequency (LF), high frequency (HF), and sympathovagal balance. The 6MWT (meters) was conducted both pre- and post-tDCS. RESULTS In individuals with right-hemisphere lesions, a higher global LF value was observed (right side: 71.4 ± 16.8 nu vs. left side: 65.7 ± 17.3 nu; p = 0.008), as well as lower values of the HF component (right side: 29.5 ± 18.9 nu vs. left side: 34.0 ± 17.4 nu; p = 0.047), consequently exhibiting higher global values of the low/high-frequency ratio (right side: 3.9 ± 2.8 vs. left side: 2.9 ± 2.4). Regarding the stimulation site, tDCS over T3 led to a lower overall value of the low/high-frequency ratio (left hemisphere: 3.0 ± 2.2 vs. right hemisphere: 3.7 ± 2.9; p = 0.040) regardless of the lesion location. A significant increase in the distance covered in the 6MWT was observed for individuals with lesions in both hemispheres after tDCS at T3. CONCLUSIONS Participants with right-hemisphere lesions exhibited superior global sympathetic autonomic nervous system activity. When the tDCS was applied on the left hemisphere, it maintained lower sympathovagal balance values and improved functional capacity regardless of the hemisphere affected by the stroke.
Collapse
Affiliation(s)
- Fernanda Ishida Corrêa
- Doctoral and Master Program in Science of Rehabilitation, Nove de Julho University, Rua Vergueiro 235/249, São Paulo 01504-001, Brazil
| | - Laura Uehara
- Doctoral and Master Program in Science of Rehabilitation, Nove de Julho University, Rua Vergueiro 235/249, São Paulo 01504-001, Brazil
| | - Michele Lacerda de Andrade
- Doctoral and Master Program in Science of Rehabilitation, Nove de Julho University, Rua Vergueiro 235/249, São Paulo 01504-001, Brazil
| | - Gustavo Oliveira da Silva
- Doctoral and Master Program in Science of Rehabilitation, Nove de Julho University, Rua Vergueiro 235/249, São Paulo 01504-001, Brazil
| | - Katia De Angelis
- Doctoral and Master Program in Science of Rehabilitation, Nove de Julho University, Rua Vergueiro 235/249, São Paulo 01504-001, Brazil
| | - Ariane Viana
- Doctoral and Master Program in Science of Rehabilitation, Nove de Julho University, Rua Vergueiro 235/249, São Paulo 01504-001, Brazil
| | - Catarina Novaes Souza Bertani
- Doctoral and Master Program in Science of Rehabilitation, Nove de Julho University, Rua Vergueiro 235/249, São Paulo 01504-001, Brazil
| | - João Carlos Ferrari Corrêa
- Doctoral and Master Program in Science of Rehabilitation, Nove de Julho University, Rua Vergueiro 235/249, São Paulo 01504-001, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
17
|
Wang XP, Yan D, Jin XP, Zhang WY, Shi T, Wang X, Song W, Xiong X, Guo D, Chen S. The role of amino acid metabolism alterations in acute ischemic stroke: From mechanism to application. Pharmacol Res 2024; 207:107313. [PMID: 39025169 DOI: 10.1016/j.phrs.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Acute ischemic stroke (AIS) is the most prevalent type of stroke, and due to its high incidence, disability rate, and mortality rate, it imposes a significant burden on the health care system. Amino acids constitute one of the most crucial metabolic products within the human body, and alterations in their metabolic pathways have been identified in the microenvironment of AIS, thereby influencing the pathogenesis, severity, and prognosis of AIS. The amino acid metabolism characteristics in AIS are complex. On one hand, the dynamic progression of AIS continuously reshapes the amino acid metabolism pattern. Conversely, changes in the amino acid metabolism pattern also exert a double-edged effect on AIS. This interaction is bidirectional, dynamic, heterogeneous, and dose-specific. Therefore, the distinctive metabolic reprogramming features surrounding amino acids during the AIS process are systematically summarized in this paper, aiming to provide potential investigative strategies for the early diagnosis, treatment approaches, and prognostic enhancement of AIS.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Dan Yan
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311202, China
| | - Xia-Ping Jin
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wen-Yan Zhang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Tao Shi
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xiang Wang
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Wenjuan Song
- First People's Hospital of Linping District; Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311100, China
| | - Xing Xiong
- Traditional Chinese Medical Hospital of Xiaoshan, The Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 311200, China
| | - Duancheng Guo
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Sheng Chen
- First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang Province 311200, China.
| |
Collapse
|
18
|
Yang L, Wu J, Zhang F, Zhang L, Zhang X, Zhou J, Pang J, Xie B, Xie H, Jiang Y, Peng J. Microglia aggravate white matter injury via C3/C3aR pathway after experimental subarachnoid hemorrhage. Exp Neurol 2024; 379:114853. [PMID: 38866102 DOI: 10.1016/j.expneurol.2024.114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The activation of glial cells is intimately associated with the pathophysiology of neuroinflammation and white matter injury (WMI) during both acute and chronic phases following subarachnoid hemorrhage (SAH). The complement C3a receptor (C3aR) has a dual role in modulating inflammation and contributes to neurodevelopment, neuroplasticity, and neurodegeneration. However, its impact on WMI in the context of SAH remains unclear. In this study, 175 male C57BL/6J mice underwent SAH through endovascular perforation. Oxyhemoglobin (oxy-Hb) was employed to simulate SAH in vitro. A suite of techniques, including immunohistochemistry, transcriptomic sequencing, and a range of molecular biotechnologies, were utilized to evaluate the activation of the C3-C3aR pathway on microglial polarization and WMI. Results revealed that post-SAH abnormal activation of microglia was accompanied by upregulation of complement C3 and C3aR. The inhibition of C3aR decreased abnormal microglial activation, attenuated neuroinflammation, and ameliorated WMI and cognitive deficits following SAH. RNA-Seq indicated that C3aR inhibition downregulated several immune and inflammatory pathways and mitigated cellular injury by reducing p53-induced death domain protein 1 (Pidd1) and Protein kinase RNA-like ER kinase (Perk) expression, two factors mainly function in sensing and responding to cellular stress and endoplasmic reticulum (ER) stress. The deleterious effects of the C3-C3aR axis in the context of SAH may be related to endoplasmic reticulum (ER) stress-dependent cellular injury and inflammasome formation. Agonists of Perk can exacerbate the cellular injury and neuroinflammation, which was attenuated by C3aR inhibition after SAH. Additionally, intranasal administration of C3a during the subacute phase of SAH was found to decrease astrocyte reactivity and alleviate cognitive deficits post-SAH. This research deepens our understanding of the complex pathophysiology of WMI following SAH and underscores the therapeutic potential of C3a treatment in promoting white matter repair and enhancing functional recovery prognosis. These insights pave the way for future clinical application of C3a-based therapies, promising significant benefits in the treatment of SAH and its related complications.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Huangfan Xie
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
19
|
Miyara SJ, Shinozaki K, Hayashida K, Shoaib M, Choudhary RC, Zafeiropoulos S, Guevara S, Kim J, Molmenti EP, Volpe BT, Becker LB. Differential Mitochondrial Bioenergetics in Neurons and Astrocytes Following Ischemia-Reperfusion Injury and Hypothermia. Biomedicines 2024; 12:1705. [PMID: 39200170 PMCID: PMC11352110 DOI: 10.3390/biomedicines12081705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/02/2024] Open
Abstract
The close interaction between neurons and astrocytes has been extensively studied. However, the specific behavior of these cells after ischemia-reperfusion injury and hypothermia remains poorly characterized. A growing body of evidence suggests that mitochondria function and putative transference between neurons and astrocytes may play a fundamental role in adaptive and homeostatic responses after systemic insults such as cardiac arrest, which highlights the importance of a better understanding of how neurons and astrocytes behave individually in these settings. Brain injury is one of the most important challenges in post-cardiac arrest syndrome, and therapeutic hypothermia remains the single, gold standard treatment for neuroprotection after cardiac arrest. In our study, we modeled ischemia-reperfusion injury by using in vitro enhanced oxygen-glucose deprivation and reperfusion (eOGD-R) and subsequent hypothermia (HPT) (31.5 °C) to cell lines of neurons (HT-22) and astrocytes (C8-D1A) with/without hypothermia. Using cell lysis (LDH; lactate dehydrogenase) as a measure of membrane integrity and cell viability, we found that neurons were more susceptible to eOGD-R when compared with astrocytes. However, they benefited significantly from HPT, while the HPT effect after eOGD-R on astrocytes was negligible. Similarly, eOGD-R caused a more significant reduction in adenosine triphosphate (ATP) in neurons than astrocytes, and the ATP-enhancing effects from HPT were more prominent in neurons than astrocytes. In both neurons and astrocytes, measurement of reactive oxygen species (ROS) revealed higher ROS output following eOGD-R, with a non-significant trend of differential reduction observed in neurons. HPT after eOGD-R effectively downregulated ROS in both cells; however, the effect was significantly more effective in neurons. Lipid peroxidation was higher after eOGD-R in neurons, while in astrocytes, the increase was not statistically significant. Interestingly, HPT had similar effects on the reduction in lipoperoxidation after eOGD-R with both types of cells. While glutathione (GSH) levels were downregulated after eOGD-R in both cells, HPT enhanced GSH in astrocytes, but worsened GSH in neurons. In conclusion, neuron and astrocyte cultures respond differently to eOGD-R and eOGD-R + HTP treatments. Neurons showed higher sensitivity to ischemia-reperfusion insults than astrocytes; however, they benefited more from HPT therapy. These data suggest that given the differential effects from HPT in neurons and astrocytes, future therapeutic developments could potentially enhance HPT outcomes by means of neuronal and astrocytic targeted therapies.
Collapse
Affiliation(s)
- Santiago J. Miyara
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Koichiro Shinozaki
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Kei Hayashida
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
| | - Muhammad Shoaib
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | | | | | - Sara Guevara
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Junhwan Kim
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Ernesto P. Molmenti
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Surgery, Renown Health, Reno, NV 89502, USA
| | - Bruce T. Volpe
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Lance B. Becker
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Northwell Health, Manhasset, NY 11030, USA
- Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
20
|
Mourtzi T, Antoniou N, Dimitriou C, Gkaravelas P, Athanasopoulou G, Kostantzo PN, Stathi O, Theodorou E, Anesti M, Matsas R, Angelatou F, Kouroupi G, Kazanis I. Enhancement of endogenous midbrain neurogenesis by microneurotrophin BNN-20 after neural progenitor grafting in a mouse model of nigral degeneration. Neural Regen Res 2024; 19:1318-1324. [PMID: 37905881 PMCID: PMC11467940 DOI: 10.4103/1673-5374.385314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 08/28/2023] [Indexed: 11/02/2023] Open
Abstract
We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the “weaver” mouse, a model of progressive nigrostriatal degeneration. Here, we extended our investigation in two clinically-relevant ways. First, we assessed the effects of BNN-20 on human induced pluripotent stem cell-derived neural progenitor cells and neurons derived from healthy and parkinsonian donors. Second, we assessed if BNN-20 can boost the outcome of mouse neural progenitor cell intranigral transplantations in weaver mice, at late stages of degeneration. We found that BNN-20 has limited direct effects on cultured human induced pluripotent stem cell-derived neural progenitor cells, marginally enhancing their differentiation towards neurons and partially reversing the pathological phenotype of dopaminergic neurons generated from parkinsonian donors. In agreement, we found no effects of BNN-20 on the mouse neural progenitor cells grafted in the substantia nigra of weaver mice. However, the graft strongly induced an endogenous neurogenic response throughout the midbrain, which was significantly enhanced by the administration of microneurotrophin BNN-20. Our results provide straightforward evidence of the existence of an endogenous midbrain neurogenic system that can be specifically strengthened by BNN-20. Interestingly, the lack of major similar activity on cultured human induced pluripotent stem cell-derived neural progenitors and their progeny reveals the in vivo specificity of the aforementioned pro-neurogenic effect.
Collapse
Affiliation(s)
- Theodora Mourtzi
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Nasia Antoniou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Christina Dimitriou
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Panagiotis Gkaravelas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Athanasopoulou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiota Nti Kostantzo
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Olga Stathi
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Efthymia Theodorou
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Maria Anesti
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Fevronia Angelatou
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Ilias Kazanis
- Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
21
|
Zhang DX, Jia SY, Xiao K, Zhang MM, Yu ZF, Liu JZ, Zhang W, Zhang LM, Xing BR, Zhou TT, Li XM, Zhao XC, An P. Icariin mitigates anxiety-like behaviors induced by hemorrhagic shock and resuscitation via inhibiting of astrocytic activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155507. [PMID: 38552430 DOI: 10.1016/j.phymed.2024.155507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Abnormal activation of astrocytes in the amygdala contributes to anxiety after hemorrhagic shock and resuscitation (HSR). Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-associated epigenetic reprogramming of astrocytic activation is crucial to anxiety. A bioactive monomer derived from Epimedium icariin (ICA) has been reported to modulate NF-κB signaling and astrocytic activation. PURPOSE The present study aimed to investigate the effects of ICA on post-HSR anxiety disorders and its potential mechanism of action. METHODS We first induced HSR in mice through a bleeding and re-transfusion model and selectively inhibited and activated astrocytes in the amygdala using chemogenetics. Then, ICA (40 mg/kg) was administered by oral gavage once daily for 21 days. Behavioral, electrophysiological, and pathological changes were assessed after HSR using the light-dark transition test, elevated plus maze, recording of local field potential (LFP), and immunofluorescence assays. RESULTS Exposure to HSR reduced the duration of the light chamber and attenuated open-arm entries. Moreover, HSR exposure increased the theta oscillation power in the amygdala and upregulated NF-κB p65, H3K27ac, and H3K4me3 expression. Contrarily, chemogenetic inhibition of astrocytes significantly reversed these changes. Chemogenetic inhibition in astrocytes was simulated by ICA, but chemogenetic activation of astrocytes blocked the neuroprotective effects of ICA. CONCLUSION ICA mitigated anxiety-like behaviors induced by HSR in mice via inhibiting astrocytic activation, which is possibly associated with NF-κB-induced epigenetic reprogramming.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, China
| | - Ke Xiao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ming-Ming Zhang
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhi-Fang Yu
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Ji-Zhen Liu
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Min Zhang
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Bao-Rui Xing
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Ting-Ting Zhou
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of Life Science, China Medical University, Shenyang, China.
| |
Collapse
|
22
|
Schoenbeck D, Sacha A, Niehoff JH, Moenninghoff C, Borggrefe J, Kroeger JR, Michael AE. Imaging of hypodense gliotic lesions in photon counting computed tomography using virtual monoenergetic images. Neuroradiol J 2024; 37:336-341. [PMID: 38490750 PMCID: PMC11138327 DOI: 10.1177/19714009241240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVES Glioses appear as hypodense lesions in non-contrast CT examinations of the head. Photon counting CT (PCCT) enables the calculation of virtual monoenergetic images (VMI). The aim of this study is to investigate in which VMI hypodense gliotic lesions can be delineated best. MATERIALS AND METHODS 35 patients with an MRI-confirmed gliotic lesion and a non-contrast PCCT of the head were retrospectively included. All available VMI from 40 keV to 190 keV were calculated. In a quantitative analysis, conventional image quality parameters were calculated, in particular the contrast-to-noise ratio (CNR) of the hypodense lesion compared to the white matter. In a qualitative analysis, selected VMI were rated by experienced radiologists. RESULTS The absolute maximum of CNR was 8.12 ± 5.64 in the VMI 134 keV, in post hoc testing, there were significant differences in comparison to VMI with keV ≤110 and keV ≥180 (corrected p < .05). In the qualitative analysis, there were only very slight differences in the rating of the VMI with 66 keV, 80 keV, 100 keV, and 134 keV with overall low agreement between the readers. CONCLUSIONS The quantitative superiority of VMI 134 keV for the delineation of hypodense gliotic lesions did not translate into a superiority in the qualitative analysis. Therefore, it remains uncertain if the reconstruction of a high keV VMIs for the detection of hypodense gliotic lesions is useful in everyday clinical practice. However, more studies, are necessary to further assess this issue.
Collapse
Affiliation(s)
- Denise Schoenbeck
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany
| | - Alexander Sacha
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany
| | - Julius Henning Niehoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany
| | - Christoph Moenninghoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany
| | - Jan Robert Kroeger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany
| | - Arwed Elias Michael
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany
| |
Collapse
|
23
|
Wang X, Zhou J, Wang Y, Li X, Hu Q, Luo L, Liu X, Liu W, Ye J. Effect of astrocyte GPER on the optic nerve inflammatory response following optic nerve injury in mice. Heliyon 2024; 10:e29428. [PMID: 38638966 PMCID: PMC11024623 DOI: 10.1016/j.heliyon.2024.e29428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Activated astrocytes are a primary source of inflammatory factors following traumatic optic neuropathy (TON). Accumulation of inflammatory factors in this context leads to increased axonal damage and loss of retinal ganglion cells (RGCs). Therefore, in the present study, we explored the role of the astrocyte G protein-coupled estrogen receptor (GPER) in regulating inflammatory factors following optic nerve crush (ONC), and analyzed its potential regulatory mechanisms. Overall, our results showed that GPER was abundantly expressed in the optic nerve, and co-localized with glial fibrillary acidic proteins (GFAP). Exogenous administration of G-1 led to a significant reduction in astrocyte activation and expression of inflammation-related factors (including IL-1β, TNF-α, NFκB, and p-NFκB). Additionally, it dramatically increased the survival of RGCs. In contrast, astrocytes were activated to a greater extent by exogenous G15 administration; however, RGCs survival was significantly reduced. In vitro, GPER activation significantly reduced astrocyte activation and the release of inflammation-related factors. In conclusion, activation of astrocyte GPER significantly reduced ONC inflammation levels, and should be explored as a potential target pathway for protecting the optic nerve and RGCs after TON.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jiaxing Zhou
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yuwen Wang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Shapingba District, Chongqing, 400032, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Xuemei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Wei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
24
|
Bazaz MR, Asthana A, Dandekar MP. Chitosan revokes controlled-cortical impact generated neurological aberrations in circadian disrupted mice via TLR4-NLRP3 axis. Eur J Pharmacol 2024; 969:176436. [PMID: 38423243 DOI: 10.1016/j.ejphar.2024.176436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The severity of inevitable neurological deficits and long-term psychiatric disorders in the aftermath of traumatic brain injury is influenced by pre-injury biological factors. Herein, we investigated the therapeutic effect of chitosan lactate on neurological and psychiatric aberrations inflicted by circadian disruption (CD) and controlled-cortical impact (CCI) injury in mice. Firstly, CD was developed in mice by altering sporadic day-night cycles for 2 weeks. Then, CCI surgery was performed using a stereotaxic ImpactOne device. Mice subjected to CCI displayed a significant disruption of motor coordination at 1-, 3- and 5-days post-injury (DPI) in the rotarod test. These animals showed anxiety- and depression-like behaviors in the elevated plus maze and forced-swim test at 14 and 15 DPI, respectively. Notably, mice subjected to CD + CCI exhibited severe cognitive impairment in Y-maze and novel object recognition tasks. The compromised neurological, psychiatric, and cognitive functions were mitigated in chitosan-treated mice (1 and 3 mg/mL). Immunohistochemistry and real-time PCR assay results revealed the magnified responses of prima facie biomarkers like glial-fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 in the pericontusional brain region of the CD + CCI group, indicating aggravated inflammation. We also noted the depleted levels of brain-derived neurotrophic factor and augmented expression of toll-like receptor 4 (TLR4)-leucine-rich-containing family pyrin domain-containing 3 (NLRP3) signaling [apoptosis-associated-speck-like protein (ASC), caspase-1, and interleukin 1-β] in the pericontusional area of CD + CCI group. CCI-induced changes in the astrocyte-glia and aggravated immune responses were ameliorated in chitosan-treated mice. These results suggest that the neuroprotective effect of chitosan in CCI-induced brain injury may be mediated by inhibition of the TLR4-NLRP3 axis.
Collapse
Affiliation(s)
- Mohd Rabi Bazaz
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, 500037, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, 500037, India
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, 500037, India.
| |
Collapse
|
25
|
Cheng YJ, Wang F, Feng J, Yu B, Wang B, Gao Q, Wang TY, Hu B, Gao X, Chen JF, Chen YJ, Lv SQ, Feng H, Xiao L, Mei F. Prolonged myelin deficits contribute to neuron loss and functional impairments after ischaemic stroke. Brain 2024; 147:1294-1311. [PMID: 38289861 DOI: 10.1093/brain/awae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Ischaemic stroke causes neuron loss and long-term functional deficits. Unfortunately, effective approaches to preserving neurons and promoting functional recovery remain unavailable. Oligodendrocytes, the myelinating cells in the CNS, are susceptible to oxygen and nutrition deprivation and undergo degeneration after ischaemic stroke. Technically, new oligodendrocytes and myelin can be generated by the differentiation of oligodendrocyte precursor cells (OPCs). However, myelin dynamics and their functional significance after ischaemic stroke remain poorly understood. Here, we report numerous denuded axons accompanied by decreased neuron density in sections from ischaemic stroke lesions in human brain, suggesting that neuron loss correlates with myelin deficits in these lesions. To investigate the longitudinal changes in myelin dynamics after stroke, we labelled and traced pre-existing and newly-formed myelin, respectively, using cell-specific genetic approaches. Our results indicated massive oligodendrocyte death and myelin loss 2 weeks after stroke in the transient middle cerebral artery occlusion (tMCAO) mouse model. In contrast, myelin regeneration remained insufficient 4 and 8 weeks post-stroke. Notably, neuronal loss and functional impairments worsened in aged brains, and new myelin generation was diminished. To analyse the causal relationship between remyelination and neuron survival, we manipulated myelinogenesis by conditional deletion of Olig2 (a positive regulator) or muscarinic receptor 1 (M1R, a negative regulator) in OPCs. Deleting Olig2 inhibited remyelination, reducing neuron survival and functional recovery after tMCAO. Conversely, enhancing remyelination by M1R conditional knockout or treatment with the pro-myelination drug clemastine after tMCAO preserved white matter integrity and neuronal survival, accelerating functional recovery. Together, our findings demonstrate that enhancing myelinogenesis is a promising strategy to preserve neurons and promote functional recovery after ischaemic stroke.
Collapse
Affiliation(s)
- Yong-Jie Cheng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, 1st affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Feng
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Yu
- Department of Neurosurgery, 2nd affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Wang
- Department of Physiology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Teng-Yue Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Bo Hu
- Department of Physiology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Xing Gao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu-Jie Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, 1st affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, 2nd affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, 1st affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Neurosurgery, 2nd affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
26
|
Hanani M. Satellite Glial Cells in Human Disease. Cells 2024; 13:566. [PMID: 38607005 PMCID: PMC11011452 DOI: 10.3390/cells13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Satellite glial cells (SGCs) are the main type of glial cells in sensory ganglia. Animal studies have shown that these cells play essential roles in both normal and disease states. In a large number of pain models, SGCs were activated and contributed to the pain behavior. Much less is known about SGCs in humans, but there is emerging recognition that SGCs in humans are altered in a variety of clinical states. The available data show that human SGCs share some essential features with SGCs in rodents, but many differences do exist. SGCs in DRG from patients suffering from common painful diseases, such as rheumatoid arthritis and fibromyalgia, may contribute to the pain phenotype. It was found that immunoglobulins G (IgG) from fibromyalgia patients can induce pain-like behavior in mice. Moreover, these IgGs bind preferentially to SGCs and activate them, which can sensitize the sensory neurons, causing nociception. In other human diseases, the evidence is not as direct as in fibromyalgia, but it has been found that an antibody from a patient with rheumatoid arthritis binds to mouse SGCs, which leads to the release of pronociceptive factors from them. Herpes zoster is another painful disease, and it appears that the zoster virus resides in SGCs, which acquire an abnormal morphology and may participate in the infection and pain generation. More work needs to be undertaken on SGCs in humans, and this review points to several promising avenues for better understanding disease mechanisms and developing effective pain therapies.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel; ; Tel.: +972-2-5844721
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
27
|
Tan Q, Zhang C, Rao X, Wan W, Lin W, Huang S, Ying J, Lin Y, Hua F. The interaction of lipocalin-2 and astrocytes in neuroinflammation: mechanisms and therapeutic application. Front Immunol 2024; 15:1358719. [PMID: 38533497 PMCID: PMC10963420 DOI: 10.3389/fimmu.2024.1358719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammation is a common pathological process in various neurological disorders, including stroke, Alzheimer's disease, Parkinson's disease, and others. It involves the activation of glial cells, particularly astrocytes, and the release of inflammatory mediators. Lipocalin-2 (Lcn-2) is a secretory protein mainly secreted by activated astrocytes, which can affect neuroinflammation through various pathways. It can also act as a pro-inflammatory factor by modulating astrocyte activation and polarization through different signaling pathways, such as NF-κB, and JAK-STAT, amplifying the inflammatory response and aggravating neural injury. Consequently, Lcn-2 and astrocytes may be potential therapeutic targets for neuroinflammation and related diseases. This review summarizes the current knowledge on the role mechanisms, interactions, and therapeutic implications of Lcn-2 and astrocytes in neuroinflammation.
Collapse
Affiliation(s)
- Qianqian Tan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenxi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Lin
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shupeng Huang
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
28
|
Zhang H, Sun J, Zou P, Huang Y, Yang Q, Zhang Z, Luo P, Jiang X. Identification of hypoxia- and immune-related biomarkers in patients with ischemic stroke. Heliyon 2024; 10:e25866. [PMID: 38384585 PMCID: PMC10878920 DOI: 10.1016/j.heliyon.2024.e25866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Background The immune microenvironment and hypoxia play crucial roles in the pathophysiology of ischemic stroke (IS). Hence, in this study, we aimed to identify hypoxia- and immune-related biomarkers in IS. Methods The IS microarray dataset GSE16561 was examined to determine differentially expressed genes (DEGs) utilizing bioinformatics-based analysis. The intersection of hypoxia-related genes and DEGs was conducted to identify differentially expressed hypoxia-related genes (DEHRGs). Then, using weighted correlation network analysis (WGCNA), all of the genes in GSE16561 dataset were examined to create a co-expression network, and module-clinical trait correlations were examined for the purpose of examining the genes linked to immune cells. The immune-related DEHRGs were submitted to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A protein-protein interaction (PPI) network was constructed by Cytoscape plugin MCODE, in order to extract hub genes. The miRNet was used to predict hub gene-related transcription factors (TFs) and miRNAs. Finally, a diagnostic model was developed by least absolute shrinkage and selection operator (LASSO) logistic regression. Results Between the control and IS samples, 4171 DEGs were found. Thereafter, the intersection of hypoxia-related genes and DEGs was conducted to obtain 45 DEHRGs. Ten significantly differentially infiltrated immune cells were found-namely, CD56dim natural killer cells, activated CD8 T cells, activated dendritic cells, activated B cells, central memory CD8 T cells, effector memory CD8 T cells, natural killer cells, gamma delta T cells, plasmacytoid dendritic cells, and neutrophils-between IS and control samples. Subsequently, we identified 27 immune-related DEHRGs through the intersection of DEHRGs and genes in important modules of WGCNA. The immune-related DEHRGs were primarily enriched in response to hypoxia, cellular polysaccharide metabolic process, response to decreased oxygen levels, polysaccharide metabolic process, lipid and atherosclerosis, and HIF-1 signaling pathway H. Using MCODE, FOS, DDIT3, DUSP1, and NFIL3 were found to be hub genes. In the validation cohort and training set, the AUC values of the diagnostic model were 0.9188034 and 0.9395085, respectively. Conclusion In brief, we identified and validated four hub genes-FOS, DDIT3, DUSP1, and NFIL3-which might be involved in the pathological development of IS, potentially providing novel perspectives for the diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jidong Sun
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Zou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiuzi Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Zhang C, Li Y, Yu Y, Li Z, Xu X, Talifu Z, Liu W, Yang D, Gao F, Wei S, Zhang L, Gong H, Peng R, Du L, Li J. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects. Front Immunol 2024; 15:1334828. [PMID: 38348031 PMCID: PMC10859493 DOI: 10.3389/fimmu.2024.1334828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Spinal cord injury is a severe neurological trauma that can frequently lead to neuropathic pain. During the initial stages following spinal cord injury, inflammation plays a critical role; however, excessive inflammation can exacerbate pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation and alleviating neuropathic pain. Treg cells release suppressor cytokines and modulate the function of other immune cells to suppress the inflammatory response. Simultaneously, inflammation impedes Treg cell activity, further intensifying neuropathic pain. Therefore, suppressing the inflammatory response while enhancing Treg cell regulatory function may provide novel therapeutic avenues for treating neuropathic pain resulting from spinal cord injury. This review comprehensively describes the mechanisms underlying the inflammatory response and Treg cell regulation subsequent to spinal cord injury, with a specific focus on exploring the potential mechanisms through which Treg cells regulate neuropathic pain following spinal cord injury. The insights gained from this review aim to provide new concepts and a rationale for the therapeutic prospects and direction of cell therapy in spinal cord injury-related conditions.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Yan Li
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Song Wei
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liang Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
30
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
31
|
Barriola S, Delgado-García LM, Cartas-Cejudo P, Iñigo-Marco I, Fernández-Irigoyen J, Santamaría E, López-Mascaraque L. Orosomucoid-1 Arises as a Shared Altered Protein in Two Models of Multiple Sclerosis. Neuroscience 2023; 535:203-217. [PMID: 37949310 DOI: 10.1016/j.neuroscience.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune and neurodegenerative disorder that affects the central nervous system (CNS). It is characterized by a heterogeneous disease course involving demyelination and inflammation. In this study, we utilized two distinct animal models, cuprizone (CPZ)-induced demyelination and experimental autoimmune encephalomyelitis (EAE), to replicate various aspects of the disease. We aimed to investigate the differential CNS responses by examining the proteomic profiles of EAE mice during the peak disease (15 days post-induction) and cuprizone-fed mice during the acute phase (38 days). Specifically, we focused on two different regions of the CNS: the dorsal cortex (Cx) and the entire spinal cord (SC). Our findings revealed varied glial, synaptic, dendritic, mitochondrial, and inflammatory responses within these regions for each model. Notably, we identified a single protein, Orosomucoid-1 (Orm1), also known as Alpha-1-acid glycoprotein 1 (AGP1), that consistently exhibited alterations in both models and regions. This study provides insights into the similarities and differences in the responses of these regions in two distinct demyelinating models.
Collapse
Affiliation(s)
- Sonsoles Barriola
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Ph.D. Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Lina María Delgado-García
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo UNIFESP, São Paulo 04039032, Brazil
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Ignacio Iñigo-Marco
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain.
| |
Collapse
|
32
|
Wong LJ, Lee BWL, Sng YJ, Poh L, Rajeev V, Selvaraji S, Drummond GR, Sobey CG, Arumugam TV, Fann DY. Inflammasome Activation Mediates Apoptotic and Pyroptotic Death in Astrocytes Under Ischemic Conditions. Neuromolecular Med 2023; 25:533-544. [PMID: 37646911 DOI: 10.1007/s12017-023-08753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Inflammation is a hallmark mechanism of ischemic stroke-induced brain injury. Recent studies have shown that an intracellular multimeric protein complex known as an inflammasome is a key factor for inducing an inflammatory response, and apoptotic and pyroptotic cell death in ischemic stroke. Inflammasome assembly leads to the activation of pro-inflammatory caspases, and the maturation and secretion of pro-inflammatory cytokines IL-1β and IL-18. While the role of inflammasomes in ischemic stroke-induced neuronal death, and microglial activation and cell death have been established, little is known about the role of inflammasomes in astrocytes under ischemic conditions. In this study, we investigated the expression and activation of inflammasome components in protoplasmic and fibrous astrocytes under ischemic conditions. We found that both protoplasmic and fibrous astrocytes expressed a differential increase in inflammasome protein components, and that their activation promoted maturation of IL-1β and IL-18, and secretion of IL-1β, as well as initiating apoptotic and pyroptotic cell death. Pharmacological inhibition of caspase-1 decreased expression of cleaved caspase-1 and production of mature IL-1β, and protected against inflammasome-mediated apoptotic and pyroptotic cell death. Overall, this study provides novel insights into the role of inflammasome signaling in astrocytes under ischemic conditions.
Collapse
Affiliation(s)
- Lap Jack Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bernice Woon Li Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Jing Sng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research and Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research and Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Cardiovascular Biology and Disease Research and Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia.
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme (HLTRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
33
|
Ghuman H, Kim K, Barati S, Ganguly K. Emergence of task-related spatiotemporal population dynamics in transplanted neurons. Nat Commun 2023; 14:7320. [PMID: 37951968 PMCID: PMC10640594 DOI: 10.1038/s41467-023-43081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Loss of nervous system tissue after severe brain injury is a main determinant of poor functional recovery. Cell transplantation is a promising method to restore lost tissue and function, yet it remains unclear if transplanted neurons can demonstrate the population level dynamics important for movement control. Here we present a comprehensive approach for long-term single neuron monitoring and manipulation of transplanted embryonic cortical neurons after cortical injury in adult male mice performing a prehension task. The observed patterns of population activity in the transplanted network strongly resembled that of healthy networks. Specifically, the task-related spatiotemporal activity patterns of transplanted neurons could be represented by latent factors that evolve within a low dimensional manifold. We also demonstrate reliable modulation of the transplanted networks using minimally invasive epidural stimulation. Our approach may allow greater insight into how restoration of cell-type specific network dynamics in vivo can restore motor function.
Collapse
Affiliation(s)
- Harman Ghuman
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kyungsoo Kim
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sapeeda Barati
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
34
|
Yuan WQ, Huang WP, Jiang YC, Xu H, Duan CS, Chen NH, Liu YJ, Fu XM. The function of astrocytes and their role in neurological diseases. Eur J Neurosci 2023; 58:3932-3961. [PMID: 37831013 DOI: 10.1111/ejn.16160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aβ and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.
Collapse
Affiliation(s)
- Wen-Qin Yuan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei-Peng Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Minzu University of China, Beijing, China
| | - Yang-Chao Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hao Xu
- College of Economics and Management, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chong-Shen Duan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying-Jiao Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao-Mei Fu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
35
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Nguyen JN, Mohan EC, Pandya G, Ali U, Tan C, Kofler JK, Shapiro L, Marrelli SP, Chauhan A. CD13 facilitates immune cell migration and aggravates acute injury but promotes chronic post-stroke recovery. J Neuroinflammation 2023; 20:232. [PMID: 37817190 PMCID: PMC10566099 DOI: 10.1186/s12974-023-02918-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
INTRODUCTION Acute stroke leads to the activation of myeloid cells. These cells express adhesion molecules and transmigrate to the brain, thereby aggravating injury. Chronically after stroke, repair processes, including angiogenesis, are activated and enhance post-stroke recovery. Activated myeloid cells express CD13, which facilitates their migration into the site of injury. However, angiogenic blood vessels which play a role in recovery also express CD13. Overall, the specific contribution of CD13 to acute and chronic stroke outcomes is unknown. METHODS CD13 expression was estimated in both mice and humans after the ischemic stroke. Young (8-12 weeks) male wild-type and global CD13 knockout (KO) mice were used for this study. Mice underwent 60 min of middle cerebral artery occlusion (MCAO) followed by reperfusion. For acute studies, the mice were euthanized at either 24- or 72 h post-stroke. For chronic studies, the Y-maze, Barnes maze, and the open field were performed on day 7 and day 28 post-stroke. Mice were euthanized at day 30 post-stroke and the brains were collected for assessment of inflammation, white matter injury, tissue loss, and angiogenesis. Flow cytometry was performed on days 3 and 7 post-stroke to quantify infiltrated monocytes and neutrophils and CXCL12/CXCR4 signaling. RESULTS Brain CD13 expression and infiltrated CD13+ monocytes and neutrophils increased acutely after the stroke. The brain CD13+lectin+ blood vessels increased on day 15 after the stroke. Similarly, an increase in the percentage area CD13 was observed in human stroke patients at the subacute time after stroke. Deletion of CD13 resulted in reduced infarct volume and improved neurological recovery after acute stroke. However, CD13KO mice had significantly worse memory deficits, amplified gliosis, and white matter damage compared to wild-type animals at chronic time points. CD13-deficient mice had an increased percentage of CXCL12+cells but a reduced percentage of CXCR4+cells and decreased angiogenesis at day 30 post-stroke. CONCLUSIONS CD13 is involved in the trans-migration of monocytes and neutrophils after stroke, and acutely, led to decreased infarct size and improved behavioral outcomes. However, loss of CD13 led to reductions in post-stroke angiogenesis by reducing CXCL12/CXCR4 signaling.
Collapse
Affiliation(s)
- Justin N Nguyen
- University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Eric C Mohan
- University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Gargee Pandya
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Uzma Ali
- Baylor University, Waco, TX, USA
| | - Chunfeng Tan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda Shapiro
- Center for Vascular Biology, The University of Connecticut Health Center, Farmington, CT, USA
| | - Sean P Marrelli
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA.
| |
Collapse
|
37
|
Phogat A, Singh J, Malik V, Kumar V. Neuroprotective potential of berberine against acetamiprid induced toxicity in rats: Implication of oxidative stress, mitochondrial alterations, and structural changes in brain regions. J Biochem Mol Toxicol 2023; 37:e23434. [PMID: 37350525 DOI: 10.1002/jbt.23434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Acetamiprid (ACMP) is an extensively used neonicotinoid pesticide to control sucking and chewing insects and is known to cause nontarget toxicity. The present study aimed to evaluate the ameliorative potential of berberine (BBR)-a polyphenolic alkaloid- on ACMP-induced oxidative stress, mitochondrial dysfunctioning, and structural changes in different rat brain regions. The male Wistar rats were divided into four groups, that is, control, BBR-treated (150 mg/kg b.wt), ACMP-exposed (21.7 mg/kg b.wt) and BBR + ACMP co-treated; and were dosed intragastrically for 21 consecutive days. Results of the biochemical analysis showed that BBR significantly ameliorated ACMP-induced oxidative stress by decreasing lipid peroxidation and protein oxidation along with a marked increase in endogenous antioxidants and lowered AChE activity in rat brain regions. Inside mitochondria, BBR significantly attenuated the toxic effects of ACMP by increasing the activity of mitochondrial complexes. Findings of polymerase chain reaction also demonstrated the modulatory effects of BBR against ACMP-mediated downregulation of ND1, ND2, COX1, and COX4 subunits of mitochondrial complexes. The histopathological and ultrastructural examination also validated the biochemical and transcriptional alterations following toxicity of ACMP exposure and the protective potential of BBR against ACMP-induced neurotoxicity. Thus, the present study indicates the promising ameliorative potential of BBR against ACMP-induced neurotoxicity via its antioxidative and modulatory activities.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
38
|
Sitovskaya D, Zabrodskaya Y, Parshakov P, Sokolova T, Kudlay D, Starshinova A, Samochernykh K. Expression of Cytoskeletal Proteins (GFAP, Vimentin), Proapoptotic Protein (Caspase-3) and Protective Protein (S100) in the Epileptic Focus in Adults and Children with Drug-Resistant Temporal Lobe Epilepsy Associated with Focal Cortical Dysplasia. Int J Mol Sci 2023; 24:14490. [PMID: 37833937 PMCID: PMC10572279 DOI: 10.3390/ijms241914490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
The European Commission of the International League Against Epilepsy (ILAE) has identified glial mechanisms of seizures and epileptogenesis as top research priorities. The aim of our study was to conduct a comparative analysis of the expression levels of cytoskeletal proteins (glial fibrillar acidic protein (GFAP) and vimentin), protective protein S100, and proapoptotic caspase-3 protein in patients with drug-resistant epilepsy (DRE) associated with focal cortical dysplasia (FCD). We aimed to investigate how the expression levels of these proteins depend on age (both in children and adults), gender, and disease duration, using immunohistochemistry. Nonparametric statistical methods were employed for data analysis. In the epileptic focus area of the cortex and white matter in patients with FCD-associated temporal lobe DRE, a higher level of expression of these proteins was observed. Age and gender differences were found for vimentin and S100. In the early stages of disease development, there was a compensatory sequential increase in the expression of cytoskeletal and protective proteins. In patients with DRE, depending on the disease duration, patterns of development of neurodegeneration were noted, which is accompanied by apoptosis of gliocytes. These results provide insights into epilepsy mechanisms and may contribute to improving diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Darya Sitovskaya
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
- Department of Pathology with a Course of Forensic Medicine Named after D.D. Lochov, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Yulia Zabrodskaya
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
- Department of Pathology, Mechnikov North-West State Medical University, 191015 St. Petersburg, Russia
| | - Petr Parshakov
- International Laboratory of Intangible-Driven Economy, National Research University Higher School of Economics, 614070 Perm, Russia;
| | - Tatyana Sokolova
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
| | - Dmitry Kudlay
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- NRC Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
| | - Anna Starshinova
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
| | - Konstantin Samochernykh
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
| |
Collapse
|
39
|
Reed-McBain CA, Turaga RV, Zima SRT, Abizanda Campo S, Riendeau J, Contreras Guzman E, Juang TD, Juang DS, Hampton DW, Skala MC, Ayuso JM. Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion. LAB ON A CHIP 2023; 23:3945-3960. [PMID: 37448230 DOI: 10.1039/d3lc00276d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central nervous system, astrocytes play a critical role within the injured brain. We developed a novel microphysiological platform that permits the induction of spatiotemporally controlled nutrient gradients, allowing us to study astrocytic response during and after transient nutrient deprivation. Within 24 h of inducing starvation in the platform, nutrient deprivation led to multiple changes in astrocyte response, from metabolic perturbations to gene expression changes, and cell viability. Furthermore, we observed that nutrient restoration did not reverse the functional changes in astrocyte metabolism, which mirrors reperfusion injury observed in vivo. We also identified alterations in numerous glucose metabolism-associated genes, many of which remained upregulated or downregulated even after restoration of the nutrient supply. Together, these findings suggest that astrocyte activation during and after nutrient starvation induces plastic changes that may underpin persistent stroke-induced functional impairment. Overall, our innovative device presents interesting potential to be used in the development of new therapies to improve tissue repair and even cognitive recovery after stroke.
Collapse
Affiliation(s)
- Catherine A Reed-McBain
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, 1 S Park Street, Madison, WI, 53715, USA.
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin, 1550 Engineering Dr, Madison, WI, 53705, USA
- UW Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA
- Centre for Clinical Brain Sciences, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Rithvik V Turaga
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, 1 S Park Street, Madison, WI, 53715, USA.
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin, 1550 Engineering Dr, Madison, WI, 53705, USA
- UW Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA
| | - Seth R T Zima
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, 1 S Park Street, Madison, WI, 53715, USA.
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin, 1550 Engineering Dr, Madison, WI, 53705, USA
- UW Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA
| | - Sara Abizanda Campo
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, 1 S Park Street, Madison, WI, 53715, USA.
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin, 1550 Engineering Dr, Madison, WI, 53705, USA
- UW Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA
| | - Jeremiah Riendeau
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | | | - Terry D Juang
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin, 1550 Engineering Dr, Madison, WI, 53705, USA
| | - Duane S Juang
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin, 1550 Engineering Dr, Madison, WI, 53705, USA
| | - David W Hampton
- Centre for Clinical Brain Sciences, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Melissa C Skala
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin, 1550 Engineering Dr, Madison, WI, 53705, USA
- UW Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Jose M Ayuso
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, 1 S Park Street, Madison, WI, 53715, USA.
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin, 1550 Engineering Dr, Madison, WI, 53705, USA
- UW Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA
| |
Collapse
|
40
|
Lu W, Wen J. H 2S-RhoA/ROCK Pathway and Glial Cells in Axonal Remyelination After Ischemic Stroke. Mol Neurobiol 2023; 60:5493-5504. [PMID: 37322287 DOI: 10.1007/s12035-023-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Ischemic stroke is one of the main reasons of disability and death. Stroke-induced functional deficits are mainly due to the secondary degeneration of the white matter characterized by axonal demyelination and injury of axon-glial integrity. Enhancement of the axonal regeneration and remyelination could promote the neural functional recovery. However, cerebral ischemia-induced activation of RhoA/Rho kinase (ROCK) pathway plays a crucial and harmful role in the process of axonal recovery and regeneration. Inhibition of this pathway could promote the axonal regeneration and remyelination. In addition, hydrogen sulfide (H2S) has the significant neuroprotective role during the recovery of ischemic stroke via inhibiting the inflammatory response and oxidative stress, regulating astrocyte function, promoting the differentiation of endogenous oligodendrocyte precursor cells (OPCs) to mature oligodendrocyte. Among all of these effects, promoting the formation of mature oligodendrocyte is a crucial part of axonal regeneration and remyelination. Furthermore, numerous studies have uncovered the crosstalk between astrocytes and oligodendrocyte, microglial cells and oligodendrocyte in the axonal remyelination following ischemic stroke. The purpose of this review was to discuss the relationship among H2S, RhoA/ROCK pathway, astrocytes, and microglial cells in the axonal remyelination following ischemic stroke to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
41
|
Brunelli S, Giannella E, Bizzaglia M, De Angelis D, Sancesario GM. Secondary neurodegeneration following Stroke: what can blood biomarkers tell us? Front Neurol 2023; 14:1198216. [PMID: 37719764 PMCID: PMC10502514 DOI: 10.3389/fneur.2023.1198216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Stroke is one of the leading causes of death and the primary source of disability in adults, resulting in neuronal necrosis of ischemic areas, and in possible secondary degeneration of regions surrounding or distant to the initial damaged area. Secondary neurodegeneration (SNDG) following stroke has been shown to have different pathogenetic origins including inflammation, neurovascular response and cytotoxicity, but can be associated also to regenerative processes. Aside from focal neuronal loss, ipsilateral and contralateral effects distal to the lesion site, disruptions of global functional connectivity and a transcallosal diaschisis have been reported in the chronic stages after stroke. Furthermore, SNDG can be observed in different areas not directly connected to the primary lesion, such as thalamus, hippocampus, amygdala, substantia nigra, corpus callosum, bilateral inferior fronto-occipital fasciculus and superior longitudinal fasciculus, which can be highlighted by neuroimaging techniques. Although the clinical relevance of SNDG following stroke has not been well understood, the identification of specific biomarkers that reflect the brain response to the damage, is of paramount importance to investigate in vivo the different phases of stroke. Actually, brain-derived markers, particularly neurofilament light chain, tau protein, S100b, in post-stroke patients have yielded promising results. This review focuses on cerebral morphological modifications occurring after a stroke, on associated cellular and molecular changes and on state-of-the-art of biomarkers in acute and chronic phase. Finally, we discuss new perspectives regarding the implementation of blood-based biomarkers in clinical practice to improve the rehabilitation approaches and post stroke recovery.
Collapse
Affiliation(s)
- Stefano Brunelli
- NeuroRehabilitation Unit 4, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Emilia Giannella
- Clinical Neurochemistry Unit and Biobank, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mirko Bizzaglia
- Radiology and Diagnostic Imaging Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | |
Collapse
|
42
|
Lu W, Chen Z, Wen J. The role of RhoA/ROCK pathway in the ischemic stroke-induced neuroinflammation. Biomed Pharmacother 2023; 165:115141. [PMID: 37437375 DOI: 10.1016/j.biopha.2023.115141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
It is widely known that ischemic stroke is the prominent cause of death and disability. To date, neuroinflammation following ischemic stroke represents a complex event, which is an essential process and affects the prognosis of both experimental stroke animals and stroke patients. Intense neuroinflammation occurring during the acute phase of stroke contributes to neuronal injury, BBB breakdown, and worse neurological outcomes. Inhibition of neuroinflammation may be a promising target in the development of new therapeutic strategies. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of RhoA/ROCK pathway possesses important roles in promoting the neuroinflammation and mediating brain injury. In addition, nuclear factor-kappa B (NF-κB) is another vital regulator of ischemic stroke-induced neuroinflammation through regulating the functions of microglial cells and astrocytes. After stroke onset, the microglial cells and astrocytes are activated and undergo the morphological and functional changes, thereby deeply participate in a complicated neuroinflammation cascade. In this review, we focused on the relationship among RhoA/ROCK pathway, NF-κB and glial cells in the neuroinflammation following ischemic stroke to reveal new strategies for preventing the intense neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
43
|
Holden JM, Wareham LK, Calkins DJ. Retinal astrocyte morphology predicts integration of vascular and neuronal architecture. Front Neurosci 2023; 17:1244679. [PMID: 37621717 PMCID: PMC10445659 DOI: 10.3389/fnins.2023.1244679] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Astrocytes are important regulators of blood flow and play a key role in the response to injury and disease in the central nervous system (CNS). Despite having an understanding that structural changes to these cells have consequences for local neurovascular physiology, individual astrocyte morphology remains largely unexplored in the retina. Here, we used MORF3 mice to capture full membranous morphology for over fifteen hundred individual astrocytes in the mouse retina, a highly metabolically active component of the CNS. We demonstrate that retinal astrocytes have been misrepresented as stellate in morphology due to marker use like GFAP and S100β which underestimates cell complexity. We also find that astrocytes contain recurring morphological motifs which are predictive of the underlying neurovascular architecture of the inner retina and suggestive of function. These motifs predict fine sampling and integration of retinal ganglion cell electrical activity with consequences for blood flow regulation. Additionally, our data shows that astrocytes participate in neurovascular interactions to a much greater degree than currently reported. 100% of cells contact the vasculature through one of three mutually exclusive classes of connections. Similarly, 100% of cells contact some neuronal element, be it an RGC axon or soma. Finally, we report that astrocyte morphology depends on retinal eccentricity, with cells appearing compressed near the nerve head and in the periphery. These results reveal a large degree of astrocyte morphological complexity that informs their contribution to neurovascular coupling in the retina.
Collapse
Affiliation(s)
- Joseph M. Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, United States
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
44
|
Cao Y, Yue X, Jia M, Wang J. Neuroinflammation and anti-inflammatory therapy for ischemic stroke. Heliyon 2023; 9:e17986. [PMID: 37519706 PMCID: PMC10372247 DOI: 10.1016/j.heliyon.2023.e17986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Stroke remains one of the most devastating and challenging neurological diseases worldwide. Inflammation, as well as oxidative stress is one of the main contributors to post-stroke injuries, and oxidative stress can further induce inflammation. Moreover, the inflammatory response is closely related to immune modulation in ischemic stroke progression. Hence, major ischemic stroke treatment strategies include targeting inflammatory responses, immune modulation (especially immune cells), and inflammatory response to suppress stroke progression. To date, several drugs have demonstrated clinical efficacy, such as Etanercept and Fingolimod. However, only edaravone dexborneol has successfully passed the phase III clinical trial and been approved by the National Medical Products Administration (NMPA) to treat ischemic stroke in China, which can restore redox balance and regulate inflammatory immune responses, thus providing neuroprotection in ischemic stroke. In this review, we will comprehensively summarize the current advances in the application of inflammatory biomarkers, neuroinflammation and neuro-immunotherapeutic scenarios for ischemic stroke, thus aiming to provide a theoretical basis and new prospects and frontiers for clinical applications.
Collapse
Affiliation(s)
- Yangyue Cao
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xuanye Yue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Jia
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Li J, Wang P, Wang LY, Wu Y, Wang J, Yu D, Chen Z, Shi H, Yin S. Redistribution of the astrocyte phenotypes in the medial vestibular nuclei after unilateral labyrinthectomy. Front Neurosci 2023; 17:1146147. [PMID: 37434761 PMCID: PMC10330711 DOI: 10.3389/fnins.2023.1146147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Astrocytes are highly heterogeneous and involved in different aspects of fundamental functions in the central nervous system (CNS). However, whether and how this heterogeneous population of cells reacts to the pathophysiological challenge is not well understood. To investigate the response status of astrocytes in the medial vestibular nucleus (MVN) after vestibular loss, we examined the subtypes of astrocytes in MVN using single-cell sequencing technology in a unilateral labyrinthectomy mouse model. We discovered four subtypes of astrocytes in the MVN with each displaying unique gene expression profiles. After unilateral labyrinthectomy, the proportion of the astrocytic subtypes and their transcriptional features on the ipsilateral side of the MVN differ significantly from those on the contralateral side. With new markers to detect and classify the subtypes of astrocytes in the MVN, our findings implicate potential roles of the adaptive changes of astrocyte subtypes in the early vestibular compensation following peripheral vestibular damage to reverse behavioral deficits.
Collapse
Affiliation(s)
- Jie Li
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pengjun Wang
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yaqin Wu
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiping Wang
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongzhen Yu
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhengnong Chen
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
46
|
Wang T, Yang J, Wang G, Zhao F, Jin Y. Factors ameliorate pro-inflammatory microglia polarization through inhibition of reactive astrocytes induced by 2-chloroethanol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115130. [PMID: 37311391 DOI: 10.1016/j.ecoenv.2023.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Our previous studies have demonstrated that the crosstalk between astrocytes and microglia may trigger and amplify the neuroinflammatory response and, in turn, cause brain edema in 1,2-dichloroethane (1,2-DCE)-intoxicated mice. Moreover, findings from our in vitro studies showed that astrocytes are more sensitive to 2-chloroethanol (2-CE), an intermediate metabolite of 1,2-DCE, than microglia, and 2-CE-induced reactive astrocytes (RAs) can promote microglia polarization through releasing the pro-inflammatory mediators. Therefore, it is essential to explore therapeutic agents that may ameliorate microglia polarization through inhibition of 2-CE-induced RAs, which remains unclear till now. Results of this study revealed that exposure to 2-CE could induce RAs with pro-inflammatory effects, and fluorocitrate (FC), GIBH-130 (GI) and diacerein (Dia) pretreatment could all abolish the pro-inflammatory effects of 2-CE-induced RAs. FC and GI pretreatment might suppress 2-CE-induced RAs through inhibition of p38 mitogen-activated protein kinase (p38 MAPK)/activator protein-1 (AP-1) and nuclear factor-kappaB (NF-κB) signaling pathways, but Dia pretreatment might only inhibit p38 MAPK/NF-κB signaling pathway. FC, GI, and Dia pretreatment could all suppress the pro-inflammatory microglia polarization through inhibition of 2-CE-induced RAs. Meanwhile, GI and Dia pretreatment could also restored the anti-inflammatory microglia polarization via inhibition of 2-CE-induced RAs. However, FC pretreatment could not affect the anti-inflammatory polarization of microglia through inhibition of 2-CE-induced RAs. Taken together, findings from the present study demonstrated that FC, GI, and Dia might be the potential candidates with different characteristic for therapeutic use in 1,2-DCE poisoning.
Collapse
Affiliation(s)
- Tong Wang
- Department of Basic Medical Sciences, School of medicine, Taizhou University, Jiaojiang 318000, Zhejiang, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jinhan Yang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
47
|
Matusova Z, Hol EM, Pekny M, Kubista M, Valihrach L. Reactive astrogliosis in the era of single-cell transcriptomics. Front Cell Neurosci 2023; 17:1173200. [PMID: 37153637 PMCID: PMC10157076 DOI: 10.3389/fncel.2023.1173200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Reactive astrogliosis is a reaction of astrocytes to disturbed homeostasis in the central nervous system (CNS), accompanied by changes in astrocyte numbers, morphology, and function. Reactive astrocytes are important in the onset and progression of many neuropathologies, such as neurotrauma, stroke, and neurodegenerative diseases. Single-cell transcriptomics has revealed remarkable heterogeneity of reactive astrocytes, indicating their multifaceted functions in a whole spectrum of neuropathologies, with important temporal and spatial resolution, both in the brain and in the spinal cord. Interestingly, transcriptomic signatures of reactive astrocytes partially overlap between neurological diseases, suggesting shared and unique gene expression patterns in response to individual neuropathologies. In the era of single-cell transcriptomics, the number of new datasets steeply increases, and they often benefit from comparisons and integration with previously published work. Here, we provide an overview of reactive astrocyte populations defined by single-cell or single-nucleus transcriptomics across multiple neuropathologies, attempting to facilitate the search for relevant reference points and to improve the interpretability of new datasets containing cells with signatures of reactive astrocytes.
Collapse
Affiliation(s)
- Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Elly M. Hol
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, Netherlands
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- University of Newcastle, Newcastle, NSW, Australia
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- TATAA Biocenter AB, Gothenburg, Sweden
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
48
|
Tamakoshi K, Meguro K, Takahashi Y, Oshimi R, Iwasaki N. Comparison of motor function recovery and brain changes in intracerebral hemorrhagic and ischemic rats with similar brain damage. Neuroreport 2023; 34:332-337. [PMID: 36966806 DOI: 10.1097/wnr.0000000000001898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
In this study, we compared the mechanisms of brain recovery in intracerebral hemorrhage and ischemia, focusing on synapses, glial cells, and dopamine expression, which are considered fundamental for neural recovery after stroke. Male Wistar rats were divided into intracerebral hemorrhage, ischemia, and sham surgery (SHAM) groups. The intracerebral hemorrhage group was injected with a collagenase solution, the ischemia group was injected with an endothelin-1 solution, and the SHAM group was injected with physiological saline. The motor function of these rats was evaluated using a rotarod test on days 7, 14, 21, and 28 post-surgery. On postoperative day 29, lesion volume was analyzed using Nissl staining. In addition, the protein expression levels of NeuN, GFAP, tyrosine hydroxylase, and PSD95 were analyzed in the striatum and motor cortex. There was no significant difference between the ischemia and intracerebral hemorrhage groups in terms of lesion volume in the striatum; however, the motor recovery of the intracerebral hemorrhage group occurred more rapidly than that of the ischemia group, and the intracerebral hemorrhage group exhibited higher GFAP protein expression in the motor cortex. The rapid motor recovery in intracerebral hemorrhage rats relative to that in ischemia rats may be associated with changes in astrocytes in brain regions remote from the injury site.
Collapse
Affiliation(s)
- Keigo Tamakoshi
- Department of Physical Therapy, Niigata University of Health and Welfare
- Institute for Human Movement and Medical Sciences
| | - Kota Meguro
- Department of Rehabilitation, Kaetsu Hospital
| | | | - Ryu Oshimi
- Department of Rehabilitation, Saigata Medical Center, National Hospital Organization
| | - Natsuka Iwasaki
- Department of Rehabilitation, Azuma Neurosurgical Hospital, Niigata, Japan
| |
Collapse
|
49
|
Pekna M, Siqin S, de Pablo Y, Stokowska A, Torinsson Naluai Å, Pekny M. Astrocyte Responses to Complement Peptide C3a are Highly Context-Dependent. Neurochem Res 2023; 48:1233-1241. [PMID: 36097103 PMCID: PMC10030406 DOI: 10.1007/s11064-022-03743-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Astrocytes perform a range of homeostatic and regulatory tasks that are critical for normal functioning of the central nervous system. In response to an injury or disease, astrocytes undergo a pronounced transformation into a reactive state that involves changes in the expression of many genes and dramatically changes astrocyte morphology and functions. This astrocyte reactivity is highly dependent on the initiating insult and pathological context. C3a is a peptide generated by the proteolytic cleavage of the third complement component. C3a has been shown to exert neuroprotective effects, stimulate neural plasticity and promote astrocyte survival but can also contribute to synapse loss, Alzheimer's disease type neurodegeneration and blood-brain barrier dysfunction. To test the hypothesis that C3a elicits differential effects on astrocytes depending on their reactivity state, we measured the expression of Gfap, Nes, C3ar1, C3, Ngf, Tnf and Il1b in primary mouse cortical astrocytes after chemical ischemia, after exposure to lipopolysaccharide (LPS) as well as in control naïve astrocytes. We found that C3a down-regulated the expression of Gfap, C3 and Nes in astrocytes after ischemia. Further, C3a increased the expression of Tnf and Il1b in naive astrocytes and the expression of Nes in astrocytes exposed to LPS but did not affect the expression of C3ar1 or Ngf. Jointly, these results provide the first evidence that the complement peptide C3a modulates the responses of astrocytes in a highly context-dependent manner.
Collapse
Affiliation(s)
- Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.
| | - Sumen Siqin
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
- Division of Episomal Persistent DNA in Cancer and Chronic Diseases, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
| | - Anna Stokowska
- Laboratory of Regenerative Neuroimmunology, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden
| | - Åsa Torinsson Naluai
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Department of Clinical Neuroscience, Center for Brain Repair, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 405 30, Göteborg, Sweden.
- Florey Institute of Neuroscience and and Mental Health, Parkville, Melbourne, Australia.
- University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
50
|
Tao F, Kitamura K, Hanada S, Sugimoto K, Furihata T, Kojima N. Rapid and Stable Formation Method of Human Astrocyte Spheroid in a High Viscous Methylcellulose Medium and Its Functional Advantages. Bioengineering (Basel) 2023; 10:bioengineering10030349. [PMID: 36978740 PMCID: PMC10045153 DOI: 10.3390/bioengineering10030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Astrocytes, a type of glial cell in the brain, are thought to be functionally and morphologically diverse cells that regulate brain homeostasis. Cell immortalization is a promising technique for the propagation of primary human astrocytes. The immortalized cells retain their astrocytic marker mRNA expression at lower levels than the primary cells. Therefore, improvement of the differentiation status is required. The use of a 3D formation technique to mimic structural tissue is a good strategy for reflecting physiological cell–cell interactions. Previously, we developed a spheroid formation method using highly viscous methyl cellulose (MC) medium. In this study, we applied this formation method to the well-established immortalized human astrocyte cell line HASTR/ci35. Stable HASTR/ci35 spheroids were successfully formed in MC medium, and laminin deposition was detected inside of the spheroids. Their functional markers were enhanced compared to conventional spheroids formed in U-bottom plates. The inflammatory response was moderately sensitive, and the ability to support neurite growth was confirmed. The HASTR/ci35 spheroid in the MC medium demonstrated the differentiation phenotype and could serve as a potent in vitro model for matured astrocytes.
Collapse
Affiliation(s)
- Fumiya Tao
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Keita Kitamura
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0355, Japan
| | - Sanshiro Hanada
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Kazuyuki Sugimoto
- Yokogawa Electric Corp., 2-3, Hokuyodai, Kanazawa, Ishikawa 920-0177, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0355, Japan
| | - Nobuhiko Kojima
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
- Correspondence:
| |
Collapse
|