1
|
Chen L, Ni C, Lu D, Zhang S, Li Y, Wang D, Hua B, Ni H, Xu L, Yao M. Curcumin analog C16 attenuates bone cancer pain induced by MADB 106 breast cancer cells in female rats and inhibits the CREB/NLGN2 signaling axis by targeting CaMKⅠα. Neuropharmacology 2025; 266:110284. [PMID: 39725125 DOI: 10.1016/j.neuropharm.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Bone cancer pain (BCP) is one of the most severe complications faced by patients with cancer; however, current pharmacological options are limited. Curcumin has been demonstrated to possess anti-inflammatory and analgesic properties; however, our preliminary research found that the analgesic efficiency of curcumin is not high in BCP. Consequently, curcumin analogs have emerged as a significant focus of our research. This study aimed to systematically investigate the analgesic effects of C16 in rats with BCP induced by MADB 106 breast cancer cells (MADB 106-induced BCP) and elucidate the underlying molecular mechanisms. A range of experimental methods, including kinase profiling, transcriptome sequencing, behavioral tests, immunofluorescence, and biochemical analyses, were employed to comprehensively assess the role of C16 in the MADB 106-induced BCP model. The results indicated that C16 significantly alleviated bone cancer pain induced by Luciferin-MADB 106 cells (10ˆ6 cells) in a dose-dependent manner. Importantly, kinase profiling and validation experiments identified CaMKIα in spinal dorsal horn neurons as the primary target of C16's analgesic effect on MADB 106-induced BCP. Continuous intrathecal administration of C16 markedly suppressed the expression of CREB and P-CREB and reduced the expression of neuroligin 2 in the spinal cords of BCP rats, thereby clarifying the mechanism of action of C16 in alleviating MADB 106-induced BCP. These findings suggest that C16 possesses significant therapeutic potential for mitigating MADB 106-induced BCP nociceptive hypersensitivity, providing a foundation for the future development of novel drugs targeting MADB 106-induced BCP. This article is part of the Special Issue on "Empathic Pain".
Collapse
Affiliation(s)
- Liping Chen
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Dashan Lu
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Shuyao Zhang
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Yuhua Li
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Dongjie Wang
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Bohan Hua
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China.
| | - Ming Yao
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China.
| |
Collapse
|
2
|
Luan D, Li SZ, Zhang C, Ye B. Association of single nucleotide polymorphisms and gene-environment interactions with major depressive disorder in Chinese. Heliyon 2024; 10:e37504. [PMID: 39315198 PMCID: PMC11417526 DOI: 10.1016/j.heliyon.2024.e37504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
We conducted a case-control study to investigate the effects of genetics and gene-environment interactions on major depressive disorders (MDD) in the Chinese population. Using targeted-exome sequencing, we included 984 patients with MDD and 508 healthy controls in our study. A logistic regression model was employed to analyze the association between single nucleotide polymorphisms (SNPs) and MDD. Additionally, a linear regression model was utilized to examine the associations between (1) gene-environment interaction and the 17-item Hamilton Depression Rating Scale, (2) SNPs and the Beck Scale for Suicide Ideation-Chinese version, and gene-environment interaction and the Beck scale for suicide ideation-Chinese version. The association analysis between SNPs and MDD revealed that the following loci reached genome-wide significance: rs2305554 of the cholinergic receptor nicotinic alpha 7 subunit, rs9459173 of synaptojanin 2, rs372369000 of beta-1,4-galactosyltransferase 6, rs866666526 of dopa decarboxylase, rs1254882194 of calcium/calmodulin dependent protein kinase ID, rs199880487 of reelin, rs1167948188 of reelin, rs1390140186 of QKI, KH domain containing RNA binding, and rs1776342 of period circadian regulator 3. The association analysis between SNPs and the Beck Scale for Suicide Ideation-Chinese version indicated that rs264272 and rs1774784888 of piezo type mechanosensitive ion channel component 2 reached genome-wide significance. These findings may enhance our understanding of MDD and contribute to the development of new potential targets for its diagnosis and treatment.
Collapse
Affiliation(s)
- Di Luan
- Department of Neurology, Bengbu Third People's Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Central Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Shi-zun Li
- Department of Neurology, Bengbu Third People's Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Central Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Can Zhang
- Department of Neurology, Bengbu Third People's Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Central Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Bin Ye
- Department of Neurology, Bengbu Third People's Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Central Hospital, Bengbu, 233000, Anhui, China
- Department of Neurology, Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu, 233000, Anhui, China
| |
Collapse
|
3
|
Li J, Guan M, Qi L, Zhang F, Jia C, Meng Q, Han J. Metalloproteins as risk factors for osteoarthritis: improving and understanding causal estimates using Mendelian randomization. Clin Rheumatol 2024; 43:2079-2091. [PMID: 38720162 PMCID: PMC11111566 DOI: 10.1007/s10067-024-06968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/09/2023] [Accepted: 04/14/2024] [Indexed: 05/24/2024]
Abstract
Osteoarthritis (OA) is one of the most prevalent musculoskeletal disorders and a primary cause of pain and disability among the elderly population. Research on the relationship between metalloproteins (MPs) and OA is limited, and causality remains unclear. Our objective is to utilize Mendelian randomization (MR) to explore the possible causal relationship between MPs and OA. The data on MPs were derived from a Genome-Wide Association Study (GWAS) analysis involving 3301 samples. The GWAS data for OA were obtained from an analysis involving 462,933 European individuals. In this study, a variety of two-sample Mendelian randomization methods (two-sample MR) to evaluate the causal effect of MPs on OA, including inverse variance weighted method (IVW), MR-Egger method, weighted median method (WM), simple mode, weight mode, and Wald ratio. The primary MR analysis using the IVW method reveals a significant negative correlation between Metallothionein-1F (MT-1F), zinc finger protein 134 (ZNF134), calcium/calmodulin-dependent protein kinase type 1D (CAMK1D), and EF-hand calcium-binding domain-containing protein 14 (EFCAB14) with the occurrence of osteoarthritis (OA) (p value < 0.05). However, no causal relationship was observed in the opposite direction between these MPs and OA. Notably, even in combined models accounting for confounding factors, the negative association between these four MPs and OA remained significant. Sensitivity analysis demonstrated no evidence of horizontal pleiotropy or heterogeneity, and leave-one-out analysis confirmed the robustness of the results. In this study, we have established a conspicuous association between four distinct MPs and OA. This discovery augments our understanding of potential avenues for the diagnosis and treatment of this condition. Key Points • The MR method was employed to assess the relationship between MPs and OA. • A total of four types of MPs have demonstrated inhibitory effects on the occurrence of OA.
Collapse
Affiliation(s)
- Jiaze Li
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| | - Lin Qi
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| | - Fengping Zhang
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| | - Chenxu Jia
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| | - Qingtao Meng
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China.
| | - Jian Han
- Department of Orthopedics, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian City Third People's Hospital, Dalian, 116091, Liaoning Province, China
| |
Collapse
|
4
|
Kleeman EA, Reisinger SN, Adithya P, Houston B, Stathatos G, Garnham AL, McLaughlin S, O'Bryan MK, Gubert C, Hannan AJ. Paternal immune activation by Poly I:C modulates sperm noncoding RNA profiles and causes transgenerational changes in offspring behavior. Brain Behav Immun 2024; 115:258-279. [PMID: 37820975 DOI: 10.1016/j.bbi.2023.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
Paternal pre-conceptual environmental experiences, such as stress and diet, can affect offspring brain and behavioral phenotypes via epigenetic modifications in sperm. Furthermore, maternal immune activation due to infection during gestation can reprogram offspring behavior and brain functioning in adulthood. However, the effects of paternal pre-conceptual exposure to immune activation on the behavior and physiology of offspring (F1) and grand-offspring (F2) are not currently known. We explored effects of paternal pre-conceptual exposure to viral-like immune activation on F1 and F2 behavioral and physiological phenotypes using a C57BL/6J mouse model. Males were treated with a single injection (intraperitoneal) of the viral mimetic polyinosinic:polycytidylic acid (Poly I:C: 12 mg/kg) then bred with naïve female mice four weeks after the Poly I:C (or 0.9% saline control) injection. The F1 offspring of Poly I:C treated fathers displayed increased depression-like behavior in the Porsolt swim test, an altered stress response in the novelty-suppressed feeding test, and significant transcriptomic changes in their hippocampus. Additionally, the F1 male offspring of Poly I:C treated F0 males showed significantly increased immune responsivity after a Poly I:C immune challenge (12 mg/kg). Furthermore, the F2 male grand-offspring took longer to enter and travelled significantly shorter distances in the light zone of the light/dark box. An analysis of the small noncoding RNA profiles in sperm from Poly I:C treated males and their male offspring revealed significant effects of Poly I:C on the sperm microRNA content at the time of conception and on the sperm PIWI-interacting RNA content of the male offspring. Notably, eight miRNAs with an FDR < 0.05 (miR-141-3p, miR-126b-5p, miR-669o-5p, miR-10b-3p, miR-471-5p, miR-463-5p, miR-148b-3p, and miR-181c-5p) were found to be significantly downregulated in the sperm of Poly I:C treated males. Collectively, we demonstrate that paternal pre-conceptual exposure to a viral immune challenge results in both intergenerational and transgenerational effects on brain and behavior that may be mediated by alterations in the sperm small noncoding RNA content.
Collapse
Affiliation(s)
- Elizabeth A Kleeman
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Sonali N Reisinger
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Pranav Adithya
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Brendan Houston
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Gemma Stathatos
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra L Garnham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Shae McLaughlin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Moira K O'Bryan
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Jin Q, Zhao J, Zhao Z, Zhang S, Sun Z, Shi Y, Yan H, Wang Y, Liu L, Zhao Z. CAMK1D Inhibits Glioma Through the PI3K/AKT/mTOR Signaling Pathway. Front Oncol 2022; 12:845036. [PMID: 35494053 PMCID: PMC9043760 DOI: 10.3389/fonc.2022.845036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium/calmodulin-dependent protein ID (CAMK1D) is widely expressed in many tissues and involved in tumor cell growth. However, its role in gliomas has not yet been elucidated. This study aimed to investigate the roles of CAMK1D in the proliferation, migration, and invasion of glioma. Through online datasets, Western blot, and immunohistochemical analysis, glioma tissue has significantly lower CAMK1D expression levels than normal brain (NB) tissues, and CAMK1D expression was positively correlated with the WHO classification. Kaplan-Meier survival analysis shows that CAMK1D can be used as a potential prognostic indicator to predict the overall survival of glioma patients. In addition, colony formation assay, cell counting Kit-8, and xenograft experiment identified that knockdown of CAMK1D promotes the proliferation of glioma cells. Transwell and wound healing assays identified that knockdown of CAMK1D promoted the invasion and migration of glioma cells. In the above experiments, the results of overexpression of CAMK1D were all contrary to those of knockdown. In terms of mechanism, this study found that CAMK1D regulates the function of glioma cells by the PI3K/AKT/mTOR pathway. In conclusion, these findings suggest that CAMK1D serves as a prognostic predictor and a new target for developing therapeutics to treat glioma.
Collapse
Affiliation(s)
- Qianxu Jin
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiahui Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zijun Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shiyang Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhimin Sun
- Department of Neurosurgery, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Yunpeng Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongshan Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yizheng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Grant P, Kumar J, Kar S, Overduin M. Effects of Specific Inhibitors for CaMK1D on a Primary Neuron Model for Alzheimer's Disease. Molecules 2021; 26:7669. [PMID: 34946752 PMCID: PMC8707680 DOI: 10.3390/molecules26247669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite extensive research and targeting of the main molecular components of the disease, beta-amyloid (Aβ) and tau, there are currently no treatments that alter the progression of the disease. Here, we examine the effects of two specific kinase inhibitors for calcium/calmodulin-dependent protein kinase type 1D (CaMK1D) on Aβ-mediated toxicity, using mouse primary cortical neurons. Tau hyperphosphorylation and cell death were used as AD indicators. These specific inhibitors were found to prevent Aβ induced tau hyperphosphorylation in culture, but were not able to protect cells from Aβ induced toxicity. While inhibitors were able to alter AD pathology in cell culture, they were insufficient to prevent cell death. With further research and development, these inhibitors could contribute to a multi-drug strategy to combat AD.
Collapse
Affiliation(s)
- Paige Grant
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (P.G.); (J.K.)
| | - Jitendra Kumar
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (P.G.); (J.K.)
| | - Satyabrata Kar
- Centre for Prions and Protein Folding Diseases, Department of Medicine (Neurology), University of Alberta, Edmonton, AB T6G 2MB, Canada;
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (P.G.); (J.K.)
| |
Collapse
|
7
|
Lewis V, Laberge F, Heyland A. Transcriptomic signature of extinction learning in the brain of the fire-bellied toad, Bombina orientalis. Neurobiol Learn Mem 2021; 184:107502. [PMID: 34391934 DOI: 10.1016/j.nlm.2021.107502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
Insight into the molecular and cellular mechanisms of learning and memory from a diverse array of taxa contributes to our understanding of the evolution of these processes. The fire-bellied toad, Bombina orientalis, is a basal anuran amphibian model species who could help us describe shared and divergent characteristics of learning and memory mechanisms between amphibians and other vertebrates, and hence answer questions about the evolution of learning. Utilizing next generation sequencing techniques, we profiled gene expression patterns associated with the extinction of prey-catching conditioning in the brain of the fire-bellied toad. For this purpose, gene expression was at first compared between toads sacrificed after acquisition and extinction of the conditioned response. A second comparison was done between toads submitted to extinction following either short or long acquisition training, which results in toads displaying response extinction or resistance to extinction, respectively. We analyzed brain tissue transcription profiles common to both acquisition and extinction learning, or unique to extinction learning and resistance to extinction, and found significant overlap in gene expression related to molecular pathways involving neuronal plasticity (e.g. structural modification, transcription). However, extinction learning induced a unique GABAergic transcriptomic signal, which may be responsible for suppression of the original response memory. Further, when comparing extinction learning in short- and long-trained groups, short training engaged many pathways related to neuronal plasticity, as expected, but long training engaged molecular pathways related to the suppression of learning through epigenetic mediated transcriptional suppression and inhibitory neurotransmission. Overall, gene expression patterns associated with extinction learning in the fire-bellied toad were similar to those found in mammals submitted to extinction, although some divergent profiles highlighted potential differences in the mechanisms of learning and memory among tetrapods.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
8
|
Cui C, Wang C, Cao M, Kang X. Ca 2+/calmodulin-dependent Protein Kinases in Leukemia Development. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:144-150. [PMID: 34263253 PMCID: PMC8276974 DOI: 10.33696/immunology.3.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ca2+/calmodulin (CaM) signaling is important for a wide range of cellular functions. It is not surprised the role of this signaling has been recognized in tumor progressions, such as proliferation, invasion, and migration. However, its role in leukemia has not been well appreciated. The multifunctional Ca2+/CaM-dependent protein kinases (CaMKs) are critical intermediates of this signaling and play key roles in cancer development. The most investigated CaMKs in leukemia, especially myeloid leukemia, are CaMKI, CaMKII, and CaMKIV. The function and mechanism of these kinases in leukemia development are summarized in this study.
Collapse
Affiliation(s)
- Changhao Cui
- School of Life Science and Medicine, Dalian University of Technology, Liaoning 124221, China
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, Missouri 65212, USA
| | - Min Cao
- Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, Missouri 65212, USA
| | - Xunlei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, Missouri 65212, USA
| |
Collapse
|
9
|
Dunn DM, Munger J. Interplay Between Calcium and AMPK Signaling in Human Cytomegalovirus Infection. Front Cell Infect Microbiol 2020; 10:384. [PMID: 32850483 PMCID: PMC7403205 DOI: 10.3389/fcimb.2020.00384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium signaling and the AMP-activated protein kinase (AMPK) signaling networks broadly regulate numerous aspects of cell biology. Human Cytomegalovirus (HCMV) infection has been found to actively manipulate the calcium-AMPK signaling axis to support infection. Many HCMV genes have been linked to modulating calcium signaling, and HCMV infection has been found to be reliant on calcium signaling and AMPK activation. Here, we focus on the cell biology of calcium and AMPK signaling and what is currently known about how HCMV modulates these pathways to support HCMV infection and potentially contribute to oncomodulation.
Collapse
Affiliation(s)
- Diana M Dunn
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Joshua Munger
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
10
|
O’Byrne SN, Scott JW, Pilotte JR, Santiago ADS, Langendorf CG, Oakhill JS, Eduful BJ, Couñago RM, Wells CI, Zuercher WJ, Willson TM, Drewry DH. In Depth Analysis of Kinase Cross Screening Data to Identify CAMKK2 Inhibitory Scaffolds. Molecules 2020; 25:E325. [PMID: 31941153 PMCID: PMC7024175 DOI: 10.3390/molecules25020325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/25/2022] Open
Abstract
The calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) activates CAMK1, CAMK4, AMPK, and AKT, leading to numerous physiological responses. The deregulation of CAMKK2 is linked to several diseases, suggesting the utility of CAMKK2 inhibitors for oncological, metabolic and inflammatory indications. In this work, we demonstrate that STO-609, frequently described as a selective inhibitor for CAMKK2, potently inhibits a significant number of other kinases. Through an analysis of literature and public databases, we have identified other potent CAMKK2 inhibitors and verified their activities in differential scanning fluorimetry and enzyme inhibition assays. These inhibitors are potential starting points for the development of selective CAMKK2 inhibitors and will lead to tools that delineate the roles of this kinase in disease biology.
Collapse
Affiliation(s)
- Sean N. O’Byrne
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - John W. Scott
- St Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia; (J.W.S.); (C.G.L.); (J.S.O.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville 3052, Australia
| | - Joseph R. Pilotte
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - André da S. Santiago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-875, Brazil; (A.d.S.S.); (R.M.C.)
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas SP 13083-886, Brazil
| | - Christopher G. Langendorf
- St Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia; (J.W.S.); (C.G.L.); (J.S.O.)
| | - Jonathan S. Oakhill
- St Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia; (J.W.S.); (C.G.L.); (J.S.O.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne 3000, Australia
| | - Benjamin J. Eduful
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-875, Brazil; (A.d.S.S.); (R.M.C.)
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas SP 13083-886, Brazil
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| |
Collapse
|
11
|
Kathpalia P, Nag TC, Chattopadhyay P, Sharma A, Bhat MA, Roy TS, Wadhwa S. In ovo Sound Stimulation Mediated Regulation of BDNF in the Auditory Cortex and Hippocampus of Neonatal Chicks. Neuroscience 2019; 408:293-307. [PMID: 31026564 DOI: 10.1016/j.neuroscience.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/15/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is known to mediate activity-dependent changes in the developing auditory system. Its expression in the brainstem auditory nuclei, auditory cortex and hippocampus of neonatal chicks (Gallus gallus domesticus) in response to in ovo high intensity sound exposure at 110 dB (arrhythmic sound: recorded traffic noise, 30-3000 Hz with peak at 2700 Hz, rhythmic sound: sitar music, 100-4000 Hz) was examined to understand the previously reported altered volume and neuronal number in these regions. In the brainstem auditory nuclei, no mature BDNF, but proBDNF at the protein level was detected, and no change in its levels was observed after in ovo sound stimulation (music and noise). Increased ProBDNF protein levels were found in the auditory cortex in response to arrhythmic sound, along with decreased levels of one of the BDNF mRNA transcripts, in response to both rhythmic and arrhythmic sound stimulation. In the hippocampus, increased levels of mature BDNF were found in response to music. Expression microarray analysis was performed to understand changes in gene expression in the hippocampus in response to music and noise, followed by gene ontology analysis showing enrichment of probable signaling pathways. Differentially expressed genes like CAMK1 and STAT1 were found to be involved in downstream signaling on comparing music versus noise-exposed chicks. In conclusion, we report that BDNF is differentially regulated in the auditory cortex at the transcriptional and post-translational level, and in the hippocampus at the post-translational level in response to in ovo sound stimulation.
Collapse
Affiliation(s)
- Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | | | - Arundhati Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Muzaffer Ahmed Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India; Department of Anatomy, North Delhi Municipal Medical College, New Delhi, India
| |
Collapse
|
12
|
Brzozowski JS, Skelding KA. The Multi-Functional Calcium/Calmodulin Stimulated Protein Kinase (CaMK) Family: Emerging Targets for Anti-Cancer Therapeutic Intervention. Pharmaceuticals (Basel) 2019; 12:ph12010008. [PMID: 30621060 PMCID: PMC6469190 DOI: 10.3390/ph12010008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/25/2023] Open
Abstract
The importance of Ca2+ signalling in key events of cancer cell function and tumour progression, such as proliferation, migration, invasion and survival, has recently begun to be appreciated. Many cellular Ca2+-stimulated signalling cascades utilise the intermediate, calmodulin (CaM). The Ca2+/CaM complex binds and activates a variety of enzymes, including members of the multifunctional Ca2+/calmodulin-stimulated protein kinase (CaMK) family. These enzymes control a broad range of cancer-related functions in a multitude of tumour types. Herein, we explore the cancer-related functions of these kinases and discuss their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joshua S Brzozowski
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute (HMRI) and University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kathryn A Skelding
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute (HMRI) and University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
13
|
Excitation-Transcription Coupling in Parvalbumin-Positive Interneurons Employs a Novel CaM Kinase-Dependent Pathway Distinct from Excitatory Neurons. Neuron 2016; 90:292-307. [PMID: 27041500 DOI: 10.1016/j.neuron.2016.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/23/2015] [Accepted: 02/24/2016] [Indexed: 11/20/2022]
Abstract
Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity, and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. We report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca(2+) influx through CaV1 channels triggers CaM nuclear translocation via local Ca(2+) signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca(2+) transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and they are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease.
Collapse
|
14
|
Elzière L, Sar C, Ventéo S, Bourane S, Puech S, Sonrier C, Boukhadaoui H, Fichard A, Pattyn A, Valmier J, Carroll P, Méchaly I. CaMKK-CaMK1a, a new post-traumatic signalling pathway induced in mouse somatosensory neurons. PLoS One 2014; 9:e97736. [PMID: 24840036 PMCID: PMC4026325 DOI: 10.1371/journal.pone.0097736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
Neurons innervating peripheral tissues display complex responses to peripheral nerve injury. These include the activation and suppression of a variety of signalling pathways that together influence regenerative growth and result in more or less successful functional recovery. However, these responses can be offset by pathological consequences including neuropathic pain. Calcium signalling plays a major role in the different steps occurring after nerve damage. As part of our studies to unravel the roles of injury-induced molecular changes in dorsal root ganglia (DRG) neurons during their regeneration, we show that the calcium calmodulin kinase CaMK1a is markedly induced in mouse DRG neurons in several models of mechanical peripheral nerve injury, but not by inflammation. Intrathecal injection of NRTN or GDNF significantly prevents the post-traumatic induction of CaMK1a suggesting that interruption of target derived factors might be a starter signal in this de novo induction. Inhibition of CaMK signalling in injured DRG neurons by pharmacological means or treatment with CaMK1a siRNA resulted in decreased velocity of neurite growth in vitro. Altogether, the results suggest that CaMK1a induction is part of the intrinsic regenerative response of DRG neurons to peripheral nerve injury, and is thus a potential target for therapeutic intervention to improve peripheral nerve regeneration.
Collapse
Affiliation(s)
- Lucie Elzière
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Chamroeun Sar
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Sylvie Puech
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Corinne Sonrier
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Hassan Boukhadaoui
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Agnès Fichard
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| | - Alexandre Pattyn
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Jean Valmier
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Ilana Méchaly
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| |
Collapse
|
15
|
Riascos D, Nicholas A, Samaeekia R, Yukhananov R, Mesulam MM, Bigio EH, Weintraub S, Guo L, Geula C. Alterations of Ca²⁺-responsive proteins within cholinergic neurons in aging and Alzheimer's disease. Neurobiol Aging 2013; 35:1325-33. [PMID: 24461366 DOI: 10.1016/j.neurobiolaging.2013.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 12/07/2013] [Accepted: 12/19/2013] [Indexed: 01/05/2023]
Abstract
The molecular basis of selective neuronal vulnerability in Alzheimer's disease (AD) remains poorly understood. Using basal forebrain cholinergic neurons (BFCNs) as a model and immunohistochemistry, we have demonstrated significant age-related loss of the calcium-binding protein calbindin-D(28K) (CB) from BFCN, which was associated with tangle formation and degeneration in AD. Here, we determined alterations in RNA and protein for CB and the Ca(2+)-responsive proteins Ca(2+)/calmodulin-dependent protein kinase I (CaMKI), growth-associated protein-43 (GAP43), and calpain in the BF. We observed progressive downregulation of CB and CaMKI RNA in laser-captured BFCN in the normal-aged-AD continuum. We also detected progressive loss of CB, CaMKIδ, and GAP43 proteins in BF homogenates in aging and AD. Activated μ-calpain, a calcium-sensitive protease that degrades CaMKI and GAP43, was significantly increased in the normal aged BF and was 10 times higher in AD BF. Overactivation of μ-calpain was confirmed using proteolytic fragments of its substrate spectrin. Substantial age- and AD-related alterations in Ca(2+)-sensing proteins most likely contribute to selective vulnerability of BFCN to degeneration in AD.
Collapse
Affiliation(s)
- David Riascos
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexander Nicholas
- Department of Medicine, Harvard Medical School and Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ravand Samaeekia
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - M-Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eileen H Bigio
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sandra Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ling Guo
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Changiz Geula
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
16
|
Abstract
Ca²⁺/calmodulin-dependent kinases (CaMKs) are essential for neuronal development and plasticity, processes requiring de novo protein synthesis. Roles for CaMKs in modulating gene transcription are well established, but their involvement in mRNA translation is evolving. Here we report that activity-dependent translational initiation in cultured rat hippocampal neurons is enhanced by CaMKI-mediated phosphorylation of Ser1156 in eukaryotic initiation factor eIF4GII (4GII). Treatment with bicuculline or gabazine to enhance neuronal activity promotes recruitment of wild-type 4GII, but not the 4GII S1156A mutant or 4GI, to the heterotrimeric eIF4F (4F) complex that assembles at the 5' cap structure (m⁷GTP) of mRNA to initiate ribosomal scanning. Recruitment of 4GII to 4F is suppressed by pharmacological inhibition (STO-609) of CaM kinase kinase, the upstream activator of CaMKI. Post hoc in vitro CaMKI phosphorylation assays confirm that activity promotes phosphorylation of S1156 in transfected 4GII in neurons. Changes in cap-dependent and cap-independent translation were assessed using a bicistronic luciferase reporter transfected into neurons. Activity upregulates cap-dependent translation, and RNAi knockdown of CaMKIβ and γ isoforms, but not α or δ, led to its attenuation as did blockade of NMDA receptors. Furthermore, RNAi knockdown of 4GII attenuates cap-dependent translation and reduces density of dendritic filopodia and spine formation without effect on dendritic arborization. Together, our results provide a mechanistic link between Ca²⁺ influx due to neuronal activity and regulation of cap-dependent RNA translation via CaMKI activation and selective recruitment of phosphorylated 4GII to the 4F complex, which may function to regulate activity-dependent changes in spine density.
Collapse
|
17
|
Saneyoshi T, Hayashi Y. The Ca2+ and Rho GTPase signaling pathways underlying activity-dependent actin remodeling at dendritic spines. Cytoskeleton (Hoboken) 2012; 69:545-54. [PMID: 22566410 DOI: 10.1002/cm.21037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/17/2012] [Accepted: 04/25/2012] [Indexed: 02/06/2023]
Abstract
Most excitatory synapses reside on small protrusions located on the dendritic shaft of neurons called dendritic spines. Neuronal activity regulates the number and structure of spines in both developing and mature brains. Such morphological changes are mediated by the modification of the actin cytoskeleton, the major structural component of spines. Because the number and size of spines is tightly correlated with the strength of synaptic transmission, the activity-dependent structural remodeling of a spine plays an important role in the modulation of synaptic transmission. The regulation of spine morphogenesis utilizes multiple intracellular signaling pathways that alter the dynamics of actin remodeling. Here, we will review recent studies examining the signaling pathways underlying activity-dependent actin remodeling at excitatory postsynaptic neurons.
Collapse
|
18
|
Knockdown of two splice variants of Ca2+/calmodulin-dependent protein kinase Iδ causes developmental abnormalities in zebrafish, Danio rerio. Arch Biochem Biophys 2012; 517:71-82. [DOI: 10.1016/j.abb.2011.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 11/18/2022]
|
19
|
Davare MA, Saneyoshi T, Soderling TR. Calmodulin-kinases regulate basal and estrogen stimulated medulloblastoma migration via Rac1. J Neurooncol 2010; 104:65-82. [PMID: 21107644 DOI: 10.1007/s11060-010-0472-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/12/2010] [Indexed: 01/05/2023]
Abstract
Medulloblastoma is a highly prevalent pediatric central nervous system malignancy originating in the cerebellum, with a strong propensity for metastatic migration to the leptomeninges, which greatly increases mortality. While numerous investigations are focused on the molecular mechanisms of medulloblastoma histogenesis, the signaling pathways regulating migration are still poorly understood. Medulloblastoma likely arises from aberrant proliferative signaling in cerebellar granule precursor cells during development, and estrogen is a morphogen that promotes medulloblastoma cell migration. It has been previously shown that the calcium/calmodulin activated kinase kinase (CaMKK) pathway promotes cerebellar granule precursor migration and differentiation during normal cerebellar development via CaMKIV. Here we investigate the regulatory role of the CaMKK pathway in migration of the human medulloblastoma DAOY and cerebellar granule cells. Using pharmacological inhibitors and dominant negative approaches, we demonstrate that the CaMKK/CaMKI cascade regulates basal medulloblastoma cell migration via Rac1, in part by activation of the RacGEF, βPIX. Additionally, pharmacological inhibition of CaMKK blocks both the estrogen induced Rac1 activation and medulloblastoma migration. The CaMKK signaling module described here is one of the first reported calcium regulated pathways that modulates medulloblastoma migration. Since tumor dissemination requires cell migration to ectopic sites, this CaMKK pathway may be a putative therapeutic target to limit medulloblastoma metastasis.
Collapse
Affiliation(s)
- Monika A Davare
- Vollum Institute and Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
20
|
Takemoto-Kimura S, Suzuki K, Kamijo S, Ageta-Ishihara N, Fujii H, Okuno H, Bito H. Differential roles for CaM kinases in mediating excitation-morphogenesis coupling during formation and maturation of neuronal circuits. Eur J Neurosci 2010; 32:224-30. [DOI: 10.1111/j.1460-9568.2010.07353.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Sanda M, Ohara N, Kamata A, Hara Y, Tamaki H, Sukegawa J, Yanagisawa T, Fukunaga K, Kondo H, Sakagami H. Vezatin, a potential target for ADP-ribosylation factor 6, regulates the dendritic formation of hippocampal neurons. Neurosci Res 2010; 67:126-36. [PMID: 20188128 DOI: 10.1016/j.neures.2010.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 12/16/2022]
Abstract
ADP-ribosylation factor 6 (ARF6) is a small GTPase that regulates neuronal morphogenesis processes such as axonal, dendritic, and spine formation possibly through the actin cytoskeleton and membrane trafficking. In an attempt to define the molecular mechanisms that regulate neuronal morphogenesis by ARF6, we identified vezatin as a novel binding partner of active GTP-bound ARF6 using yeast two-hybrid screening. Vezatin was able to bind specifically to GTP-ARF6 among the ARF family. In the adult mouse brain, vezatin exhibited widespread gene expression with high levels in the hippocampus and medial habenular nucleus. In hippocampal neurons, vezatin was localized at dendrites as well as cell bodies. Knockdown of endogenous vezatin significantly reduced total dendritic length and arborization of cultured hippocampal neurons, while overexpression of vezatin increased dendritic length. Our present study suggests that vezatin may regulate dendritic formation as a downstream effector of ARF6.
Collapse
Affiliation(s)
- Masashi Sanda
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara 228-8555, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Posttranscriptional regulation is an important control mechanism governing gene expression in neurons. We recently demonstrated that VCX-A, a protein implicated in X-linked mental retardation, is an RNA-binding protein that specifically binds the 5' end of capped mRNAs to prevent their decapping and decay. Previously, expression of VCX-A was reported to be testes restricted. Consistent with a role in cognitive function, we demonstrate that VCX-A is ubiquitously expressed in human tissues including the brain. Moreover, retinoic acid-induced differentiation of human SH-SY5Y neuroblastoma cells promoted the accumulation of VCX-A in distinct cytoplasmic foci within neurites that colocalize with staufen1-containing RNA granules, suggesting a role in translational suppression and/or mRNA transport. Exogenous expression of VCX-A in rat primary hippocampal neurons, which normally do not express the primate-restricted VCX proteins, promoted neurite arborization, and shRNA-directed knockdown of the VCX genes in SH-SY5Y cells resulted in a reduction of both primary and secondary neurite projections upon differentiation. We propose that the cap-binding property of VCX-A reflects a role of this protein in mRNA translational regulation. In support of this hypothesized role, we demonstrate that VCX-A can specifically bind a subset of mRNAs involved in neuritogenesis and is also capable of promoting translational silencing. Thus, VCX-A contains the capacity to modulate the stability and translation of a subset of target mRNAs involved in neuronal differentiation and arborization. It is plausible that defects of these functions in the absence of the VCX genes could contribute to a mental retardation phenotype.
Collapse
|
23
|
Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA. Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase Igamma to promote axon formation in hippocampal neurons. J Neurosci 2009; 29:9794-808. [PMID: 19657032 PMCID: PMC2763510 DOI: 10.1523/jneurosci.1544-09.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/20/2009] [Accepted: 06/20/2009] [Indexed: 11/21/2022] Open
Abstract
Functionality of neurons is dependent on their compartmentalized polarization of dendrites and an axon. The rapid and selective outgrowth of one neurite, relative to the others, to form the axon is critical in initiating neuronal polarity. Axonogenesis is regulated in part by an optimal intracellular calcium concentration. Our investigation of Ca(2+)-signaling pathways involved in axon formation using cultured hippocampal neurons demonstrates a role for Ca(2+)/calmodulin kinase kinase (CaMKK) and its downstream target Ca(2+)/calmodulin kinase I (CaMKI). Expression of constitutively active CaMKI induced formation of multiple axons, whereas blocking CaMKK or CaMKI activity with pharmacological, dominant-negative, or short hairpin RNA (shRNA) methods significantly inhibited axon formation. CaMKK signals via the gamma-isoform of CaMKI as shRNA to CaMKIgamma, but not the other CaMKI isoforms, inhibited axon formation. Furthermore, overexpression of wild-type CaMKIgamma, but not a mutant incapable of membrane association, accelerated the rate of axon formation. Pharmacological or small interfering RNA inhibition of transient receptor potential canonical 5 (TRPC5) channels, which are present in developing axonal growth cones, suppressed CaMKK-mediated activation of CaMKIgamma as well as axon formation. We demonstrate using biochemical fractionation and immunocytochemistry that CaMKIgamma and TRPC5 colocalize to lipid rafts. These results are consistent with a model in which highly localized calcium influx through the TRPC5 channels activates CaMKK and CaMKIgamma, which subsequently promote axon formation.
Collapse
Affiliation(s)
| | | | - Takeo Saneyoshi
- National Institute of Advanced Industrial Science and Technology, Biological Information Research Center, Aomi, Tokyo 135-0064, Japan, and
| | | | - Stefanie Kaech
- Jungers Center, Oregon Health & Science University, Portland, Oregon 97223
| | - Gary Banker
- Jungers Center, Oregon Health & Science University, Portland, Oregon 97223
| | | | - Gary A. Wayman
- Department of Veterinary Comparative Anatomy, Physiology and Pharmacology, Washington State University, Pullman, Washington 99163
| |
Collapse
|
24
|
Pedersen ME, Fortunati D, Nielsen M, Brorson SH, Lekva T, Nissen-Meyer LSH, Gautvik VT, Shahdadfar A, Gautvik KM, Jemtland R. Calmodulin-dependent kinase 1beta is expressed in the epiphyseal growth plate and regulates proliferation of mouse calvarial osteoblasts in vitro. Bone 2008; 43:700-7. [PMID: 18620088 DOI: 10.1016/j.bone.2008.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/08/2008] [Accepted: 06/02/2008] [Indexed: 11/20/2022]
Abstract
The Ca(2+)/Calmodulin-dependent protein kinase (CaMK) family is activated in response to elevation of intracellular Ca(2+), and includes CaMK1 (as well as CaMK2 and CaMK4), which exists as different isoforms (alpha, beta, gamma and delta). CaMK1 is present in several cell types and may be involved in various cellular processes, but its role in bone is unknown. In situ hybridization was used to determine the spatial and temporal expression of CaMK1beta during endochondral bone development in mouse embryos and newborn pups. The cellular and subcellular distribution of CaMK1 was assessed by quantitative immunogold electron microscopy (EM). The role of CaMK1beta in mouse calvarial osteoblasts was investigated by using small interfering RNA (siRNA) to silence its expression, while in parallel monitoring cell proliferation and levels of skeletogenic transcripts. cRNA in situ hybridization and EM studies show that CaMK1beta is mainly located in developing long bones and vertebrae (from ED14.5 until day 10 after birth), with highest expression in epiphyseal growth plate hypertrophic chondrocytes. By RT-PCR, we show that CaMK1beta2 (but not beta1) is expressed in mouse hind limbs (in vivo) and mouse calvarial osteoblasts (in vitro), and also in primary human articular chondrocyte cultures. Silencing of CaMK1beta in mouse calvarial osteoblasts by siRNA significantly decreases osteoblast proliferation and c-Fos gene expression (approx. 50%), without affecting skeletogenic markers for more differentiated osteoblasts (i.e. Cbfa1/Runx2, Osterix (Osx), Osteocalcin (Oc), Alkaline phosphatase (Alp) and Osteopontin (Opn)). These results identify CaMK1beta as a novel regulator of osteoblast proliferation, via mechanisms that may at least in part involve c-Fos, thus implicating CaMK1beta in the regulation of bone and cartilage development.
Collapse
Affiliation(s)
- Mona E Pedersen
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kamata A, Sakagami H, Tokumitsu H, Sanda M, Owada Y, Fukunaga K, Kondo H. Distinct developmental expression of two isoforms of Ca2+/calmodulin-dependent protein kinase kinases and their involvement in hippocampal dendritic formation. Neurosci Lett 2007; 423:143-8. [PMID: 17669591 DOI: 10.1016/j.neulet.2007.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 06/24/2007] [Accepted: 07/02/2007] [Indexed: 11/28/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase kinases (CaMKKs) are upstream protein kinases that phosphorylate and activate CaMKI and CaMKIV, both of which are involved in a variety of neuronal functions. Here, we first demonstrated that the two isoforms of CaMKK were differentially expressed during neural development by in situ hybridization. We also demonstrated that both dominant negative and pharmacological interference with CaMKK inhibitor, STO-609 resulted in a significant decrease in the number of primary dendrites of cultured hippocampal neurons. Our present findings provide the detailed anatomical information on the developmental expression of CaMKKs and the functional involvement of CaMKK in the formation of primary dendrites.
Collapse
Affiliation(s)
- Akifumi Kamata
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|