1
|
Kargar HMP, Noshiri H. Protective effects of alpha-lipoic acid on anxiety-like behavior, memory and prevention of hippocampal oxidative stress in methamphetamine-treated rats. Psychopharmacology (Berl) 2024; 241:315-326. [PMID: 37882813 DOI: 10.1007/s00213-023-06487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
RATIONALE Alpha-lipoic acid is an essential cofactor for aerobic metabolism and acts as a potent antioxidant in the body. It has been shown that acute exposure to methamphetamine induces oxidative stress, which is responsible for severe cognitive deficits in animals. The hippocampus plays a crucial role in the processing of memory and anxiety-like behavior. OBJECTIVES In this study, preventive effect of the alpha-lipoic acid on memory impairment in methamphetamine-induced neurotoxicity was investigated. METHODS Wistar male rats (200-220 g) were allocated to five groups (seven rats in each group): (1) saline + saline, (2) saline + vehicle (sunflower oil as alpha-lipoic acid solvent), (3) methamphetamine + vehicle, (4) methamphetamine + alpha-lipoic acid 10 mg/kg, and (5) methamphetamine + alpha-lipoic acid 40 mg/kg. Rats received intraperitoneal methamphetamine repeatedly (2 × 20 mg/kg, 2 h interval). Alpha-lipoic acid was injected 30 min, 24 h, and 48 h after the last injection of methamphetamine. The passive avoidance test and open field were used for evaluation of memory retrieval and anxiety, respectively. After behavioral test, rats were anesthetized, their brains were extracted, and after preparing hippocampal homogenates, malondialdehyde (MDA) level, catalase, and superoxide dismutase (SOD) activities were evaluated. RESULTS Statistical analysis showed that injection of saline or sunflower oil had no significant effect on anxiety, memory, or oxidative stress markers. Methamphetamine induced memory impairment, increased anxiety-like behavior and MDA level, but it reduced catalase and SOD activity. Treatment with alpha-lipoic acid decreased MDA, increased catalase and SOD activity, and also prevented memory impairment and anxiety-like behavior. Our results showed that alpha-lipoic acid protected the hippocampus from oxidative stress by elevating SOD and CAT activities and reduced memory impairment following acute methamphetamine injection. These findings suggest that alpha-lipoic acid may have a protective effect against the adverse effects of methamphetamine exposure on the hippocampus. Therefore, the current data indicated that ALA can reduce oxidative stress predominantly by its antioxidant property.
Collapse
Affiliation(s)
- Hossein Mohammad Pour Kargar
- Department of Biology, Islamic Azad University, Damghan, Iran.
- Faculty of Pharmacy, Islamic Azad University, Damghan Branch, Damghan, Iran.
| | - Hamid Noshiri
- Department of Biology, Islamic Azad University, Damghan, Iran
| |
Collapse
|
2
|
Dysregulation of iron homeostasis and methamphetamine reward behaviors in Clk1-deficient mice. Acta Pharmacol Sin 2022; 43:1686-1698. [PMID: 34811513 PMCID: PMC9253021 DOI: 10.1038/s41401-021-00806-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022]
Abstract
Chronic administration of methamphetamine (METH) leads to physical and psychological dependence. It is generally accepted that METH exerts rewarding effects via competitive inhibition of the dopamine transporter (DAT), but the molecular mechanism of METH addiction remains largely unknown. Accumulating evidence shows that mitochondrial function is important in regulation of drug addiction. In this study, we investigated the role of Clk1, an essential mitochondrial hydroxylase for ubiquinone (UQ), in METH reward effects. We showed that Clk1+/- mutation significantly suppressed METH-induced conditioned place preference (CPP), accompanied by increased expression of DAT in plasma membrane of striatum and hippocampus due to Clk1 deficiency-induced inhibition of DAT degradation without influencing de novo synthesis of DAT. Notably, significantly decreased iron content in striatum and hippocampus was evident in both Clk1+/- mutant mice and PC12 cells with Clk1 knockdown. The decreased iron content was attributed to increased expression of iron exporter ferroportin 1 (FPN1) that was associated with elevated expression of hypoxia-inducible factor-1α (HIF-1α) in response to Clk1 deficiency both in vivo and in vitro. Furthermore, we showed that iron played a critical role in mediating Clk1 deficiency-induced alteration in DAT expression, presumably via upstream HIF-1α. Taken together, these data demonstrated that HIF-1α-mediated changes in iron homostasis are involved in the Clk1 deficiency-altered METH reward behaviors.
Collapse
|
3
|
Sabrini S, Russell B, Wang G, Lin J, Kirk I, Curley L. Methamphetamine induces neuronal death: Evidence from rodent studies. Neurotoxicology 2019; 77:20-28. [PMID: 31812708 DOI: 10.1016/j.neuro.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/23/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Animal studies have consistently observed neuronal death following methamphetamine (MA) administration, however, these have not been systematically reviewed. This systematic review aims to present the evidence for MA-induced neuronal death in animals (rodents) and identify the regions affected. Locating the brain regions in which neuronal death occurs in animal studies will provide valuable insight into the linkage between MA consumption and the structural alterations observed in the human brain. The data were collected from three databases: Scopus, Ovid, and the Web of Science. Thirty-seven studies met the inclusion criteria and were divided into two sub-groups, i.e. acute and repeated administration. Twenty-six (of 27) acute and ten (of 11) repeated administration studies observed neuronal death. A meta-analysis was not possible due to different variables between studies, i.e. species, treatment regimens, withdrawal periods, methods of quantification, and regions studied. Acute MA treatment induced neuronal death in the frontal cortex, striatum, and substantia nigra, but not in the hippocampus, whereas repeated MA administration led to neuronal loss in the hippocampus, frontal cortex, and striatum. In addition, when animals self-administered the drug, neuronal death was observed at much lower doses than the doses administered by experimenters. There is some overlap in the regions where neuronal death occurred in animals and the identified regions from human studies. For instance, gray matter deficits have been observed in the prefrontal cortex and hippocampus of MA users. The findings presented in this review implicate that not only does MA induce neuronal death in animals, but it also damages the same regions affected in human users. Despite the inter-species differences, animal studies have contributed significantly to addiction research, and are still of great assistance for future research with a more relevant model of compulsive drug use in humans.
Collapse
Affiliation(s)
- Sabrini Sabrini
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand.
| | - Bruce Russell
- School of Pharmacy, University of Otago, New Zealand.
| | - Grace Wang
- Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand.
| | - Joanne Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | - Ian Kirk
- School of Psychology, Faculty of Science, The University of Auckland, New Zealand.
| | - Louise Curley
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand.
| |
Collapse
|
4
|
Krasnova IN, Justinova Z, Cadet JL. Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology (Berl) 2016; 233:1945-62. [PMID: 26873080 PMCID: PMC5627363 DOI: 10.1007/s00213-016-4235-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVES Addiction to psychostimulant methamphetamine (METH) remains a major public health problem in the world. Animal models that use METH self-administration incorporate many features of human drug-taking behavior and are very helpful in elucidating mechanisms underlying METH addiction. These models are also helping to decipher the neurobiological substrates of associated neuropsychiatric complications. This review summarizes our work on the influence of METH self-administration on dopamine systems, transcription and immune responses in the brain. METHODS We used the rat model of METH self-administration with extended access (15 h/day for eight consecutive days) to investigate the effects of voluntary METH intake on the markers of dopamine system integrity and changes in gene expression observed in the brain at 2 h-1 month after cessation of drug exposure. RESULTS Extended access to METH self-administration caused changes in the rat brain that are consistent with clinical findings reported in neuroimaging and postmortem studies of human METH addicts. In addition, gene expression studies using striatal tissues from METH self-administering rats revealed increased expression of genes involved in cAMP response element binding protein (CREB) signaling pathway and in the activation of neuroinflammatory response in the brain. CONCLUSION These data show an association of METH exposure with activation of neuroplastic and neuroinflammatory cascades in the brain. The neuroplastic changes may be involved in promoting METH addiction. Neuroinflammatory processes in the striatum may underlie cognitive deficits, depression, and parkinsonism reported in METH addicts. Therapeutic approaches that include suppression of neuroinflammation may be beneficial to addicted patients.
Collapse
Affiliation(s)
- Irina N. Krasnova
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, USA,Corresponding authors: Irina N. Krasnova, Ph.D., Molecular Neuropsychiatry Research Branch, NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, Tel. 443-74-2658, Fax 443-740-2856, , Jean Lud Cadet, M.D., Molecular Neuropsychiatry Research Branch, NIDA/NIH/DHHS, 251 Bayview Blvd., Baltimore, MD 21224, Tel. 443-740-2656, Fax 443-740-2856,
| | - Zuzana Justinova
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS Baltimore, MD 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA, NIH, DHHS, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
5
|
Mendieta L, Granado N, Aguilera J, Tizabi Y, Moratalla R. Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice. Int J Neuropsychopharmacol 2016; 19:pyw021. [PMID: 26945022 PMCID: PMC5006194 DOI: 10.1093/ijnp/pyw021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/02/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson's disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. METHODS For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. RESULTS We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. CONCLUSIONS Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers.
Collapse
Affiliation(s)
| | | | | | | | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain (Drs Mendieta, Granado, and Moratalla); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain (Drs Mendieta, Granado, Aguilera, and Moratalla); Institut de Neurociències and Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain (Dr Aguilera); Departament of Pharmacology, Howard University College of Medicine, Washington, DC (Dr Tizabi).
| |
Collapse
|
6
|
Tulloch IK, Afanador L, Baker L, Ordonez D, Payne H, Mexhitaj I, Olivares E, Chowdhury A, Angulo JA. Methamphetamine induces low levels of neurogenesis in striatal neuron subpopulations and differential motor performance. Neurotox Res 2014; 26:115-29. [PMID: 24549503 DOI: 10.1007/s12640-014-9456-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/30/2022]
Abstract
Methamphetamine (METH) causes significant loss of some striatal projection and interneurons. Recently, our group reported on the proliferation of new cells 36 h after METH and some of the new cells survive up to 12 weeks (Tulloch et al., Neuroscience 193:162-169, 2011b). We hypothesized that some of these cells will differentiate and express striatal neuronal phenotypes. To test this hypothesis, mice were injected with METH (30 mg/kg) followed by a single BrdU injection (100 mg/kg) 36 h after METH. One week after METH, a population of BrdU-positive cells expressed the neuronal progenitor markers nestin (18 %) and β-III-tubulin (30 %). At 8 weeks, 14 % of the BrdU-positive cells were also positive for the mature neuron marker, NeuN. At 12 weeks, approximately 7 % of the BrdU-positive cells co-labeled with ChAT, PV or DARPP-32. We measured motor coordination on the rotarod and psychomotor activity in the open-field. At 12 weeks, METH-injected mice exhibited delayed motor coordination deficits. In contrast, open-field tests revealed that METH-injected mice compared to saline mice displayed psychomotor deficits at 2.5 days but not at 2 or more weeks after METH. Taken together, these data demonstrate that some of the new cells generated in the striatum differentiate and express the phenotypes of striatal neurons. However, the proportion of these new neurons is low compared to the proportion that died by apoptosis 24 h after the METH injection. More studies are needed to determine if the new neurons are functional.
Collapse
Affiliation(s)
- I K Tulloch
- Department of Biological Sciences, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Effects of exposure to amphetamine derivatives on passive avoidance performance and the central levels of monoamines and their metabolites in mice: correlations between behavior and neurochemistry. Psychopharmacology (Berl) 2012; 220:495-508. [PMID: 21993877 PMCID: PMC3289749 DOI: 10.1007/s00213-011-2504-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 09/07/2011] [Indexed: 10/16/2022]
Abstract
RATIONALE Considerable evidence indicates that amphetamine derivatives can deplete brain monoaminergic neurotransmitters. However, the behavioral and cognitive consequences of neurochemical depletions induced by amphetamines are not well established. OBJECTIVES In this study, mice were exposed to dosing regimens of 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine (METH), or parachloroamphetamine (PCA) known to deplete the monoamine neurotransmitters dopamine and serotonin, and the effects of these dosing regimens on learning and memory were assessed. METHODS In the same animals, we determined deficits in learning and memory via passive avoidance (PA) behavior and changes in tissue content of monoamine neurotransmitters and their primary metabolites in the striatum, frontal cortex, cingulate, hippocampus, and amygdala via ex vivo high-pressure liquid chromatography. RESULTS Exposure to METH and PCA impaired PA performance and resulted in significant depletions of dopamine, serotonin, and their metabolites in several brain regions. Multiple linear regression analysis revealed that the tissue concentration of dopamine in the anterior striatum was the strongest predictor of PA performance, with an additional significant contribution by the tissue concentration of the serotonin metabolite 5-hydroxyindoleacetic acid in the cingulate. In contrast to the effects of METH and PCA, exposure to MDMA did not deplete anterior striatal dopamine levels or cingulate levels of 5-hydroxyindoleacetic acid, and it did not impair PA performance. CONCLUSIONS These studies demonstrate that certain amphetamines impair PA performance in mice and that these impairments may be attributable to specific neurochemical depletions.
Collapse
|
8
|
Pogorelov V, Nomura J, Kim J, Kannan G, Yang C, Taniguchi Y, Abazyan B, Valentine H, Krasnova IN, Kamiya A, Cadet JL, Wong DF, Pletnikov MV. Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology 2012; 62:1242-51. [PMID: 21315744 PMCID: PMC3115479 DOI: 10.1016/j.neuropharm.2011.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/24/2023]
Abstract
Genetic factors involved in neuroplasticity have been implicated in major psychiatric illnesses such as schizophrenia, depression, and substance abuse. Given its extended interactome, variants in the Disrupted-In-Schizophrenia-1 (DISC1) gene could contribute to drug addiction and psychiatric diseases. Thus, we evaluated how dominant-negative mutant DISC1 influenced the neurobehavioral and molecular effects of methamphetamine (METH). Control and mutant DISC1 mice were studied before or after treatment with non-toxic escalating dose (ED) of METH. In naïve mice, we assessed METH-induced conditioned place preference (CPP), dopamine (DA) D2 receptor density and the basal and METH-induced activity of DISC1 partners, AKT and GSK-3β in the ventral striatum. In ED-treated mice, 4 weeks after METH treatment, we evaluated fear conditioning, depression-like responses in forced swim test, and the basal and METH-induced activity of AKT and GSK-3β in the ventral striatum. We found impairment in METH-induced CPP, decreased DA D2 receptor density and altered METH-induced phosphorylation of AKT and GSK-3β in naïve DISC1 female mice. The ED regimen was not neurotoxic as evidenced by unaltered brain regional monoamine tissue content. Mutant DISC1 significantly delayed METH ED-produced sensitization and affected drug-induced phosphorylation of AKT and GSK-3β in female mice. Our results suggest that perturbations in DISC1 functions in the ventral striatum may impact the molecular mechanisms of reward and sensitization, contributing to comorbidity between drug abuse and major mental diseases.
Collapse
Affiliation(s)
- Vladimir Pogorelov
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jun Nomura
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jongho Kim
- Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Geetha Kannan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Chunxia Yang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yu Taniguchi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Bagrat Abazyan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Heather Valentine
- Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Section of High Resolution Brain PET, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Irina N. Krasnova
- Molecular Neuropsychiatry Branch, NIDA, NIH, DHHS, Baltimore, 21224 MD, USA
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Branch, NIDA, NIH, DHHS, Baltimore, 21224 MD, USA
| | - Dean F. Wong
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Section of High Resolution Brain PET, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Environmenal Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287
| | - Mikhail V. Pletnikov
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
9
|
Adamczyk A, Mejias R, Takamiya K, Yocum J, Krasnova IN, Calderon J, Cadet JL, Huganir RL, Pletnikov MV, Wang T. GluA3-deficiency in mice is associated with increased social and aggressive behavior and elevated dopamine in striatum. Behav Brain Res 2012; 229:265-72. [PMID: 22285418 DOI: 10.1016/j.bbr.2012.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/30/2011] [Accepted: 01/04/2012] [Indexed: 12/19/2022]
Abstract
Glutamate signaling has been implicated in the regulation of social behavior. AMPA-glutamate receptors are assembled from four subunits (GluA1-4) of mainly GluA1/2 and GluA2/3 tetramers that form ion channels of distinct functional properties. Mice lacking GluA1 showed a reduced anxiety and male aggression. To understand the role of GluA3 in modulating social behavior, we investigated GluA3-deficient mice (Gria3-/Y) on C57BL/6J background. Compared to wild type (WT) littermates (n=14), Gria3-/Y mice (n=13) showed an increase in isolation-induced male aggression (p=0.011) in home cage resident-intruder test; an increase in sociability (p=0.01), and increase in male-male social interactions in neutral arena (p=0.005); an increase in peripheral activities in open field test (p=0.037) with normal anxiety levels in elevated plus maze and light-dark box; and minor deficits in motor and balance function in accelerating rotarod test (p=0.016) with normal grip strength. Gria3-/Y mice showed no significant deficit in spatial memory function in Morris-water maze and Y-maze tests, and normal levels of testosterone. Increased dopamine concentrations in stratum (p=0.034) and reduced serotonin turnover in olfactory bulb (p=0.002) were documented in Gria3-/Y mice. These results support a role of GluA3 in the modulation of social behavior through brain dopamine and/or serotonin signaling and different AMPA receptor subunits affect social behavior through distinct mechanisms.
Collapse
Affiliation(s)
- Abby Adamczyk
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, 733 North Broadway BRB 513, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mouse strain- and age-dependent effects of binge methamphetamine on dopaminergic signaling. Neurotoxicology 2011; 32:751-9. [PMID: 21798282 DOI: 10.1016/j.neuro.2011.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/15/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022]
Abstract
We have shown that a single "binge" dose of methamphetamine (Meth) in mice has long-lasting effects on open-field behavior dependent on mouse strain and age. Here we further investigated the impact of genotype and age on tyrosine hydroxylase (TH) loss and dopamine (DA) metabolism due to a high binge dose of Meth (4 × 5 mg/kg × 2 h × 2 days). Administration of high dose Meth or saline (Sal) to adolescent (PND 40) and adult (PND 80) C57BL/6 (B6), DBA/2 (DBA), and 129S6SvEv/Tac (129) mice was followed by a 1mg/kg Meth or Sal (control) challenge 40 days later. Striatal and prefrontal cortex tissues were collected 1h following the challenge. Meth-pretreated adolescent B6 and DBA mice exhibited losses in striatal DA concentrations; DBA adolescents also showed losses in striatal 3,4-dihydroxyphenylacetic acid (DOPAC) and increased DA turnover. Pre-exposed B6 and 129 adults demonstrated significant decreases in striatal DA, DOPAC, and increased DA turnover; DBA adults showed significant losses in striatal DA and increased DA turnover. 129 and DBA adults exhibited increases and decreases, respectively, in prefrontal cortex DA. Adult pretreated B6 mice produced significant losses in striatal TH. The results again show age and genotype dependent differences in Meth-induced DA alterations.
Collapse
|
11
|
Krasnova IN, Ladenheim B, Hodges AB, Volkow ND, Cadet JL. Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain. PLoS One 2011; 6:e19179. [PMID: 21547080 PMCID: PMC3081849 DOI: 10.1371/journal.pone.0019179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/23/2011] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning.
Collapse
Affiliation(s)
- Irina N. Krasnova
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Bethesda, Maryland, United States of America
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Bethesda, Maryland, United States of America
| | - Amber B. Hodges
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Bethesda, Maryland, United States of America
- Department of Psychology, Morgan State University, Baltimore, Maryland, United States of America
| | - Nora D. Volkow
- National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), U.S. Department of Health and Human Services (DHHS), Bethesda, Maryland, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
A speedy recovery: amphetamines and other therapeutics that might impact the recovery from brain injury. Curr Opin Anaesthesiol 2011; 24:144-53. [DOI: 10.1097/aco.0b013e328344587f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Bento AR, Baptista S, Malva JO, Silva AP, Agasse F. Methamphetamine exerts toxic effects on subventricular zone stem/progenitor cells and inhibits neuronal differentiation. Rejuvenation Res 2011; 14:205-14. [PMID: 21453012 DOI: 10.1089/rej.2010.1109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methamphetamine (METH) is a potent and widely consumed psychostimulant drug that causes brain functional and structural abnormalities. However, there is little information regarding METH impact on adult neurogenic niches and, indeed, nothing is known about its consequences on the subventricular zone (SVZ). Thus, this work aims to clarify the effect of METH on SVZ stem/progenitor cells dynamics and neurogenesis. For that purpose, SVZ neurospheres were obtained from early postnatal mice and treated with increasing concentrations of METH (1 μM to 500 μM). Exposure to 100, 250, or 500 μM METH for 24 h triggered cell death both by necrosis and apoptosis, as assessed by propidium iodide uptake, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and quantification of the proapoptotic caspase-3 activity. Furthermore, we showed that METH inhibited SVZ progenitor cells proliferation as it decreased BrdU incorporation. Interestingly, at non-toxic concentrations (1 and 10 μM), METH decreased neuronal differentiation and maturation, which were evaluated by quantification of the number of neuronal nuclei-positive neurons and measurements of phospho-c-Jun-NH(2)-terminal kinase signal in growing axons, respectively. Altogether, our data demonstrate that METH has a negative impact on SVZ stem/progenitor cells, inducing cell death and inhibiting neurogenesis, effects that in vivo may challenge the cell replacement capacities displayed by endogenous populations of brain stem/progenitor cells.
Collapse
Affiliation(s)
- Ana Rita Bento
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
14
|
Good RL, Radcliffe RA. Methamphetamine-induced locomotor changes are dependent on age, dose and genotype. Pharmacol Biochem Behav 2011; 98:101-11. [PMID: 21163294 PMCID: PMC3395365 DOI: 10.1016/j.pbb.2010.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 11/19/2022]
Abstract
Adolescence is a critical age for addiction formation as a large percentage of pathological drug-seeking behaviors manifest during this time. The extent to which the neurotoxic effects of drugs of abuse influence subsequent drug seeking behaviors and impulsivity is an understudied area of research. Methamphetamine (METH) is a widely abused drug that produces locomotor responses ranging from behavioral sensitization to tolerance, both of which are behaviors that may relate to risk of abuse. Here we investigated the effects of age, genotype, METH dose, including a neurotoxic dose, and METH metabolism on open-field activity (OFA) to gain insight into the complex disease of drug abuse. C57Bl/6 (B6), DBA/2 (D2), and 129S6SvEv/Tac (129) mouse strains were administered saline or either a high dose (4×5 mg/kg in 2 h intervals for 2 days) or low dose (2×1 mg/kg in 24 h intervals) METH pretreatment during adolescence (post natal day (PND) 40) or early adulthood (PND 80) followed by behavioral testing with a METH (1 mg/kg) or saline challenge 40 days later. Striatal concentrations of METH and AMPH were also determined. Significant findings include: 1) METH pretreated adolescent B6 mice displayed significant sensitization for horizontal locomotion due to high dose METH pretreatment; 2) METH pretreated B6 adults showed significant tolerance for the vertical activity measure caused by low dose METH pretreatment; 3) METH pretreated adult D2 mice exhibited significant sensitization for vertical activity induced by low dose METH pretreatment, and 4) 129 mice metabolized METH significantly faster than the B6 and D2 mice, but METH pretreatment did not alter metabolism. No significant behavioral responses to either METH pretreatment dose were observed for the D2 adolescent studies or either 129 age group. Our results highlight the importance of the interactions of age, strain and METH dose on locomotor behavioral outcomes.
Collapse
Affiliation(s)
- Renee L. Good
- University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, PO Box 6511, Aurora, CO, 80045, 1+303-724-3364 (phone), 1+303-724-7266 (fax)
| | - Richard A. Radcliffe
- University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, PO Box 6511, Aurora, CO, 80045, 1+303-724-3364 (phone), 1+303-724-7266 (fax)
| |
Collapse
|
15
|
Krasnova IN, Justinova Z, Ladenheim B, Jayanthi S, McCoy MT, Barnes C, Warner JE, Goldberg SR, Cadet JL. Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat. PLoS One 2010; 5:e8790. [PMID: 20098750 PMCID: PMC2808335 DOI: 10.1371/journal.pone.0008790] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/28/2009] [Indexed: 11/20/2022] Open
Abstract
Methamphetamine (meth) is an illicit psychostimulant that is abused throughout the world. Repeated passive injections of the drug given in a single day or over a few days cause significant and long-term depletion of dopamine and serotonin in the mammalian brain. Because meth self-administration may better mimic some aspects of human drug-taking behaviors, we examined to what extent this pattern of drug treatment might also result in damage to monoaminergic systems in the brain. Rats were allowed to intravenously self-administer meth (yoked control rats received vehicle) 15 hours per day for 8 days before being euthanized at either 24 hours or at 7 and 14 days after cessation of drug taking. Meth self-administration by the rats was associated with a progressive escalation of daily drug intake to 14 mg/kg per day. Animals that self-administered meth exhibited dose-dependent decreases in striatal dopamine levels during the period of observation. In addition, there were significant reductions in the levels of striatal dopamine transporter and tyrosine hydroxylase proteins. There were also significant decreases in the levels of dopamine, dopamine transporter, and tyrosine hydroxylase in the cortex. In contrast, meth self-administration caused only transient decreases in norepinephrine and serotonin levels in the two brain regions, with these values returning to normal at seven days after cessation of drug taking. Importantly, meth self-administration was associated with significant dose-dependent increases in glial fibrillary acidic protein in both striatum and cortex, with these changes being of greater magnitude in the striatum. These results suggest that meth self-administration by rats is associated with long-term biochemical changes that are reminiscent of those observed in post-mortem brain tissues of chronic meth abusers.
Collapse
Affiliation(s)
- Irina N. Krasnova
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Zuzana Justinova
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bruce Ladenheim
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Subramaniam Jayanthi
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Michael T. McCoy
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Chanel Barnes
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - John E. Warner
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Steven R. Goldberg
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Jean Lud Cadet
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|