1
|
Sakamoto M, Marumoto M, Haraguchi K, Toyama T, Saito Y, Balogh SJ, Tohyama C, Nakamura M. Assessing the role of selenium in Minamata disease through reanalysis of historical samples. ENVIRONMENT INTERNATIONAL 2025; 195:109242. [PMID: 39740269 DOI: 10.1016/j.envint.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Minamata disease, a severe neurological disorder identified in Japan in 1956, results from methylmercury (MeHg) intoxication in humans due to environmental contamination. Before MeHg was recognized as the cause, selenium (Se) was suspected of being the potential cause owing to elevated Se levels in patients' organs. Subsequent animal studies indicated that Se mitigates MeHg toxicity; however, its role in Minamata disease remains unexplored. We analyzed Hg and Se in historical samples of the industrial wastes (n = 4) on the factory site, sediments (n = 9), and fish/shellfish (n = 16) in Minamata Bay, and organs of patients with Minamata disease (n = 12). All samples showed elevated levels of both Hg and Se, providing the first evidence that Se was also discharged into Minamata Bay, entering the food chain and accumulating at high levels in patient organs. The Hg/Se molar ratio in contaminated shellfish (median > 3.0) indicated exceptionally high MeHg exposure, far exceeding the ordinary level (< 1.0). Patients exhibited significantly increased Se levels in the liver and kidney but lower amounts in the brain. Notably, median Hg/Se molar ratios exceeding 4.0 were observed, particularly in the cerebrum and cerebellum in acute cases, closely mirroring the molar ratios found in seafood. The elevated Hg/Se molar ratio in the brain helps explain the severe neurological damage in patients' central nervous systems, despite higher Hg levels in the liver and kidney compared to the brain. These findings provide important insight into the mechanism of MeHg intoxication and highlight the risks associated with MeHg-contaminated seafood, aiding efforts to protect consumers.
Collapse
Affiliation(s)
- Mineshi Sakamoto
- National Institute for Minamata Disease, Minamata, Kumamoto 867-0008, Japan.
| | - Masumi Marumoto
- National Institute for Minamata Disease, Minamata, Kumamoto 867-0008, Japan
| | - Koichi Haraguchi
- National Institute for Minamata Disease, Minamata, Kumamoto 867-0008, Japan
| | - Takashi Toyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Steven J Balogh
- Metropolitan Council Environmental Services, 2400 Childs Road, St. Paul, MN 55106, USA
| | - Chiharu Tohyama
- University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo 113-8654, Japan
| | - Masaaki Nakamura
- National Institute for Minamata Disease, Minamata, Kumamoto 867-0008, Japan
| |
Collapse
|
2
|
Falligant JM, Hagopian LP, Newland MC. Bouts, Pauses, and Units of Operant Performance: A Primer. Perspect Behav Sci 2024; 47:643-674. [PMID: 39309239 PMCID: PMC11411050 DOI: 10.1007/s40614-024-00419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 09/25/2024] Open
Abstract
Operant behavior typically occurs in bouts and pauses. The microstructural analysis of bouts and pauses reveals important and separable information about the physical characteristics of the operant and the motivation behind it. An analysis of interresponse times (IRTs) often reveals a mixture of two exponential distributions. One corresponds to short IRTs within ongoing response bouts, reflecting motor properties of the operant, and the other corresponds to longer intervals between bouts, reflecting the motivation behind the response. Partitioning responses into bout initiations and within-bout responses via this two-mode framework reveals the mechanisms underlying behavior maintenance and change. This approach is used in the fields of neurotoxicology, behavioral pharmacology, and behavioral neuroscience to disentangle the contribution of motivational and motoric variables to the pattern of operant behavior. In this article, we present a primer aimed at providing essential concepts related to the analysis of response bouts and temporal dynamics of operant performance.
Collapse
Affiliation(s)
- John Michael Falligant
- Kennedy Krieger Institute, Baltimore, MD USA
- Johns Hopkins University School of Medicine, Baltimore, MD USA
- Auburn University, Auburn, AL USA
| | - Louis P. Hagopian
- Kennedy Krieger Institute, Baltimore, MD USA
- Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | |
Collapse
|
3
|
Huertas-Abril PV, Prieto-Álamo MJ, Jurado J, Pérez J, Molina-Hernández V, García-Barrera T, Abril N. Transcriptional and biochemical changes in mouse liver following exposure to a metal/drug cocktail. Attenuating effect of a selenium-enriched diet. Food Chem Toxicol 2024; 191:114845. [PMID: 38945390 DOI: 10.1016/j.fct.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Real-life pollution usually involves simultaneous co-exposure to different chemicals. Metals and drugs are frequently and abundantly released into the environment, where they interact and bioaccumulate. Few studies analyze potential interactions between metals and pharmaceuticals in these mixtures, although their joint effects cannot be inferred from their individual properties. We have previously demonstrated that the mixture (PC) of the metals Cd and Hg, the metalloid As and the pharmaceuticals diclofenac (DCF) and flumequine (FLQ) impairs hepatic proteostasis. To gain a deeper vision of how PC affects mouse liver homeostasis, we evaluated here the effects of PC exposure upon some biochemical and morphometric parameters, and on the transcriptional profiles of selected group of genes. We found that exposure to PC caused oxidative damage that exceeded the antioxidant capacity of cells. The excessive oxidative stress response resulted in an overabundance of reducing equivalents, which hindered the metabolism and transport of metabolites, including cholesterol and bile acids, between organs. These processes have been linked to metabolic and inflammatory disorders, cancer, and neurodegenerative diseases. Therefore, our findings suggest that unintended exposure to mixtures of environmental pollutants may underlie the etiology of many human diseases. Fortunately, we also found that a diet enriched with selenium mitigated the harmful effects of this combination of toxicants.
Collapse
Affiliation(s)
- Paula V Huertas-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain.
| | - María-José Prieto-Álamo
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Juan Jurado
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Tamara García-Barrera
- Centro de Investigación de Recursos Naturales, Salud y Medio Ambiente (RENSMA). Departamento de Química, Facultad de Ciencias Experimentales, Campus El Carmen, Universidad de Huelva, Avda. Fuerzas Armadas, 21007, Huelva, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain.
| |
Collapse
|
4
|
Liang Y, Wang J, Wang T, Li H, Yin C, Liu J, Wei Y, Fan J, Feng S, Zhai S. Moderate selenium mitigates hand grip strength impairment associated with elevated blood cadmium and lead levels in middle-aged and elderly individuals: insights from NHANES 2011-2014. Front Pharmacol 2023; 14:1324583. [PMID: 38161700 PMCID: PMC10757617 DOI: 10.3389/fphar.2023.1324583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Selenium (Se) has been reported to have an antagonistic effect on heavy metals in animals. Nevertheless, there is a lack of epidemiological research examining whether Se can mitigate the adverse effects of cadmium (Cd) and lead (Pb) on hand grip strength (HGS) in middle-aged and elderly individuals. Methods: This study used data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). HGS measurements were conducted by trained examiners with a dynamometer. Concentrations of Se, Cd, and Pb in blood were determined via inductively coupled plasma mass spectrometry. We employed linear regression, restricted cubic splines, and quantile g-computation (qgcomp) to assess individual and combined associations between heavy metals and HGS. The study also explored the potential influence of Se on these associations. Results: In both individual metal and multi-metal models adjusted for confounders, general linear regression showed Se's positive association with HGS, while Cd and Pb inversely related to it. At varying Se-Cd and Se-Pb concentrations, high Se relative to low Se can attenuate Cd and Pb's HGS impact. An inverted U-shaped correlation exists between Se and both maximum and combined HGS, with Se's benefit plateauing beyond approximately 200 μg/L. Stratified analysis by Se quartiles reveals Cd and Pb's adverse HGS effects diminishing as Se levels increase. Qgcomp regression analysis detected Se alleviating HGS damage from combined Cd and Pb exposure. Subsequent subgroup analyses identified the sensitivity of women, the elderly, and those at risk of diabetes to HGS impairment caused by heavy metals, with moderate Se supplementation beneficial in mitigating this effect. In the population at risk for diabetes, the protective role of Se against heavy metal toxicity-induced HGS reduction is inhibited, suggesting that diabetic individuals should particularly avoid heavy metal-induced handgrip impairment. Conclusion: Blood Cd and Pb levels are negatively correlated with HGS. Se can mitigate this negative impact, but its effectiveness plateaus beyond 200 μg/L. Women, the elderly, and those at risk of diabetes are more vulnerable to HGS damage from heavy metals. While Se supplementation can help, its protective effect is limited in high diabetes risk groups.
Collapse
Affiliation(s)
- Yafeng Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junqi Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyi Wang
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Hangyu Li
- School of Life and Science, Beijing University of Chinese Medicine, Beijing, China
| | - Chaohui Yin
- School of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jialin Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yulong Wei
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Junxing Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shixing Feng
- School of Life and Science, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Centre France Chine de la Médecine Chinoise, Selles sur Cher, France
| | - Shuangqing Zhai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Li B, Liu X, Zhang C, Yu T, Wu T, Zhuo X, Li C, Wang L, Lin K, Ma X, Li X, Zhang H, Ji W, Yang Z. Spatially varying relationships of soil Se concentration and rice Se concentration in Guangxi, China: A geographically weighted regression approach. CHEMOSPHERE 2023; 343:140241. [PMID: 37742768 DOI: 10.1016/j.chemosphere.2023.140241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
In recent years, the biogeochemical behavior and environmental impact of Selenium (Se) on soil-plant systems have received widespread attention, and traditional statistical methods reveal generally positive correlations between rice Se and soil Se. However, that initial positive relationship may have been obscured by local external factors. Using local scale data from the geochemical evaluation of land quality project, this work employed geographically weighted regression (GWR) to examine the spatial variation of rice Se (as the dependent variable) and soil Se (as the independent variable) in Guangxi. Strong and weak correlation coefficients occur between rice Se and soil Se, thereby indicating that their relationships are spatially varying. Guangxi is characterized by significantly positive correlations in most areas, with weak correlations mostly found in the south-western and central-eastern regions. Areas with weak correlation can be divided into two patterns: high soil Se with low rice Se and high rice Se with low soil Se. The unique patterns are correlated with distinct natural factors, particularly the abundance of Fe-rich soils in the carbonate area; by contrast, sandstone areas in central Guangxi may have been affected by anthropogenic activities. To reveal the spatially varying relationships at the local scale, we employed GWR, an effective tool that allowed us to identify the association between environmental variables and influencing factors and explore spatially varying relationships between them. This study breaks through the existing understanding that soil Se is completely positively correlated with rice Se for the first time, and concludes that their correlation is spatially variable, providing an effective approach for the study of complex relationships.
Collapse
Affiliation(s)
- Bo Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Xu Liu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China; Ministry Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Chaosheng Zhang
- International Network for Environment and Health (INEH), School of Geography, Archaeology and Irish Studies & Ryan Institute, University of Galway, Ireland
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing, 100083, PR China; National Research Center for Geoanalysis, Key Laboratory of Ecological Geochemistry, Ministry of Natural Resources, Beijing, 100037, PR China
| | - Tiansheng Wu
- Guangxi Institute of Geological Survey, Nanning, 530023, PR China
| | - Xiaoxiong Zhuo
- Guangxi Institute of Geological Survey, Nanning, 530023, PR China
| | - Cheng Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Lei Wang
- Guangxi Institute of Geological Survey, Nanning, 530023, PR China
| | - Kun Lin
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Xudong Ma
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Xuezhen Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Husheng Zhang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Wenbing Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China; National Research Center for Geoanalysis, Key Laboratory of Ecological Geochemistry, Ministry of Natural Resources, Beijing, 100037, PR China.
| |
Collapse
|
6
|
Qin X, Song L, Fan G, Liu Q, Wu M, Bi J, Fang Q, Wan Z, Lv Y, Wang Y. Sex-specific associations of single metal and metal mixture with handgrip strength: a cross-sectional study among Chinese adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66585-66597. [PMID: 37097571 DOI: 10.1007/s11356-023-26926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Metallic elements are ubiquitous in the natural environment and always collaborate to affect human health. The relationship of handgrip strength, a marker of functional ability or disability, with metal co-exposure remains vague. In this study, we aimed to investigate the effect of metal co-exposure on sex-specific handgrip strength. A total of 3594 participants (2296 men and 1298 women) aged 21 to 79 years recruited from Tongji Hospital were included in the present study. Urinary concentrations of 21 metals were measured by inductively coupled plasma mass spectrometer (ICP-MS). We used linear regression, restricted cubic spline (RCS) model, and weighted quantile sum (WQS) regression to evaluate the association of single metal as well as metal mixture with handgrip strength. After adjusting for important confounding factors, the results of linear regression showed that vanadium (V), zinc (Zn), arsenic (As), rubidium (Rb), cadmium (Cd), thallium (Tl), and uranium (U) were adversely associated with handgrip strength in men. The results of RCS showed a non-linear association between selenium (Se), silver (Ag), and nickel (Ni) with handgrip strength in women. The results of WQS regression revealed that metal co-exposure was inversely related to handgrip strength for men (β = -0.65, 95% CI: -0.98, -0.32). Cd was the critical metal in men (weighted 0.33). In conclusion, co-exposure to a higher level of metals is associated with lower handgrip strength, especially among men, and Cd may contribute most to the conjunct risk.
Collapse
Affiliation(s)
- Xiya Qin
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, HangKong Road 13, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Taylor S, Terkildsen M, McQuilty R, Lee D, Wing-Simpson A, Gray R. Non-essential heavy metals and protective effects of selenium against mercury toxicity in endangered Australian sea lion (Neophoca cinerea) pups with hookworm disease. ENVIRONMENT INTERNATIONAL 2022; 169:107521. [PMID: 36148712 DOI: 10.1016/j.envint.2022.107521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/06/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The endangered Australian sea lion, Neophoca cinerea, faces ongoing population decline. Identification of key threats to N. cinerea population recovery, including disease and pollutants, is an objective of the species' recovery plan. Previous studies have identified Uncinaria sanguinis, an intestinal nematode, as a significant cause of disease and mortality in N. cinerea pups. Given the impact of heavy metals on the immune response, investigation of these pollutants is critical. To this end, the concentrations of arsenic (As), total mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb) and selenium (Se) were determined in blood collected from N. cinerea pups sampled during the 2017/18, 2019 and 2020/21 breeding seasons at Seal Bay Conservation Park, South Australia. Significant differences (p < 0.05) in Hg, As, Cr, and Se concentrations and molar ratio of Se:Hg were seen between breeding seasons. Pup age, maternal parity and inter-individual foraging behaviour were considered factors driving these differences. The concentrations of Hg (357, 198 and 241 µg/L) and As (225, 834 and 608 µg/L) were high in 2017/18, 2019 and 2020/21 respectively with Hg concentrations in the blood of N. cinerea pups above toxicological thresholds reported for marine mammals. The concentration of Se (1332, 647, 763 µg/L) and molar ratio of Se:Hg (9.47, 7.98 and 6.82) were low compared to other pinniped pups, indicating potential vulnerability of pups to the toxic effects of Hg. Significant (p < 0.05) negative associations for Pb and Cd with several red blood cell parameters suggest they could be exacerbating the anaemia caused by hookworm disease. Temporal (age-related) changes in element concentrations were also seen, such that pup age needs to be considered when interpreting bioaccumulation patterns. Further investigation of the role of elevated heavy metal concentrations on N. cinerea pup health, disease and development is recommended, particularly with respect to immunological impacts.
Collapse
Affiliation(s)
- Shannon Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Robert McQuilty
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - David Lee
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - Aileen Wing-Simpson
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, Sydney 2050, Australia
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
8
|
Kendricks DR, Bhattacharya S, Reed MN, Newland MC. Impacts of Neonatal Methylmercury on Behavioral Flexibility and Learning in Spatial Discrimination Reversal and Visual Signal Detection Tasks. Neurotoxicology 2022; 93:9-21. [PMID: 36055519 DOI: 10.1016/j.neuro.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Early postnatal development in rodents is sensitive to neurotoxic effects of the environmental contaminant, methylmercury. While juvenile and adolescent exposure also produce long-term impairments in behavior, the outcome of neonatal exposure is less understood. Neural development during the neonatal period in rodents is akin to that seen in humans during the third trimester of pregnancy but methylmercury exposure occurring during the neonatal period has not been modeled, partly because breast milk is a poor source of bioavailable methylmercury. To examine this developmental period, male Long-Evans rats were exposed to 0, 80, or 350µg/kg/day methylmercuric chloride from postnatal days 1 to 10, the rodent neonatal period. As adults, behavioral flexibility, attention, memory, and expression of the dopamine transporter in these rats was assessed. Rats exhibited changes in behavioral flexibility assessed in a spatial discrimination reversal procedure. Those rats exposed to the highest dose of methylmercury displayed subtly altered patterns of perseveration compared to control animals. During acquisition of the attention/memory procedure, rats exposed to this dose also had slower acquisition, and achieved lower overall accuracy during training, compared to controls despite neither attention nor memory being affected once the task was acquired. Finally, dopamine transporter expression in the striatum, prefrontal cortex, and hippocampus was unchanged in these adult rats. The results of this study replicate the trend of findings seen with exposure during gestation or during adolescence.
Collapse
Affiliation(s)
- Dalisa R Kendricks
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Subhrajit Bhattacharya
- Keck Graduate Institute, School of Pharmacy and Health Sciences, Claremont Colleges, Claremont, CA, USA
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA; Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
9
|
Kendricks DR, Boomhower SR, Newland MC. Adolescence as a sensitive period for neurotoxicity: Lifespan developmental effects of methylmercury. Pharmacol Biochem Behav 2022; 217:173389. [PMID: 35452710 DOI: 10.1016/j.pbb.2022.173389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity resulting from the environmental contaminant, methylmercury (MeHg), is a source of concern for many human populations that rely heavily on the consumption of fish and rice as stable ingredients in the diet. The developmental period of exposure is important both to the qualitative effects of MeHg and to the dose required to produce those effects. MeHg exposure during the sensitive prenatal period causes deleterious and long-lasting changes in neurodevelopment at particularly low doses. The effects include a wide host of cognitive and behavioral outcomes expressed in adulthood and sometimes not until aging. However, neurotoxic outcomes of methylmercury when exposure occurs during adolescence are only recently revealing impacts on human populations and animal models. This review examines the current body of work and showcases the sensitivity of adolescence, a period that straddles early development and adulthood, to methylmercury neurotoxicity and the implications such toxicity has in our understanding of methylmercury's effects in human populations and animal models.
Collapse
Affiliation(s)
- Dalisa R Kendricks
- Department of Psychology, Auburn University, Auburn, AL, United States of America.
| | - Steven R Boomhower
- Gradient, Boston, MA, United States of America; Harvard Division of Continuing Education, Harvard University, Cambridge, MA, United States of America
| | | |
Collapse
|
10
|
Pan J, Li X, Wei Y, Ni L, Xu B, Deng Y, Yang T, Liu W. Advances on the Influence of Methylmercury Exposure during Neurodevelopment. Chem Res Toxicol 2022; 35:43-58. [PMID: 34989572 DOI: 10.1021/acs.chemrestox.1c00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury (Hg) is a toxic heavy-metal element, which can be enriched in fauna and flora and transformed into methylmercury (MeHg). MeHg is a widely distributed environmental pollutant that may be harmful to fish-eating populations through enrichment of aquatic food chains. The central nervous system is a primary target of MeHg. Embryos and infants are more sensitive to MeHg, and exposure to MeHg during gestational feeding can significantly impair the homeostasis of offspring, leading to long-term neurodevelopmental defects. At present, MeHg-induced neurodevelopmental toxicity has become a hotspot in the field of neurotoxicology, but its mechanisms are not fully understood. Some evidence point to oxidative damage, excitotoxicity, calcium ion imbalance, mitochondrial dysfunction, epigenetic changes, and other molecular mechanisms that play important roles in MeHg-induced neurodevelopmental toxicity. In this review, advances in the study of neurodevelopmental toxicity of MeHg exposure during pregnancy and the molecular mechanisms of related pathways are summarized, in order to provide more scientific basis for the study of neurodevelopmental toxicity of MeHg.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| |
Collapse
|
11
|
Yang H, Yang X, Ning Z, Kwon SY, Li ML, Tack FMG, Kwon EE, Rinklebe J, Yin R. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126876. [PMID: 34416699 DOI: 10.1016/j.jhazmat.2021.126876] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system. The speciation, transformation, bioavailability as well as the beneficial and hazardous effects of Se in the soil-plant-human system are summarized. Several important aspects in Se in the soil-plant-human system are detailed mentioned, including (1) strategies for biofortification in Se-deficient areas and phytoremediation of soil Se in seleniferous areas; (2) factors affecting Se uptake and transport by plants; (3) metabolic pathways of Se in the human body; (4) the interactions between Se and other trace elements in plant and animals, in particular, the detoxification of heavy metals by Se. Important research hotspots of Se biogeochemistry are outlined, including (1) the coupling of soil microbial activity and the Se biogeochemical cycle; (2) the molecular mechanism of Se metabolic in plants and animals; and (3) the application of Se isotopes as a biogeochemical tracer in research. This review provides up-to-date knowledge and guidelines on Se biogeochemistry research.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guizhou Academy of Tobacco Science, 550081 Guiyang, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Sae Yun Kwon
- Division of Environmental Science & Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang 37673, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, DE 19716 USA
| | - Filip M G Tack
- Ghent University, Department of Green Chemistry and Technology, Ghent, Belgium
| | - Eilhann E Kwon
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Jörg Rinklebe
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
12
|
Peppriell AE, Gunderson JT, Krout IN, Vorojeikina D, Rand MD. Latent effects of early-life methylmercury exposure on motor function in Drosophila. Neurotoxicol Teratol 2021; 88:107037. [PMID: 34656729 DOI: 10.1016/j.ntt.2021.107037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 12/27/2022]
Abstract
The developmental toxicant, methylmercury (MeHg), can elicit motor deficits that last well into adulthood. Recent studies using Drosophila showed that the developing musculature is sensitive to high doses of MeHg, where a larval feeding paradigm resulted in compromised myotendinous junction (MTJ) formation during development, by a mechanism involving the NG2 homologue, kon-tiki (kon). Low-dose exposures to MeHg that do not produce muscle pathology during development, nevertheless result in impaired flight behavior later in adult life. The present study evaluated the potential for relatively low-dose exposure to produce latent adult muscle pathology and motor impairments, as assayed by climbing and flight, as well as to evaluate molecular mechanisms that may contribute to motor deficits. Wildtype larvae were fed 0, 2, 2.5, or 5 μM MeHg laden food until eclosion. The effect of 5 μM MeHg on MTJ-related gene expression during pupal development was assessed via quantitative RT-qPCR analysis. Upon eclosion, adults were transferred to standard food bottles for 4, 11, or 30 days prior to motor testing. Survivorship (%) was determined from a subset of 200 flies per treatment. Average climbing speed (cm/s) was quantified 4-days post-eclosion (PE). Flight ability was assayed 11- or 30-days PE by measuring landing height (cm) of flies dropped into an adhesive-lined vertical column. In parallel, total body mercury was measured to estimate the influence of residual MeHg at the time of motor testing. Muscle morphology was assessed using immuno-fluorescence microscopy. Exposure to 5uM MeHg significantly reduced climbing speed, and flight ability 4 and 11 - days PE, respectively. While age-related flight deficits were seen in each sex, flight deficits due to MeHg persisted to 30-day PE timepoints exclusively in males. Expression of kon was upregulated across the window of pupal development essential to establishing adult MTJ. However, experimentally restricting the induction of comparable levels of kon to muscle during the same periods did not recapitulate the flight deficits, indicating that muscle-specific induction of kon alone is not sufficient to contribute to latent flight impairments. Adult flight muscle morphology of 11-day PE flies treated with 5 μM MeHg was indistinct from controls, implying muscle structure is not grossly perturbed to impair flight. Collectively, the current data suggest that developmental exposure to 5 μM MeHg reduces flight ability in each sex at 11 day-PE and that latent deficits at 30-day PE are male-specific. It remains to be determined whether the developing MTJ of Drosophila is a sensitive target of MeHg, and whether or not kon acts in conjunction with additional MTJ factors to constitute a MeHg target.
Collapse
Affiliation(s)
- Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; ICF International, Durham, NC, USA.
| | - Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ian N Krout
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
13
|
Adelakun SA, Ogunlade B, Fidelis OP, Ajao AA. Nutritional supplementation of D-Ribose-L-Cysteine suppresses oxidative stress, spermatogenesis and steroidogenesis recovery in rats exposed to mercury chloride: histomorphometry and biochemical evidence. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Spiller HA, Hays HL, Casavant MJ. Rethinking treatment of mercury poisoning: the roles of selenium, acetylcysteine, and thiol chelators in the treatment of mercury poisoning: a narrative review. TOXICOLOGY COMMUNICATIONS 2021. [DOI: 10.1080/24734306.2020.1870077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Henry A. Spiller
- Central Ohio Poison Center, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Hannah L. Hays
- Central Ohio Poison Center, Nationwide Children’s Hospital, Columbus, OH, USA
- Departments of Emergency Medicine and Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marcel J. Casavant
- Central Ohio Poison Center, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
15
|
Shinoda Y, Yamada Y, Yoshida E, Takahashi T, Tsuneoka Y, Eto K, Kaji T, Fujiwara Y. Hypoalgesia and recovery in methylmercury-exposed rats. J Toxicol Sci 2021; 46:303-309. [PMID: 34078837 DOI: 10.2131/jts.46.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methylmercury (MeHg), the causal substrate in Minamata disease, can lead to severe and chronic neurological disorders. The main symptom of Minamata disease is sensory impairment in the four extremities; however, the sensitivity of individual sensory modalities to MeHg has not been investigated extensively. In the present study, we performed stimulus-response behavioral experiments in MeHg-exposed rats to compare the sensitivities to pain, heat, cold, and mechanical sensations. MeHg (6.7 mg/kg/day) was orally administered to 9-week-old Wistar rats for 5 days and discontinued for 2 days, then administered daily for another 5 days. The four behavioral experiments were performed daily on each rat from the beginning of MeHg treatment for 68 days. The pain sensation decreased significantly from day 11 onwards, but recovered to control levels on day 48. Other sensory modalities were not affected by MeHg exposure. These findings suggest that the pain sensation is the sensory modality most susceptive to MeHg toxicity and that this sensitivity is reversible following discontinuation of the exposure.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yuta Yamada
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Eiko Yoshida
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Tsutomu Takahashi
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yayoi Tsuneoka
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Komyo Eto
- Health and Nursing Facilities for the Aged, Jushindai, Shinwakai
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
16
|
Abstract
Aging is an inevitable biological phenomenon displayed by single cells and organs to entire organismal systems. Aging as a biological process is characterized as a progressive decline in intrinsic biological function. Understanding the causative mechanisms of aging has always captured the imagination of researchers since time immemorial. Although both biological and chronological aging are well defined and studied in terms of genetic, epigenetic, and lifestyle predispositions, the hallmarks of aging in terms of small molecules (i.e., endogenous metabolites to chemical exposures) are limited to obscure. On top of the endogenous metabolites leading to the onset and progression of healthy aging, human beings are constantly exposed to a natural and anthropogenic "chemical" environment round the clock, from conception till death, affecting one's physiology, health and well-being, and disease predisposition. The research community has started gaining sizeable insights into deciphering the aging factors such as immunosenescence, nutrition, frailty, inflamm-aging, and diseases till date, without much input from their interaction with exogenous chemical exposures. The "exposome" around us, mostly, accelerates the process of aging by affecting the internal biological pathways and signaling mechanisms that result in the deterioration of human health. However, the entirety of exposome on human aging is far from established. This review intends to catalog the known and established associations of the exposome from past studies focusing on aging in humans and other model organisms. Further discussed are the current technologies and informatics tools that enable the study of aging exposotypes, and thus, provide a window of opportunities and challenges to study the "aging exposome" in granular details.
Collapse
|
17
|
Sakamoto M, Kakita A, Sakai K, Kameo S, Yamamoto M, Nakamura M. Methylmercury exposure during the vulnerable window of the cerebrum in postnatal developing rats. ENVIRONMENTAL RESEARCH 2020; 188:109776. [PMID: 32592939 DOI: 10.1016/j.envres.2020.109776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The developing brain is known to be sensitive to the toxic effects of methylmercury (MeHg). The effects of toxic levels of MeHg exposure during the most seemingly vulnerable window of the cerebrum are not well studied. In this study, we aimed to examine the specific effects of toxic levels of MeHg on neurobehavior, neurodegeneration, and selenoenzyme activity in the cerebrum of infant rats. Male Wistar rats (n = 8/group) were orally treated with MeHg at an acute toxic dose (8 mg Hg/kg/day) for 10 consecutive days starting on postnatal day 14 (P14). The MeHg-exposed rats showed a significant reduction in body weight after day 8 and severe neurological symptoms similar to dystonia on day 12 (P25). Motor coordination deficits determined using the rotarod performance test and short-term memory impairment determined using the Y-maze task were observed in the MeHg-exposed rats on day 11 (P24). The MeHg-exposed rats sacrificed on day 12 showed severe cerebral neuronal degeneration, reactive astrocytosis, and TUNEL-positive apoptotic nuclei, with the cerebral Hg concentration of 15.0 ± 1.6 μg/g. Furthermore, the activities of glutathione peroxidase and thioredoxin reductase in the cerebrum in MeHg-exposed rats were lower than those in control. These results indicate that MeHg exposure to infant rats will be useful to predict the effects of MeHg at the cerebral growth spurt in humans.
Collapse
Affiliation(s)
| | - Akiyoshi Kakita
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuo Sakai
- Japan Institute for the Control of Aging, Nikken SEIL Co., Ltd., Japan
| | - Satomi Kameo
- Department of Public Health, Graduate School of Medicine, Gunma University, Japan; Department of Nutrition, Koshien University, Hyogo, Japan
| | | | | |
Collapse
|
18
|
Cai Z, Zhang J, Li H. Selenium, aging and aging-related diseases. Aging Clin Exp Res 2019; 31:1035-1047. [PMID: 30511318 DOI: 10.1007/s40520-018-1086-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023]
Abstract
Selenium is an essential trace element in the human body and plays an important role in the body via selenoprotein, which contains selenium. Selenoproteins (glutathione peroxidase, thioredoxin reductase, methionine sulfoxide reductase1 and endoplasmic reticulum-selenoproteins, etc.) have antioxidant effects and are involved in regulating antioxidant activities. Aging is an inevitable process and is always accompanied by aging-related diseases. Reactive oxygen species are important initial factors in aging and aging-related diseases. Selenium contributes to the alleviation of reduced reactive oxygen species-mediated inflammation, reduced DNA damage and prolonged telomere length and thereby plays roles in fighting aging and preventing aging-related diseases. In the elderly, aging-related diseases include neuropsychiatric diseases, tumors, cardiovascular diseases, and skin aging, among others. Selenium supplementation is an important strategy for anti-aging and the prevention of aging-related diseases and is of great significance for the elderly. However, with the accumulation of related research, selenium supplementation does not necessarily contribute to the prevention of aging and aging-related diseases. It is believed that a low level of selenium is beneficial to the human body. Thus, the effect of selenium on human aging and aging-related diseases is still controversial. This paper reviews the research progress and objective role of selenium in aging and aging-related diseases.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
19
|
Boomhower SR, Newland MC. d-Amphetamine and methylmercury exposure during adolescence alters sensitivity to monoamine uptake inhibitors in adult mice. Neurotoxicology 2019; 72:61-73. [PMID: 30769003 PMCID: PMC6527454 DOI: 10.1016/j.neuro.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 02/03/2019] [Indexed: 11/17/2022]
Abstract
Gestational exposure to methylmercury (MeHg), an environmental neurotoxicant, and adolescent administration of d-amphetamine (d-AMP) disrupt dopamine neurotransmission and alter voluntary behavior in adult rodents. We determined the impact of adolescent exposure to MeHg and d-AMP on monoamine neurotransmission in mice by assessing sensitivity to acute d-AMP, desipramine, and clomipramine, drugs that target dopamine, norepinephrine, and serotonin reuptake, respectively. Male C57Bl/6n mice were given 0 (control) or 3 ppm MeHg via drinking water from postnatal day 21 to 60 (murine adolescence). Within each group, mice were given once-daily injections of d-AMP or saline (i.p.) from postnatal day 28 to 42. This exposure regimen produced four treatment groups (n = 10-12/group): control, d-AMP, MeHg, and d-AMP + MeHg. As adults, the mice lever pressed under fixed-ratio schedules of reinforcement (FR 1, 5, 15, 30, 60, and 120). Acute i.p. injections of d-AMP (.3-1.7 mg/kg), desipramine (5.6-30 mg/kg), and clomipramine (5.6-30 mg/kg) were administered in adulthood after a stable behavioral baseline was established. Adolescent MeHg exposure increased saturation rate and minimum response time, an effect that was mitigated by chronic administration of d-AMP in adolescence. In unexposed mice, the three monoamine reuptake inhibitors had separable behavioral effects. Adolescent d-AMP increased sensitivity to acute d-AMP, desipramine, and clomipramine. Adolescent MeHg exposure alone did not alter drug sensitivity. Combined adolescent d-AMP + MeHg exposure enhanced sensitivity to acute d-AMP's and desipramine's effects on minimum response time. Adolescence is a vulnerable developmental period during which exposure to chemicals can have lasting effects on monoamine function and behavior.
Collapse
Affiliation(s)
- Steven R Boomhower
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Bldg 1, Boston, MA, United States.
| | | |
Collapse
|
20
|
Mercury's neurotoxicity is characterized by its disruption of selenium biochemistry. Biochim Biophys Acta Gen Subj 2018; 1862:2405-2416. [DOI: 10.1016/j.bbagen.2018.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023]
|
21
|
Pereira LC, de Paula ES, Pazin M, Carneiro MFH, Grotto D, Barbosa F, Dorta DJ. Niacin prevents mitochondrial oxidative stress caused by sub-chronic exposure to methylmercury. Drug Chem Toxicol 2018; 43:64-70. [PMID: 30192646 DOI: 10.1080/01480545.2018.1497045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Humans and animals can be exposed to different chemical forms of mercury (Hg) in the environment. For example, methylmercury (MeHg)-contaminated fish is part of the basic diet of the riparian population in the Brazilian Amazon Basin, which leads to high total blood and plasma Hg levels in people living therein. Hg induces toxic effects mainly through oxidative stress. Different compounds have been used to prevent the damage caused by MeHg-induced reactive oxygen species (ROS). This study aims to investigate the in vivo effects of sub-chronic exposure to low MeHg levels on the mitochondrial oxidative status and to evaluate the niacin protective effect against MeHg-induced oxidative stress. For this purpose, Male Wistar rats were divided into four groups: control group, treated with drinking water on a daily basis; group exposed to MeHg at a dose of 100 µg/kg/day; group that received niacin at a dose of 50 mg/kg/day in drinking water, with drinking water being administered by gavage; group that received niacin at a dose of 50 mg/kg/day in drinking water as well as MeHg at a dose of 100 µg/kg/day. After 12 weeks, the rats, which weighed 500-550 g, were sacrificed, and their liver mitochondria were isolated by standard differential centrifugation. Sub-chronic exposure to MeHg (100 µg/kg/day for 12 weeks) led to mitochondrial swelling (p < 0.05) and induced ROS overproduction as determined by increased DFCH oxidation (p < 0.05), increased gluthatione oxidation (p < 0.05), and reduced protein thiol content (p < 0.05). In contrast, niacin supplementation inhibited oxidative stress, which counteracted and minimized the toxic MeHg effects on mitochondria.
Collapse
Affiliation(s)
- Lílian Cristina Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.,Faculdade de Ciências Agronômicas, Departamento de Bioprocessos e Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil.,Departamento de Patologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, TOXICAM - Núcleo de Avaliação do Impacto Ambiental sobre a Saúde Humana, Botucatu, São Paulo, Brazil
| | - Eloisa Silva de Paula
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Murilo Pazin
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Maria Fernanda Hornos Carneiro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Denise Grotto
- Laboratório de Pesquisa em Toxicologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade de Sorocaba, Sorocaba, São Paulo, Brasil
| | - Fernando Barbosa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Daniel Junqueira Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.,Instituto Nacional de Tecnologias Alternativas de Detecção, Avaliação Toxicológica e Remoção de Micropututantes e Radioativos (INCT-DATREM), Unesp, Instituto de Química, Araraquara, São Paulo, Brasil
| |
Collapse
|
22
|
Sakamoto M, Chan HM, Domingo JL, Koriyama C, Murata K. Placental transfer and levels of mercury, selenium, vitamin E, and docosahexaenoic acid in maternal and umbilical cord blood. ENVIRONMENT INTERNATIONAL 2018; 111:309-315. [PMID: 29150340 DOI: 10.1016/j.envint.2017.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
Methylmercury (MeHg) is a neurotoxicant known to affect the developing fetal brain as a sensitive target organ. As most mercury (Hg) in blood is MeHg, total mercury (THg) levels in blood are used to estimate the body burden of MeHg. The nutrients selenium (Se), vitamin E, and docosahexaenoic acid (DHA) are protective against MeHg toxicity. We compared maternal and cord blood concentrations of biochemical substances, THg and Se, vitamin E, DHA, and other elements, fatty acids, and amino acids in 54 Japanese mother-newborn pairs to elucidate the fetal risk of MeHg toxicity. Cord blood had higher hematocrit and amino acid values and lower concentrations of lipid components, including fatty acids compared with maternal blood. THg levels in cord blood (7.26ng/g) were 1.9 times higher than levels in maternal blood (3.79ng/g). Se concentrations in cord blood (176ng/g) were slightly higher than concentrations in maternal blood (156ng/g). Levels of vitamin E (0.31mg/dL) and DHA (58.8μg/mL) in cord blood were much lower than levels in maternal blood (1.38mg/dL and 147μg/mL, respectively). The ratios of Se/THg, vitamin E/THg, and DHA/THg in cord blood were lower than ratios in maternal blood. These results suggest that fetuses are at higher risk to MeHg toxicity.
Collapse
Affiliation(s)
- Mineshi Sakamoto
- Environmental Health Section, Department of Environmental Science and Epidemiology, National Institute for Minamata Disease, Minamata, Japan; Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat "Rovira i Virgili", Reus, Spain
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Katsuyuki Murata
- Department of Environmental Health Sciences, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
23
|
Spiller HA. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clin Toxicol (Phila) 2017; 56:313-326. [DOI: 10.1080/15563650.2017.1400555] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Henry A. Spiller
- Central Ohio Poison Center, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Macedo-Júnior SJ, Luiz-Cerutti M, Nascimento DB, Farina M, Soares Santos AR, de Azevedo Maia AH. Methylmercury exposure for 14 days (short-term) produces behavioral and biochemical changes in mouse cerebellum, liver, and serum. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1145-1155. [PMID: 28850017 DOI: 10.1080/15287394.2017.1357324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Various studies on methylmercury (MeHg)-induced toxicity focused on the central nervous system (CNS) as a primary target. However, MeHg-mediated toxicity is related to metallic interaction with electrophilic groups, which are not solely restricted to the CNS, but these reactive groups are present ubiquitously in several systems/organs. The aim of this study was thus to examine MeHg-induced systemic toxicity in mice using a standardized neurotoxicology testing exposure model to measure cerebellar neurotoxicity by determining biochemical and behavioral parameters in the cerebellum. After 2 weeks exposure to MeHg (40 µg/ml; diluted in drinking water; ad libitum), adult male Swiss mice showed a marked motor impairment characteristic of cerebellar toxicity as noted in the following tests: rotarod, beam walking, pole, and hind limb clasping. MeHg treatment resulted in Hg deposition in the cerebellum as well as reduction in cerebellar weight, glutathione peroxidase (GPx) activity, and interleukin (IL)-6 levels. MeHg ingestion increased cerebellar glutathione reductase (GR) activity and brain-derived neurotrophic factor (BDNF) levels. In addition to cerebellar toxicity, MeHg treatment also elevated total and non-high density lipoprotein (non-HDL) cholesterol levels, as well as serum aspartate transaminase (AST) and alanine transaminase (ALT) enzymatic activities, systemic parameters. Increased liver weight and reduced serum urea levels were also noted in MeHg-exposed mice. Taken together, our findings demonstrated that a well-standardized exposure protocol to examine MeHg-induced neurotoxicity also produced systemic toxicity in mice, which was characterized by changes in markers of hepatic function as well as serum lipid homeostasis.
Collapse
Affiliation(s)
- Sérgio José Macedo-Júnior
- a Programa de Pós-Graduação em Farmacologia, Departamento de Farmacologia , Centro de Ciências Biológicas, Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Murilo Luiz-Cerutti
- b Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Denise B Nascimento
- c Departamento de Química, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa Maria , Santa Maria , RS , Brazil
| | - Marcelo Farina
- d Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Adair Roberto Soares Santos
- b Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Alcíbia Helena de Azevedo Maia
- e Departamento de Patologia, Centro de Ciências da Saúde , Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| |
Collapse
|
25
|
Bjørklund G, Aaseth J, Ajsuvakova OP, Nikonorov AA, Skalny AV, Skalnaya MG, Tinkov AA. Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Chemical Speciation of Selenium and Mercury as Determinant of Their Neurotoxicity. ADVANCES IN NEUROBIOLOGY 2017; 18:53-83. [PMID: 28889263 DOI: 10.1007/978-3-319-60189-2_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The antagonism of mercury toxicity by selenium has been well documented. Mercury is a toxic metal, widespread in the environment. The main target organs (kidneys, lungs, or brain) of mercury vary depending on its chemical forms (inorganic or organic). Selenium is a semimetal essential to mammalian life as part of the amino acid selenocysteine, which is required to the synthesis of the selenoproteins. This chapter has the aim of disclosing the role of selenide or hydrogen selenide (Se-2 or HSe-) as central metabolite of selenium and as an important antidote of the electrophilic mercury forms (particularly, Hg2+ and MeHg). Emphasis will be centered on the neurotoxicity of electrophile forms of mercury and selenium. The controversial participation of electrophile mercury and selenium forms in the development of some neurodegenerative disease will be briefly presented. The potential pharmacological use of organoseleno compounds (Ebselen and diphenyl diselenide) in the treatment of mercury poisoning will be considered. The central role of thiol (-SH) and selenol (-SeH) groups as the generic targets of electrophile mercury forms and the need of new in silico tools to guide the future biological researches will be commented.
Collapse
|
27
|
Shen AN, Cummings C, Pope D, Hoffman D, Newland MC. A bout analysis reveals age-related methylmercury neurotoxicity and nimodipine neuroprotection. Behav Brain Res 2016; 311:147-159. [PMID: 27196441 PMCID: PMC4931967 DOI: 10.1016/j.bbr.2016.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 01/29/2023]
Abstract
Age-related deficits in motor and cognitive functioning may be driven by perturbations in calcium (Ca(2+)) homeostasis in nerve terminals, mechanisms that are also thought to mediate the neurotoxicity of methylmercury (MeHg). Calcium-channel blockers (CCBs) protect against MeHg toxicity in adult mice, but little is known about their efficacy in other age groups. Two age groups of BALB/c mice were exposed to 0 or 1.2mg/kg/day MeHg and 0 or 20mg/kg/day of the CCB nimodipine for approximately 8.5 months. Adults began exposure on postnatal day (PND) 72 and the retired breeders on PND 296. High-rate operant behavior was maintained under a percentile schedule, which helped to decouple response rate from reinforcer rate. Responding was analyzed using a log-survivor bout analysis approach that partitioned behavior into high-rate bouts separated by pauses. MeHg-induced mortality did not depend on age but nimodipine neuroprotection was age-dependent, with poorer protection occurring in older mice. Within-bout response rate (a marker of sensorimotor function) was more sensitive to MeHg toxicity than bout-initiation rate (a marker of motivation). Within-bout rate declined almost 2 months prior to overt signs of toxicity for the MeHg-only retired breeders but not adults, suggesting greater delay to toxicity in younger animals. Motor-based decrements also appeared in relatively healthy adult MeHg+NIM animals. Aging appeared to alter the processes underlying Ca(2+) homeostasis thereby diminishing protection by nimodipine, even in mice that have not reached senescence. The study of MeHg exposure presents an experimental model by which to study potential mechanisms of aging.
Collapse
Affiliation(s)
| | - Craig Cummings
- Department of Psychology, University of Alabama, Tuscaloosa, AL 35487, United States
| | - Derek Pope
- Department of Psychology, Auburn University, AL 36849, United States
| | - Daniel Hoffman
- Department of Psychology, Indiana University Southeast, New Albany, IN 47150, United States
| | | |
Collapse
|
28
|
Shen AN, Cummings C, Hoffman D, Pope D, Arnold M, Newland MC. Aging, motor function, and sensitivity to calcium channel blockers: An investigation using chronic methylmercury exposure. Behav Brain Res 2016; 315:103-14. [PMID: 27481695 DOI: 10.1016/j.bbr.2016.07.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 11/17/2022]
Abstract
Methylmercury (MeHg) neurotoxicity is thought to be mediated, in part, by dysregulation of calcium (Ca(2+)) homeostasis, a mechanism that may also slowly and progressively degrade neuronal function during normal aging. Longitudinal studies of MeHg exposure provide a powerful approach to studying neural and behavioral mechanisms by which both MeHg toxicity and aging affect motor function. Wheel-running and rotarod performance were assessed in two age groups of BALB/c mice chronically exposed to 0 or 1.2mg/kg/day MeHg and 0 or 20mg/kg/day nimodipine, a 1,4-dihyrdopyridine L-type calcium channel blocker (CCB), for approximately 8.5 months. Adults began exposure on postnatal day (PND) 72 and retired breeders on PND 296. A log-survivor bout analysis partitioned wheel-running into bouts that identified motor (within-bout rates) and motivational (bout-initiation rates) influences. Retired breeders ran farther, because of a higher bout-initiation rates, but performed more poorly on the rotarod than younger adults, a difference unaffected by nimodipine. MeHg produced relatively age-independent deficits in wheel-running and rotarod performance, whereas nimodipine afforded greater protection to adult mice than to retired breeders. Rotarod performance and within-bout response rate were more sensitive to and more reliable predictors of MeHg toxicity than bout-initiation rate, which was least affected by MeHg exposure. Thus the motivation to run was unimpaired as the ability to do so declined. While chronic MeHg exposure produced functionally similar behavior deficits between age groups, the age-dependent neuroprotection by nimodipine supports the notion that underlying neurobiological systems mediated by Ca(2+) signaling, are differentially affected in older adults.
Collapse
Affiliation(s)
| | - Craig Cummings
- Department of Psychology, University of Alabama, United States
| | - Daniel Hoffman
- Department of Psychology, Indiana University Southeast, United States
| | - Derek Pope
- Virginia Tech Carilion Research Institute's Addiction Recovery Research Center, United States
| | - Megan Arnold
- Department of Psychology, Behavioral Toxicology Lab, Auburn University, United States
| | - M Christopher Newland
- Department of Psychology, Behavioral Toxicology Lab, Auburn University, United States.
| |
Collapse
|
29
|
Hoffman DJ, Newland M. A microstructural analysis distinguishes motor and motivational influences over voluntary running in animals chronically exposed to methylmercury and nimodipine. Neurotoxicology 2016; 54:127-139. [DOI: 10.1016/j.neuro.2016.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
|
30
|
Wyatt LH, Diringer SE, Rogers LA, Hsu-Kim H, Pan WK, Meyer JN. Antagonistic Growth Effects of Mercury and Selenium in Caenorhabditis elegans Are Chemical-Species-Dependent and Do Not Depend on Internal Hg/Se Ratios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3256-64. [PMID: 26938845 PMCID: PMC4964607 DOI: 10.1021/acs.est.5b06044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The relationship between mercury (Hg) and selenium (Se) toxicity is complex, with coexposure reported to reduce, increase, and have no effect on toxicity. Different interactions may be related to chemical compound, but this has not been systematically examined. Our goal was to assess the interactive effects between the two elements on growth in the nematode Caenorhabditis elegans, focusing on inorganic and organic Hg (HgCl2 and MeHgCl) and Se (selenomethionine, sodium selenite, and sodium selenate) compounds. We utilized aqueous Hg/Se dosing molar ratios that were either above, below, or equal to 1 and measured the internal nematode total Hg and Se concentrations for the highest concentrations of each Se compound. Observed interactions were complicated, differed between Se and Hg compounds, and included greater-than-additive, additive, and less-than-additive growth impacts. Biologically significant interactions were only observed when the dosing Se solution concentration was 100-25,000 times greater than the dosing Hg concentration. Mitigation of growth impacts was not predictable on the basis of internal Hg/Se molar ratio; improved growth was observed at some internal Hg/Se molar ratios both above and below 1. These findings suggest that future assessments of the Hg and Se relationship should incorporate chemical compound into the evaluation.
Collapse
Affiliation(s)
- Lauren H. Wyatt
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Sarah E. Diringer
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Laura A. Rogers
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - William K. Pan
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
- Corresponding Author. Phone: 919-613-8109;
| |
Collapse
|
31
|
Solovyev ND. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem 2015; 153:1-12. [PMID: 26398431 DOI: 10.1016/j.jinorgbio.2015.09.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
Multiple biological functions of selenium manifest themselves mainly via 25 selenoproteins that have selenocysteine at their active centre. Selenium is vital for the brain and seems to participate in the pathology of disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and epilepsy. Since selenium was shown to be involved in diverse functions of the central nervous system, such as motor performance, coordination, memory and cognition, a possible role of selenium and selenoproteins in brain signalling pathways may be assumed. The aim of the present review is to analyse possible relations between selenium and neurotransmission. Selenoproteins seem to be of special importance in the development and functioning of GABAergic (GABA, γ-aminobutyric acid) parvalbumin positive interneurons of the cerebral cortex and hippocampus. Dopamine pathway might be also selenium dependent as selenium shows neuroprotection in the nigrostriatal pathway and also exerts toxicity towards dopaminergic neurons under higher concentrations. Recent findings also point to acetylcholine neurotransmission involvement. The role of selenium and selenoproteins in neurotransmission might not only be limited to their antioxidant properties but also to inflammation, influencing protein phosphorylation and ion channels, alteration of calcium homeostasis and brain cholesterol metabolism. Moreover, a direct signalling function was proposed for selenoprotein P through interaction with post-synaptic apoliprotein E receptors 2 (ApoER2).
Collapse
Affiliation(s)
- Nikolay D Solovyev
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russian Federation.
| |
Collapse
|
32
|
Newland MC, Reed MN, Rasmussen E. A hypothesis about how early developmental methylmercury exposure disrupts behavior in adulthood. Behav Processes 2015; 114:41-51. [PMID: 25795099 DOI: 10.1016/j.beproc.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Events that disrupt the early development of the nervous system have lifelong, irreversible behavioral consequences. The environmental contaminant, methylmercury (MeHg), impairs neural development with effects that are manifested well into adulthood and even into aging. Noting the sensitivity of the developing brain to MeHg, the current review advances an argument that one outcome of early MeHg exposure is a distortion in the processing of reinforcing consequences that results in impaired choice, poor inhibition of prepotent responding, and perseveration on discrimination reversals (in the absence of alteration of extradimensional shifts). Neurochemical correlates include increased sensitivity to dopamine agonists and decreased sensitivity to gamma-aminobutyric acid (GABA) agonists. This leads to a hypothesis that the prefrontal cortex or dopamine neurotransmission is especially sensitive to even subtle gestational MeHg exposure and suggests that public health assessments of MeHg based on intellectual performance may underestimate the impact of MeHg in public health. Finally, those interested in modeling neural development may benefit from MeHg as an experimental model.
Collapse
Affiliation(s)
| | - Miranda N Reed
- Department of Psychology, Center for Neuroscience and Center for Basic and Translational Stroke Research, West Virginia University, Morgantown 26506, WV, USA
| | - Erin Rasmussen
- Department of Psychology, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
33
|
Nakamura M, Hachiya N, Murata KY, Nakanishi I, Kondo T, Yasutake A, Miyamoto KI, Ser PH, Omi S, Furusawa H, Watanabe C, Usuki F, Sakamoto M. Methylmercury exposure and neurological outcomes in Taiji residents accustomed to consuming whale meat. ENVIRONMENT INTERNATIONAL 2014; 68:25-32. [PMID: 24685489 DOI: 10.1016/j.envint.2014.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Methylmercury (MeHg) is a major environmental neurotoxicant that causes damage to the central nervous system. In Japan, industrial emission of MeHg has resulted in MeHg intoxication in Minamata and Niigata, the so-called Minamata disease. Humans are exposed to MeHg derived from natural sources, primarily fish and fish predators. Therefore, MeHg continues to be an environmental risk to human health, particularly in susceptible populations that frequently consume substantial amounts of fish or fish predators such as whale. This study aimed to investigate the health effects of MeHg exposure in adults. The subjects were 194 residents (117 males, 77 females; age 20-85 years) who resided in the coastal town of Taiji, the birthplace of traditional whaling in Japan. We analyzed hair for mercury content and performed detailed neurological examinations and dietary surveys. Audiometry, magnetic resonance imaging, and electromyography were performed to diagnose neurological defects. Whole blood mercury and selenium (Se) levels were measured in 23 subjects. The geometric mean of the hair mercury levels was 14.9 μg/g. Twelve subjects revealed hair mercury levels >50 μg/g (NOAEL) set by WHO. Hair mercury levels significantly correlated with daily whale meat intake. These results suggested that residents in Taiji were highly exposed to MeHg by ingesting MeHg-contaminated whale meat. Multivariate regression analysis demonstrated no significant correlations between hair mercury levels and neurological outcomes, whereas some of the findings significantly correlated with age. A significantly positive correlation between whole blood mercury and Se levels was observed and the whole blood mercury/Se molar ratios of all subjects were <1. These findings suggested that sufficient Se intake might be one of causes of the absence of adverse effects of MeHg exposure in this study.
Collapse
Affiliation(s)
- Masaaki Nakamura
- Department of Clinical Medicine, National Institute for Minamata Disease, Minamata, Japan.
| | - Noriyuki Hachiya
- Department of International Affairs and Environmental Sciences, National Institute for Minamata Disease, Minamata, Japan
| | - Ken-ya Murata
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Ichiro Nakanishi
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Tomoyoshi Kondo
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Akira Yasutake
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Japan
| | - Ken-ichiro Miyamoto
- Department of Clinical Medicine, National Institute for Minamata Disease, Minamata, Japan
| | - Ping Han Ser
- Department of Human Ecology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Sanae Omi
- Department of Human Ecology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hana Furusawa
- Department of Human Ecology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chiho Watanabe
- Department of Human Ecology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Fusako Usuki
- Department of Clinical Medicine, National Institute for Minamata Disease, Minamata, Japan
| | - Mineshi Sakamoto
- Department of International Affairs and Environmental Sciences, National Institute for Minamata Disease, Minamata, Japan
| |
Collapse
|
34
|
Li X, Yin D, Li J, Wang R. Protective effects of selenium on mercury induced immunotoxic effects in mice by way of concurrent drinking water exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:104-14. [PMID: 24519443 DOI: 10.1007/s00244-014-0001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/20/2014] [Indexed: 05/24/2023]
Abstract
Selenium (Se) has been recognized as one key to understanding mercury (Hg) exposure risks. To explore the effects of Se on Hg-induced immunotoxicity, female Balb/c mice were exposed to HgCl2- or MeHgCl-contaminated drinking water (0.001, 0.01, and 0.1 mM as Hg) with coexisting Na2SeO3 at different Se/Hg molar ratios (0:1, 1/3:1, 1:1 and 3:1). The potential immunotoxicity induced by Na2SeO3 exposure alone (by way of drinking water) was also determined within a wide range of concentrations. After 14 days' exposure, the effects of Hg or Se on the immune system of Balb/c mice were investigated by determining the proliferation of T and B lymphocytes and the activity of natural killer cells. Hg exposure alone induced a dose-dependent suppression effect, whereas Se provided promotion effects at low exposure level (<0.01 mM) and inhibition effects at high exposure level (>0.03 mM). Under Hg and Se coexposure condition, the effects on immunotoxicity depended on the Hg species, Se/Hg ratio, and exposure concentration. At low Hg concentration (0.001 mM), greater Se ingestion exhibited stronger protective effects on Hg-induced suppression effect mainly by way of decreasing Hg concentrations in target organs. At greater Hg concentration (0.01 and 0.1 mM), immunotoxicity induced by Se (>0.03 mM) became evident, and the protective effects appeared more significant at an Se/Hg molar ratio of 1:1. The complex antagonistic effects between Se and Hg suggested that both Se/Hg molar ratio and concentration should be considered when evaluating the potential health risk of Hg-contaminated biota.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | | | | | | |
Collapse
|
35
|
Bisen-Hersh EB, Farina M, Barbosa F, Rocha JBT, Aschner M. Behavioral effects of developmental methylmercury drinking water exposure in rodents. J Trace Elem Med Biol 2014; 28:117-124. [PMID: 24210169 PMCID: PMC3979511 DOI: 10.1016/j.jtemb.2013.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Early methylmercury (MeHg) exposure can have long-lasting consequences likely arising from impaired developmental processes, the outcome of which has been exposed in several longitudinal studies of affected populations. Given the large number of newborns at an increased risk of learning disabilities associated with in utero MeHg exposure, it is important to study neurobehavioral alterations using ecologically valid and physiologically relevant models. This review highlights the benefits of using the MeHg drinking water exposure paradigm and outlines behavioral outcomes arising from this procedure in rodents. Combination treatments that exacerbate or ameliorate MeHg-induced effects, and possible molecular mechanisms underlying behavioral impairment are also discussed.
Collapse
Affiliation(s)
- Emily B Bisen-Hersh
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fernando Barbosa
- Department of Clinical, Toxicological and Bromatological Analyses, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil
| | - Joao B T Rocha
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, The Kennedy Center for Research on Human Development, and The Center for Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
36
|
Newland MC, Hoffman DJ, Heath JC, Donlin WD. Response inhibition is impaired by developmental methylmercury exposure: acquisition of low-rate lever-pressing. Behav Brain Res 2013; 253:196-205. [PMID: 23721962 DOI: 10.1016/j.bbr.2013.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 04/11/2013] [Accepted: 05/10/2013] [Indexed: 11/18/2022]
Abstract
Developmental methylmercury (MeHg) exposure produces response perseveration on discrimination reversal procedures, disrupts sensitivity to reinforcement, and enhances sensitivity to dopamine agonists - a profile suggesting a deficit in behavioral inhibition. To examine inhibition, we examined MeHg's effects on the acquisition and persistence of low-rate lever-pressing following a history of high-rate responding. Additionally, we examined whether chronic exposure to selenium protects against MeHg's developmental neurotoxicity. Female rats were exposed in utero via maternal exposure to drinking water containing 0ppm, 0.5ppm or 5ppm of Hg as MeHg, producing approximately 0μg/kg/day, 40μg/kg/day, or 400μg/kg/day of Hg. The mothers (during gestation) and the offspring (throughout life) consumed a purified diet containing 0.06ppm or 0.6ppm of Se (as sodium selenite), forming a 2 (lifespan diet)×3 (developmental MeHg) factorial design. Adult offspring lever-pressed under two schedules of reinforcement. A differential reinforcement of high-rate (DRH) schedule imposed rigid response requirements that remained constant through the study. A high-rate percentile schedule (PCNT-H) incorporated a flexible criterion that reinforced short interresponse times using an adjusting criterion that was sensitive to recent performance. After high-rate responding stabilized, the PCNT-H schedule was abruptly inverted by reinforcing long interresponse times. Acquisition of low-rate responding was impaired in the MeHg-exposed rats because of intrusions of high-rate response bursts. DRH response rates did not change. Dietary selenium did not influence MeHg's effects. High-rate operant behavior perseverated, suggesting that gestational MeHg exposure impairs response inhibition - an effect that extends results previously reported using choice procedures or spatial and visual discrimination reversals.
Collapse
|
37
|
Bailey JM, Hutsell BA, Newland MC. Dietary nimodipine delays the onset of methylmercury neurotoxicity in mice. Neurotoxicology 2013; 37:108-17. [PMID: 23583802 DOI: 10.1016/j.neuro.2013.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/22/2013] [Accepted: 03/29/2013] [Indexed: 10/27/2022]
Abstract
Adult-onset methylmercury (MeHg) exposure is thought to result primarily in sensory and motor deficits but effects on learning are poorly understood. One mechanism by which chronic MeHg may exert its neurotoxicity is via sustained disruption of intracellular calcium homeostasis, with a consequent increase of intracellular Ca(2+) ions in vulnerable neurons. A biochemically heterogeneous group of compounds, calcium channel blockers, have been shown in vitro to attenuate MeHg's toxicity. To evaluate the role of calcium antagonism in MeHg toxicity in vivo, adult BALB/c mice were exposed chronically to 0 or 15 ppm of Hg (as MeHg) via drinking water and to nimodipine, a dihydropryidine, L-type Ca(2+) channel blocker with action in the CNS. Nimodipine was administered orally in diets (0, 20, or 200 ppm, producing approximately 0, 2, or 20 mg/kg/day of nimodipine). An incremental repeated acquisition (IRA) of response chains procedure was used to detect MeHg-induced deficits in learning or motoric function and to evaluate possible neuroprotection by nimodipine. MeHg impaired performance on the IRA task, and this was partially or completely blocked by dietary nimodipine, depending on dose. Measures of learning co-varied with measures of motoric function as indicated by overall response rate. Nimodipine delayed or prevented the behavioral toxicity of MeHg exposure as evidenced by IRA performance; effects on learning seemed secondary to response rate decreases.
Collapse
|
38
|
Sakamoto M, Yasutake A, Kakita A, Ryufuku M, Chan HM, Yamamoto M, Oumi S, Kobayashi S, Watanabe C. Selenomethionine protects against neuronal degeneration by methylmercury in the developing rat cerebrum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2862-2868. [PMID: 23398308 DOI: 10.1021/es304226h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Although many experimental studies have shown that selenium protects against methylmercury (MeHg) toxicity at different end points, the direct interactive effects of selenium and MeHg on neurons in the brain remain unknown. Our goal is to confirm the protective effects of selenium against neuronal degeneration induced by MeHg in the developing postnatal rat brain using a postnatal rat model that is suitable for extrapolating the effects of MeHg to the fetal brain of humans. As an exposure source of selenium, we used selenomethionine (SeMet), a food-originated selenium. Wistar rats of postnatal days 14 were orally administered with vehicle (control), MeHg (8 mg Hg/kg/day), SeMet (2 mg Se/kg/day), or MeHg plus SeMet coexposure for 10 consecutive days. Neuronal degeneration and reactive astrocytosis were observed in the cerebral cortex of the MeHg-group but the symptoms were prevented by coexposure to SeMet. These findings serve as a proof that dietary selenium can directly protect neurons against MeHg toxicity in the mammalian brain, especially in the developing cerebrum.
Collapse
Affiliation(s)
- Mineshi Sakamoto
- National Institute for Minamata Disease, Minamata, Kumamoto 867-0008, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
SHIRAI N, YAMASHITA Y, YAMASHITA M. Simultaneous Effects of Green Tea Extracts and Fish Oil on Mercury Accumulation and Antioxidant Defenses in Methylmercury-exposed Adult Mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2013. [DOI: 10.3136/fstr.19.883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Hassauer M, Kaiser E, Schneider K, Schuhmacher‐Wolz U. Collate the literature on toxicity data on mercury in experimental animals and humans (Part I – Data on organic mercury). ACTA ACUST UNITED AC 2012. [DOI: 10.2903/sp.efsa.2012.en-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Hassauer
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Eva Kaiser
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Klaus Schneider
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | | |
Collapse
|
41
|
Mendelev N, Mehta SL, Idris H, Kumari S, Li PA. Selenite stimulates mitochondrial biogenesis signaling and enhances mitochondrial functional performance in murine hippocampal neuronal cells. PLoS One 2012; 7:e47910. [PMID: 23110128 PMCID: PMC3478265 DOI: 10.1371/journal.pone.0047910] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/18/2012] [Indexed: 11/23/2022] Open
Abstract
Supplementation of selenium has been shown to protect cells against free radical mediated cell damage. The objectives of this study are to examine whether supplementation of selenium stimulates mitochondrial biogenesis signaling pathways and whether selenium enhances mitochondrial functional performance. Murine hippocampal neuronal HT22 cells were treated with sodium selenite for 24 hours. Mitochondrial biogenesis markers, mitochondrial respiratory rate and activities of mitochondrial electron transport chain complexes were measured and compared to non-treated cells. The results revealed that treatment of selenium to the HT22 cells elevated the levels of nuclear mitochondrial biogenesis regulators PGC-1α and NRF1, as well as mitochondrial proteins cytochrome c and cytochrome c oxidase IV (COX IV). These effects are associated with phosphorylation of Akt and cAMP response element-binding (CREB). Supplementation of selenium significantly increased mitochondrial respiration and improved the activities of mitochondrial respiratory complexes. We conclude that selenium activates mitochondrial biogenesis signaling pathway and improves mitochondrial function. These effects may be associated with modulation of AKT-CREB pathway.
Collapse
Affiliation(s)
- Natalia Mendelev
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, United States of America
| | - Suresh L. Mehta
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, United States of America
| | - Haza Idris
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, United States of America
| | - Santosh Kumari
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, United States of America
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, United States of America
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- * E-mail:
| |
Collapse
|
42
|
Comparison of neurobehavioral effects of methylmercury exposure in older and younger adult zebrafish (Danio rerio). Neurotoxicology 2012; 33:1212-8. [PMID: 22796261 PMCID: PMC8803049 DOI: 10.1016/j.neuro.2012.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 06/21/2012] [Accepted: 06/29/2012] [Indexed: 12/24/2022]
Abstract
It is widely recognized that the nature and severity of responses to toxic exposure are age-dependent. Using active avoidance conditioning as the behavioral paradigm, the present study examined the effect of short-term methylmercury (MeHg) exposure on two adult age classes, 1- and 2-year-olds to coincide with zebrafish in relatively peak vs. declining health conditions. In Experiment 1, 2-year-old zebrafish were randomly divided into groups and were exposed to no MeHg, 0.15% ethanol (EtOH), 0.01, 0.03, 0.1, or 0.3 μM of MeHg (in 0.15% ethanol) for 2 weeks. The groups were then trained and tested for avoidance responses. The results showed that older zebrafish exposed to no MeHg or EtOH learned and retained avoidance responses. However, 0.01 μM or higher concentrations of MeHg exposure impaired avoidance learning in a dose-dependent manner with 0.3 μM of MeHg exposure producing death during the exposure period or shortly after the exposure but before the avoidance training. In Experiment 2, 1-year-old zebrafish were randomly divided into groups and were exposed to the same concentrations of MeHg used in Experiment 1 for 2 weeks. The groups were then trained and tested for avoidance responses. The results showed that younger zebrafish exposed to no MeHg, EtOH, or 0.01 μM of MeHg learned and retained avoidance responses, while 0.1 or 0.3 μM of MeHg exposure impaired avoidance learning in a dose-dependent manner. The study suggested that MeHg exposure produced learning impairments at a much lower concentration of MeHg exposure and more severely in older adult compared against younger adult zebrafish even after short exposure times.
Collapse
|
43
|
Lemire M, Fillion M, Frenette B, Passos CJS, Guimarães JRD, Barbosa F, Mergler D. Selenium from dietary sources and motor functions in the Brazilian Amazon. Neurotoxicology 2011; 32:944-53. [DOI: 10.1016/j.neuro.2011.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/07/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
|
44
|
Olivero-Verbel J, Caballero-Gallardo K, Marrugo Negrete J. Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia. Biol Trace Elem Res 2011; 144:118-32. [PMID: 21476008 DOI: 10.1007/s12011-011-9046-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/21/2011] [Indexed: 11/27/2022]
Abstract
Mercury (Hg) is a heavy metal that, once in the environment, is bioaccumulated and biomagnified through food chain impacting ecosystems. The aim of this study was to evaluate total Hg (T-Hg) concentrations in individuals along Cauca and Magdalena Rivers in Colombia, where most gold mining activities take place. A total of 1,328 hair samples were collected and analyzed for T-Hg using atomic absorption spectroscopy. T-Hg concentrations ranged from 0.01 to 20.14 μg/g. Greatest levels were detected in La Raya (5.27 ± 0.32 μg/g), Achi (2.44 ± 0.22 μg/g), and Montecristo (2.20 ± 0.20 μg/g), places that are located near gold mines. Concentrations decreased with the distance from main mining areas. Only 0.75% of the individuals had T-Hg levels above 10 μg/g. Men had significantly higher T-Hg levels than women, and correlation analysis revealed moderately weak but significant relationships between T-Hg and weight (R = 0.111, P < 0.001), stature (R = 0.111, P < 0.001), and age (R = 0.073, P = 0.007). However, T-Hg concentrations did not vary according to fish consumption frequency. Subjective health survey showed no Hg-related signs or symptoms within studied sample. However, studies are necessary to detect neurological damage linked to the metal. Changing technologies to Hg-free mining, monitoring, and educational programs are necessary to protect health of people living near Colombian rivers.
Collapse
Affiliation(s)
- Jesús Olivero-Verbel
- Environmental and Computational Chemistry Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia.
| | | | | |
Collapse
|
45
|
Farina M, Aschner M, Rocha JBT. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 2011; 256:405-17. [PMID: 21601588 PMCID: PMC3166649 DOI: 10.1016/j.taap.2011.05.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 12/20/2022]
Abstract
Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically studied agents.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Pediatrics and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - João B. T. Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
46
|
Anan Y, Tanabe S, Ogra Y. Comparison of selenoneine found in marine organisms with selenite in the interaction with mercury compounds in vitro. J Toxicol Sci 2011; 36:725-31. [DOI: 10.2131/jts.36.725] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yasumi Anan
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University
| | - Yasumitsu Ogra
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
- High Technology Research Center, Showa Pharmaceutical University
| |
Collapse
|
47
|
Abstract
This report demonstrated selenite is transported through a monocarboxylate transporter Jen1p in Saccharomyces cerevisiae. Jen1p determined selenite sensitivity and uptake. Selenite had a similar affinity for Jen1p and a similar transport mechanism to the monocarboxylate lactate, which are both proton driven and exhibit reciprocal inhibition. Selenium is a micronutrient in most eukaryotes, including humans, which is well known for having an extremely thin border between beneficial and toxic concentrations. Soluble tetravalent selenite is the predominant environmental form and also the form that is applied in the treatment of human diseases. To acquire this nutrient from low environmental concentrations as well as to avoid toxicity, a well-controlled transport system is required. Here we report that Jen1p, a proton-coupled monocarboxylate transporter in S. cerevisiae, catalyzes high-affinity uptake of selenite. Disruption of JEN1 resulted in selenite resistance, and overexpression resulted in selenite hypersensitivity. Transport assay showed that overexpression of Jen1p enables selenite accumulation in yeast compared with a JEN1 knock out strain, indicating the Jen1p transporter facilitates selenite accumulation inside cells. Selenite uptake by Jen1p had a Km of 0.91 mM, which is comparable to the Km for lactate. Jen1p transported selenite in a proton-dependent manner which resembles the transport mechanism for lactate. In addition, selenite and lactate can inhibit the transport of each other competitively. Therefore, we postulate selenite is a molecular mimic of monocarboxylates which allows selenite to be transported by Jen1p.
Collapse
Affiliation(s)
- Joseph R McDermott
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | | | | |
Collapse
|