1
|
Rodriguez-Hernandez Z, Paredes-Douton A, Galvez-Fernandez M, Grau-Perez M, Sotos-Prieto M, Rentero-Garrido P, Gonzalez-Estecha M, Llorente-Ballesteros MT, Gomez-Ariza JL, Callejon-Leblic B, Fernandez-Navarro P, Laclaustra M, Cenarro A, Civeira F, Glabonjat RA, Monleon D, Pastor-Barriuso R, Moreno-Franco B, Garcia-Barrera T, Tellez-Plaza M. Non-genetic and genetic determinants of serum selenium and selenium species in the Aragon Workers Health Study. Free Radic Biol Med 2025; 233:365-377. [PMID: 40164364 DOI: 10.1016/j.freeradbiomed.2025.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Understanding potential determinants of selenium biomarkers can help to unravel selenium health effects. We evaluated the contribution of non-genetic (sociodemographic and lifestyle) and genetic factors to serum selenium biomarkers and selenium species (quantified as selenium) including selenium in glutathione peroxidase (GPx), selenoprotein P (SeP), selenoalbumin (SeAlb) and total selenometabolites (Se-metabolites) in the Aragon Workers Health Study (AWHS), a predominantly male cohort of car assembly factory workers in Spain. Total serum selenium and selenium species were measured by HPLC/ICP-QQQ-MS in 1624 AWHS participants. Blood and urine selenium, measured by ICP-MS, were available in a subset. A Healthy Lifestyle Score (HLS) included Mediterranean diet, physical activity, smoking, BMI and alcohol intake. Candidate gene and genome-wide discovery analyses (CGA and GDA, respectively) were based on TOPMed imputed SNPs. In sex and age-adjusted models, overall HLS, physical activity, and specific foods intake showed positive associations with serum total selenium, SeAlb and Se-metabolites concentrations. The associations between smoking status and BMI with total serum selenium; age, smoking status, BMI and meat intake with SeAlb; and smoking status with Se-metabolites, were inverse. In the GDA, we identified 20, 24, 21, 26, 16, 20 and 68 independent genetic loci for serum total selenium, GPx, SeP, SeAlb, Se-metabolites, and total blood and urine selenium, respectively, with some overlapping genes also relevant in the CGA. Enrichment analysis pointed to biological pathways including circadian rhythm regulation, immune system processes, signaling and receptor- and transporter-related pathways. The explained variability of selenium markers ranged from 15 % for SeP to 21 % for SeAlb and from 0.2 % for SeP to 3.5 % for SeAlb in environmental determinants-adjusted models with and without the specific selenium biomarker polygenic score, respectively. While the genetic contribution is substantial, selenium status might be influenced by reinforced healthy lifestyle interventions. Follow-up genetic studies to evaluate selenium health consequences are granted.
Collapse
Affiliation(s)
- Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain; Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Anabel Paredes-Douton
- Department of Preventive Medicine and Public Health, Hospital Clínico San Carlos, Madrid, Spain
| | - Marta Galvez-Fernandez
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Preventive Medicine, Public Health and Epidemiology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria Grau-Perez
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Instituto de Investigación Sanitaria Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | - Mercedes Sotos-Prieto
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine, Public Health and Epidemiology, Universidad Autonoma de Madrid, Madrid, Spain; Department of Environmental Health. Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Pilar Rentero-Garrido
- Instituto de Investigación Sanitaria Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | | | | | - Jose L Gomez-Ariza
- Research Center on Health and The Environment (RENSMA), Department of Chemistry "Prof.J.C.Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Belen Callejon-Leblic
- Research Center on Health and The Environment (RENSMA), Department of Chemistry "Prof.J.C.Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Pablo Fernandez-Navarro
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martin Laclaustra
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain; Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Cenarro
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain
| | - Fernando Civeira
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain; Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Daniel Monleon
- Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Roberto Pastor-Barriuso
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Belen Moreno-Franco
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain; Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain
| | - Tamara Garcia-Barrera
- Research Center on Health and The Environment (RENSMA), Department of Chemistry "Prof.J.C.Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Preventive Medicine, Public Health and Epidemiology, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Vinceti M, Urbano T, Filippini T, Bedin R, Simonini C, Sorarù G, Trojsi F, Michalke B, Mandrioli J. Changes in Cerebrospinal Fluid Concentrations of Selenium Species Induced by Tofersen Administration in Subjects with Amyotrophic Lateral Sclerosis Carrying SOD1 Gene Mutations. Biol Trace Elem Res 2025; 203:2355-2364. [PMID: 39017978 PMCID: PMC11920394 DOI: 10.1007/s12011-024-04311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting the brain and spinal cord motor neurons. On 25 April 2023, the drug tofersen, an antisense oligonucleotide, received the US Food and Drug Administration approval for treating ALS in adults carrying mutations of the SOD1 gene. We aimed at assessing whether cerebrospinal fluid concentrations of selenium, an element of both toxicological and nutritional interest possibly involved in disease etiology and progression, are modified by tofersen administration. We determined concentrations of selenium species by anion exchange chromatography hyphenated to inductively coupled plasma-dynamic reaction cell-mass spectrometry and overall selenium by using inductively coupled plasma sector-field mass spectrometry, at baseline and 6 months after active tofersen treatment in ten Italian ALS patients carrying the SOD1 gene mutation. Concentrations of total selenium and many selenium species substantially increased after the intervention, particularly of inorganic (tetravalent and hexavalent) selenium and of the organic species selenomethionine and a compound co-eluting with the selenocystine standard. Overall, these findings suggest that tofersen treatment markedly alters selenium status and probably the redox status within the central nervous system, possibly due to a direct effect on neurons and/or the blood-brain barrier. Further studies are required to investigate the biological and clinical relevance of these findings and how they might relate to the pharmacological effects of the drug and to disease progression.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Teresa Urbano
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Roberta Bedin
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Modena University Hospital, Modena, Italy
| | - Cecilia Simonini
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Modena University Hospital, Modena, Italy
| | - Gianni Sorarù
- Department of Neurosciences, Neuromuscular Center, University of Padua, Padua, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center, Luigi Vanvitelli Campania University, Naples, Italy
- First Division of Neurology, University Hospital, Luigi Vanvitelli Campania University, Naples, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jessica Mandrioli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Modena University Hospital, Modena, Italy
| |
Collapse
|
3
|
Jang DG, Dou JF, Koubek EJ, Teener S, Zhou L, Bakulski KM, Mukherjee B, Batterman SA, Feldman EL, Goutman SA. Multiple metal exposures associate with higher amyotrophic lateral sclerosis risk and mortality independent of genetic risk and correlate to self-reported exposures: a case-control study. J Neurol Neurosurg Psychiatry 2025; 96:329-339. [PMID: 39107037 DOI: 10.1136/jnnp-2024-333978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND The pathogenesis of amyotrophic lateral sclerosis (ALS) involves both genetic and environmental factors. This study investigates associations between metal measures in plasma and urine, ALS risk and survival and exposure sources. METHODS Participants with and without ALS from Michigan provided plasma and urine samples for metal measurement via inductively coupled plasma mass spectrometry. ORs and HRs for each metal were computed using risk and survival models. Environmental risk scores (ERS) were created to evaluate the association between exposure mixtures and ALS risk and survival and exposure source. ALS (ALS-PGS) and metal (metal-PGS) polygenic risk scores were constructed from an independent genome-wide association study and relevant literature-selected single-nucleotide polymorphisms. RESULTS Plasma and urine samples from 454 ALS and 294 control participants were analysed. Elevated levels of individual metals, including copper, selenium and zinc, significantly associated with ALS risk and survival. ERS representing metal mixtures strongly associated with ALS risk (plasma, OR=2.95, CI=2.38-3.62, p<0.001; urine, OR=3.10, CI=2.43-3.97, p<0.001) and poorer ALS survival (plasma, HR=1.37, CI=1.20-1.58, p<0.001; urine, HR=1.44, CI=1.23-1.67, p<0.001). Addition of the ALS-PGS or metal-PGS did not alter the significance of metals with ALS risk and survival. Occupations with high potential of metal exposure associated with elevated ERS. Additionally, occupational and non-occupational metal exposures were associated with measured plasma and urine metals. CONCLUSION Metals in plasma and urine associated with increased ALS risk and reduced survival, independent of genetic risk, and correlated with occupational and non-occupational metal exposures. These data underscore the significance of metal exposure in ALS risk and progression.
Collapse
Affiliation(s)
- Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - John F Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily J Koubek
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel Teener
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Lili Zhou
- Department of Biostatistics, Corewell Health, Royal Oak, Michigan, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Stuart A Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Vinceti M, Mazzoli R, Wise LA, Veneri F, Filippini T. Calling for a comprehensive risk assessment of selenium in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178700. [PMID: 39923476 DOI: 10.1016/j.scitotenv.2025.178700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
In the last two decades, research has elucidated that selenium, a trace element, has both nutritional and toxicological effects on human health, depending on its dose and chemical form. Recent animal, laboratory, and human studies have shown harmful effects of certain selenium species at specific exposure levels, prompting the need to reassess overall exposure to this element, including that occurring through drinking water, a primary source of inorganic selenium. Drinking water selenium standards worldwide are scarce and existing standards are inconsistent, likely because they have been informed by an incomplete and outdated assessment of the scientific evidence. Incorporating all the available human and laboratory evidence into a precautionary regulatory framework indicates that a drinking water limit of around 5 μg/L of selenium is needed to protect human health, i.e. with an uncertainty factor of 2 versus the lowest adverse effect level observed in human studies, and that higher values may pose unacceptable risks to humans. Despite the rarity of such high levels of selenium in underground and potable waters, coal mining and other sources of environmental pollution as well as geological factors may raise drinking water selenium content above a safe threshold, triggering the need to protect consumers, and to face challenging technological issues for selenium removal, currently under active investigation.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America.
| | - Riccardo Mazzoli
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America
| | - Federica Veneri
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Unit of Dentistry and Oral-Maxillo-Facial Surgery, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Modena, Italy; Department of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
5
|
Bai S, Zhang M, Tang S, Li M, Wu R, Wan S, Chen L, Wei X, Feng S. Effects and Impact of Selenium on Human Health, A Review. Molecules 2024; 30:50. [PMID: 39795109 PMCID: PMC11721941 DOI: 10.3390/molecules30010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Selenium (Se) is an essential trace element that is crucial for human health. As a key component of various enzymes and proteins, selenium primarily exerts its biological functions in the form of selenoproteins within the body. Currently, over 30 types of selenoproteins have been identified, with more than 20 of them containing selenocysteine residues. Among these, glutathione peroxidases (GPXs), thioredoxin reductases (TrxRs), and iodothyronine deiodinases (DIOs) have been widely studied. Selenium boasts numerous biological functions, including antioxidant properties, immune system enhancement, thyroid function regulation, anti-cancer effects, cardiovascular protection, reproductive capability improvement, and anti-inflammatory activity. Despite its critical importance to human health, the range between selenium's nutritional and toxic doses is very narrow. Insufficient daily selenium intake can lead to selenium deficiency, while excessive intake carries the risk of selenium toxicity. Therefore, selenium intake must be controlled within a relatively precise range. This article reviews the distribution and intake of selenium, as well as its absorption and metabolism mechanisms in the human body. It also explores the multiple biological functions and mechanisms of selenium in maintaining human health. The aim is to provide new insights and evidence for further elucidating the role of selenium and selenoproteins in health maintenance, as well as for future nutritional guidelines and public health policies.
Collapse
Affiliation(s)
- Song Bai
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Miaohe Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| | - Shouying Tang
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Miao Li
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Rong Wu
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Suran Wan
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Lijun Chen
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Xian Wei
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| | - Shuang Feng
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| |
Collapse
|
6
|
Jiang H, Yang G, Chen J, Yuan S, Wu J, Zhang J, Zhang L, Yuan J, Lin J, Chen J, Yin Y. The correlation between selenium intake and lung function in asthmatic people: a cross-sectional study. Front Nutr 2024; 11:1362119. [PMID: 38826577 PMCID: PMC11141543 DOI: 10.3389/fnut.2024.1362119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Objective This study aimed to examine the correlation between selenium intake and lung function in asthmatic people. Methods A total of 4,541 individuals in the US National Health and Nutrition Examination Survey (NHANES) were included in this study. Multivariate linear regression, variance inflation factor, restricted cubic splines and quantile regression were used to analyze the relationship between Se intake and lung function. We divided selenium intake into four levels based on quartiles: Q1: Se ≤ 76.75 mcg/d; Q2: 76.75-105.1 mcg/d; Q3: 105.1-137.65 mcg/d; and Q4: Se ≥137.65 mcg/d. Results Asthma was negatively associated with the Ratio of Forced Expiratory Volume 1st Second to Forced Vital Capacity (FEV1/FVC) (β = -0.04, 95% CI: -0.06 to -0.02) and FEV1 (β = -215, 95% CI: -340 to -90). Se intake was positively associated with Forced Expiratory Volume 1st Second (FEV1) (β =3.30 95% CI: 2.60 to 4.00) and Forced Vital Capacity (FVC) (β =4.30, 95% CI: 3.50 to 5.10). In asthmatic individuals, the positive effects of Se intake on FVC were enhanced with increasing Se intake, while the positive effects of Se intake on FEV1 varied less dramatically. High Se intake (Q4 level, above 137.65 mcg/d) improved FVC (β = 353, 95% CI: 80 to 626) and FEV1 (β = 543, 95% CI: 118 to 969) in asthmatic patients compared to low Se intake (Q1 level, below 76.75 mcg/d). At the Q2 level (76.75-105.1 mcg/d) and Q4 level (Se ≥137.65 mcg/d) of Se intake, the correlation between FEV1 and asthma disappeared. Conclusion Our research has revealed a positive correlation between selenium intake and lung function in asthma patients and the strength of this positive correlation is related to the amount of selenium intake. We recommend that asthma patients consume 137.65 mcg to 200 mcg of selenium daily to improve pulmonary function while avoiding the adverse effects of selenium on the human body.
Collapse
Affiliation(s)
- Hejun Jiang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guijun Yang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Chen
- Department of Respiratory Medicine, Linyi Maternal and Child Healthcare Hospital, Linyi Branch of Shanghai Children’s Medical Center, Shanghai JiaoTong University School of Medicine, Linyi, Shandong, China
| | - Shuhua Yuan
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinhong Wu
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Yuan
- Medical Department of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric AI Clinical Application and Research Center, Shanghai Children’s Medical Center, Shanghai, China
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
| | - Jilei Lin
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Pediatric AI Clinical Application and Research Center, Shanghai Children’s Medical Center, Shanghai, China
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
| | - Jiande Chen
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Respiratory Medicine, Linyi Maternal and Child Healthcare Hospital, Linyi Branch of Shanghai Children’s Medical Center, Shanghai JiaoTong University School of Medicine, Linyi, Shandong, China
- Pediatric AI Clinical Application and Research Center, Shanghai Children’s Medical Center, Shanghai, China
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), Shanghai, China
- Shanghai Children’s Medical Center Pediatric Medical Complex (Pudong), Shanghai, China
| |
Collapse
|
7
|
Xu D, Dai X, Zhang L, Cai Y, Chen K, Wu J, Dong L, Shen L, Yang J, Zhao J, Zhou Y, Mei Z, Wei W, Zhang Z, Xiong N. Mass spectrometry for biomarkers, disease mechanisms, and drug development in cerebrospinal fluid metabolomics. Trends Analyt Chem 2024; 173:117626. [DOI: 10.1016/j.trac.2024.117626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
8
|
Pinilla-González V, Montecinos-Barrientos B, Martin-Kommer C, Chichiarelli S, Saso L, Rodrigo R. Exploring antioxidant strategies in the pathogenesis of ALS. Open Life Sci 2024; 19:20220842. [PMID: 38585631 PMCID: PMC10997151 DOI: 10.1515/biol-2022-0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system is essential for maintaining homeostasis and controlling the body's physiological functions. However, its biochemical characteristics make it highly vulnerable to oxidative damage, which is a common factor in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). ALS is a leading cause of motor neuron disease, characterized by a rapidly progressing and incurable condition. ALS often results in death from respiratory failure within 3-5 years from the onset of the first symptoms, underscoring the urgent need to address this medical challenge. The aim of this study is to present available data supporting the role of oxidative stress in the mechanisms underlying ALS and to discuss potential antioxidant therapies currently in development. These therapies aim to improve the quality of life and life expectancy for patients affected by this devastating disease.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | | | - Clemente Martin-Kommer
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185Rome, Italy
| | - Ramón Rodrigo
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| |
Collapse
|
9
|
Jang DG, Dou J, Koubek EJ, Teener S, Zhao L, Bakulski KM, Mukherjee B, Batterman SA, Feldman EL, Goutman SA. Metal mixtures associate with higher amyotrophic lateral sclerosis risk and mortality independent of genetic risk and correlate to self-reported exposures: a case-control study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.27.24303143. [PMID: 38464233 PMCID: PMC10925361 DOI: 10.1101/2024.02.27.24303143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background The pathogenesis of amyotrophic lateral sclerosis (ALS) involves both genetic and environmental factors. This study investigates associations between metal measures in plasma and urine, ALS risk and survival, and exposure sources. Methods Participants with and without ALS from Michigan provided plasma and urine samples for metal measurement via inductively coupled plasma mass spectrometry. Odds and hazard ratios for each metal were computed using risk and survival models. Environmental risk scores (ERS) were created to evaluate the association between exposure mixtures and ALS risk and survival and exposure source. ALS (ALS-PGS) and metal (metal-PGS) polygenic risk scores were constructed from an independent genome-wide association study and relevant literature-selected SNPs. Results Plasma and urine samples from 454 ALS and 294 control participants were analyzed. Elevated levels of individual metals, including copper, selenium, and zinc, significantly associated with ALS risk and survival. ERS representing metal mixtures strongly associated with ALS risk (plasma, OR=2.95, CI=2.38-3.62, p<0.001; urine, OR=3.10, CI=2.43-3.97, p<0.001) and poorer ALS survival (plasma, HR=1.42, CI=1.24-1.63, p<0.001; urine, HR=1.52, CI=1.31-1.76, p<0.001). Addition of the ALS-PGS or metal-PGS did not alter the significance of metals with ALS risk and survival. Occupations with high potential of metal exposure associated with elevated ERS. Additionally, occupational and non-occupational metal exposures associated with measured plasma and urine metals. Conclusion Metals in plasma and urine associated with increased ALS risk and reduced survival, independent of genetic risk, and correlated with occupational and non-occupational metal exposures. These data underscore the significance of metal exposure in ALS risk and progression.
Collapse
Affiliation(s)
- Dae Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Samuel Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Lili Zhao
- Department of Biostatistics, Corewell Health, Royal Oak, MI
| | | | | | - Stuart A. Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
Urbano T, Filippini T, Malavolti M, Fustinoni S, Michalke B, Wise LA, Vinceti M. Adherence to the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet and exposure to selenium species: A cross-sectional study. Nutr Res 2024; 122:44-54. [PMID: 38150803 DOI: 10.1016/j.nutres.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
Selenium is a trace element found in many chemical forms. Selenium and its species have nutritional and toxicologic properties, some of which may play a role in the etiology of neurological disease. We hypothesized that adherence to the Mediterranean-Dietary Approach to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) diet could influence intake and endogenous concentrations of selenium and selenium species, thus contributing to the beneficial effects of this dietary pattern. We carried out a cross-sectional study of 137 non-smoking blood donors (75 females and 62 males) from the Reggio Emilia province, Northern Italy. We assessed MIND diet adherence using a semiquantitative food frequency questionnaire. We assessed selenium exposure through dietary intake and measurement of urinary and serum concentrations, including speciation of selenium compound in serum. We fitted non-linear spline-based regression models to investigate the association between MIND diet adherence and selenium exposure concentrations. Adherence to the MIND diet was positively associated with dietary selenium intake and urinary selenium excretion, whereas it was inversely associated with serum concentrations of overall selenium and organic selenium, including serum selenoprotein P-bound selenium, the most abundant circulating chemical form of the metalloid. MIND diet adherence also showed an inverted U-shaped relation with inorganic selenium and particularly with its hexavalent form, selenate. Our results suggest that greater adherence to the MIND diet is non-linearly associated with lower circulating concentrations of selenium and of 2 potentially neurotoxic species of this element, selenoprotein P and selenate. This may explain why adherence to the MIND dietary pattern may reduce cognitive decline.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Marcella Malavolti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
11
|
Solovyev N, Lucio M, Mandrioli J, Forcisi S, Kanawati B, Uhl J, Vinceti M, Schmitt-Kopplin P, Michalke B. Interplay of Metallome and Metabolome in Amyotrophic Lateral Sclerosis: A Study on Cerebrospinal Fluid of Patients Carrying Disease-Related Gene Mutations. ACS Chem Neurosci 2023; 14:3035-3046. [PMID: 37608584 PMCID: PMC10485893 DOI: 10.1021/acschemneuro.3c00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal progressive neurodegenerative disease, characterized by a loss of function of upper and lower motor neurons. This study aimed to explore probable pathological alterations occurring in individuals with ALS compared to neurologically healthy controls through the analysis of cerebrospinal fluid (CSF), a medium, which directly interacts with brain parenchyma. A total of 7 ALS patients with disease-associated mutations (ATXN2, C9ORF72, FUS, SOD1, and TARDBP) and 13 controls were included in the study. Multiple analytical approaches were employed, including metabolomic and metallomics profiling, as well as genetic screening, using CSF samples obtained from the brain compartment. Data analysis involved the application of multivariate statistical methods. Advanced hyphenated selenium and redox metal (iron, copper, and manganese) speciation techniques and nontargeted Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics were used for data acquisition. Nontargeted metabolomics showed reduced steroids, including sex hormones; additionally, copper and manganese species were found to be the most relevant features for ALS patients. This indicates a potential alteration of sex hormone pathways in the ALS-affected brain, as reflected in the CSF.
Collapse
Affiliation(s)
- Nikolay Solovyev
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Marianna Lucio
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Jessica Mandrioli
- Department
of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department
of Neurosciences, Azienda Ospedaliero Universitaria
di Modena, 41126 Modena, Italy
| | - Sara Forcisi
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Basem Kanawati
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Jenny Uhl
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Marco Vinceti
- CREAGEN
Research Center of Environmental, Genetic and Nutritional Epidemiology,
Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Philippe Schmitt-Kopplin
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Bernhard Michalke
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
12
|
Zhou J, Zhang W, Cao Z, Lian S, Li J, Nie J, Huang Y, Zhao K, He J, Liu C. Association of Selenium Levels with Neurodegenerative Disease: A Systemic Review and Meta-Analysis. Nutrients 2023; 15:3706. [PMID: 37686737 PMCID: PMC10490073 DOI: 10.3390/nu15173706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) have posed significant challenges to public health, and it is crucial to understand their mechanisms in order to develop effective therapeutic strategies. Recent studies have highlighted the potential role of selenium in ND pathogenesis, as it plays a vital role in maintaining cellular homeostasis and preventing oxidative damage. However, a comprehensive analysis of the association between selenium and NDs is still lacking. METHOD Five public databases, namely PubMed, Web of Science, EMBASE, Cochrane and Clinical Trials, were searched in our research. Random model effects were chosen, and Higgins inconsistency analyses (I2), Cochrane's Q test and Tau2 were calculated to evaluate the heterogeneity. RESULT The association of selenium in ND patients with Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) was studied. A statistically significant relationship was only found for AD patients (SMD = -0.41, 95% CI (-0.64, -0.17), p < 0.001), especially for erythrocytes. However, no significant relationship was observed in the analysis of the other four diseases. CONCLUSION Generally, this meta-analysis indicated that AD patients are strongly associated with lower selenium concentrations compared with healthy people, which may provide a clinical reference in the future. However, more studies are urgently needed for further study and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Zhou
- International School, Jinan University, Guangzhou 510080, China;
| | - Wenfen Zhang
- School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China;
| | - Zhiwen Cao
- Center for Data Science, New York University, New York, NY 10011, USA;
| | - Shaoyan Lian
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jieying Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiaying Nie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ying Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ke Zhao
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiang He
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
- Disease Control and Prevention Institute, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Faravelli I, Gagliardi D, Abati E, Meneri M, Ongaro J, Magri F, Parente V, Petrozzi L, Ricci G, Farè F, Garrone G, Fontana M, Caruso D, Siciliano G, Comi GP, Govoni A, Corti S, Ottoboni L. Multi-omics profiling of CSF from spinal muscular atrophy type 3 patients after nusinersen treatment: a 2-year follow-up multicenter retrospective study. Cell Mol Life Sci 2023; 80:241. [PMID: 37543540 PMCID: PMC10404194 DOI: 10.1007/s00018-023-04885-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in the SMN1 gene resulting in reduced levels of the SMN protein. Nusinersen, the first antisense oligonucleotide (ASO) approved for SMA treatment, binds to the SMN2 gene, paralogue to SMN1, and mediates the translation of a functional SMN protein. Here, we used longitudinal high-resolution mass spectrometry (MS) to assess both global proteome and metabolome in cerebrospinal fluid (CSF) from ten SMA type 3 patients, with the aim of identifying novel readouts of pharmacodynamic/response to treatment and predictive markers of treatment response. Patients had a median age of 33.5 [29.5; 38.25] years, and 80% of them were ambulant at time of the enrolment, with a median HFMSE score of 37.5 [25.75; 50.75]. Untargeted CSF proteome and metabolome were measured using high-resolution MS (nLC-HRMS) on CSF samples obtained before treatment (T0) and after 2 years of follow-up (T22). A total of 26 proteins were found to be differentially expressed between T0 and T22 upon VSN normalization and LIMMA differential analysis, accounting for paired replica. Notably, key markers of the insulin-growth factor signaling pathway were upregulated after treatment together with selective modulation of key transcription regulators. Using CombiROC multimarker signature analysis, we suggest that detecting a reduction of SEMA6A and an increase of COL1A2 and GRIA4 might reflect therapeutic efficacy of nusinersen. Longitudinal metabolome profiling, analyzed with paired t-Test, showed a significant shift for some aminoacid utilization induced by treatment, whereas other metabolites were largely unchanged. Together, these data suggest perturbation upon nusinersen treatment still sustained after 22 months of follow-up and confirm the utility of CSF multi-omic profiling as pharmacodynamic biomarker for SMA type 3. Nonetheless, validation studies are needed to confirm this evidence in a larger sample size and to further dissect combined markers of response to treatment.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Megi Meneri
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jessica Ongaro
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Parente
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia Petrozzi
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, Pisa, Italy
| | | | | | | | - Donatella Caruso
- Unitech OMICs, University of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinics, University of Pisa, Pisa, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Govoni
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
Filippini T, Urbano T, Grill P, Malagoli C, Ferrari A, Marchesi C, Natalini N, Michalke B, Vinceti M. Human serum albumin-bound selenium (Se-HSA) in serum and its correlation with other selenium species. J Trace Elem Med Biol 2023; 79:127266. [PMID: 37499550 DOI: 10.1016/j.jtemb.2023.127266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Selenium (Se) is a trace element with different toxicological and nutritional properties according to its chemical forms. Among the wide range of selenium species, human serum albumin-bound selenium (Se-HSA) has still uncertain composition in terms of organic or inorganic selenium species. This study aimed at investigating the relation between Se-HSA levels with total selenium and the specific organic and inorganic selenium species. METHODS We determined levels of total selenium and selenium species in serum of participants enrolled in two populations of the Emilia-Romagna region, in Northern Italy. Anion exchange chromatography coupled with inductively coupled plasma dynamic reaction cell mass spectrometry was used as quantification method. Correlations between Se-HSA and the other selenium compounds were analyzed using linear regression and restricted cubic spline regression models, adjusted for potential confounders. RESULTS The first cohort comprised 50 participants (men/women: 26/24) with median (interquartile range, IQR) age 50 (55-62) years, while the second was composed of 104 participants (M/W: 50/54), median (IQR) age 48 (44-53) years. Median (IQR) levels of total selenium were 118.5 (109-136) µg/L and 116.5 (106-128) µg/L, respectively, while Se-HSA was 25.5 µg/L (16.2-51.5) and 1.1 (0.03-3.1) µg/L, respectively. In both populations, Se-HSA was positively associated with inorganic selenium species. Conversely, Se-HSA was inversely associated with organic selenium, especially with selenoprotein P-bound-Se (Se-SELENOP) and less strongly with selenomethionine-bound-Se (Se-Met), while the relation was null or even positive with other organic species. Evaluation of non-linear trends showed a substantially positive association with inorganic selenium, particularly selenite, until a concentration of 30 µg/L, above which a plateau was reached. The association with Se-SELENOP was inverse and strong until 100 µg/L, while it was almost null at higher levels. CONCLUSIONS Our findings seem to indicate that Se-HSA incorporates more selenium when circulating levels of inorganic compounds are higher, thus supporting its mainly inorganic nature, particularly at high circulating levels of selenite.
Collapse
Affiliation(s)
- Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Peter Grill
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Carlotta Malagoli
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Ferrari
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Marchesi
- Head Office, Azienda USL, IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
15
|
Kamalian A, Foroughmand I, Koski L, Darvish M, Saghazadeh A, Kamalian A, Razavi SZE, Abdi S, Dehgolan SR, Fotouhi A, Roos PM. Metal concentrations in cerebrospinal fluid, blood, serum, plasma, hair, and nails in amyotrophic lateral sclerosis: A systematic review and meta-analysis. J Trace Elem Med Biol 2023; 78:127165. [PMID: 37018859 DOI: 10.1016/j.jtemb.2023.127165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive muscle wasting, paralysis, and respiratory failure. Whereas approximately 10-15 % of ALS cases are familial, the etiology of the remaining, sporadic ALS cases remains largely unknown. Environmental exposures have been suggested as causative factors for decades, and previous studies have found elevated concentrations of metals in ALS patients. PURPOSE This meta-analysis aims to assess metal concentrations in body fluids and tissues of ALS patients. METHODS We searched the MEDLINE and EMBASE databases on December 7th, 2022 for cross-sectional, case-control, and cohort studies which measure metal concentrations in whole blood, blood plasma, blood serum, cerebrospinal fluid (CSF), urine, erythrocytes, nail, and hair samples of ALS patients. Meta-analysis was then performed when three or more articles existed for a comparison. FINDINGS Twenty-nine studies measuring 23 metals were included and 13 meta-analyses were performed from 4234 screened entries. The meta-analysis results showed elevated concentrations of lead and selenium. Lead, measured in whole blood in 6 studies, was significantly elevated by 2.88 µg/L (95 % CI: 0.83-4.93, p = 0.006) and lead, measured in CSF in 4 studies, was significantly elevated by 0.21 µg/L (95 % CI: 0.01 - 0.41, p = 0.04) in ALS patients when compared to controls. Selenium, measured in serum/plasma in 4 studies, was significantly elevated by 4.26 µg/L (95% CI: 0.73 - 7.79, p = 0.02) when compared to controls.Analyses of other metal concentrations showed no statistically significant difference between the groups. CONCLUSION Lead has been discussed as a possible causative agent in ALS since 1850. Lead has been found in the spinal cord of ALS patients, and occupational exposure to lead is more common in ALS patients than in controls. Selenium in the form of neurotoxic selenite has been shown to geochemically correlate to ALS occurrence in Italy. Although no causal relationship can be established from the results of this meta-analysis, the findings suggest an involvement of lead and selenium in the pathophysiology of ALS. After a thorough meta-analysis of published studies on metal concentrations in ALS it can only be concluded that lead and selenium are elevated in ALS.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA.
| | - Iman Foroughmand
- Bloomberg School of Public Health, Johns hopkins University, Baltimore, MD, USA
| | - Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden
| | - Mahtab Darvish
- Clinical Research Development Center, Shahid Modarres Hospital, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta Analysis Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Neurology, School of Medicine, Tehran University of Medical Sciences, Poursina st., Enghelab-e-Eslami avenue, Tehran, Iran
| | - Amirhossein Kamalian
- School of Medicine, Yazd Shahid Sadoughi University of Medical Sciences, Shahid Bahonar Square, Yazd, Iran
| | - Seyedeh Zahra Emami Razavi
- Physical Medicine and Rehabilitation Department, Imam Khomeini Hospital Complex, Tohid Square, Tehran University of Medical Sciences, Tehran, Iran; Joint Reconstruction Research Center (JRRC), Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Siamak Abdi
- Department of Neurology, School of Medicine, Tehran University of Medical Sciences, Poursina st., Enghelab-e-Eslami avenue, Tehran, Iran
| | - Shahram Rahimi Dehgolan
- School of Medicine, Tehran University of Medical Sciences, Poursina st., Enghelab-e-Eslami avenue, Tehran, Iran
| | - Akbar Fotouhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden; Department of Clinical Physiology, St. Göran Hospital University Unit, St. Göransplan 1, 112 81 Stockholm, Sweden
| |
Collapse
|
16
|
Koski L, Berntsson E, Vikström M, Wärmländer SKTS, Roos PM. Metal ratios as possible biomarkers for amyotrophic lateral sclerosis. J Trace Elem Med Biol 2023; 78:127163. [PMID: 37004478 DOI: 10.1016/j.jtemb.2023.127163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown aetiology. Metals have been suspected to contribute to ALS pathogenesis since mid-19th century, yet studies on measured metal concentrations in ALS patients have often yielded conflicting results, with large individual variation in measured values. Calculating metal concentration ratios can unveil possible synergistic effects of neurotoxic metals in ALS pathogenesis. The aim of this study was to investigate if ratios of different metal concentrations in cerebrospinal fluid (CSF) and blood plasma, respectively, differ between ALS patients and healthy controls. METHODS Cerebrospinal fluid and blood plasma were collected from 17 ALS patients and 10 controls. Samples were analysed for 22 metals by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), and all possible 231 metal ratios calculated in each body fluid. RESULTS Fifty-three metal ratios were significantly elevated in ALS cases as compared to controls (p < 0.05); five in blood plasma, and 48 in CSF. The finding of fewer elevated ratios in blood plasma may indicate specific transport of metals into the central nervous system. The elevated metal ratios in CSF include Cd/Se (p = 0.031), and 16 ratios with magnesium, such as Mn/Mg (p = 0.005) and Al/Mg (p = 0.014). CONCLUSION Metal ratios may be used as biomarkers in ALS diagnosis and as guidelines for preventive measures.
Collapse
Affiliation(s)
- Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Elina Berntsson
- Chemistry Section, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden; Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Max Vikström
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Clinical Physiology, St. Göran Hospital University Unit, 112 81 Stockholm, Sweden
| |
Collapse
|
17
|
Li K, Li A, Mei Y, Zhao J, Zhou Q, Li Y, Yang M, Xu Q. Trace elements and Alzheimer dementia in population-based studies: A bibliometric and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120782. [PMID: 36464120 DOI: 10.1016/j.envpol.2022.120782] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Alterations in the concentrations of trace elements may play a vital role in Alzheimer dementia progression. However, previous research results are inconsistent, and there is still a lack of review on the relationship between all the studied-trace elements and AD from various perspectives of population-based studies. In this study, we systematically reviewed previous population-based studies and identified the altered trace elements in AD patients. We searched the Web of Science Core Collection, PubMed, and Scopus database, and ultimately included 73 articles. A bibliometric analysis was conducted to explore the evolution of the field from an epidemiological perspective. Bibliometric data such as trace elements, biological materials, detection methods, cognitive tests, co-occurrence and co-citation statistics are all analyzed and presented in a quantitative manner. The 73 included studies analyzed 39 trace elements in total. In a further meta-analysis, standardized mean differences (SMDs) of 13 elements were calculated to evaluate their altered in AD patients, including copper, iron, zinc, selenium, manganese, lead, aluminum, cadmium, chromium, arsenic, mercury, cobalt, and manganese. We identified four trace elements-copper (serum), iron (plasma), zinc (hair), and selenium (plasma)-altered in AD patients, with SMDs of 0.37 (95% confidence interval [CI]: 0.10, 0.65), -0.68 (95% CI: -1.34, -0.02), -0.35 (95% CI: -0.62, -0.08), and -0.61 (95% CI: -0.97, -0.25), respectively. Finally, we formed a database of various trace element levels in AD patients and healthy controls. Our study can help future researchers gain a comprehensive understanding of the advancements in the field, and our results provide comprehensive population-based data for future research.
Collapse
Affiliation(s)
- Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
18
|
Vinceti M, Filippini T, Jablonska E, Saito Y, Wise LA. Safety of selenium exposure and limitations of selenoprotein maximization: Molecular and epidemiologic perspectives. ENVIRONMENTAL RESEARCH 2022; 211:113092. [PMID: 35259406 DOI: 10.1016/j.envres.2022.113092] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
Recent evidence from laboratory and epidemiologic studies has shed a different light on selenium health effects and its recommended range of environmental exposure, compared with earlier research. Specifically, epidemiologic studies in Western populations have shown adverse effects of selenium exposure at low levels, sometimes below or slightly above selenium intakes needed to maximize selenoprotein expression and activity. In addition, three recent lines of evidence in molecular and biochemical studies suggest some potential drawbacks associated with selenoprotein maximization: 1) the possibility that selenoprotein upregulation is a compensatory response to oxidative challenge, induced by selenium itself or other oxidants; 2) the capacity of selenoproteins to trigger tumor growth in some circumstances; and 3) the deleterious metabolic effects of selenoproteins and particularly of selenoprotein P. The last observation provides a toxicological basis to explain why in humans selenium intake levels as low as 60 μg/day, still in the range of selenium exposure upregulating selenoprotein expression, might start to increase risk of type 2 diabetes. Overall, these new pieces of evidence from the literature call into question the purported benefit of selenoprotein maximization, and indicate the need to reassess selenium dietary reference values and upper intake level. This reassessment should clarify which range of selenoprotein upregulation follows restoration of adequate selenium availability and which range is driven by a compensatory response to selenium toxicity and oxidative stress.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Tommaso Filippini
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
19
|
Selenium Intake and its Interaction with Iron Intake Are Associated with Cognitive Functions in Chinese Adults: A Longitudinal Study. Nutrients 2022; 14:nu14153005. [PMID: 35893861 PMCID: PMC9332607 DOI: 10.3390/nu14153005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Studies on the relation between selenium intake and cognitive function are inconclusive. This study aimed to examine the associations between dietary selenium intake and cognitive function among Chinese adults and tested the interaction effect of selenium intake and iron intake on cognition. Data from 4852 adults aged 55 years and above who attended the 1991–2006 China Health and Nutrition Survey (CHNS) were used. Cognitive function was assessed through face-to-face interviews in 1997, 2000, 2004, and 2006. A 3-day, 24-hour recall was used to collect dietary selenium intake. Multivariable mixed linear regression and logistic regression were used in the analyses. In fully adjusted regression models, the regression coefficients (95% confidence interval) were 0.00, 0.29 (−0.12–0.70), 0.26 (−0.18–0.70), and 0.50 (0.02–0.97) across the quartiles of selenium intake. In the subgroup analysis, the positive association between selenium intake and cognitive function was only observed in the participants who live in the southern region but not those in the northern region. The selenium-intake-to-iron-intake ratio was inversely associated with low global cognition scores. Furthermore, only those with a normal BMI had a positive association between selenium and cognition. In conclusion, high selenium intake was linked to better cognitive function and a lower risk of cognition decline in Chinese adults among those with low iron intake. A substantial interaction was found between selenium intake and BMI or region.
Collapse
|
20
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
21
|
Ruj B, Bishayee B, Chatterjee RP, Mukherjee A, Saha A, Nayak J, Chakrabortty S. An economical strategy towards the managing of selenium pollution from contaminated water: A current state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114143. [PMID: 34864517 DOI: 10.1016/j.jenvman.2021.114143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
During the last few decades, contamination of selenium (Se) in groundwater has turned out to be a major environmental concern to provide safe drinking water. The content of selenium in such contaminated water might range from 400 to 700 μg/L, where bringing it down to a safe level of 40 μg/L for municipal water supply employing appropriate methodologies is a major challenge for the global researcher communities. The current review focuses mostly on the governing selenium remediation technologies such as coagulation-flocculation, electrocoagulation, bioremediation, membrane-based approaches, adsorption, electro-kinetics, chemical precipitation, and reduction methods. This study emphasizes on the development of a variety of low-cost adsorbents and metal oxides for the selenium decontamination from groundwater as a cutting-edge technology development along with their applicability, and environmental concerns. Moreover, after the removal, the recovery methodologies using appropriate materials are analyzed which is the need of the hour for the reutilization of selenium in different processing industries for the generation of high valued products. From the literature survey, it has been found that hematite modified magnetic nanoparticles (MNP) efficiently adsorb Se (IV) (25.0 mg/g) from contaminated groundwater. MNP@hematite reduced Se (IV) concentration from 100 g/L to 10 g/L in 10 min at pH 4-9 using a dosage of 1 g/L. In 15 min, the magnetic adsorbent can be recycled and regenerated using a 10 mM NaOH solution. The adsorption and desorption efficiencies were over 97% and 82% for five consecutive cycles, respectively. To encourage the notion towards scale-up, a techno-economic evaluation with possible environmentally sensitive policy analysis has been introduced in this article to introspect the aspects of sustainability. This type of assessment is anticipated to be extremely encouraging to convey crucial recommendations to the scientific communities in order to produce high efficiency selenium elimination and further recovery from contaminated groundwater.
Collapse
Affiliation(s)
- Biswajit Ruj
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Bhaskar Bishayee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Rishya Prava Chatterjee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Ankita Mukherjee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Arup Saha
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Jayato Nayak
- Department of Chemical Engineering, Kalasalingam Academy of Research and Education, Tamilnadu, 626126, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
22
|
Selenium: An Element of Life Essential for Thyroid Function. Molecules 2021; 26:molecules26237084. [PMID: 34885664 PMCID: PMC8658851 DOI: 10.3390/molecules26237084] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Selenium (Se), a microelement essential for life, is critical for homeostasis of several critical functions, such as those related to immune-endocrine function and signaling transduction pathways. In particular, Se is critical for the function of the thyroid, and it is particularly abundant in this gland. Unfortunately, Se deficiency is a very common condition worldwide. Supplementation is possible, but as Se has a narrow safety level, toxic levels are close to those normally required for a correct need. Thus, whether the obtaining of optimal selenium concentration is desirable, the risk of dangerous concentrations must be equally excluded. This review addressed the contribution by environment and food intake on Se circulating levels (e.g., geographical factors, such as soil concentration and climate, and different quantities in food, such as nuts, cereals, eggs, meat and fish) and effects related to its deficiency or excess, together with the role of selenium and selenoproteins in the thyroid pathophysiology (e.g., Hashimoto's thyroiditis and Graves' disease).
Collapse
|
23
|
Koski L, Ronnevi C, Berntsson E, Wärmländer SKTS, Roos PM. Metals in ALS TDP-43 Pathology. Int J Mol Sci 2021; 22:12193. [PMID: 34830074 PMCID: PMC8622279 DOI: 10.3390/ijms222212193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease and similar neurodegenerative disorders take their toll on patients, caregivers and society. A common denominator for these disorders is the accumulation of aggregated proteins in nerve cells, yet the triggers for these aggregation processes are currently unknown. In ALS, protein aggregation has been described for the SOD1, C9orf72, FUS and TDP-43 proteins. The latter is a nuclear protein normally binding to both DNA and RNA, contributing to gene expression and mRNA life cycle regulation. TDP-43 seems to have a specific role in ALS pathogenesis, and ubiquitinated and hyperphosphorylated cytoplasmic inclusions of aggregated TDP-43 are present in nerve cells in almost all sporadic ALS cases. ALS pathology appears to include metal imbalances, and environmental metal exposure is a known risk factor in ALS. However, studies on metal-to-TDP-43 interactions are scarce, even though this protein seems to have the capacity to bind to metals. This review discusses the possible role of metals in TDP-43 aggregation, with respect to ALS pathology.
Collapse
Affiliation(s)
- Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | | | - Elina Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12616 Tallinn, Estonia
| | | | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Capio St. Göran Hospital, 112 19 Stockholm, Sweden;
| |
Collapse
|
24
|
He D, Cui L. Assessing the Causal Role of Selenium in Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. Front Genet 2021; 12:724903. [PMID: 34691149 PMCID: PMC8527026 DOI: 10.3389/fgene.2021.724903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives: The relation between selenium overexposure and increased risk of amyotrophic lateral sclerosis (ALS) has been subject to considerable interest. Epidemiologic studies have reported suggestive associations between selenium and ALS, although the causal inference between selenium and ALS remains to be established. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to analyze the causal role of selenium on ALS risk. Variants associated with selenium levels were obtained from the GWAS meta-analysis of circulating selenium levels (n = 5,477) and toenail selenium levels (n = 4,162) in the European population. Outcome data were from the largest ALS GWAS dataset with 20,806 ALS cases and 59,804 controls in the European population. Inverse variance weighted (IVW) method was used as the main analysis, with an array of sensitivity analyses performed to detect potential violations of MR assumptions. Results: Inverse variance weighted (IVW) analysis indicated no evidence of a causal role for selenium levels in ALS development (odds ratio (OR) = 1.02, 95% confidence interval (CI) = 0.96–1.08). Similar results were observed for the sensitivity analyses (OR = 1.00, 95% CI = 0.95–1.07 for weighted median; OR = 1.07, 95% CI = 0.87–1.32 for MR-Egger), with no pleiotropy detected. Conclusions: Although selenium was found associated with ALS according to earlier epidemiologic studies, current evidence based on the population of European ancestry does not support the causal effect of selenium on ALS risk.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Beijing, China
| |
Collapse
|
25
|
Urbano T, Filippini T, Lasagni D, De Luca T, Grill P, Sucato S, Polledri E, Djeukeu Noumbi G, Malavolti M, Santachiara A, Pertinhez TA, Baricchi R, Fustinoni S, Michalke B, Vinceti M. Association of Urinary and Dietary Selenium and of Serum Selenium Species with Serum Alanine Aminotransferase in a Healthy Italian Population. Antioxidants (Basel) 2021; 10:1516. [PMID: 34679651 PMCID: PMC8532767 DOI: 10.3390/antiox10101516] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/23/2023] Open
Abstract
The trace element selenium is of considerable interest due to its toxic and nutritional properties, which markedly differ according to the dose and the chemical form. It has been shown that excess selenium intake increases the risk of type 2 diabetes and, possibly, other metabolic diseases like hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). For the latter, however, epidemiologic evidence is still limited. We carried out a cross-sectional study recruiting 137 healthy blood donors living in Northern Italy and assessed their exposure to selenium through different methods and measuring serum selenium species. We performed linear and spline regression analyses to assess the relation of selenium and its forms with serum alanine aminotransferase (ALT) levels, a marker of NAFLD. Urinary selenium levels were positively and somewhat linearly correlated with ALT (beta regression coefficient (β) 0.11). Conversely, the association of dietary selenium intake with ALT was positive up to 100 µg/day and null above that amount (β 0.03). Total serum selenium was inversely associated with ALT up to 120 µg/L, and slightly positive above that amount. Concerning the different serum selenium species, ALT positively correlated with two organic forms, selenocysteine (β 0.27) and glutathione peroxidase-bound selenium (β 0.09), showed a U-shaped relation with the inorganic tetravalent form, selenite, and an inverse association with human serum albumin-bound selenium (β -0.56). Our results suggest that overall exposure to selenium, and more specifically to some of its chemical forms, is positively associated with ALT, even at levels so far generally considered to be safe. Our findings add to the evidence suggesting that low-dose selenium overexposure is associated with NAFLD.
Collapse
Affiliation(s)
- Teresa Urbano
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (T.F.); (G.D.N.); (M.M.)
| | - Tommaso Filippini
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (T.F.); (G.D.N.); (M.M.)
| | - Daniela Lasagni
- Transfusion Medicine Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (D.L.); (T.D.L.); (T.A.P.); (R.B.)
| | - Tiziana De Luca
- Transfusion Medicine Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (D.L.); (T.D.L.); (T.A.P.); (R.B.)
| | - Peter Grill
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, 85764 Neuherberg, Germany; (P.G.); (B.M.)
| | - Sabrina Sucato
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.S.); (E.P.); (S.F.)
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.S.); (E.P.); (S.F.)
| | - Guy Djeukeu Noumbi
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (T.F.); (G.D.N.); (M.M.)
| | - Marcella Malavolti
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (T.F.); (G.D.N.); (M.M.)
| | | | - Thelma A. Pertinhez
- Transfusion Medicine Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (D.L.); (T.D.L.); (T.A.P.); (R.B.)
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Roberto Baricchi
- Transfusion Medicine Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (D.L.); (T.D.L.); (T.A.P.); (R.B.)
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.S.); (E.P.); (S.F.)
- IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, 20122 Milan, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, 85764 Neuherberg, Germany; (P.G.); (B.M.)
| | - Marco Vinceti
- CREAGEN—Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (T.F.); (G.D.N.); (M.M.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
26
|
Michalke B, Berthele A, Venkataramani V. Simultaneous Quantification and Speciation of Trace Metals in Paired Serum and CSF Samples by Size Exclusion Chromatography-Inductively Coupled Plasma-Dynamic Reaction Cell-Mass Spectrometry (SEC-DRC-ICP-MS). Int J Mol Sci 2021; 22:8892. [PMID: 34445607 PMCID: PMC8396360 DOI: 10.3390/ijms22168892] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transition metals play a crucial role in brain metabolism: since they exist in different oxidation states they are involved in ROS generation, but they are also co-factors of enzymes in cellular energy metabolism or oxidative defense. METHODS Paired serum and cerebrospinal fluid (CSF) samples were analyzed for iron, zinc, copper and manganese as well as for speciation using SEC-ICP-DRC-MS. Brain extracts from Mn-exposed rats were additionally analyzed with SEC-ICP-DRC-MS. RESULTS The concentration patterns of transition metal size fractions were correlated between serum and CSF: Total element concentrations were significantly lower in CSF. Fe-ferritin was decreased in CSF whereas a LMW Fe fraction was relatively increased. The 400-600 kDa Zn fraction and the Cu-ceruloplasmin fraction were decreased in CSF, by contrast the 40-80 kDa fraction, containing Cu- and Zn-albumin, relatively increased. For manganese, the α-2-macroglobulin fraction showed significantly lower concentration in CSF, whereas the citrate Mn fraction was enriched. Results from the rat brain extracts supported the findings from human paired serum and CSF samples. CONCLUSIONS Transition metals are strictly controlled at neural barriers (NB) of neurologic healthy patients. High molecular weight species are down-concentrated along NB, however, the Mn-citrate fraction seems to be less controlled, which may be problematic under environmental load.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany;
| | - Vivek Venkataramani
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
- Institute of Pathology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| |
Collapse
|
27
|
Violi F, Solovyev N, Vinceti M, Mandrioli J, Lucio M, Michalke B. The study of levels from redox-active elements in cerebrospinal fluid of amyotrophic lateral sclerosis patients carrying disease-related gene mutations shows potential copper dyshomeostasis. Metallomics 2021; 12:668-681. [PMID: 32373852 DOI: 10.1039/d0mt00051e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease characterized by a loss of function of motor neurons. The etiology of this disorder is still largely unknown. Gene-environment interaction arises as a possible key factor in the development of amyotrophic lateral sclerosis. We assessed the levels of trace metals, copper (Cu), iron (Fe), and manganese (Mn), of 9 amyotrophic lateral sclerosis cases and 40 controls by measuring their content in cerebrospinal fluid. The following trace element species were quantified using ion chromatography-inductively coupled plasma mass spectrometry: univalent copper (Cu-I), divalent Cu (Cu-II), divalent Fe (Fe-II), trivalent Fe (Fe-III), divalent Mn (Mn-II), trivalent Mn (Mn-III), and also unidentified Mn species (Mn-unknown) were present in some samples. When computing the relative risks for amyotrophic lateral sclerosis through an unconditional logistic regression model, we observed a weak and imprecise positive association for iron (Fe III, adjusted odds ratio 1.48, 95% CI 0.46-4.76) and manganese (total-Mn and Mn-II; adjusted odds ratio 1.11, 95% CI 0.74-1.67, and 1.13, 95% CI 0.79-1.61, respectively). Increased risk for copper was found both in the crude analysis (odds ratio 1.14, 95% CI 0.99-1.31) and in multivariable analysis after adjusting for sex, age, and year of storage (1.09, 95% CI 0.90-1.32). Our results suggest a possible positive association between Cu and genetic amyotrophic lateral sclerosis, while they give little indication of involvement of Fe and Mn in disease, though some correlations found also for these elements deserve further investigation.
Collapse
Affiliation(s)
- Federica Violi
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Kilonzo VW, Sasuclark AR, Torres DJ, Coyle C, Pilat JM, Williams CS, Pitts MW. Juvenile Selenium Deficiency Impairs Cognition, Sensorimotor Gating, and Energy Homeostasis in Mice. Front Nutr 2021; 8:667587. [PMID: 34026810 PMCID: PMC8138326 DOI: 10.3389/fnut.2021.667587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se) is an essential micronutrient of critical importance to mammalian life. Its biological effects are primarily mediated via co-translational incorporation into selenoproteins, as the unique amino acid, selenocysteine. These proteins play fundamental roles in redox signaling and includes the glutathione peroxidases and thioredoxin reductases. Environmental distribution of Se varies considerably worldwide, with concomitant effects on Se status in humans and animals. Dietary Se intake within a narrow range optimizes the activity of Se-dependent antioxidant enzymes, whereas both Se-deficiency and Se-excess can adversely impact health. Se-deficiency affects a significant proportion of the world's population, with hypothyroidism, cardiomyopathy, reduced immunity, and impaired cognition being common symptoms. Although relatively less prevalent, Se-excess can also have detrimental consequences and has been implicated in promoting both metabolic and neurodegenerative disease in humans. Herein, we sought to comprehensively assess the developmental effects of both Se-deficiency and Se-excess on a battery of neurobehavioral and metabolic tests in mice. Se-deficiency elicited deficits in cognition, altered sensorimotor gating, and increased adiposity, while Se-excess was surprisingly beneficial.
Collapse
Affiliation(s)
- Victor W. Kilonzo
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Alexandru R. Sasuclark
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Daniel J. Torres
- Pacific Biosciences Research Center, University of Hawaii at Manoa, School of Ocean and Earth Science and Technology (SOEST), Honolulu, HI, United States
| | - Celine Coyle
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Jennifer M. Pilat
- Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Christopher S. Williams
- Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Matthew W. Pitts
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
29
|
Naderi M, Puar P, Zonouzi-Marand M, Chivers DP, Niyogi S, Kwong RWM. A comprehensive review on the neuropathophysiology of selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144329. [PMID: 33445002 DOI: 10.1016/j.scitotenv.2020.144329] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 05/25/2023]
Abstract
As an essential micronutrient, selenium (Se) exerts its biological function as a catalytic entity in a variety of enzymes. From a toxicological perspective, however, Se can become extremely toxic at concentrations slightly above its nutritional levels. Over the last few decades, there has been a growing level of concern worldwide regarding the adverse effects of both inorganic and organic Se compounds on a broad spectrum of neurological functions. A wealth of evidence has shown that exposure to excess Se may compromise the normal functioning of various key proteins, neurotransmitter systems (the glutamatergic, dopaminergic, serotonergic, and cholinergic systems), and signaling molecules involved in the control and regulation of cognitive, behavioral, and neuroendocrine functions. Elevated Se exposure has also been suspected to be a risk factor for the development of several neurodegenerative and neuropsychiatric diseases. Nonetheless, despite the various deleterious effects of excess Se on the central nervous system (CNS), Se neurotoxicity and negative behavioral outcomes are still disregarded at the expense of its beneficial health effects. This review focuses on the current state of knowledge regarding the neurobehavioral effects of Se and discusses its potential mode of action on different aspects of the central and peripheral nervous systems. This review also provides a brief history of Se discovery and uses, its physicochemical properties, biological roles in the CNS, environmental occurrence, and toxicity. We also review potential links between exposure to different forms of Se compounds and aberrant neurobehavioral functions in humans and animals, and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Pankaj Puar
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | | |
Collapse
|
30
|
Xie M, Sun X, Li P, Shen X, Fang Y. Selenium in cereals: Insight into species of the element from total amount. Compr Rev Food Sci Food Saf 2021; 20:2914-2940. [PMID: 33836112 DOI: 10.1111/1541-4337.12748] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is a trace mineral micronutrient essential for human health. The diet is the main source of Se intake. Se-deficiency is associated with many diseases, and up to 1 billion people suffer from Se-deficiency worldwide. Cereals are considered a good choice for Se intake due to their daily consumption as staple foods. Much attention has been paid to the contents of Se in cereals and other foods. Se-enriched cereals are produced by biofortification. Notably, the gap between the nutritional and toxic levels of Se is fairly narrow. The chemical structures of Se compounds, rather than their total contents, contribute to the bioavailability, bioactivity, and toxicity of Se. Organic Se species show better bioavailability, higher nutritional value, and less toxicity than inorganic species. In this paper, we reviewed the total content of Se in cereals, Se speciation methods, and the biological effects of Se species on human health. Selenomethionine (SeMet) is generally the most prevalent and important Se species in cereal grains. In conclusion, Se species should be considered in addition to the total Se content when evaluating the nutritional and toxic values of foods such as cereals.
Collapse
Affiliation(s)
- Minhao Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China.,Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| |
Collapse
|
31
|
Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021; 15:630016. [PMID: 33613188 PMCID: PMC7892976 DOI: 10.3389/fnins.2021.630016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined.
Collapse
Affiliation(s)
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Potsdam, Germany
| | - Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
32
|
Filippini T, Mandrioli J, Malagoli C, Costanzini S, Cherubini A, Maffeis G, Vinceti M. Risk of Amyotrophic Lateral Sclerosis and Exposure to Particulate Matter from Vehicular Traffic: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030973. [PMID: 33499343 PMCID: PMC7908475 DOI: 10.3390/ijerph18030973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
(1) Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with still unknown etiology. Some occupational and environmental risk factors have been suggested, including long-term air pollutant exposure. We carried out a pilot case-control study in order to evaluate ALS risk due to particulate matter with a diameter of ≤10 µm (PM10) as a proxy of vehicular traffic exposure. (2) Methods: We recruited ALS patients and controls referred to the Modena Neurology ALS Care Center between 1994 and 2015. Using a geographical information system, we modeled PM10 concentrations due to traffic emissions at the geocoded residence address at the date of case diagnosis. We computed the odds ratio (OR) and 95% confidence interval (CI) of ALS according to increasing PM10 exposure, using an unconditional logistic regression model adjusted for age and sex. (3) Results: For the 132 study participants (52 cases and 80 controls), the average of annual median and maximum PM10 concentrations were 5.2 and 38.6 µg/m3, respectively. Using fixed cutpoints at 5, 10, and 20 of the annual median PM10 levels, and compared with exposure <5 µg/m3, we found no excess ALS risk at 5-10 µg/m3 (OR 0.87, 95% CI 0.39-1.96), 10-20 µg/m3 (0.94, 95% CI 0.24-3.70), and ≥20 µg/m3 (0.87, 95% CI 0.05-15.01). Based on maximum PM10 concentrations, we found a statistically unstable excess ALS risk for subjects exposed at 10-20 µg/m3 (OR 4.27, 95% CI 0.69-26.51) compared with those exposed <10 µg/m3. However, risk decreased at 20-50 µg/m3 (OR 1.49, 95% CI 0.39-5.75) and ≥50 µg/m3 (1.16, 95% CI 0.28-4.82). ALS risk in increasing tertiles of exposure showed a similar null association, while comparison between the highest and the three lowest quartiles lumped together showed little evidence for an excess risk at PM10 concentrations (OR 1.13, 95% CI 0.50-2.55). After restricting the analysis to subjects with stable residence, we found substantially similar results. (4) Conclusions: In this pilot study, we found limited evidence of an increased ALS risk due to long-term exposure at high PM10 concentration, though the high statistical imprecision of the risk estimates, due to the small sample size, particularly in some exposure categories, limited our capacity to detect small increases in risk, and further larger studies are needed to assess this relation.
Collapse
Affiliation(s)
- Tommaso Filippini
- Department of Biomedical, Metabolic and Neural Sciences, CREAGEN Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.F.); (C.M.)
| | - Jessica Mandrioli
- Neurology Unit, Department of Neuroscience, S. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy;
| | - Carlotta Malagoli
- Department of Biomedical, Metabolic and Neural Sciences, CREAGEN Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.F.); (C.M.)
| | - Sofia Costanzini
- DIEF Department of Engineering “Enzo Ferrari,” University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | | | | | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, CREAGEN Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.F.); (C.M.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Correspondence:
| |
Collapse
|
33
|
Werder EJ, Engel LS, Curry MD, Sandler DP. Selenium modifies associations between multiple metals and neurologic symptoms in Gulf states residents. Environ Epidemiol 2020; 4:e115. [PMID: 33336134 PMCID: PMC7727467 DOI: 10.1097/ee9.0000000000000115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Metals have been shown to have a wide range of neurologic effects across the life course, but most studies consider neurodevelopment or neurodegenerative diseases in older adults. We investigated exposure to metals during adulthood in association with subclinical neurologic endpoints, considering the metals individually and as a mixture, and potential interactions among exposures. METHODS We measured blood levels of cadmium, lead, mercury, manganese, and selenium in 1007 Gulf state residents and estimated cross-sectional associations between ranked levels of blood metals and the presence of self-reported neurologic symptoms. Single pollutant models were mutually adjusted for other metals and we used quantile g-computation to evaluate associations with exposure to the combined mixture. In stratified analyses, we assessed heterogeneity by smoking and blood selenium. RESULTS The highest quartile of cadmium was associated with a higher prevalence of central nervous system symptoms (prevalence ratio [PR] = 1.50; 95% confidence interval [CI] = 1.13, 1.99), with stronger associations among nonsmokers (PR = 1.63; 95% CI = 1.11, 2.38) and those with low selenium (PR = 2.29, 95% CI = 1.50, 3.49). Selenium also modified associations between lead and peripheral nervous system symptoms, with increased symptoms in the low selenium group at all quartiles of exposure (P-trend = 0.07). Conversely, those with the highest co-exposure to mercury and selenium had reduced neurologic symptoms (PR = 0.73, 95% CI = 0.55, 0.96). Results of the mixture analysis were consistent with single chemical results. CONCLUSIONS Cadmium exhibited the most consistent relationship with increased neurologic symptoms, though lead was an important exposure in subgroup analyses. Selenium may modify subclinical neurotoxic effects of metals at non-occupational levels in adults.
Collapse
Affiliation(s)
- Emily J. Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina
| | - Lawrence S. Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | | | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina
| |
Collapse
|
34
|
Patti F, Fiore M, Chisari CG, D'Amico E, Lo Fermo S, Toscano S, Copat C, Ferrante M, Zappia M. CSF neurotoxic metals/metalloids levels in amyotrophic lateral sclerosis patients: comparison between bulbar and spinal onset. ENVIRONMENTAL RESEARCH 2020; 188:109820. [PMID: 32615355 DOI: 10.1016/j.envres.2020.109820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of the central nervous system (CNS) that causes progressive and irreversible damage in motor neurons. Different causal hypotheses include genetic, viral, traumatic and environmental mechanisms, such as exposure to heavy metals. The aim of this study was to compare metal/metalloid levels in cerebro-spinal fluid of ALS subtypes (spinal vs bulbar clinical onset). MATERIAL AND METHODS This observational study consecutively screened all ALS patients referring to the Neurology Clinic of the University of Catania (Italy). Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify magnesium (Mg), cuprum (Cu), selenium (Se), iron (Fe), manganese (Mn), vanadium (V), zinc (Zn), alluminium (Al), arsenic (As), cobalt (Co), nickel (Ni), mercury (Hg), lead (Pb), cadmium (Cd) and palladium (Pd) levels. RESULTS Thirty-seven patients were enrolled (62.2% females), median age of 65 years (IQR: 59-71 years). Thirty-one (83.8%) patients had a spinal onset and 6 (16.2%) a bulbar onset. Se and As levels were higher compared to the reference values (RV) both in spinal and bulbar onset, while Cu was higher than RV only in bulbar onset. Moreover, Cu (129.8 μg/L vs 29.8 μg/L), Fe (54.5 μg/L vs 33.3 μg/L), Mn (3.4 μg/L vs 1.8 μg/L), Zn (46.1 μg/L vs 35.7 μg/L), Al (12.2 μg/L vs 6.7 μg/L), Ni (2.80 μg/L vs 1.40 μg/L), and Pb (0.60 μg/L vs 0.30 μg/L) levels were higher in bulbar than in spinal onset, conversely As was slightly higher in spinal than in bulbar onset (1.40 μg/L vs 1.10 μg/L). Overall, Cu (129 μg/L vs 31 μg/L), Fe (92.2 μg/L vs 32.9 μg/L), Mn (3.35 μg/L vs 1.80 μg/L), Zn (56.5 μg/L vs 35.2 μg/L), Al (14.45 μg/L vs 6.70 μg/L), and Cd (0.40 μg/L vs 0.08 μg/L) levels were higher in patients with disease duration less than 19 months. CONCLUSION Our results supported the hypothesis that metals/metalloids with neurotoxic effects could be involved in the etiology of ALS, showing higher levels of Cu, Se and As. Relevant differences in Cu and Mn levels were found between bulbar and spinal onset patients.
Collapse
Affiliation(s)
- Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy.
| | - Maria Fiore
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Clara G Chisari
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Emanuele D'Amico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Salvatore Lo Fermo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Simona Toscano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| | - Chiara Copat
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123, Catania, Italy
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", section of Neuroscience, University of Catania, 95123, Catania, Italy
| |
Collapse
|
35
|
Mielcarek K, Puścion-Jakubik A, Gromkowska-Kępka KJ, Soroczyńska J, Karpińska E, Markiewicz-Żukowska R, Naliwajko SK, Moskwa J, Nowakowski P, Borawska MH, Socha K. Comparison of Zinc, Copper and Selenium Content in Raw, Smoked and Pickled Freshwater Fish. Molecules 2020; 25:E3771. [PMID: 32825049 PMCID: PMC7504019 DOI: 10.3390/molecules25173771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to assess the zinc (Zn), copper (Cu) and selenium (Se) content in freshwater fish from Poland. Selected species of raw, smoked and pickled fish were evaluated by atomic absorption spectrometry (AAS). The concentration of Zn, Cu and Se in the examined fish ranged from 1.5 to 49.9 mg/kg, 0.01 to 2.8 mg/kg and 30.9 to 728.2 µg/kg, respectively. One serving of every fish product covered the recommended dietary allowance (RDA) of Zn by 5.38-65.0%, of Cu by 0.42-11.4% and of Se by 12.3-198.6%. A cluster analysis allowed us to distinguish European eel (raw and smoked) based on the Zn content. Additionally, based on the Cu and Se content, pickled common whitefish was differentiated from other species and types of fish products. The discriminant analysis model of smoked fish enabled their classification with a 70% accuracy. Regarding Zn, all forms of the European eel as well as raw and smoked vendace can be considered a source of this element. None of the tested fish can be considered a source of Cu. All products are safe for human consumption with regard to the Zn and Cu content. Almost each form of every species of fish can be considered a source of Se. However, the Se content should be monitored in smoked and pickled common whitefish, pickled bream and pickled vendace.
Collapse
Affiliation(s)
- Konrad Mielcarek
- Department of Bromatology, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland; (A.P.-J.); (K.J.G.-K.); (J.S.); (E.K.); (R.M.-Z.); (S.K.N.); (J.M.); (P.N.); (M.H.B.); (K.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cardoso BR, Ganio K, Roberts BR. Expanding beyond ICP-MS to better understand selenium biochemistry. Metallomics 2020; 11:1974-1983. [PMID: 31660552 DOI: 10.1039/c9mt00201d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selenium is an essential trace element in human health and therefore its concentration in biological samples (biofluids and tissues) is used as an indicator of health and nutritional status. In humans, selenium's biological activity occurs through the 25 identified selenoproteins. As total selenium concentration encompasses both functional selenoproteins, small selenocompounds and other selenium-binding proteins, selenium speciation, rather than total concentration, is critical in order to assess functional selenium. Previously, quantitative analysis of selenoproteins required laborious techniques that were often slow and costly. However, more recent advancements in tandem mass spectrometry have facilitated the qualitative and quantitative identification of these proteins. In light of the current alternatives for understanding selenium biochemistry, we aim to provide a review of the modern applications of electrospray ionisation mass spectrometry (ESI-MS) as an alternative to inductively coupled plasma mass spectrometry (ICP-MS) for qualitative and quantitative selenium speciation.
Collapse
Affiliation(s)
- Barbara R Cardoso
- Deakin University, Institute for Physical Activity and Nutrition Research (IPAN), School of Exercise and Nutrition Sciences, Geelong, Australia
| | | | | |
Collapse
|
37
|
Chawla R, Filippini T, Loomba R, Cilloni S, Dhillon KS, Vinceti M. Exposure to a high selenium environment in Punjab, India: Biomarkers and health conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:134541. [PMID: 31862262 DOI: 10.1016/j.scitotenv.2019.134541] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Seleniferous areas have been identified and described in many parts of the world. Despite the interest in selenium as a trace element of considerable toxicologic and nutritional relevance, however, only a few studies have been carried out on human health effects of such high selenium environments. We collected blood, hair and nail samples from 680 adult volunteers (267 men and 413 women) living in seven villages located in the seleniferous area of Punjab, India. We measured selenium levels in these specimens. We also administered a questionnaire to collect information about diet and other lifestyle characteristics, to identify the sources of selenium exposure and to correlate it with a number of health conditions. Serum and hair selenium contents were highly correlated, while the association of these biomarkers with nail selenium content was weaker. Serum selenium showed limited association with consumption of locally produced foods, while pulses and vegetables, along with cereals and pulses, were associated to higher hair and nail selenium contents, respectively. Association of a number of adverse health endpoints with serum and hair selenium was stronger than for nail selenium contents. Such endpoints included higher prevalence of nausea and vomiting, bad breath, worm infestation, breathlessness exert and bad breath, chest pain, hair and nail abnormalities and loss, garlic odor, edema, spontaneous abortion, and overall selenosis. In contrast, we gathered no evidence of dermatitis or loss of appetite in residents most exposed to selenium. Overall, and despite some statistical imprecision in effect estimates, these results confirm the occurrence of adverse health effects in subjects exposed to high levels of environmental selenium. Nail selenium contents may be less adequate to reflect and monitor such overexposure, compared with blood and hair levels.
Collapse
Affiliation(s)
- Rajinder Chawla
- Christian Medical College & Hospital, Ludhiana, India; Accuscript Consultancy, Ludhiana, India
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Rinchu Loomba
- Christian Medical College & Hospital, Ludhiana, India
| | - Silvia Cilloni
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Reggio Emilia, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States.
| |
Collapse
|
38
|
Filippini T, Tesauro M, Fiore M, Malagoli C, Consonni M, Violi F, Iacuzio L, Arcolin E, Oliveri Conti G, Cristaldi A, Zuccarello P, Zucchi E, Mazzini L, Pisano F, Gagliardi I, Patti F, Mandrioli J, Ferrante M, Vinceti M. Environmental and Occupational Risk Factors of Amyotrophic Lateral Sclerosis: A Population-Based Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082882. [PMID: 32331298 PMCID: PMC7216189 DOI: 10.3390/ijerph17082882] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Objectives: Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease with still unknown etiology. We aimed at investigating the association between environmental and occupational factors with ALS risk. Methods: We performed a population-based case-control study in four Italian provinces (Catania, Modena, Novara, and Reggio Emilia) by administration of tailored questionnaires to ALS cases (n = 95) and randomly selected population referents (n = 135). We estimated ALS risk by calculating the odds ratio (OR) with its 95% confidence interval (CI) using an unconditional logistic regression model. Results: We found a positive association with disease risk for history of occupation in the agricultural sector (OR = 2.09, 95% CI 0.79-7.54), especially for longer than 10 years (OR = 2.72, 95% 1.02-7.20). Overall occupational exposure to solvents also suggested a positive association, especially for thinners (OR = 2.27, 95% CI 1.14-4.54) and paint removers (OR = 2.01, 95% CI 0.90-4.48). Both occupational and environmental exposure to electromagnetic fields show a slightly increased risk with OR = 1.69 (95% CI 0.70-4.09) and 2.41 (95% CI 1.13-5.12), respectively. Occupational but not environmental exposure to pesticides (OR = 1.22, 95% CI 0.63-2.37), particularly fungicides, and exposure to metals (OR = 4.20, 95% CI 1.88-9.38), particularly lead, mercury, and selenium, showed an imprecise but positive association. Finally, there was an indication of increased risk for living in proximity to water bodies. Conclusions: Despite the caution that needs to be used due to some study limitations, such as the low number of exposed subjects and the possibility of recall bias, these results suggest the potential role of some environmental and occupational factors in ALS etiology.
Collapse
Affiliation(s)
- Tommaso Filippini
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Correspondence:
| | - Marina Tesauro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.T.); (M.C.)
| | - Maria Fiore
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Carlotta Malagoli
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
| | - Michela Consonni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.T.); (M.C.)
| | - Federica Violi
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Laura Iacuzio
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Department of Public Health, Local Health Unit, 41121 Modena, Italy
| | - Elisa Arcolin
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Antonio Cristaldi
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Pietro Zuccarello
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Elisabetta Zucchi
- Neurology Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Letizia Mazzini
- ALS Centre Department of Neurology, ‘Maggiore della Carità’ University Hospital, 28100 Novara, Italy; (L.M.); (I.G.)
| | - Fabrizio Pisano
- Neurological Rehabilitation Division, Policlinico San Marco di Zingonia, 24046 Zingonia (BG), Italy;
| | - Ileana Gagliardi
- ALS Centre Department of Neurology, ‘Maggiore della Carità’ University Hospital, 28100 Novara, Italy; (L.M.); (I.G.)
| | - Francesco Patti
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Jessica Mandrioli
- Neurology Unit, Department of Neuroscience, S. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy;
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Catania University, 95123 Catania, Italy; (M.F.); (G.O.C.); (A.C.); (P.Z.); (F.P.); (M.F.)
| | - Marco Vinceti
- CREAGEN-Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.M.); (F.V.); (L.I.); (E.A.); (M.V.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
39
|
ALSUntangled No. 54: “LEAP2BFIT”. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:314-319. [DOI: 10.1080/21678421.2020.1743470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Seelig J, Heller RA, Hackler J, Haubruck P, Moghaddam A, Biglari B, Schomburg L. Selenium and copper status - potential signposts for neurological remission after traumatic spinal cord injury. J Trace Elem Med Biol 2020; 57:126415. [PMID: 31685353 DOI: 10.1016/j.jtemb.2019.126415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Traumatic Spinal Cord Injury (TSCI) is a severe incident resulting in loss of motor and sensory function caused by complex pathological mechanisms including massive oxidative stress and extensive inflammatory processes. The essential trace elements selenium (Se) and copper (Cu) play crucial roles as part of the antioxidant defense. HYPOTHESIS Remission after TSCI is associated with characteristic dynamics of early changes in serum Cu and Se status. STUDY DESIGN Single-center prospective observational study. PATIENTS AND METHODS Serum samples from TSCI patients were analyzed (n = 52); 21 recovered and showed a positive abbreviated injury score (AIS) conversion within 3 months (G1), whereas 21 had no remission (G0). Ten subjects with vertebral fractures without neurological impairment served as control (C). Different time points (at admission, and after 4, 9, 12, and 24 h) were analyzed for total serum Se and Cu concentrations by total reflection X-ray fluorescence, and for Selenoprotein P (SELENOP) and Ceruloplasmin (CP) by sandwich ELISA. RESULTS At admission, CP and SELENOP concentrations were higher in the remission group (G1) than in the non-remission group (G0). Within 24 h, there were marginal changes in Se, SELENOP, Cu and CP concentrations in the groups of controls (C) and G0. In contrast, these parameters decreased significantly in G1. Binary logistic regression analysis including Cu and Se levels at admission in combination with Se and CP levels after 24 h allowed a prediction for potential remission, with an area under the curve (AUC) of 87.7% (CI: 75.1%-100.0%). CONCLUSION These data indicate a strong association between temporal changes of the Se and Cu status and the clinical outcome after TSCI. The dynamics observed may reflect an ongoing redistribution of the trace elements in favor of a better anti-inflammatory response and a more successful neurological regeneration.
Collapse
Affiliation(s)
- Julian Seelig
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Raban Arved Heller
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Heidelberg Trauma Research Group, Department of Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Hackler
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Patrick Haubruck
- Heidelberg Trauma Research Group, Department of Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany; Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, University of Sydney, St Leonards, New South Wales, 2065, Australia
| | - Arash Moghaddam
- Aschaffenburg Trauma and Orthopedic Research Group, Center for Orthopedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Bahram Biglari
- BG Trauma Center Ludwigshafen, Department of Paraplegiology, Ludwigshafen, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
41
|
Maass F, Michalke B, Willkommen D, Schulte C, Tönges L, Boerger M, Zerr I, Bähr M, Lingor P. Selenium speciation analysis in the cerebrospinal fluid of patients with Parkinson's disease. J Trace Elem Med Biol 2020; 57:126412. [PMID: 31582281 DOI: 10.1016/j.jtemb.2019.126412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The aim of the study was to investigate if speciation analysis by liquid chromatography coupled to mass spectrometry could be used to detect organic and inorganic binding forms of selenium in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD) and age-matched control subjects (AMC). METHODS PD patients and control subjects were enrolled from three different neurological departments. CSF samples were collected according to standardized biomarker protocols and subjected to inductively coupled plasma mass spectrometry (ICP-MS) for total selenium determination and ion exchange chromatography (IEC) hyphenated to ICP-MS for selenium speciation analysis. RESULTS 75 PD patients and 68 age-matched controls were enrolled for speciation analysis. 8 different species could be detected, but only selenoprotein P (SELENOP), human serum albumin-bound Se (Se-HSA), selenomethionine (Se-Met) and an unidentified Se-compound (U2) presented with more than 50% values above the limit of quantification, without showing significant differences between both groups (p > 0.05). The Se-HSA / Se-Met ratio yielded a significant difference between PD and AMC (p = 0.045). The inorganic species Se-IV and Se-VI were only detectable in a minor part of PD and AMC samples. A highly significant correlation between total selenium levels and SELENOP (PD p < 0.0001; AMC p < 0.0001) and Se-HSA (PD p < 0.0001; AMC p < 0.0001) could be demonstrated, respectively. CONCLUSIONS Speciation analysis yielded new insight into selenium homeostasis in PD but cannot be used to establish a diagnostic biomarker. The small number of detectable values for Se-IV and Se-VI suggests an inferior role of these potentially neurotoxic binding forms in PD pathology in contrast to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Fabian Maass
- Department of Neurology, University Medical Center, Göttingen, Germany.
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Desiree Willkommen
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Claudia Schulte
- German Center for Neurodegenerative Diseases, University of Tübingen, Germany; Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Lars Tönges
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany.
| | - Matthias Boerger
- Department of Neurology, University Medical Center, Göttingen, Germany.
| | - Inga Zerr
- Department of Neurology, University Medical Center, Göttingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Mathias Bähr
- Department of Neurology, University Medical Center, Göttingen, Germany.
| | - Paul Lingor
- Department of Neurology, University Medical Center, Göttingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Neurology, München, Germany.
| |
Collapse
|
42
|
Solovyev N, Vanhaecke F, Michalke B. Selenium and iodine in diabetes mellitus with a focus on the interplay and speciation of the elements. J Trace Elem Med Biol 2019; 56:69-80. [PMID: 31442957 DOI: 10.1016/j.jtemb.2019.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease caused by insulin deficiency (type I) or dysfunction (type II). Diabetes is a threatening public health concern. It is considered as one of the priority non-communicable diseases, due to its high and increasing incidence, the associated healthcare costs, and threatening medical complications. Two trace elements selenium (Se) and iodine (I) were intensively discussed in the context of diabetic pathology and, possibly, etiology. It seems there is a multilayer involvement of these essential nutrients in glucose tolerance, energy metabolism, insulin signaling and resistance, which are mainly related to the antioxidant selenoenzymes and the thyroid hormones. Other factors might be related to (auto)immunity, protection against endoplasmic reticulum stress, and leptin signaling. The aim of the current review is to evaluate the current understanding of the role of selenium and iodine in diabetes with a focus on the biochemical interplay between the elements, their possible role as biomarkers, and their chemical speciation. Possible impacts from novel analytical techniques related to trace element speciation and isotopic analysis are outlined.
Collapse
Affiliation(s)
- Nikolay Solovyev
- St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russian Federation; Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium.
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| | - Bernhard Michalke
- Helmhotz Zentrum München - German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
43
|
Vinceti M, Filippini T, Malagoli C, Violi F, Mandrioli J, Consonni D, Rothman KJ, Wise LA. Amyotrophic lateral sclerosis incidence following exposure to inorganic selenium in drinking water: A long-term follow-up. ENVIRONMENTAL RESEARCH 2019; 179:108742. [PMID: 31629180 DOI: 10.1016/j.envres.2019.108742] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Some studies have reported an association between overexposure to selenium and risk of amyotrophic lateral sclerosis (ALS), a rare degenerative disease of motor neurons. From 1986 through 2015, we followed a cohort in Northern Italy that had been inadvertently consuming tap water with unusually high concentrations of inorganic hexavalent selenium from 1974 to 1985. We had previously documented an excess incidence of ALS in this cohort during 1986-1994. Here, we report extended follow-up of the cohort for an additional 21 years, encompassing 50,100 person-years of the exposed cohort and 2,233,963 person-years of the unexposed municipal cohort. We identified 7 and 112 incident ALS cases in the exposed and unexposed cohorts, respectively, yielding crude incidence rates of 14 and 5 cases per 100,000 person-years. A Poisson regression analysis, adjusting for age, sex and calendar year, produced an overall incidence rate ratio (IRR) for ALS of 2.8 (95% confidence interval (CI) 1.3, 6), with a substantially stronger IRR in 1986-1994 (8.2, 95% CI 2.7, 24.7) than in 1995-2015 (1.5, 95% CI 0.5, 4.7), and among women (5.1, 95% CI 1.8, 14.3) than men (1.7, 95% CI 0.5, 5.4). Overall, these results indicate an association between high exposure to inorganic selenium, a recognized neurotoxicant, and ALS incidence, with declining rates after cessation of exposure and stronger effects among women.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States.
| | - Tommaso Filippini
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy
| | - Carlotta Malagoli
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy
| | - Federica Violi
- CREAGEN - Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Medical School, Via Campi 287, 41125, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, St. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States
| |
Collapse
|
44
|
Abstract
Selenium is an essential trace element for maintenance of overall health, whose deficiency and dyshomeostasis have been linked to a variety of diseases and disorders. The majority of previous researches focused on characterization of genes encoding selenoproteins or proteins involved in selenium metabolism as well as their functions. Many studies in humans also investigated the relationship between selenium and complex diseases, but their results have been inconsistent. In recent years, systems biology and "-omics" approaches have been widely used to study complex and global variations of selenium metabolism and function in physiological and different pathological conditions. The present paper reviews recent progress in large-scale and systematic analyses of the relationship between selenium status or selenoproteins and several complex diseases, mainly including population-based cohort studies and meta-analyses, genetic association studies, and some other omics-based studies. Advances in ionomics and its application in studying the interaction between selenium and other trace elements in human health and diseases are also discussed.
Collapse
Affiliation(s)
- Huimin Ying
- Department of Endocrinology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang, People's Republic of China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China.
| |
Collapse
|
45
|
Nicoletti A, Cicero CE, Mostile G, Giuliano L, Luca A, Zappia M. Comment to: Trace elements in ALS patients and their relationships with clinical severity, by Oggiano R. et al. CHEMOSPHERE 2019; 233:986-987. [PMID: 30824159 DOI: 10.1016/j.chemosphere.2019.02.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Alessandra Nicoletti
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy.
| | - Calogero Edoardo Cicero
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy
| | - Giovanni Mostile
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy
| | - Loretta Giuliano
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy
| | - Antonina Luca
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy
| | - Mario Zappia
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
46
|
Maraldi T, Beretti F, Anselmi L, Franchin C, Arrigoni G, Braglia L, Mandrioli J, Vinceti M, Marmiroli S. Influence of selenium on the emergence of neuro tubule defects in a neuron-like cell line and its implications for amyotrophic lateral sclerosis. Neurotoxicology 2019; 75:209-220. [PMID: 31585128 DOI: 10.1016/j.neuro.2019.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
Impairment of the axonal transport system mediated by intracellular microtubules (MTs) is known to be a major drawback in neurodegenerative processes. Due to a growing interest on the neurotoxic effects of selenium in environmental health, our study aimed to assess the relationship between selenium and MTs perturbation, that may favour disease onset over a genetic predisposition to amyotrophic lateral sclerosis. We treated a neuron-like cell line with sodium selenite, sodium selenate and seleno-methionine and observed that the whole cytoskeleton was affected. We then investigated the protein interactome of cells overexpressing αTubulin-4A (TUBA4A) and found that selenium increases the interaction of TUBA4A with DNA- and RNA-binding proteins. TUBA4A ubiquitination and glutathionylation were also observed, possibly due to a selenium-dependent increase of ROS, leading to perturbation and degradation of MTs. Remarkably, the TUBA4A mutants R320C and A383 T, previously described in ALS patients, showed the same post-translational modifications to a similar extent. In conclusion this study gives insights into a specific mechanism characterizing selenium neurotoxicity.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy.
| | - Francesca Beretti
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via Del Pozzo 71, 41124, Modena, Italy.
| | - Laura Anselmi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, via G. Basso 58/B, 35131, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129, Padova, Italy.
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, via G. Basso 58/B, 35131, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129, Padova, Italy.
| | - Luca Braglia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Jessica Mandrioli
- Neurology Unit, Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy.
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States.
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
47
|
Sharma SK, Bansal MP, Sandhir R. Altered dietary selenium influences brain iron content and behavioural outcomes. Behav Brain Res 2019; 372:112011. [PMID: 31212061 DOI: 10.1016/j.bbr.2019.112011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient that provides antioxidant defence through selenoproteins, but at high concentrations, deleterious effects have been reported. The present study examines the antioxidant response in brain regions and behavioural functions in mice under various dietary Se paradigms; Se-deficient, Se-adequate and Se-excess. Se levels were found to be reduced in the cortex and hippocampus of Se-deficient animals, whereas no change was observed in animals on Se-excess diet. In the hippocampus, iron (Fe) levels increased in animals on Se-deficient and Se-excess diets. Moreover, in Se-deficient animals, Fe levels increased in cortex also. Interestingly, Se content in the hair positively correlated with the dietary Se intake. Total and Se-dependent glutathione peroxidase activity decreased in the cortex, hippocampus and cerebellum of animals on Se-deficient diet. On the other hand, the activity of these enzymes decreased in the cortex of animals on Se-excess diet. Further, lipid peroxidation increased in the cortex of animals on Se-deficient diet and in the hippocampus of animals on Se-excess diet. Cognitive functions assessed by Morris water maze and Y-maze tests revealed deficits in Se-deficient state. However, in Se-excess state cognitive deficits were observed only in Y-maze test. These findings suggest that long-term dietary variation in Se influences oxidative stress that impacts cognitive functions. Therefore, it is suggested that maintenance of Se status during postnatal development may be crucial for mental health.
Collapse
Affiliation(s)
- Sunil Kumar Sharma
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Mohinder Pal Bansal
- Department of Biophysics, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Selenium, a trace element, is ubiquitous in the environment. The main source of human exposure is diet. Despite its nutritional benefits, it is one of the most toxic naturally occurring elements. Selenium deficiency and overexposure have been associated with adverse health effects. Its level of toxicity may depend on its chemical form, as inorganic and organic species have distinct biological properties. RECENT FINDINGS Nonexperimental and experimental studies have generated insufficient evidence for a role of selenium deficiency in human disease, with the exception of Keshan disease, a cardiomyopathy. Conversely, recent randomized trials have indicated that selenium overexposure is positively associated with type 2 diabetes and high-grade prostate cancer. In addition, a natural experiment has suggested an association between overexposure to inorganic hexavalent selenium and two neurodegenerative diseases, amyotrophic lateral sclerosis and Parkinson's disease. Risk assessments should be revised to incorporate the results of studies demonstrating toxic effects of selenium. Additional observational studies and secondary analyses of completed randomized trials are needed to address the uncertainties regarding the health risks of selenium exposure.
Collapse
|
49
|
Vinceti M, Michalke B, Malagoli C, Eichmüller M, Filippini T, Tondelli M, Bargellini A, Vinceti G, Zamboni G, Chiari A. Selenium and selenium species in the etiology of Alzheimer's dementia: The potential for bias of the case-control study design. J Trace Elem Med Biol 2019; 53:154-162. [PMID: 30910200 DOI: 10.1016/j.jtemb.2019.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Several human studies imply that the trace element selenium and its species may influence the onset of neurological disease, including Alzheimer's dementia (AD). Nevertheless, the literature is conflicting, with reported associations between exposure and risk in opposite direction, possibly due to biases in exposure assessment. After conducting a cohort study that detected an excess AD risk associated with higher levels of inorganic-hexavalent selenium in subjects with mild cognitive impairment (MCI), we investigated the relation between selenium and AD using a case-control study design. We determined cerebrospinal fluid levels of selenium species in 56 MCI participants already included in the cohort study, considered as referents, and in 33 patients with established AD. AD risk was inversely correlated with inorganic selenium species and with the organic form bound to selenoprotein P. Selenium bound to other organo-selenium species was positively correlated with AD risk, suggesting compensatory selenoprotein upregulation following increased oxidative stress. The finding of an increased AD risk associated with inorganic-hexavalent selenium from the cohort study was not replicated. This case-control study yielded entirely different results than those generated by a cohort study with a partially overlapping participant population, suggesting that case-control design does not allow to reliably assess the role of selenium exposure in AD etiology. This inability appears to be due to exposure misclassification, falsely indicating an etiologic role of selenium deficiency likely due to reverse causation, and involving most selenium species. The case-control design may instead lend insights into the pathologic process underlying disease progression.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA.
| | - Bernhard Michalke
- Helmholtz Center Munich - German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg 85764, Germany
| | - Carlotta Malagoli
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy
| | - Marcel Eichmüller
- Helmholtz Center Munich - German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg 85764, Germany
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy
| | - Manuela Tondelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| | - Annalisa Bargellini
- CREAGEN - Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy
| | - Giulia Vinceti
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| | - Annalisa Chiari
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena 41125, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 71 Via del Pozzo, Modena 41124, Italy
| |
Collapse
|
50
|
Michalke B, Willkommen D, Venkataramani V. Iron Redox Speciation Analysis Using Capillary Electrophoresis Coupled to Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). Front Chem 2019; 7:136. [PMID: 30931301 PMCID: PMC6426946 DOI: 10.3389/fchem.2019.00136] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/21/2019] [Indexed: 11/16/2022] Open
Abstract
Neuronal iron dyshomeostasis occurs in multiple neurodegenerative diseases. Changes in the Fe(II)/Fe(III) ratio toward Fe(II) is closely related to oxidative stress, lipid peroxidation, and represents a hallmark feature of ferroptosis. In particular for body fluids, like cerebrospinal fluid (CSF), reliable quantitative methods for Fe(II)/(III) redox-speciation analysis are needed to better assess the risk of Fe(II)-mediated damage in brain tissue. Currently in the field of metallomics, the most direct method to analyze both iron species is via LC-ICP-MS. However, this Fe(II)/(III) speciation analysis method suffers from several limitations. Here, we describe a unique method using capillary electrophoresis (CE)-ICP-MS for quantitative Fe(II)/(III) speciation analysis that can be applied for cell lysates and biofluid samples. Compared to LC, CE offers various advantages: (1) Capillaries have no stationary phase and do not depend on batch identity of stationary phases; (2) Replacement of aged or blocked capillaries is quick with no performance change; (3) Purge steps are effective and short; (4) Short sample analysis time. The final method employed 20 mM HCl as background electrolyte and a separation voltage of +25 kV. In contrary to the LC-method, no complexation of Fe-species with pyridine dicarboxylic acid (PDCA) was applied, since it hampered separation. Peak shapes and concentration detection limits were improved by combined conductivity-pH-stacking achieving 3 μg/L detection limit (3σ) at 13 nL injection volume. Calibrations from LOD—150 μg/L were linear [r2[Fe(II)] = 0.9999, r2[Fe(III)] = 0.9951]. At higher concentrations Fe(II) curve flattened significantly. Measurement precision was 3.5% [Fe(II) at 62 μg/L] or 2.2% [Fe(III) at 112 μg/L] and migration time precision was 2% for Fe(III) and 3% for Fe(II), each determined in 1:2 diluted lysates of human neuroblastoma cells. Concentration determination accuracy was checked by parallel measurements of SH-SY5Y cell lysates with validated LC-ICP-MS method and by recovery experiments after standard addition. Accuracy (n = 6) was 97.6 ± 3.7% Fe(III) and 105 ± 6.6%Fe(II). Recovery [(a) +33 μg/L or (b) +500 μg/L, addition per species] was (a): 97.2 ± 13% [Fe(II)], 108 ± 15% [Fe(III)], 102.5 ± 7% (sum of species), and (b) 99±4% [Fe(II)], 101 ± 6% [Fe(III)], 100 ± 5% (sum of species). Migration time shifts in CSF samples were due to high salinity, but both Fe-species were identified by standard addition.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Desiree Willkommen
- Research Unit Analytical BioGeoChemistry, Helmholz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany.,Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|