1
|
Azmoun S, Lewis F, Shoieb D, Jin Y, Colicino E, Winters I, Gu H, Krishnamurthy H, Richardson J, Placidi D, Lambertini L, Lucchini RG. Impact of Manganese on Neuronal Function: An Exploratory MultiOmic Study on Ferroalloy Workers in Brescia, Italy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.02.25326824. [PMID: 40385409 PMCID: PMC12083615 DOI: 10.1101/2025.05.02.25326824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Interest is growing in the potential role of manganese (Mn) in Alzheimer's Disease (ADRD). This nested pilot study of a ferroalloy workers cohort was aimed to investigate the effects of long-term occupational Mn exposure on cognitive function through β-amyloid (Aβ) modification and brain deposition, as well as metabolomic, lipidomic and proteomic profiling. We examined 6 male exposed workers (median age 63, exposure duration 31 yrs), and 5 historical controls (median age 60) who had undergone brain PET scan imaging showing higher Aβ deposition among the exposed compared to the controls (p < 0.05). The average annual cumulative respirable Mn of the ferroalloy workers was 329.23 ± 516.39 μg/m3 (geometric mean 118.59). Average Mn level in plasma of the exposed subjects (0.704 ± 0.2 ng/mL) was significantly higher than the controls (0.397 ± 0.18). Pathway analyses using LC-MS/MS results revealed impacted metabolomic pathways such as olfactory signaling, mitochondrial fatty acid beta-oxidation, biogenic amine synthesis, SLC-mediated transmembrane transport, and glycerophospholipid and choline metabolism in the Mn exposed group. Single molecule arrays (Simoa) analysis revealed notable modifications of AD-related plasma biomarkers; protein microarray (chip) showed significant changes (p < 0.05) in the levels of some plasma antibodies targeting autoimmune and neuronal associated proteins such as Aβ (25-35), GFAP, Serotonin, Human NOVA1, and Human Siglec-1/CD169 among the Mn exposed individuals. This data provides evidence on Mn-induced alterations of pathways and biomarkers associated with cognitive neurodegenerative diseases.
Collapse
Affiliation(s)
- Somaiyeh Azmoun
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social work, Florida International University, Miami, FL, USA
| | - Freeman Lewis
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social work, Florida International University, Miami, FL, USA
| | - Daniel Shoieb
- Department of Medical and Surgical Specialties, University of Brescia, Brescia, Italy
| | - Yan Jin
- St. Jude Children Research Hospital, Memphis, TN, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Isha Winters
- Isakson Center for Neurological Disease Research and Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, GA, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | | | - Jason Richardson
- Isakson Center for Neurological Disease Research and Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, GA, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, University of Brescia, Brescia, Italy
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social work, Florida International University, Miami, FL, USA
- Occupational Medicine, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
2
|
Kim C, Hilbert TJ, Brunst KJ, Mangino AA, Christian WJ, Parsons PJ, Palmer CD, Landero J, Westneat S, Papautsky I, Dietrich KN, Haynes EN. Impact of manganese and metal mixtures in blood, hair, and soil on child adaptive behaviors in Southeast Side Chicago. ENVIRONMENTAL RESEARCH 2025; 278:121637. [PMID: 40250593 DOI: 10.1016/j.envres.2025.121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Manganese (Mn) is essential in growth and development, yet higher levels of Mn are associated with deficits in neurodevelopment. Elevated air Mn was identified near Mn alloy processing facilities in Southeast Side Chicago resulting in community concern about child exposure and health. METHODS Blood, hair, and soil samples were collected and analyzed for multiple metals for children ages 7-17 years and a parent/primary caregiver completed surveys. We used generalized estimating equations to assess associations between metals and the Adaptive Behavior Assessment System 3rd Edition (ABAS-3) scores. Sensitivity analyses were conducted to determine effect modification by child sex on associations between metals and ABAS-3 scores. Bayesian kernel machine regression was used as our principal analytic framework to assess the associations between metal mixtures and adaptive behaviors. RESULTS The analyses included 108 children. Residential distance from the nearest Mn industrial source was inversely correlated with soil Mn levels and some were above the federal screening level. A significant association was found between soil Mn and lower ABAS-3 score (β: 3.78, 95 % CI: 7.31, -0.25), and between blood Mn and lower scores in females (β: 11.8, 95 % CI: 21.7, -1.87). ABAS-3 scores were negatively associated with the blood metals mixture, primarily driven by Mn. CONCLUSION Children in Southeast Side Chicago have elevated levels of soil Mn and soil Mn was associated with poorer ABAS-3 scores. Sex-specific differences were found between metal levels and ABAS-3 scores. After considering multiple metals in mixture, Mn was the primary driver of poorer adaptive behavior.
Collapse
Affiliation(s)
- Christine Kim
- University of Kentucky, College of Public Health, Lexington, KY, 40536, USA
| | - Timothy J Hilbert
- University of Kentucky, College of Public Health, Lexington, KY, 40536, USA
| | - Kelly J Brunst
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, 45267, USA
| | - Anthony A Mangino
- University of Kentucky, College of Public Health, Lexington, KY, 40536, USA
| | - W Jay Christian
- University of Kentucky, College of Public Health, Lexington, KY, 40536, USA
| | - Patrick J Parsons
- New York State Department of Health, Wadsworth Center, Division of Environmental Health Sciences, Albany, NY, 12237, USA; University of Albany, School of Public Health, Department of Environmental Health Sciences, 1400 Washington Ave, Albany, NY, 12222, USA
| | - Christopher D Palmer
- New York State Department of Health, Wadsworth Center, Division of Environmental Health Sciences, Albany, NY, 12237, USA; University of Albany, School of Public Health, Department of Environmental Health Sciences, 1400 Washington Ave, Albany, NY, 12222, USA
| | - Julio Landero
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Climate Science, New York, NY, 10029, USA
| | - Susan Westneat
- University of Kentucky, College of Public Health, Lexington, KY, 40536, USA
| | - Ian Papautsky
- University of Illinois Chicago, Department of Biomedical Engineering, Chicago, IL, 60607, USA; University of Illinois Cancer Center, Chicago, IL, 60612, USA
| | - Kim N Dietrich
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, 45267, USA
| | - Erin N Haynes
- University of Kentucky, College of Public Health, Lexington, KY, 40536, USA.
| |
Collapse
|
3
|
Rosolen V, Barbiero F, Mariuz M, Parpinel M, Ronfani L, Vecchi Brumatti L, Bin M, Castriotta L, Valent F, Little DL, Snoj Tratnik J, Mazej D, Falnoga I, Horvat M, Barbone F. The Role of Prenatal Exposure to Lead and Manganese in Child Cognitive Neurodevelopment at 18 Months: The Results of the Italian PHIME Cohort. TOXICS 2025; 13:54. [PMID: 39853052 PMCID: PMC11768919 DOI: 10.3390/toxics13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Prenatal lead (Pb) and manganese (Mn) exposure can impair neurodevelopment, targeting the central nervous system. This study investigated the effects of prenatal exposure to Pb and Mn on neurodevelopment in children at 18 months of age, using data from 607 Italian mother-child pairs enrolled in the Northern Adriatic Cohort II (NAC-II). All children born at term (≥37 weeks) were assessed with the Bayley Scales of Infant and Toddler Development, third edition. Cord blood concentrations of Mn and Pb were categorized as low or high exposures based on the 75th percentile of their distribution. Sociodemographic and lifestyle information was collected via questionnaires. Using simple and multiple linear regressions, the study examined the relationship between the cognitive composite score (COGN) and Mn and Pb co-exposure, including their interaction. Stratified regressions explored how Mn exposure influenced the effect of Pb, in the whole cohort and by the child's sex. Beta coefficients (β) and the 90% confidence interval (90% CI) were estimated. Boys showed an interaction effect between Mn and Pb, with a reduction in COGN (β = -5.78, 90% CI: -11.17; -0.40), further described as a negative effect of high Pb on cognition when Mn exposure was also high (β = -6.98, 90% CI: -10.93; -3.04). No clear effects were observed in girls or the entire cohort at these levels of exposure. The findings highlight the harmful impact of combined prenatal Pb and Mn exposure on cognitive development in boys.
Collapse
Affiliation(s)
- Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, 34121 Trieste, Italy; (V.R.); (M.M.)
| | - Fabiano Barbiero
- UOC Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Marika Mariuz
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, 34121 Trieste, Italy; (V.R.); (M.M.)
| | - Maria Parpinel
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy;
| | - Luca Ronfani
- Institute for Maternal and Child Health, IRCCS ‘Burlo Garofolo’, 34127 Trieste, Italy; (L.R.); (L.V.B.); (M.B.)
| | - Liza Vecchi Brumatti
- Institute for Maternal and Child Health, IRCCS ‘Burlo Garofolo’, 34127 Trieste, Italy; (L.R.); (L.V.B.); (M.B.)
| | - Maura Bin
- Institute for Maternal and Child Health, IRCCS ‘Burlo Garofolo’, 34127 Trieste, Italy; (L.R.); (L.V.B.); (M.B.)
| | - Luigi Castriotta
- Institute of Hygiene and Evaluative Epidemiology, Friuli Centrale University Health Authority, 33100 Udine, Italy;
| | - Francesca Valent
- Hygiene and Public Health, Friuli Centrale University Health Authority, 33100 Udine, Italy;
| | - D’Anna Latesha Little
- Office of Chief Medical Officer, Western Friuli Health Authority, 33170 Pordenone, Italy;
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (J.S.T.); (D.M.); (I.F.); (M.H.)
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (J.S.T.); (D.M.); (I.F.); (M.H.)
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (J.S.T.); (D.M.); (I.F.); (M.H.)
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (J.S.T.); (D.M.); (I.F.); (M.H.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
4
|
Abdel-Rasoul GM, Abu-Salem MES, Salem EAA, Allam HK, Abdel-Monaem AM, Younis FE. Neurological and neurobehavioral effects of welders in Egypt exposed to manganese containing welding fumes. Int Arch Occup Environ Health 2024; 97:711-720. [PMID: 38951217 DOI: 10.1007/s00420-024-02077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
PURPOSE Welders are more likely to develop neurobehavioral disorders because of their exposure to neurotoxic metals such as manganese. This study aimed to measure the neurobehavioral performance of welders occupationally exposed to manganese at welding enterprises and its relationship with the workplace environment. METHODS It is a comparative cross-sectional study carried out on 130 welders working at 50 welding enterprises in Menoufia governorate, Egypt, compared to 130 non-occupationally exposed controls. RESULTS It was found that the environments of the studied welding enterprises had levels of respirable dust, manganese, and total welding fumes that exceeded internationally permissible limits. In addition, the mean blood manganese levels were significantly higher among welders (4.16 ± 0.61) than the controls (1.72 ± 0.41). Welders had a significantly higher prevalence of neurological manifestations and lower performance of neurobehavioral tests. Lower neurobehavioral performance among welders was significantly correlated with increased work duration and blood levels in some tests. CONCLUSION To lessen the fumes in the breathing zone of workers, it is therefore strongly recommended to regularly wear high-quality personal protective equipment, especially masks, and to ensure proper ventilation.
Collapse
Affiliation(s)
| | | | - Eman Abdel-Azeem Salem
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt
| | - Heba Khodary Allam
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt
| | | | - Faten Ezzelarab Younis
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt.
| |
Collapse
|
5
|
Friedman A, Schildroth S, Fruh V, Krengel MH, Tripodis Y, Placidi D, White RF, Lucchini RG, Smith DR, Wright RO, Horton MK, Claus Henn B. Sex-specific associations of a ferroalloy metal mixture with motor function in Italian adolescents. Environ Epidemiol 2024; 8:e321. [PMID: 39022189 PMCID: PMC11254121 DOI: 10.1097/ee9.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Motor function is critical for children's health, yet remains an understudied neurodevelopmental domain. Exposure to metals has been linked with motor function, but no study has examined the joint effects of metal mixtures. Methods We evaluated cross-sectional associations between a metal mixture and motor function among 569 adolescents (10-14 years old) living near the ferroalloy industry. Concentrations of blood lead, hair manganese, hair copper, and hair chromium were quantified using inductively coupled plasma mass spectrometry. Neuropsychologists administered multiple fine motor function assessments: pursuit aiming, finger tapping, visual reaction time (VRT), and subtests from the Luria Nebraska battery. We estimated associations between motor function and the metal mixture using quantile-based g-computation and multivariable linear regression, adjusting for child age, sex, and socioeconomic status. We explored sex-specific associations in stratified models. Results Associations between the metal mixture and motor function were mostly null but were modified by sex. We observed a beneficial association among females: a quartile increase in all metals in the mixture was associated with a 2.6% faster average response time on the VRT (95% confidence interval [CI] = -4.7%, -0.5%), driven by Cu and Cr. In contrast, this association was adverse among males (ß = 1.5% slower response time [95% CI = -0.7%, 3.9%]), driven by Cu and Mn. Conclusions Results suggest that males may be more susceptible to the adverse effects of metal exposure on motor function during adolescence than females. Future studies, particularly prospective study designs, are warranted to further understand the associations of metal mixtures with motor function.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Maxine H. Krengel
- Department of Neurology, Boston University Medical School, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
- Department of Neurology, Boston University Medical School, Boston, Massachusetts
| | - Roberto G. Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, Florida
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
6
|
McBride DE, Bhattacharya A, Sucharew H, Brunst KJ, Barnas M, Cox C, Altman L, Hilbert TJ, Burkle J, Westneat S, Martin KV, Parsons PJ, Praamsma ML, Palmer CD, Kannan K, Smith DR, Wright R, Amarasiriwardena C, Dietrich KN, Cecil KM, Haynes EN. Child and Adolescent Manganese Biomarkers and Adolescent Postural Balance in Marietta CARES Cohort Participants. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57010. [PMID: 38780454 PMCID: PMC11114102 DOI: 10.1289/ehp13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Manganese (Mn) plays a significant role in both human health and global industries. Epidemiological studies of exposed populations demonstrate a dose-dependent association between Mn and neuromotor effects ranging from subclinical effects to a clinically defined syndrome. However, little is known about the relationship between early life Mn biomarkers and adolescent postural balance. OBJECTIVES This study investigated the associations between childhood and adolescent Mn biomarkers and adolescent postural balance in participants from the longitudinal Marietta Communities Actively Researching Exposures Study (CARES) cohort. METHODS Participants were recruited into CARES when they were 7-9 y old, and reenrolled at 13-18 years of age. At both time points, participants provided samples of blood, hair, and toenails that were analyzed for blood Mn and lead (Pb), serum cotinine, hair Mn, and toenail Mn. In adolescence, participants completed a postural balance assessment. Greater sway indicates postural instability (harmful effect), whereas lesser sway indicates postural stability (beneficial effect). Multivariable linear regression models were conducted to investigate the associations between childhood and adolescent Mn biomarkers and adolescent postural balance adjusted for age, sex, height-weight ratio, parent/caregiver intelligence quotient, socioeconomic status, blood Pb, and serum cotinine. RESULTS CARES participants who completed the adolescent postural balance assessment (n = 123 ) were 98% White and 54% female and had a mean age of 16 y (range: 13-18 y). In both childhood and adolescence, higher Mn biomarker concentrations were significantly associated with greater adolescent sway measures. Supplemental analyses revealed sex-specific associations; higher childhood Mn biomarker concentrations were significantly associated with greater sway in females compared with males. DISCUSSION This study found childhood and adolescent Mn biomarkers were associated with subclinical neuromotor effects in adolescence. This study demonstrates postural balance as a sensitive measure to assess the association between Mn biomarkers and neuromotor function. https://doi.org/10.1289/EHP13381.
Collapse
Affiliation(s)
- Danielle E. McBride
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Amit Bhattacharya
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Heidi Sucharew
- Department of Emergency Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kelly J. Brunst
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mary Barnas
- Department of Psychology, Marietta College, Marietta, Ohio, USA
| | - Cyndy Cox
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lorenna Altman
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Timothy J. Hilbert
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeff Burkle
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Susan Westneat
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Kaitlin Vollet Martin
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Meredith L. Praamsma
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Christopher D. Palmer
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Robert Wright
- Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| | - Chitra Amarasiriwardena
- Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| | - Kim N. Dietrich
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kim M. Cecil
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erin N. Haynes
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Wei S, Xu T, Sang N, Yue H, Chen Y, Jiang T, Jiang T, Yin D. Mixed Metal Components in PM 2.5 Contribute to Chemokine Receptor CCR5-Mediated Neuroinflammation and Neuropathological Changes in the Mouse Olfactory Bulb. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4914-4925. [PMID: 38436231 DOI: 10.1021/acs.est.3c08506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Particulate matter, especially PM2.5, can invade the central nervous system (CNS) via the olfactory pathway to induce neurotoxicity. The olfactory bulb (OB) is the key component integrating immunoprotection and olfaction processing and is necessarily involved in the relevant CNS health outcomes. Here we show that a microglial chemokine receptor, CCR5, is the target of environmentally relevant PM2.5 in the OB to trigger neuroinflammation and then neuropathological injuries. Mechanistically, PM2.5-induced CCR5 upregulation results in the pro-inflammatory paradigm of microglial activation, which subsequently activates TLR4-NF-κB neuroinflammation signaling and induces neuropathological changes that are closely related to neurodegenerative disorders (e.g., Aβ deposition and disruption of the blood-brain barrier). We specifically highlight that manganese and lead in PM2.5 are the main contributors to CCR5-mediated microglial activation and neuroinflammation in synergy with aluminum. Our results uncover a possible pathway of PM2.5-induced neuroinflammation and identify the principal neurotoxic components, which can provide new insight into efficiently diminishing the adverse health effects of PM2.5.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Postdoctoral Research Station of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tao Jiang
- Lyon Neuroscience Research Center (CRNL), Sensory Neuro-Ethology Team, 59 Bd Pinel, Bron 69500, France
| | - Tingwang Jiang
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Key Laboratory, Changshu No.2 People's Hospital, Changshu 215500, China
| |
Collapse
|
8
|
Fan RZ, Sportelli C, Lai Y, Salehe SS, Pinnell JR, Brown HJ, Richardson JR, Luo S, Tieu K. A partial Drp1 knockout improves autophagy flux independent of mitochondrial function. Mol Neurodegener 2024; 19:26. [PMID: 38504290 PMCID: PMC10953112 DOI: 10.1186/s13024-024-00708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Dynamin-related protein 1 (Drp1) plays a critical role in mitochondrial dynamics. Partial inhibition of this protein is protective in experimental models of neurological disorders such as Parkinson's disease and Alzheimer's disease. The protective mechanism has been attributed primarily to improved mitochondrial function. However, the observations that Drp1 inhibition reduces protein aggregation in such neurological disorders suggest the involvement of autophagy. To investigate this potential novel protective mechanism of Drp1 inhibition, a model with impaired autophagy without mitochondrial involvement is needed. METHODS We characterized the effects of manganese (Mn), which causes parkinsonian-like symptoms in humans, on autophagy and mitochondria by performing dose-response studies in two cell culture models (stable autophagy HeLa reporter cells and N27 rat immortalized dopamine neuronal cells). Mitochondrial function was assessed using the Seahorse Flux Analyzer. Autophagy flux was monitored by quantifying the number of autophagosomes and autolysosomes, as well as the levels of other autophagy proteins. To strengthen the in vitro data, multiple mouse models (autophagy reporter mice and mutant Drp1+/- mice and their wild-type littermates) were orally treated with a low chronic Mn regimen that was previously reported to increase α-synuclein aggregation and transmission via exosomes. RNAseq, laser captured microdissection, immunofluorescence, immunoblotting, stereological cell counting, and behavioural studies were used. RESULTS IN VITRO: data demonstrate that at low non-toxic concentrations, Mn impaired autophagy flux but not mitochondrial function and morphology. In the mouse midbrain, RNAseq data further confirmed autophagy pathways were dysregulated but not mitochondrial related genes. Additionally, Mn selectively impaired autophagy in the nigral dopamine neurons but not the nearby nigral GABA neurons. In cells with a partial Drp1-knockdown and Drp1+/- mice, Mn induced autophagic impairment was significantly prevented. Consistent with these observations, Mn increased the levels of proteinase-K resistant α-synuclein and Drp1-knockdown protected against this pathology. CONCLUSIONS This study demonstrates that improved autophagy flux is a separate mechanism conferred by Drp1 inhibition independent of its role in mitochondrial fission. Given that impaired autophagy and mitochondrial dysfunction are two prominent features of neurodegenerative diseases, the combined protective mechanisms targeting these two pathways conferred by Drp1 inhibition make this protein an attractive therapeutic target.
Collapse
Affiliation(s)
- Rebecca Z Fan
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Carolina Sportelli
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Yanhao Lai
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Said S Salehe
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Jennifer R Pinnell
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Harry J Brown
- Department of Environmental Health Sciences, Florida International University, Miami, USA
- Biomolecular Sciences Institute, Florida International University, Miami, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, USA.
| |
Collapse
|
9
|
Wasick A, Kim Y. Association between the Composition of Drinking Water and Cognitive Function in the Elderly: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:362. [PMID: 38541362 PMCID: PMC10969896 DOI: 10.3390/ijerph21030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
The prevalence of dementia increases with nearly 10 million new cases each year, with Alzheimer's disease contributing to 60-70% of cases. Environmental factors such as drinking water have been evaluated to determine if a relationship exists between trace elements in drinking water and the risk of developing cognitive disorders in the elderly. The purpose of the current systematic review was to evaluate an association between the composition of drinking water and cognitive function in the elderly. In accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines, a literature search was conducted using PubMed and CINAHL databases. A total of 10 studies were included in the current systematic review. Aluminum is the most commonly evaluated trace element in studies (n = 8), followed by silica (n = 5), calcium (n = 4), and fluoride (n = 4). Aluminum exposure showed an increased risk of cognitive decline in four studies, with no association reported in the other studies. Higher silica and pH levels were shown to be protective against a decline in cognitive function. A similar protective effect of calcium was found in two studies. Future research should measure multiple trace mineral levels in all water sources to evaluate the impact on cognitive function.
Collapse
Affiliation(s)
| | - Yeonsoo Kim
- Nutrition and Dietetics Program, Central Michigan University, 1200 South Franklin Street, Mt. Pleasant, MI 48859, USA;
| |
Collapse
|
10
|
Liu Q, Jenkitkasemwong S, Prami TA, McCabe SM, Zhao N, Hojyo S, Fukada T, Knutson MD. Metal-ion transporter SLC39A8 is required for brain manganese uptake and accumulation. J Biol Chem 2023; 299:105078. [PMID: 37482277 PMCID: PMC10457451 DOI: 10.1016/j.jbc.2023.105078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
Manganese (Mn) is an essential nutrient, but is toxic in excess. Whole-body Mn levels are regulated in part by the metal-ion influx transporter SLC39A8, which plays an essential role in the liver by reclaiming Mn from bile. Physiological roles of SLC39A8 in Mn homeostasis in other tissues, however, remain largely unknown. To screen for extrahepatic requirements for SLC39A8 in tissue Mn homeostasis, we crossed Slc39a8-inducible global-KO (Slc39a8 iKO) mice with Slc39a14 KO mice, which display markedly elevated blood and tissue Mn levels. Tissues were then analyzed by inductively coupled plasma-mass spectrometry to determine levels of Mn. Although Slc39a14 KO; Slc39a8 iKO mice exhibited systemic hypermanganesemia and increased Mn loading in the bone and kidney due to Slc39a14 deficiency, we show Mn loading was markedly decreased in the brains of these animals, suggesting a role for SLC39A8 in brain Mn accumulation. Levels of other divalent metals in the brain were unaffected, indicating a specific effect of SLC39A8 on Mn. In vivo radiotracer studies using 54Mn in Slc39a8 iKO mice revealed that SLC39A8 is required for Mn uptake by the brain, but not most other tissues. Furthermore, decreased 54Mn uptake in the brains of Slc39a8 iKO mice was associated with efficient inactivation of Slc39a8 in isolated brain microvessels but not in isolated choroid plexus, suggesting SLC39A8 mediates brain Mn uptake via the blood-brain barrier. These findings establish SLC39A8 as a candidate therapeutic target for mitigating Mn uptake and accumulation in the brain, the primary organ of Mn toxicity.
Collapse
Affiliation(s)
- Qingli Liu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Supak Jenkitkasemwong
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Tamanna Afrin Prami
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Shannon Morgan McCabe
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Ningning Zhao
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Fukada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
11
|
Lucchini R, Tieu K. Manganese-Induced Parkinsonism: Evidence from Epidemiological and Experimental Studies. Biomolecules 2023; 13:1190. [PMID: 37627255 PMCID: PMC10452806 DOI: 10.3390/biom13081190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Manganese (Mn) exposure has evolved from acute, high-level exposure causing manganism to low, chronic lifetime exposure. In this latter scenario, the target areas extend beyond the globus pallidus (as seen with manganism) to the entire basal ganglia, including the substantia nigra pars compacta. This change of exposure paradigm has prompted numerous epidemiological investigations of the occurrence of Parkinson's disease (PD), or parkinsonism, due to the long-term impact of Mn. In parallel, experimental research has focused on the underlying pathogenic mechanisms of Mn and its interactions with genetic susceptibility. In this review, we provide evidence from both types of studies, with the aim to link the epidemiological data with the potential mechanistic interpretation.
Collapse
Affiliation(s)
- Roberto Lucchini
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
12
|
Fan RZ, Sportelli C, Lai Y, Salehe S, Pinnell JR, Richardson JR, Luo S, Tieu K. A partial Drp1 knockout improves autophagy flux independent of mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547095. [PMID: 37425803 PMCID: PMC10327068 DOI: 10.1101/2023.06.29.547095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dynamin-related protein 1 (Drp1) is typically known for its role in mitochondrial fission. A partial inhibition of this protein has been reported to be protective in experimental models of neurodegenerative diseases. The protective mechanism has been attributed primarily to improved mitochondrial function. Herein, we provide evidence showing that a partial Drp1-knockout improves autophagy flux independent of mitochondria. First, we characterized in cell and animal models that at low non-toxic concentrations, manganese (Mn), which causes parkinsonian-like symptoms in humans, impaired autophagy flux but not mitochondrial function and morphology. Furthermore, nigral dopaminergic neurons were more sensitive than their neighbouring GABAergic counterparts. Second, in cells with a partial Drp1-knockdown and Drp1 +/- mice, autophagy impairment induced by Mn was significantly attenuated. This study demonstrates that autophagy is a more vulnerable target than mitochondria to Mn toxicity. Furthermore, improving autophagy flux is a separate mechanism conferred by Drp1 inhibition independent of mitochondrial fission.
Collapse
|
13
|
Scussiatto HO, da Silva JLB, Figueiredo AF, Ramos RAMR, de Rezende Pinna F, Voegels RL, Pinto JM, Fornazieri MA. Association of air pollution with olfactory identification performance of São Paulo residents: a cross-sectional study. Int Arch Occup Environ Health 2023; 96:621-628. [PMID: 36719485 DOI: 10.1007/s00420-023-01956-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Exposure to particulate matter of 10 μm or less in diameter (PM10) has been implicated in pulmonary and cardiovascular diseases. However, the effect of PM10 on olfaction has not been well established. We estimated individual acute and chronic PM10 exposure levels in a large Brazilian cohort and related them to the ability to identify odors. METHODS Adults from São Paulo (n = 1358) were recruited from areas with different levels of air pollution. To verify individual exposure to air pollution, the averages of 30, 60, 90, 180 and 364 days of PM10 were interpolated to subjects' zip codes using the kriging method. Olfactory identification performance was tested using the University of Pennsylvania Smell Identification Test (UPSIT®). Multiple linear regressions were used to calculate the effect of air pollution on olfactory identification performance, controlling for demographic and other variables that affect the sense of smell. RESULTS Acute exposures to PM10 were related to worse UPSIT® scores, including 30- (β = - 0.94, 95% Confidence Interval [CI] - 0.98, - 0.89), 60- (β = - 1.09, 95% CI = - 1.13, - 1.04) and 90-day intervals (β = - 1.06, 95% CI - 1.10, - 1.02) (reference for β: 1 µm/m3 increase in PM10 exposure per point decrease in UPSIT® score). Chronic exposures were also associated with worse olfaction for both 180- (β = - 1.06, 95% CI - 1.10, - 1.03) and 364-day (β = - 0.87, 95% CI - 0.90, - 0.84) intervals. As in prior work, men, older, low-income, and low-schooling people demonstrated worse olfactory performance. CONCLUSION Acute and chronic exposure to PM10 is strongly associated with olfactory identification performance in Brazilian adults. Understanding the mechanisms which underlie these relationships could help to improve chemosensory function with a large public health impact.
Collapse
Affiliation(s)
- Henrique Ochoa Scussiatto
- Department of Surgery, State University of Londrina, Celso Garcia Cid Road, Londrina, Parana, 86057970, Brazil. .,Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, South Ellis Avenue, Chicago, IL, 60637, USA.
| | - Jose Lucas Barbosa da Silva
- Department of Surgery, State University of Londrina, Celso Garcia Cid Road, Londrina, Parana, 86057970, Brazil.,Department of Surgery, University of São Paulo, Doutor Arnaldo Avenue, São Paulo, 01246903, Brazil
| | - Alan Felipe Figueiredo
- Department of Surgery, State University of Londrina, Celso Garcia Cid Road, Londrina, Parana, 86057970, Brazil
| | | | - Fabio de Rezende Pinna
- Department of Surgery, University of São Paulo, Doutor Arnaldo Avenue, São Paulo, 01246903, Brazil
| | - Richard Louis Voegels
- Department of Surgery, University of São Paulo, Doutor Arnaldo Avenue, São Paulo, 01246903, Brazil
| | - Jayant M Pinto
- Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, South Ellis Avenue, Chicago, IL, 60637, USA
| | - Marco Aurelio Fornazieri
- Department of Surgery, State University of Londrina, Celso Garcia Cid Road, Londrina, Parana, 86057970, Brazil.,Department of Surgery, University of São Paulo, Doutor Arnaldo Avenue, São Paulo, 01246903, Brazil.,Department of Surgery, Pontifical Catholic University of Parana, Jockey Club Avenue, Londrina, Parana, 86067000, Brazil
| |
Collapse
|
14
|
Yang T, Hao S, Wang P, Qin Y, You G, Shi Y, Yang B, Zhang A, Guo L, Jiang T. Material properties of degradable alloy Fe-30Mn-0.6N and its effect on ferroptosis in synoviocytes. J Biomed Mater Res B Appl Biomater 2023; 111:127-139. [PMID: 36066321 DOI: 10.1002/jbm.b.35139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
Ferroalloy has shown potential as implant materials, but little attention has been paid to their effects on synovial tissue ferroptosis. This study aimed to examine the mechanical properties, degradability and biocompatibility of Fe-30Mn-0.6N alloy and effects of it on synovial tissue ferroptosis. Tensile testing showed that Fe-30Mn-0.6N alloys exhibited tensile strength of 487 ± 18 MPa, yield strength of 221 ± 10 MPa, elongation of 16.9 ± 0.3% and Young's modulus of 37.7 ± 1.3 GPa. In vivo experiments, the cross-sectional area of the Fe-30Mn-0.6N alloys decreased by 73.32 ± 12.73% after 8 weeks of implantation. The results of scanning electron microscopy (SEM) and surface elemental analysis (EDS) showed that the Fe-30Mn-0.6N alloys had more Ca, O, C and P element deposition (p < .05). After 2, 4 and 8 weeks of implantation, no inflammatory response was observed in peri-implant synovial tissue of Fe-30Mn-0.6N and Ti-6Al-4V alloys, and Fe-30Mn-0.6N alloys did not affect the expression of the ferroptosis inhibitory gene Glutathione peroxidase 4 (GPX4). Compared with the control group, 30% Fe-30Mn-0.6N alloy extracts did not affect the cell viability (p > .05) in vitro, and intracellular Fe2+ and the reactive oxygen species (ROS) was significantly reduced (p < .05). WB and PCR results showed that the 30% extracts increased the protein activity and mRNA expression of GPX4, FTH1 and SLC7A11 in synoviocytes, but had no effect on PTGS2 and p53. It is concluded that Fe-30Mn-0.6N had degradability and biocompatibility in peri-implant synovial tissue, and did not induce significantly ferroptosis in synoviocytes.
Collapse
Affiliation(s)
- Tianyu Yang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Shimin Hao
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Penghao Wang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Yu Qin
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Guanchao You
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Yunyi Shi
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Boning Yang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Ao Zhang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Lei Guo
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| | - Tianlong Jiang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Serafini MM, Maddalon A, Iulini M, Galbiati V. Air Pollution: Possible Interaction between the Immune and Nervous System? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316037. [PMID: 36498110 PMCID: PMC9738575 DOI: 10.3390/ijerph192316037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
Exposure to environmental pollutants is a serious and common public health concern associated with growing morbidity and mortality worldwide, as well as economic burden. In recent years, the toxic effects associated with air pollution have been intensively studied, with a particular focus on the lung and cardiovascular system, mainly associated with particulate matter exposure. However, epidemiological and mechanistic studies suggest that air pollution can also influence skin integrity and may have a significant adverse impact on the immune and nervous system. Air pollution exposure already starts in utero before birth, potentially causing delayed chronic diseases arising later in life. There are, indeed, time windows during the life of individuals who are more susceptible to air pollution exposure, which may result in more severe outcomes. In this review paper, we provide an overview of findings that have established the effects of air pollutants on the immune and nervous system, and speculate on the possible interaction between them, based on mechanistic data.
Collapse
|
16
|
Cortez-Lugo M, Hernández-Bonilla D, Rodríguez-Agudelo Y, Solís-Vivanco R, Moreno-Macías H, Schilmann A, Rodríguez-Dozal S, Montes S, Rios C, Riojas-Rodríguez H. Neurocognitive function in adult residents of a mining district in Mexico after reducing manganese exposure: Follow-up after 11 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157519. [PMID: 35872186 DOI: 10.1016/j.scitotenv.2022.157519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Little is known about the neurotoxic effects of chronic exposure to airborne Mn once exposure has been reduced. The environmentally exposed and the reference adult populations evaluated in 2002 were followed, after an environmental management program (EMP) was implemented to reduce the exposure in a mining district in Mexico. OBJECTIVE The aim of this study was to compare the association between exposure to Mn and neurocognitive performance in environmentally exposed and reference groups of adults before and after EMP implementation. METHODS In 2013, the same battery of neurocognitive tests used in the initial study (2002) was applied to 58 adults exposed to airborne Mn and 30 adults from the reference community. A cumulative exposure index (CEI) was estimated for the study population before and after the EMP. Categorical outcomes were analyzed using logistic regression, and the resulting ORs were compared between studies. Continuous outcomes were analyzed using linear regression. All models were adjusted for age, years of education, socioeconomic status and blood lead levels. RESULTS Exposed adults from the post-EMP study showed an improvement in fine motor and verbal regulation of motor skills (OR < 1) compared to the exposed adults from the pre-EMP study (OR > 1). In both pre- and post-studies, the exposed adults showed a deterioration in their dynamic organization of motor activity compared to the reference group (p < 0.05); however, they showed no significant change in attention and working-memory performance. DISCUSSION After four years of a significant reduction in airborne Mn levels resulting from EMP implementation, chronically exposed adults showed an improvement in fine motor and verbal regulation of motor skills; however, the remaining areas of their motor and cognitive functions remained impaired.
Collapse
Affiliation(s)
- M Cortez-Lugo
- Environmental Health Department, the National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahucatitlán, CP 62100 Cuernavaca, Morelos, Mexico.
| | - D Hernández-Bonilla
- Environmental Health Department, the National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahucatitlán, CP 62100 Cuernavaca, Morelos, Mexico.
| | - Y Rodríguez-Agudelo
- Laboratory of Neurophysiology, the National Institute of Neurology and Neurosurgery, Av. Insurgentes Sur 3877, La Fama, Tlalpan, CP 14269 Mexico City, Mexico
| | - R Solís-Vivanco
- Laboratory of Cognitive and Clinical Neurophysiology, the National Institute of Neurology and Neurosurgery, Av. Insurgentes Sur 3877, La Fama, Tlalpan, CP 14269 Mexico City, Mexico.
| | - H Moreno-Macías
- Social Science and Humanities Department, the Metropolitan Autonomous University, Calzada del Hueso 1100, Coapa, Villa Quietud, Coyoacán, CP 04960 Mexico City, Mexico.
| | - A Schilmann
- Environmental Health Department, the National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahucatitlán, CP 62100 Cuernavaca, Morelos, Mexico.
| | - S Rodríguez-Dozal
- Environmental Health Department, the National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahucatitlán, CP 62100 Cuernavaca, Morelos, Mexico.
| | - S Montes
- Multidisciplinary Academic Unit, the University of Tamaulipas, Zona Centro, Ciudad Victoria, Tamaulipas, CP 87000 Reynosa-Aztlán, Tamaulipas, Mexico
| | - C Rios
- Neurochemistry Department, the National Institute of Neurology and Neurosurgery, Av. Insurgentes Sur 3877, La Fama, Tlalpan, CP 14269 Mexico City, Mexico
| | - H Riojas-Rodríguez
- Environmental Health Department, the National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahucatitlán, CP 62100 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
17
|
Werner E, Gokhale A, Ackert M, Xu C, Wen Z, Roberts AM, Roberts BR, Vrailas-Mortimer A, Crocker A, Faundez V. The mitochondrial RNA granule modulates manganese-dependent cell toxicity. Mol Biol Cell 2022; 33:ar108. [PMID: 35921164 PMCID: PMC9635304 DOI: 10.1091/mbc.e22-03-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
Prolonged manganese exposure causes manganism, a neurodegenerative movement disorder. The identity of adaptive and nonadaptive cellular processes targeted by manganese remains mostly unexplored. Here we study mechanisms engaged by manganese in genetic cellular models known to increase susceptibility to manganese exposure, the plasma membrane manganese efflux transporter SLC30A10 and the mitochondrial Parkinson's gene PARK2. We found that SLC30A10 and PARK2 mutations as well as manganese exposure compromised the mitochondrial RNA granule composition and function, resulting in disruption of mitochondrial transcript processing. These RNA granule defects led to impaired assembly and function of the mitochondrial respiratory chain. Notably, cells that survived a cytotoxic manganese challenge had impaired RNA granule function, thus suggesting that this granule phenotype was adaptive. CRISPR gene editing of subunits of the mitochondrial RNA granule, FASTKD2 or DHX30, as well as pharmacological inhibition of mitochondrial transcription-translation, were protective rather than deleterious for survival of cells acutely exposed to manganese. Similarly, adult Drosophila mutants with defects in the mitochondrial RNA granule component scully were safeguarded from manganese-induced mortality. We conclude that impairment of the mitochondrial RNA granule function is a protective mechanism for acute manganese toxicity.
Collapse
Affiliation(s)
- E. Werner
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - A. Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - M. Ackert
- School of Biological Sciences, Illinois State University, Normal, IL 617901
| | - C. Xu
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322
| | - Z. Wen
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322
| | - A. M. Roberts
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - B. R. Roberts
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | | | - A. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753
| | - V. Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
18
|
Xiao L, Cheng H, Cai H, Wei Y, Zan G, Feng X, Liu C, Li L, Huang L, Wang F, Chen X, Zou Y, Yang X. Associations of Heavy Metals with Activities of Daily Living Disability: An Epigenome-Wide View of DNA Methylation and Mediation Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87009. [PMID: 36036794 PMCID: PMC9423034 DOI: 10.1289/ehp10602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure to heavy metals has been reported to be associated with multiple diseases. However, direct associations and potential mechanisms of heavy metals with physical disability remain unclear. OBJECTIVES We aimed to quantify associations of heavy metals with physical disability and further explore the potential mechanisms of DNA methylation on the genome scale. METHODS A cross-sectional study of 4,391 older adults was conducted and activities of daily living (ADL) disability were identified using a 14-item scale questionnaire including basic and instrumental activities to assess the presence of disability (yes or no) rated on a scale of dependence. Odds ratios (ORs) and 95% confidence intervals (CI) were estimated to quantify associations between heavy metals and ADL disability prevalence using multivariate logistic regression and Bayesian kernel machine regression (BKMR) models. Whole blood-derived DNA methylation was measured using the HumanMethylationEPIC BeadChip array. An ADL disability-related epigenome-wide DNA methylation association study (EWAS) was performed among 212 sex-matched ADL disability cases and controls, and mediation analysis was further applied to explore potential mediators of DNA methylation. RESULTS Each 1-standard deviation (SD) higher difference in log10-transformed manganese, copper, arsenic, and cadmium level was significantly associated with a 14% (95% CI: 1.05, 1.24), 16% (95% CI:1.07, 1.26), 22% (95% CI:1.13, 1.33), and 15% (95% CI:1.06, 1.26) higher odds of ADL disability, which remained significant in the multiple-metal and BKMR models. A total of 85 differential DNA methylation sites were identified to be associated with ADL disability prevalence, among which methylation level at cg220000984 and cg23012519 (annotated to IRGM and PKP3) mediated 31.0% and 31.2% of manganese-associated ADL disability prevalence, cg06723863 (annotated to ESRP2) mediated 32.4% of copper-associated ADL disability prevalence, cg24433124 (nearest to IER3) mediated 15.8% of arsenic-associated ADL disability prevalence, and cg07905190 and cg17485717 (annotated to FREM1 and TCP11L1) mediated 21.5% and 30.5% of cadmium-associated ADL disability prevalence (all p<0.05). DISCUSSION Our findings suggested that heavy metals contributed to higher prevalence of ADL disability and that locus-specific DNA methylation are partial mediators, providing potential biomarkers for further cellular mechanism studies. https://doi.org/10.1289/EHP10602.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
19
|
Shilnikova N, Karyakina N, Farhat N, Ramoju S, Cline B, Momoli F, Mattison D, Jensen N, Terrell R, Krewski D. Biomarkers of environmental manganese exposure. Crit Rev Toxicol 2022; 52:325-343. [PMID: 35894753 DOI: 10.1080/10408444.2022.2095979] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We conducted a critical review on biomarkers of environmental manganese (Mn) exposure to answer the following questions: 1) are there reliable biomarkers of internal Mn exposure (Mn in biological matrices) associated with external metrics of Mn exposure (Mn in environmental media)? and 2) are there accurate reference values (RVs) for Mn in biological matrices? Three bibliographic databases were searched for relevant references and identified references were screened by two independent reviewers. Of the 6342 unique references identified, 86 articles were retained for data abstraction. Our analysis of currently available evidence suggests that Mn levels in blood and urine are not useful biomarkers of Mn exposure in non-occupational settings. The strength of the association between Mn in environmental media and saliva was variable. Findings regarding the utility of hair Mn as a biomarker of environmental Mn exposure are inconsistent. Measurements of Mn in teeth are technically challenging and findings on Mn in tooth components are scarce. In non-occupationally exposed individuals, bone Mn measurements using in vivo neutron activation analysis (IVNAA) are associated with large uncertainties. Findings suggest that Mn in nails may reflect Mn in environmental media and discriminate between groups of individuals exposed to different environmental Mn levels, although more research is needed. Currently, there is no strong evidence for any biological matrix as a valid biomarker of Mn exposure in non-occupational settings. Because of methodological limitations in studies aimed at derivation of RVs for Mn in biological materials, accurate RVs are scarce.
Collapse
Affiliation(s)
- Natalia Shilnikova
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Nataliya Karyakina
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Nawal Farhat
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada
| | | | | | - Franco Momoli
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Donald Mattison
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.,Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Natalie Jensen
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Rowan Terrell
- Risk Sciences International, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- Risk Sciences International, Ottawa, Canada.,McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada.,School of Mathematics and Statistics, Carleton University, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
20
|
Azmoun S, Diaz YF, Tang CY, Horton M, Clouston SA, Luft BJ, Bromet EJ, Gandy S, Placidi D, Ambrosi C, Mascaro L, Rodella C, Paghera B, Gasparotti R, Chambers JW, Tieu K, Corbo D, Lucchini RG. Cognitive impact of exposure to airborne particles captured by brain imaging. ADVANCES IN NEUROTOXICOLOGY 2022; 7:29-45. [PMID: 37663650 PMCID: PMC10473881 DOI: 10.1016/bs.ant.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Affiliation(s)
| | | | - Cheuk Y. Tang
- Icahn School of Medicine at Mount Sinai, New York, United States
| | - Megan Horton
- Icahn School of Medicine at Mount Sinai, New York, United States
| | | | - Ben J. Luft
- Stony Brook University, New York, United States
| | | | - Sam Gandy
- Icahn School of Medicine at Mount Sinai, New York, United States
- James J. Peters VA Medical Center, Bronx, New York, United States
| | - Donatella Placidi
- University of Brescia, Brescia, Italy
- Spedali Civili of Brescia, Brescia, Italy
| | - Claudia Ambrosi
- University of Brescia, Brescia, Italy
- Spedali Civili of Brescia, Brescia, Italy
| | | | - Carlo Rodella
- University of Brescia, Brescia, Italy
- Spedali Civili of Brescia, Brescia, Italy
| | - Barbara Paghera
- University of Brescia, Brescia, Italy
- Spedali Civili of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- University of Brescia, Brescia, Italy
- Spedali Civili of Brescia, Brescia, Italy
| | | | - Kim Tieu
- Florida International University, Miami, United States
| | - Daniele Corbo
- University of Brescia, Brescia, Italy
- Spedali Civili of Brescia, Brescia, Italy
| | - Roberto G. Lucchini
- Florida International University, Miami, United States
- University of Brescia, Brescia, Italy
| |
Collapse
|
21
|
Ruiz-Azcona L, Markiv B, Expósito A, Pozueta A, García-Martínez M, Fernández-Olmo I, Santibáñez M. Poorer cognitive function and environmental airborne Mn exposure determined by biomonitoring and personal environmental monitors in a healthy adult population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152940. [PMID: 35007600 DOI: 10.1016/j.scitotenv.2022.152940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM In the Santander Bay (Cantabria, northern Spain), a ferromanganese alloy plant is located. Our objective was to characterize the Mn personal exposure of adult healthy volunteers living in this highly Mn exposed region, and to determine its association with a poorer cognitive function. METHODS Cross-sectional study analyzing 130 consecutive participants. Cognitive function was assessed by Stroop Color Word, Verbal Fluency tests, Trail Making Test (TMT), Digit Span (WAIS III) and Rey Osterrieth Complex Figure (ROCF) tests and crude scores were standardized according to NEURONORMA norms. Exposure to Mn was assessed in terms of source distance, by Personal Environmental Monitors (PEMs) allowing the separation of fine (PM2.5) and coarse (PM10-2.5) particles (obtaining the bioaccessible fraction by in-vitro bioaccessibility tests), and by biomarkers (blood, hair and fingernails). Age, sex, study level and number of years of residence were predefined as confounding variables and adjusted Mean Differences (MDs) were obtained. RESULTS Statistically significant lower scores (negative MDs) in all test were observed when living near the industrial emission source, after adjusting for the predefined variables. Regarding PEMs results, statistically significant lower scores in all Stroop parts were obtained in participants with higher levels of Total Mn in All fractions (PM10). For Verbal Fluency tests, negative MDs were obtained for both bioaccessible fractions. Digit Span Backward scores were lower for those with higher levels in the bioaccessible coarse fraction, and negative MDs were also observed for the ROCF Delayed part and the non-bioaccessible fine fraction. As regards to Mn in fingernails, adjusted MDs of -1.60; 95%CI (-2.57 to -0.64) and -1.45; 95%CI (-2.29 to -0.61) for Digit Span Forward and Backward parts were observed. CONCLUSIONS Our results support an association between poorer cognitive function and environmental airborne Mn exposure.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n., 39008 Santander, Cantabria, Spain
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Andrea Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Ana Pozueta
- Service of Neurology, IDIVAL, University Hospital Marqués de Valdecilla, University of Cantabria, 39008 Santander, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain
| | - María García-Martínez
- Service of Neurology, IDIVAL, University Hospital Marqués de Valdecilla, University of Cantabria, 39008 Santander, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain
| | - Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n., 39008 Santander, Cantabria, Spain; Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain.
| |
Collapse
|
22
|
Clouston SAP, Hall CB, Kritikos M, Bennett DA, DeKosky S, Edwards J, Finch C, Kreisl WC, Mielke M, Peskind ER, Raskind M, Richards M, Sloan RP, Spiro A, Vasdev N, Brackbill R, Farfel M, Horton M, Lowe S, Lucchini RG, Prezant D, Reibman J, Rosen R, Seil K, Zeig-Owens R, Deri Y, Diminich ED, Fausto BA, Gandy S, Sano M, Bromet EJ, Luft BJ. Cognitive impairment and World Trade Centre-related exposures. Nat Rev Neurol 2022; 18:103-116. [PMID: 34795448 PMCID: PMC8938977 DOI: 10.1038/s41582-021-00576-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
On 11 September 2001 the World Trade Center (WTC) in New York was attacked by terrorists, causing the collapse of multiple buildings including the iconic 110-story 'Twin Towers'. Thousands of people died that day from the collapse of the buildings, fires, falling from the buildings, falling debris, or other related accidents. Survivors of the attacks, those who worked in search and rescue during and after the buildings collapsed, and those working in recovery and clean-up operations were exposed to severe psychological stressors. Concurrently, these 'WTC-affected' individuals breathed and ingested a mixture of organic and particulate neurotoxins and pro-inflammogens generated as a result of the attack and building collapse. Twenty years later, researchers have documented neurocognitive and motor dysfunctions that resemble the typical features of neurodegenerative disease in some WTC responders at midlife. Cortical atrophy, which usually manifests later in life, has also been observed in this population. Evidence indicates that neurocognitive symptoms and corresponding brain atrophy are associated with both physical exposures at the WTC and chronic post-traumatic stress disorder, including regularly re-experiencing traumatic memories of the events while awake or during sleep. Despite these findings, little is understood about the long-term effects of these physical and mental exposures on the brain health of WTC-affected individuals, and the potential for neurocognitive disorders. Here, we review the existing evidence concerning neurological outcomes in WTC-affected individuals, with the aim of contextualizing this research for policymakers, researchers and clinicians and educating WTC-affected individuals and their friends and families. We conclude by providing a rationale and recommendations for monitoring the neurological health of WTC-affected individuals.
Collapse
Affiliation(s)
- Sean A P Clouston
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Charles B Hall
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Minos Kritikos
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, USA
| | - Steven DeKosky
- Evelyn F. and William L. McKnight Brain Institute and Florida Alzheimer's Disease Research Center, Department of Neurology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jerri Edwards
- Department of Psychiatry and Behavioral Neuroscience, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Caleb Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
| | - Michelle Mielke
- Specialized Center of Research Excellence on Sex Differences, Department of Neurology, Department of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Elaine R Peskind
- Veteran's Association VISN 20 Northwest Mental Illness Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
- Alzheimer's Disease Research Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Murray Raskind
- Veteran's Association VISN 20 Northwest Mental Illness Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
- Alzheimer's Disease Research Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marcus Richards
- Medical Research Council Unit for Lifelong Health and Ageing, Population Health Sciences, University College London, London, UK
| | - Richard P Sloan
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Avron Spiro
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Department of Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Center, Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert Brackbill
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Mark Farfel
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Lowe
- The World Trade Center Mental Health Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - David Prezant
- World Trade Center Health Program, Fire Department of the City of New York, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan Reibman
- Department of Environmental Medicine, New York University Langone Health, New York, NY, USA
| | - Rebecca Rosen
- World Trade Center Environmental Health Center, Department of Psychiatry, New York University, New York, NY, USA
| | - Kacie Seil
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Rachel Zeig-Owens
- World Trade Center Health Program, Fire Department of the City of New York, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yael Deri
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Erica D Diminich
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Bernadette A Fausto
- Center for Molecular & Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Mary Sano
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Benjamin J Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
23
|
Racette BA, Nelson G, Dlamini WW, Hershey T, Prathibha P, Turner JR, Checkoway H, Sheppard L, Searles Nielsen S. Environmental manganese exposure and cognitive control in a South African population. Neurotoxicology 2022; 89:31-40. [PMID: 34999155 DOI: 10.1016/j.neuro.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To characterize the association between environmental (residential air) manganese (Mn) exposure and cognitive performance, focusing on cognitive control, in a Black African population. METHODS We administered the Go-No-Go, Digit Span, and Matrix Reasoning tests to population-based samples age ≥40 from a high Mn (smelter) exposed community, Meyerton (N = 629), and a demographically comparable low (background levels) non-exposed community, Ethembalethu, (N = 96) in Gauteng province, South Africa. We investigated the associations between community and performance on the cognitive tests, using linear regression. We adjusted a priori for age and sex, and examined the effect of adjustment for education, nonverbal IQ, smoking, and alcohol consumption. We measured airborne PM2.5-Mn to confirm community exposure differences. RESULTS Compared to Ethembalethu residents, Meyerton residents' test scores were lower (poorer) for all tests: 0.55 (95 % confidence interval [CI] 0.08, 1.03) lower scores for Matrix Reasoning, 0.34 (95 % CI -0.07, 0.75) lower for Digit Span, and 0.15 (95 % CI 0.09, 0.21) lower for Go-No-Go (high frequency discriminability index [probability]). The latter represented the most marked difference in terms of z-scores (0.50, 95 % CI 0.30, 0.71 standard deviations lower). The mean of the z-score of each of the three tests was also lower (0.34, 95 % CI 0.18, 0.50 standard deviations lower). These associations were similar in men and women, but attenuated with adjustment for education. Differences for Matrix Reasoning and Digit Span between the two communities were observed only among those who had lived in Meyerton ≥10 years, whereas for Go-No-Go, differences were also apparent among those who had lived in Meyerton <10 years. Mean PM2.5-Mn at a long-term fixed site in Meyerton was 203 ng/m3 and 10 ng/m3 in Ethembalethu. CONCLUSION Residence in a community near a high Mn emission source is associated with cognitive dysfunction, including aspects of cognitive control as assessed by the Go-No-Go test.
Collapse
Affiliation(s)
- Brad A Racette
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, USA; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - Gill Nelson
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - Wendy W Dlamini
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, USA.
| | - Tamara Hershey
- Departments of Psychiatry and Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8225, St. Louis, MO, USA.
| | - Pradeep Prathibha
- Department of Energy, Environmental, and Chemical Engineering, Washington University, Campus Box 1180, One Brookings Drive, St. Louis, MO 63130, USA.
| | - Jay R Turner
- Department of Energy, Environmental, and Chemical Engineering, Washington University, Campus Box 1180, One Brookings Drive, St. Louis, MO 63130, USA.
| | - Harvey Checkoway
- Herbert Wertheim School of Public Health and Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, # 0725, La Jolla, CA 92093-0725, USA.
| | - Lianne Sheppard
- Departments of Biostatistics and Environmental and Occupational Health Sciences, University of Washington, Hans Rosling Center for Population Health, Box 351618, 3980 15th Avenue NE, Seattle, WA 98195-1618, USA.
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Ruiz-Azcona L, Markiv B, Expósito A, González-Aramburu I, Sierra M, Fernández-Olmo I, Santibáñez M. Biomonitoring and bioaccessibility of environmental airborne manganese in relation to motor function in a healthy adult population. Neurotoxicology 2021; 87:195-207. [PMID: 34678399 DOI: 10.1016/j.neuro.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIM Santander, the capital of Cantabria, Spain (172,000 inhabitants) is 7 km from an industrial emission source (IES) of Mn located in a 10,000 inhabitants town (Maliaño) (annual air Mn arithmetic mean = 231.8 ng/m3; reference WHO guideline = 150 ng/m3). Our objective was to compare the motor function of adult healthy volunteers living in both places. METHODS Cross-sectional study analyzing 130 consecutive participants. Exposure to Mn was assessed in terms of source distance from the IES, by Personal Environmental Monitors (PEMs) carried for 24 h by participants consisting of a portable impactor connected to a personal pump, and by biomarkers (blood, hair and fingernails). The impactor allowed the separation of fine (PM2.5) and coarse (PM10-2.5) particles and for each particle size in-vitro bioaccessibility tests with biologically active fluids were performed to separate the soluble (bioaccessible) from the insoluble (non-bioaccessible) fraction. Mean Differences (MDs) adjusted for age, sex, and study level, were obtained for motor function tests results. RESULTS Regarding Grooved Pegboard, overall mean time to complete the test was 59.31 and 65.27 seconds (Standard Deviation = 10.11 and 11.69) for dominant and nondominant hands respectively. Statistically significant higher times (indicating worse function) were observed when living near the IES in both hands but MDs of only 1.22 and 2.05 seconds were obtained after adjusting for the predefined confounders (p = 0.373 and 0.221 respectively). Regarding Mn levels in their PEMs (in both bioaccessible and non-bioaccessible coarse&fine fractions) higher times were computed in participants with higher levels for the bioaccessible-fine fraction, with a MD that diminished but still yielded statistical significance after controlling for confounding: adjusted MD = 3.01 more seconds; 95%CI (0.44-5.38), p = 0.022. Poorer results were also observed for fingernails levels. Regarding Finger Tapping Test, no statistically significant differences were found with the exception of Mn fingernails levels. CONCLUSIONS Our results suggest poorer motor function as assessed by Grooved Pegboard test in relation to "proximity to IES", "bioaccessible-fine fraction as determined by PEMs and "Mn fingernails levels". However, our findings were affected by confounding, and only the adjusted MD for the Mn bioaccessible-fine fraction remained of sufficient magnitude to maintain statistical significance.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - Andrea Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - Isabel González-Aramburu
- Service of Neurology, Hospital Universitario Marqués de Valdecilla (HUMV-IDIVAL), Santander, Spain
| | - María Sierra
- Service of Neurology, Hospital Universitario Marqués de Valdecilla (HUMV-IDIVAL), Santander, Spain
| | - Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain; Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain.
| |
Collapse
|
25
|
Fasano G, Godoy RS, Angiulli E, Consalvo A, Franco C, Mancini M, Santucci D, Alleva E, Ciavardelli D, Toni M, Biffali E, Ekker M, Canzoniero LMT, Sordino P. Effects of low-dose methylcyclopentadienyl manganese tricarbonyl-derived manganese on the development of diencephalic dopaminergic neurons in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117151. [PMID: 34020261 DOI: 10.1016/j.envpol.2021.117151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT) is counted as an organic manganese (Mn)-derived compound. The toxic effects of Mn (alone and complexed) on dopaminergic (DA) neurotransmission have been investigated in both cellular and animal models. However, the impact of environmentally relevant Mn exposure on DA neurodevelopment is rather poorly understood. In the present study, the MMT dose of 100 μM (about 5 mg Mn/L) caused up-regulation of DA-related genes in association with cell body swelling and increase in the number of DA neurons of the ventral diencephalon subpopulation DC2. Furthermore, our analysis identified significant brain Mn bioaccumulation and enhancement of total dopamine levels in association with locomotor hyperactivity. Although DA levels were restored at adulthood, we observed a deficit in the acquisition and consolidation of memory. Collectively, these findings suggest that developmental exposure to low-level MMT-derived Mn is responsible for the selective alteration of diencephalic DA neurons and with long-lasting effects on fish explorative behaviour in adulthood.
Collapse
Affiliation(s)
- Giulia Fasano
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100, Benevento, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Rafael Soares Godoy
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada
| | - Elisa Angiulli
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Borelli 50, 00161, Rome, Italy
| | - Ada Consalvo
- Centro Scienze Dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT, Via Polacchi 11, 66100, Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Cristina Franco
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100, Benevento, Italy
| | - Maria Mancini
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY, 10016, USA; NYU Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University School of Medicine, 222 East 41st Street, New York, NY, 10017, USA
| | - Daniela Santucci
- Centro di Riferimento per le Scienze Comportamentali e La Salute Mentale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Enrico Alleva
- Centro di Riferimento per le Scienze Comportamentali e La Salute Mentale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Domenico Ciavardelli
- Centro Scienze Dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT, Via Polacchi 11, 66100, Chieti, Italy; School of Human and Social Science, "Kore" University of Enna, Cittadella Universitaria, 94100, Enna, Italy
| | - Mattia Toni
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Borelli 50, 00161, Rome, Italy
| | - Elio Biffali
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marc Ekker
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada
| | | | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
26
|
James J, Tsvik AM, Chung SY, Usseglio J, Gudis DA, Overdevest JB. Association between social determinants of health and olfactory function: a scoping review. Int Forum Allergy Rhinol 2021; 11:1472-1493. [PMID: 34047496 DOI: 10.1002/alr.22822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Social determinants of health (SDoH) include the socioeconomic, demographic, and social conditions that influence differences in health status among individuals and groups. The impact of these conditions on olfactory function remains poorly understood. In this scoping review, we systematically review the available literature to synthesize the association between SDoH and olfactory function. METHODS In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Review (PRISMA-ScR) guidelines, we performed systematic search queries in PubMed, Embase, and Ovid databases and categorized articles according to themes that emerged regarding SDoH. The primary outcomes included self-reported and objective measurements of smell. RESULTS We identified 722 unique references that underwent title and abstract review by two independent reviewers, with 70 articles undergoing full-text review and 57 relevant for data extraction. Six themes emerged in our review, under which we categorized the studies and synthesized respective associations with olfactory function. These include studies exploring socioeconomic status (n = 19, 33%), education status (n = 27, 47%), occupational exposures (n = 26, 46%), racial/ethnic disparities (n = 12, 21%), and lifestyle/behavioral factors (n = 33, 58%). CONCLUSIONS Within the context of this scoping review, olfactory dysfunction is significantly more prevalent in patients with lower socioeconomic status, exposure to environmental and occupational toxins, and of minority race/ethnicity, whereas the associations between olfactory dysfunction and education level and lifestyle factors such as smoking and drinking seem to be much more elusive. This review highlights the importance of accounting for SDoH in observational studies examining olfactory outcomes. Given the increased awareness of olfactory loss, special consideration should be given to understanding olfactory dysfunction in the context of these factors.
Collapse
Affiliation(s)
- Joel James
- City University of New York School of Medicine, New York, NY
| | - Avraham M Tsvik
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Sei Y Chung
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| | - John Usseglio
- Augustus C. Long Health Sciences Library, Columbia University Irving Medical Center, New York, NY
| | - David A Gudis
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Jonathan B Overdevest
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
27
|
Zhang J, Yang Y, Yang X, Qin J, Wei X, Peng Y, Li Z, Zhang L, Zhang Z, Zou Y. Influence of manganese exposure on cognitive function, plasma APP and Aβ levels in older men. J Trace Elem Med Biol 2021; 67:126788. [PMID: 34015662 DOI: 10.1016/j.jtemb.2021.126788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Elevated manganese (Mn) exposure impairs cognition in adults and children, but the association between Mn and cognitive function in elderly people is unclear. Previous studies have linked Mn neurotoxicity in AD to Aβ-dependent mechanisms. However, the association between Mn and plasma APP and Aβ in the general elderly population remains unknown. This study aimed to investigate the association between Mn exposure and cognitive function, plasma APP and plasma Aβ in older adults. METHODS Cognitive abilities in 375 men aged 60 and older in Guangxi, China were assessed using the Mini-Mental State Examination (MMSE) and cognitive impairment were identified using education-stratified cut-off points of MMSE scores. Urinary Mn levels and plasma APP, and Aβ levels were measured using ICP-MS and ELISA, respectively. RESULTS A total of 109 (29.07 %) older men were identified as having cognitive impairment. The median urinary Mn level was 0.22 μg/g creatinine. Urinary Mn levels were negatively correlated with MMSE scores (β = -1.35, 95 % CI: -2.65 to -0.06; p = 0.041). In addition, higher concentrations of urinary manganese were associated with a greater risk of cognitive impairment (OR = 2.03, 95 % CI: 1.14-3.59; comparing the highest and lowest manganese; p = 0.025). Moreover, plasma APP levels were inversely associated with urinary Mn levels (r = -0.123, p = 0.020), and positively associated with MMSE scores (r = 0.158, p = 0.002). Surprisingly, no correlations were observed between plasma Aβ42, Aβ40, Aβ40/Aβ42, or Aβ42/Aβ40 and urinary Mn levels and MMSE scores. CONCLUSION These results suggested that Mn exposure is negatively associated with older men's cognition and plasma APP levels, but not plasma Aβ levels.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yiping Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yang Peng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiying Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li'e Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, 541100, Guangxi, China.
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
28
|
Wei S, Xu T, Jiang T, Yin D. Chemosensory Dysfunction Induced by Environmental Pollutants and Its Potential As a Novel Neurotoxicological Indicator: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10911-10922. [PMID: 34355568 DOI: 10.1021/acs.est.1c02048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Air pollution composed of the complex interactions among particular matter, chemicals, and pathogens is an emerging and global environmental issue that closely correlates with a variety of diseases and adverse health effects, especially increasing incidences of neurodegenerative diseases. However, as one of the prevalent health outcomes of air pollution, chemosensory dysfunction has not attracted enough concern until recently. During the COVID-19 pandemic, multiple scientific studies emphasized the plausibly essential roles of the chemosensory system in the airborne transmission airway of viruses into the human body, which can also be utilized by pollutants. In this Review, in addition to summarizing current progress regarding the contributions of traditional air pollutants to chemosensory dysfunction, we highlight the roles of emerging contaminants. We not only sum up clarified mechanisms, such as inflammation and apoptosis but also discuss some not yet completely identified mechanisms, e.g., disruption of olfactory signal transduction. Although the existing evidence is not overwhelming, the chemosensory system is expected to be a useful indicator in neurotoxicology and neural diseases based on accumulating studies that continually excavate the deep link between chemosensory dysfunction and neurodegenerative diseases. Finally, we argue the importance of studies concerning chemosensory dysfunction in understanding the health effects of air pollution and provide comments for some future directions of relevant research.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Tao Jiang
- Lyon Neuroscience Research Center (CRNL), Neuro-Ethology Team, 59 Bd Pinel, 69500 Bron, France
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
29
|
Stolfi A, Fulk F, Reponen T, Hilbert TJ, Brown D, Haynes EN. AERMOD modeling of ambient manganese for residents living near a ferromanganese refinery in Marietta, OH, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:419. [PMID: 34120251 PMCID: PMC8569639 DOI: 10.1007/s10661-021-09206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Elevated exposure to ambient manganese (Mn) is associated with adverse health outcomes. In Marietta, Ohio, the primary source of ambient Mn exposure is from the longest operating ferromanganese refinery in North America. In this study, the US EPA air dispersion model, AERMOD, was used to estimate ambient air Mn levels near the refinery for the years 2008-2013. Modeled air Mn concentrations for 2009-2010 were compared to concentrations obtained from a stationary air sampler. Census block population data were used to estimate population sizes exposed to an annual average air Mn > 50 ng/m3, the US EPA guideline for chronic exposure, for each year. Associations between modeled air Mn, measured soil Mn, and measured indoor dust Mn in the modeled area were also examined. Median modeled air Mn concentrations ranged from 6.3 to 43 ng/m3 across the years. From 12,000-56,000 individuals, including over 2000 children aged 0-14 years, were exposed to respirable annual average ambient air Mn levels exceeding 50 ng/m3 in five of the six years. For 2009-2010, the median modeled air Mn concentration at the stationary site was 20 ng/m3, compared to 18 ng/m3 measured with the stationary air sampler. All model performance measures for monthly modeled concentrations compared to measured concentrations were within acceptable limits. The study shows that AERMOD modeling of ambient air Mn is a viable method for estimating exposure from refinery emissions and that the Marietta area population was at times exposed to Mn levels that exceeded US EPA guidelines.
Collapse
Affiliation(s)
- Adrienne Stolfi
- Department of Pediatrics, Wright State University, Dayton, OH, USA.
| | - Florence Fulk
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tiina Reponen
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Timothy J Hilbert
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - David Brown
- Department of Biology & Environmental Science, Marietta College, Marietta, OH, USA
| | - Erin N Haynes
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
30
|
Ringwald P, Chapin C, Iceman C, Tighe ME, Sisk M, Peaslee GF, Peller J, Wells EM. Characterization and within-site variation of environmental metal concentrations around a contaminated site using a community-engaged approach. CHEMOSPHERE 2021; 272:129915. [PMID: 35534973 DOI: 10.1016/j.chemosphere.2021.129915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 06/14/2023]
Abstract
Historic industrial activity led to extensive lead and arsenic contamination within residential areas of East Chicago, Indiana, United States. Although remediation is underway, community concerns about this contamination remain. Therefore, the goal for this analysis was to characterize environmental contamination in soil within and around these areas. A total of 228 samples from 32 different sites (addresses) were collected by community members or study staff. These were analyzed for metals using portable x-ray fluorescence or inductively coupled plasma ̶ optical emission spectroscopy. Concentrations exceeding EPA screening levels were found for 42% of the soil arsenic samples, 35% of the soil lead samples, and 79% of the soil manganese samples; a few samples also contained elevated copper or zinc. Concentrations above EPA screening levels were identified both within and outside of the formally designated contaminated area. Roughly 30% of all sites had at least one sample above and one sample below the screening level for arsenic, lead, and manganese. For sites within the contaminated area, more than 90% (arsenic), 60% (lead) and 60% (manganese) of the samples exceeded EPA screening levels. There was a significant association of proximity to the historic industrial site with elevated soil concentrations of arsenic and lead; a similar association was present for manganese. These results are consistent with existing data for lead and arsenic and we additionally report elevated concentrations of manganese and a high within-site variability of all metal concentrations. These findings should be considered in future remediation efforts.
Collapse
Affiliation(s)
- Patrick Ringwald
- Department of Public Health, Purdue University, West Lafayette, IN, 47907, USA
| | - Cecelia Chapin
- Department of Public Health, Purdue University, West Lafayette, IN, 47907, USA
| | - Christopher Iceman
- Department of Chemistry, Valparaiso University, Valparaiso, IN, 46383, USA
| | - Meghanne E Tighe
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46556, USA
| | - Matthew Sisk
- Navari Family Center for Digital Scholarship, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Graham F Peaslee
- Department of Physics, University of Notre Dame, South Bend, IN, 46556, USA
| | - Julie Peller
- Department of Chemistry, Valparaiso University, Valparaiso, IN, 46383, USA
| | - Ellen M Wells
- Department of Public Health, Purdue University, West Lafayette, IN, 47907, USA; School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
31
|
Martins AC, Ruella Oliveira S, Barbosa F, Tinkov AA, V A, Santamaría A, Lee E, Bowman AB, Aschner M. Evaluating the risk of manganese-induced neurotoxicity of parenteral nutrition: review of the current literature. Expert Opin Drug Metab Toxicol 2021; 17:581-593. [PMID: 33620266 PMCID: PMC8122055 DOI: 10.1080/17425255.2021.1894123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Several diseases and clinical conditions can affect enteral nutrition and adequate gastrointestinal uptake. In this respect, parenteral nutrition (PN) is necessary for the provision of deficient trace elements. However, some essential elements, such as manganese (Mn) may be toxic to children and adults when parenterally administered in excess, leading to toxic, especially neurotoxic effects. AREAS COVERED Here, we briefly provide an overview on Mn, addressing its sources of exposure, the role of Mn in the etiology of neurodegenerative diseases, and focusing on potential mechanisms associated with Mn-induced neurotoxicity. In addition, we discuss the potential consequences of overexposure to Mn inherent to PN. EXPERT OPINION In this critical review, we suggest that additional research is required to safely set Mn levels in PN, and that eliminating Mn as an additive should be considered by physicians and nutritionists on a case by case basis in the meantime to avoid the greater risk of neurotoxicity by its presence. There is a need to better define clinical biomarkers for Mn toxicity by PN, as well as identify new effective agents to treat Mn-neurotoxicity. Moreover, we highlight the importance of the development of new guidelines and practice safeguards to protect patients from excessive Mn exposure and neurotoxicity upon PN administration.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvana Ruella Oliveira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anatoly V
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Scientific Center of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
32
|
Ruiz-Azcona L, Fernández-Olmo I, Expósito A, Markiv B, Paz-Zulueta M, Parás-Bravo P, Sarabia-Cobo C, Santibáñez M. Impact of Environmental Airborne Manganese Exposure on Cognitive and Motor Functions in Adults: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084075. [PMID: 33924318 PMCID: PMC8068914 DOI: 10.3390/ijerph18084075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Background/Objective: Whether environmental exposure to Manganese (Mn) in adults is associated with poorer results in cognitive and motor function is unclear. We aimed to determine these associations through a meta-analysis of published studies. Methods: A systematic review was conducted to identify epidemiological studies on a population ≥18 years old exposed to environmental airborne Mn, and in which results on specific tests to evaluate cognitive or motor functions were reported. We consulted Medline through PubMed, Web of Science and SCOPUS databases. We also performed a manual search within the list of bibliographic references of the retrieved studies and systematic reviews. To weight Mn effects, a random effects versus fixed effect model was chosen after studying the heterogeneity of each outcome. Results. Eighteen studies met the inclusion criteria. Among them, eleven studies reported data susceptible for meta-analysis through a pooled correlation or a standardized means difference (SMD) approach between exposed and non-exposed groups. Regarding cognitive function, the results of the studies showed heterogeneity among them (I2 = 76.49%, p < 0.001). The overall effect was a statistically significant negative correlation in the random effects model (pooled r = −0.165; 95%CI: −0.214 to −0.116; p < 0.001). For SMD, the results showed a lower heterogeneity with a negative SMD that did not reach statistical significance under the fixed effects model (SMD = −0.052; 95%CI −0.108 to 0.004; p = 0.068). Regarding motor function, heterogeneity (I2 = 75%) was also observed in the correlation approach with a pooled r (random effect model) = −0.150; 95%CI: −0.219 to −0.079; p < 0.001. Moderate heterogeneity was observed according to the SMD approach (I2 = 52.28%), with a pooled SMD = −0.136; 95%CI: −0.188 to−0.084; p < 0.001, indicating worse motor function in those exposed. Conclusions: Correlation approach results support a negative effect on cognitive and motor functions (the higher the Mn levels, the poorer the scores). Regarding the SMD approach, results also support a worse cognitive and motor functions in those exposed, although only for motor function statistical significance was obtained.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain;
| | - Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain; (I.F.-O.); (A.E.); (B.M.)
| | - Andrea Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain; (I.F.-O.); (A.E.); (B.M.)
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain; (I.F.-O.); (A.E.); (B.M.)
| | - María Paz-Zulueta
- Economía de la Salud y Gestión de Servicios Sanitarios Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain; (M.P.-Z.); (P.P.-B.)
- Research Health and Bioethics Law Group, GRIDES, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain
| | - Paula Parás-Bravo
- Economía de la Salud y Gestión de Servicios Sanitarios Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain; (M.P.-Z.); (P.P.-B.)
- Cuidados Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain;
| | - Carmen Sarabia-Cobo
- Cuidados Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain;
- Research Nursing Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla s/n, 39008 Santander, Cantabria, Spain;
- Research Nursing Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain
- Correspondence:
| |
Collapse
|
33
|
Racette BA, Nelson G, Dlamini WW, Prathibha P, Turner JR, Ushe M, Checkoway H, Sheppard L, Nielsen SS. Severity of parkinsonism associated with environmental manganese exposure. Environ Health 2021; 20:27. [PMID: 33722243 PMCID: PMC7962371 DOI: 10.1186/s12940-021-00712-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Exposure to occupational manganese (Mn) is associated with neurotoxic brain injury, manifesting primarily as parkinsonism. The association between environmental Mn exposure and parkinsonism is unclear. To characterize the association between environmental Mn exposure and parkinsonism, we performed population-based sampling of residents older than 40 in Meyerton, South Africa (N = 621) in residential settlements adjacent to a large Mn smelter and in a comparable non-exposed settlement in Ethembalethu, South Africa (N = 95) in 2016-2020. METHODS A movement disorders specialist examined all participants using the Unified Parkinson Disease Rating Scale motor subsection part 3 (UPDRS3). Participants also completed an accelerometry-based kinematic test and a grooved pegboard test. We compared performance on the UPDRS3, grooved pegboard, and the accelerometry-based kinematic test between the settlements using linear regression, adjusting for covariates. We also measured airborne PM2.5-Mn in the study settlements. RESULTS Mean PM2.5-Mn concentration at a long-term fixed site in Meyerton was 203 ng/m3 in 2016-2017 - approximately double that measured at two other neighborhoods in Meyerton. The mean Mn concentration in Ethembalethu was ~ 20 times lower than that of the long-term Meyerton site. UPDRS3 scores were 6.6 (CI 5.2, 7.9) points higher in Meyerton than Ethembalethu residents. Mean angular velocity for finger-tapping on the accelerometry-based kinematic test was slower in Meyerton than Ethembalethu residents [dominant hand 74.9 (CI 48.7, 101.2) and non-dominant hand 82.6 (CI 55.2, 110.1) degrees/second slower]. Similarly, Meyerton residents took longer to complete the grooved pegboard, especially for the non-dominant hand (6.9, CI -2.6, 16.3 s longer). CONCLUSIONS Environmental airborne Mn exposures at levels substantially lower than current occupational exposure thresholds in the United States may be associated with clinical parkinsonism.
Collapse
Affiliation(s)
- Brad A. Racette
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, 63110 St. Louis, Missouri, USA
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, 2193 Parktown, South Africa
| | - Gill Nelson
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, 2193 Parktown, South Africa
- Research Department of Infection & Population Health, UCL Institute for Global Health, University College London, London, UK
| | - Wendy W. Dlamini
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, 63110 St. Louis, Missouri, USA
| | - Pradeep Prathibha
- Department of Energy, Environmental, and Chemical Engineering, Washington University, Campus Box 1180, One Brookings Drive, 63130 St. Louis, Missouri, USA
| | - Jay R. Turner
- Department of Energy, Environmental, and Chemical Engineering, Washington University, Campus Box 1180, One Brookings Drive, 63130 St. Louis, Missouri, USA
| | - Mwiza Ushe
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, 63110 St. Louis, Missouri, USA
| | - Harvey Checkoway
- Department of Family Medicine & Public Health, University of California, 9500 Gilman Drive, # 0725, La Jolla, 92093-0725 San Diego, California USA
| | - Lianne Sheppard
- Departments of Biostatistics and Environmental and Occupational Health Sciences, University of Washington, Box 357232, Washington, 98195 Seattle, USA
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, 63110 St. Louis, Missouri, USA
| |
Collapse
|
34
|
Fernández-Olmo I, Mantecón P, Markiv B, Ruiz-Azcona L, Santibáñez M. A Review on the Environmental Exposure to Airborne Manganese, Biomonitoring, and Neurological/Neuropsychological Outcomes. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 254:85-130. [PMID: 32474705 DOI: 10.1007/398_2020_46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The occupational exposure to airborne manganese (Mn) has been linked for decades with neurological effects. With respect to its environmental exposure, the first reviews on this matter stated that the risk posed to human health by this kind of exposure was still unknown. Later, many studies have been developed to analyze the association between environmental Mn exposure and health effects, most of them including the measure of Mn in selected human biomarkers. This review aims at collecting and organizing the literature dealing with the environmental airborne Mn exposure (other routes of exposure were intentionally removed from this review), the biomonitoring of this metal in different body matrices (e.g., blood, urine, nails, hair), and the association between exposure and several adverse health effects, such as, e.g., neurocognitive, neurodevelopmental, or neurobehavioral outcomes. From the different exposure routes, inhalation was the only one considered in this review, to take into account the areas influenced by industrial activities closely related to the Mn industry (ferromanganese and silicomanganese plants, Mn ore mines, and their processing plants) and by traffic in countries where a fuel additive, methylcyclopentadienyl manganese tricarbonyl (MMT), has been used for years. In these areas, high air Mn levels have been reported in comparison with the annual Reference Concentration (RfC) given by the US EPA for Mn, 50 ng/m3. This review was performed using Scopus and MEDLINE databases with a keyword search strategy that took into account that each valid reference should include at least participants that were exposed to environmental airborne Mn and that were subjected to analysis of Mn in biomarkers or subjected to neurological/neuropsychological tests or both. Overall, 47 references matching these criteria were included in the discussion. Most of them report the measure of Mn in selected biomarkers (N = 43) and the assessment of different neurological outcomes (N = 31). A negative association is usually obtained between Mn levels in hair and some neurological outcomes, such as cognitive, motor, olfactory, and emotional functions, but not always significant. However, other biomarkers, such as blood and urine, do not seem to reflect the chronic environmental exposure to low/moderate levels of airborne Mn. Further studies combining the determination of the Mn exposure through environmental airborne sources and biomarkers of exposure and the evaluation of at least cognitive and motor functions are needed to better understand the effects of chronic non-occupational exposure to airborne Mn.
Collapse
Affiliation(s)
- Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Cantabria, Spain.
| | - Paula Mantecón
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Laura Ruiz-Azcona
- Global Health Research Group, Dpto. Enfermería, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group, Dpto. Enfermería, Universidad de Cantabria-IDIVAL, Santander, Cantabria, Spain
| |
Collapse
|
35
|
Lucchini RG, Guazzetti S, Renzetti S, Broberg K, Caci M, Covolo L, Crippa P, Gelatti U, Hashim D, Oppini M, Pepe F, Pilotto A, Passeri C, Placidi D, Rizzetti MC, Turla M, Wahlberg K, Padovani A. Metal Exposure and SNCA rs356219 Polymorphism Associated With Parkinson Disease and Parkinsonism. Front Neurol 2020; 11:556337. [PMID: 33362685 PMCID: PMC7755861 DOI: 10.3389/fneur.2020.556337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: In the province of Brescia, Italy, historical neurotoxic metal exposure has occurred for several decades. This study aimed to explore the role of metal exposure and genetics on Parkinson's Disease (PD) and Parkinsonism. Methods: Cases were enrolled from four local clinics for movement disorders. Randomly selected controls non-affected by neurological or psychiatric conditions were enrolled from the same health centers keeping a similar gender ratio and age distribution as for cases. Data on sociodemographic variables, clinical onset and life habits were collected besides accurate occupational and residential history. Blood samples were collected from all participants for genotyping of target polymorphisms in genes linked to PD and/or metal transport. Results: A total number of 432 cases and 444 controls were enrolled in the study, with average age of 71 years (72.2 for cases and 70 for controls). The average age at diagnosis was 65.9 years (SD 9.9). Among the potential risk factors, family history of PD or Parkinsonism showed the strongest association with the diseases (OR = 4.2, 95% CI 2.3, 7.6 on PD; OR = 4.3, 95% CI 1.9, 9.5 for Parkinsonism), followed by polymorphism rs356219 in the alpha-synuclein (SNCA) gene (OR = 2.03, 95% CI 1.3, 3.3 for CC vs. TT on PD; OR = 2.5, 95% CI 1.1, 5.3 for CC vs. TT on Parkinsonism), exposure to metals (OR = 2.4;, 95% CI 1.3, 4.2 on PD), being born in a farm (OR = 1.8; 95% CI 1.1, 2.8 on PD; OR = 2.6; 95% CI 1.4, 4.9 on Parkinsonism) and being born in the province of Brescia (OR = 1.7; 95% CI 1.0, 2.9 on PD). Conditional OR of having PD depending by SNCA polymorphism and metal exposure highlights higher risk of PD among CC SNCA carriers and being exposed to metals. However, the interaction term was not statistically significant. Conclusions: Lifetime exposure to metals and genetic variation in SNCA gene are relevant determinants of PD and Parkinsonism in the highly industrialized area of Brescia, Italy. The lack of evidence of statistical interaction between environmental and genetic factors may be due to the low frequencies of subjects representing the exposure categories and the polymorphism variants and does not rule out the biological interaction.
Collapse
Affiliation(s)
- Roberto G. Lucchini
- Robert Stempel College of Public Health, Florida International University, Miami, FL, United States
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Stefano Renzetti
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Margherita Caci
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Loredana Covolo
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Umberto Gelatti
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Dana Hashim
- Hematology & Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Manuela Oppini
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Fulvio Pepe
- Neurology, Poliambulanza Foundation, Brescia, Italy
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Parkinson Rehabilitation Center, Ospedale S. Isidoro - FERB Onlus, Trescore Balneario, Bergamo, Italy
| | - Chiara Passeri
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Placidi
- Department of Medical Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Maira Cristina Rizzetti
- Parkinson Rehabilitation Center, Ospedale S. Isidoro - FERB Onlus, Trescore Balneario, Bergamo, Italy
| | | | - Karin Wahlberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
36
|
Ijomone OM, Ifenatuoha CW, Aluko OM, Ijomone OK, Aschner M. The aging brain: impact of heavy metal neurotoxicity. Crit Rev Toxicol 2020; 50:801-814. [PMID: 33210961 DOI: 10.1080/10408444.2020.1838441] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aging process is accompanied by critical changes in cellular and molecular functions, which upset the homeostatic balance in the central nervous system. Accumulation of metals renders the brain susceptible to neurotoxic insults by mechanisms such as mitochondrial dysfunction, neuronal calcium-ion dyshomeostasis, buildup of damaged molecules, compromised DNA repair, reduction in neurogenesis, and impaired energy metabolism. These hallmarks have been identified to be responsible for neuronal injuries, resulting in several neurological disorders. Various studies have shown solid associations between metal accumulation, abnormal protein expressions, and pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic lateral sclerosis. This review highlights metals (such as manganese, zinc, iron, copper, and nickel) for their accumulation, and consequences in the development of neurological disorders, in relation to the aging brain.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Oritoke M Aluko
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Olayemi K Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology, Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
37
|
Martin KV, Edmondson D, Cecil KM, Bezi C, Vance ML, McBride D, Haynes EN. Manganese Exposure and Neurologic Outcomes in Adult Populations. Neurol Clin 2020; 38:913-936. [PMID: 33040869 PMCID: PMC8978550 DOI: 10.1016/j.ncl.2020.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A review of published articles examining the effects of manganese exposure to workers and community residents shows adverse neurologic outcomes. Innovative biomarkers, including those from neuroimaging, were incorporated into many of these studies to assess both manganese exposure and neurologic outcomes. A variety of health effects were evaluated, including cognitive and motor impairments. Studies of community participants residing near manganese point sources show variability in outcomes, reflecting the complexities of exposure measurement, individual absorption, and assessment of neurologic effects. The aging population provides insight into the impacts of chronic exposure in younger populations.
Collapse
Affiliation(s)
- Kaitlin V Martin
- Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Avenue Room 212C, Lexington, KY 40536, USA.
| | - David Edmondson
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Imaging Research Center, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5033, Cincinnati, OH 45229, USA
| | - Kim M Cecil
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Imaging Research Center, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5033, Cincinnati, OH 45229, USA; Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cassandra Bezi
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH 45229, USA
| | - Miriam Leahshea Vance
- Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Avenue, Lexington, KY 40536, USA
| | - Dani McBride
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Erin N Haynes
- Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Avenue Room 212G, Lexington, KY 40536, USA
| |
Collapse
|
38
|
Bauer JA, Devick KL, Bobb JF, Coull BA, Bellinger D, Benedetti C, Cagna G, Fedrighi C, Guazzetti S, Oppini M, Placidi D, Webster TF, White RF, Yang Q, Zoni S, Wright RO, Smith DR, Lucchini RG, Claus Henn B. Associations of a Metal Mixture Measured in Multiple Biomarkers with IQ: Evidence from Italian Adolescents Living near Ferroalloy Industry. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:97002. [PMID: 32897104 PMCID: PMC7478128 DOI: 10.1289/ehp6803] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Research on the health effects of chemical mixtures has focused mainly on early life rather than adolescence, a potentially important developmental life stage. OBJECTIVES We examined associations of a metal mixture with general cognition in a cross-sectional study of adolescents residing near ferromanganese industry, a source of airborne metals emissions. METHODS We measured manganese (Mn), lead (Pb), copper (Cu), and chromium (Cr) in hair, blood, urine, nails, and saliva from 635 Italian adolescents 10-14 years of age. Full-scale, verbal, and performance intelligence quotient (FSIQ, VIQ, PIQ) scores were assessed using the Wechsler Intelligence Scale for Children-III. Multivariable linear regression and Bayesian kernel machine regression (BKMR) were used to estimate associations of the metal mixture with IQ. In secondary analyses, we used BKMR's hierarchical variable selection option to inform biomarker selection for Mn, Cu, and Cr. RESULTS Median metal concentrations were as follows: hair Mn, 0.08 μ g / g ; hair Cu, 9.6 μ g / g ; hair Cr, 0.05 μ g / g ; and blood Pb, 1.3 μ g / dL . Adjusted models revealed an inverted U-shaped association between hair Cu and VIQ, consistent with Cu as an essential nutrient that is neurotoxic in excess. At low levels of hair Cu (10th percentile, 5.4 μ g / g ), higher concentrations (90th percentiles) of the mixture of Mn, Pb, and Cr (0.3 μ g / g , 2.6 μ g / dL , and 0.1 μ g / g , respectively) were associated with a 2.9 (95% CI: - 5.2 , - 0.5 )-point decrease in VIQ score, compared with median concentrations of the mixture. There was suggestive evidence of interaction between Mn and Cu. In secondary analyses, saliva Mn, hair Cu, and saliva Cr were selected as the biomarkers most strongly associated with VIQ score. DISCUSSION Higher adolescent levels of Mn, Pb, and Cr were associated with lower IQ scores, especially at low Cu levels. Findings also support further investigation into Cu as both beneficial and toxic for neurobehavioral outcomes. https://doi.org/10.1289/EHP6803.
Collapse
Affiliation(s)
- Julia A. Bauer
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Katrina L. Devick
- Division of Biomedical Statistics and Informatics, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Jennifer F. Bobb
- Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David Bellinger
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Departments of Neurology and Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, USA
- Departments of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiara Benedetti
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Chiara Fedrighi
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | | | - Manuela Oppini
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Placidi
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Thomas F. Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Neurology, Boston University Medical School, Boston, Massachusetts, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Silvia Zoni
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Roberto G. Lucchini
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Miah MR, Ijomone OM, Okoh COA, Ijomone OK, Akingbade GT, Ke T, Krum B, da Cunha Martins A, Akinyemi A, Aranoff N, Antunes Soares FA, Bowman AB, Aschner M. The effects of manganese overexposure on brain health. Neurochem Int 2020; 135:104688. [PMID: 31972215 PMCID: PMC7926190 DOI: 10.1016/j.neuint.2020.104688] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is the twelfth most abundant element on the earth and an essential metal to human health. Mn is present at low concentrations in a variety of dietary sources, which provides adequate Mn content to sustain support various physiological processes in the human body. However, with the rise of Mn utility in a variety of industries, there is an increased risk of overexposure to this transition metal, which can have neurotoxic consequences. This risk includes occupational exposure of Mn to workers as well as overall increased Mn pollution affecting the general public. Here, we review exposure due to air pollution and inhalation in industrial settings; we also delve into the toxic effects of manganese on the brain such as oxidative stress, inflammatory response and transporter dysregulation. Additionally, we summarize current understandings underlying the mechanisms of Mn toxicity.
Collapse
Affiliation(s)
- Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Omamuyovwi M Ijomone
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria
| | - Comfort O A Okoh
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria
| | - Olayemi K Ijomone
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria; Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Grace T Akingbade
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Ondo, Nigeria
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bárbara Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Ayodele Akinyemi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicole Aranoff
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Stern College for Women, Yeshiva University, New York, NY, USA
| | - Felix Alexandre Antunes Soares
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
40
|
Dong YM, Liao LY, Li L, Yi F, Meng H, He YF, Guo MM. Skin inflammation induced by ambient particulate matter in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:364-373. [PMID: 31125750 DOI: 10.1016/j.scitotenv.2019.05.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Most published studies on particulate matter (PM) concerning PM2.5 and PM10 have focused on PM-induced effects on the respiratory system (particularly lung) and cardiovascular system effects. However, epidemiological and mechanistic studies suggest that PM2.5 and PM10 also affects the skin, which is a key health issue. In this study, we first reviewed the current status of PM2.5 and PM10 in China, including relevant regulations, concentration levels, chemical components, and emission sources. Next, we summarized the association between PM2.5 and PM10 or its representative components, in relation to skin inflammation as well as inflammatory skin diseases, such as atopic dermatitis, acne, eczema, and skin aging. Finally, we determined the mechanism of oxidative stress or programmed cell death induced through PM, which can provide useful information for future research on PM-induced skin inflammation.
Collapse
Affiliation(s)
- Yin-Mao Dong
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Lian-Ying Liao
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Li Li
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Fan Yi
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Hong Meng
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Yi-Fan He
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Miao-Miao Guo
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China.
| |
Collapse
|
41
|
Incidence of mild cognitive impairment in World Trade Center responders: Long-term consequences of re-experiencing the events on 9/11/2001. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:628-636. [PMID: 31517025 PMCID: PMC6733774 DOI: 10.1016/j.dadm.2019.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective This study examined whether World Trade Center (WTC) exposures and chronic posttraumatic stress disorder (PTSD) were associated with incidence of mild cognitive impairment (MCI) in a longitudinal analysis of a prospective cohort study of WTC responders. Methods Incidence of MCI was assessed in a clinical sample of WTC responders (N = 1800) who were cognitively intact at baseline assessment. Crude incidence rates were calculated and compared to population estimates using standardized incidence ratios. Multivariable analyses used Cox proportional-hazards regression. Results Responders were 53.1 years old (SD = 7.9) at baseline. Among eligible cognitively intact responders, 255 (14.2%) developed MCI at follow-up. Incidence of MCI was higher than expected based on expectations from prior published research. Incidence was higher among those with increased PTSD symptom severity, and prolonged exposure was a risk factor in apolipoprotein-ε4 carriers. Conclusions PTSD and prolonged WTC exposures were associated with increased incidence of MCI in WTC responders, results that may portend future high rates of dementia in WTC-exposed responders.
Collapse
|
42
|
Dos Santos NR, Rodrigues JLG, Bandeira MJ, Anjos ALDS, Araújo CDFS, Adan LFF, Menezes-Filho JA. Manganese exposure and association with hormone imbalance in children living near a ferro-manganese alloy plant. ENVIRONMENTAL RESEARCH 2019; 172:166-174. [PMID: 30782536 DOI: 10.1016/j.envres.2019.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
It has been suggested that manganese (Mn) plays a fundamental role in the reproductive system through interference with the regulation of the secretion of hormones related to puberty. The objective of this study was to evaluate the environmental exposure to Mn and its effects on the endocrine regulation of hormones related to puberty in school-aged children living near a ferro-manganese alloy plant. Toenails, occipital hair, and blood samples were collected from 225 children, between 7 and 12 years of age, in four elementary schools in Simões Filho, Bahia, Brazil, who were exposed to different Mn levels owing to different Mn dust deposition rates. The Mn content was determined in the toenails (MnTn), hair (MnH), and blood (MnB), in addition to blood lead levels (PbB), by using graphite furnace atomic absorption spectrometry. Luteinizing hormone (LH), prolactin (PRL), estradiol (E2), testosterone (T), and thyroid stimulating hormone (TSH) levels were determined by using a chemiluminescence method. Of the total participants, 50.2% were boys, with an average age of 9 years. PRL values were higher in children attending the school with a higher Mn deposition rate (p < 0.004). We observed that MnTn was positively correlated with PRL levels and exhibited a non-linear association with LH levels. None of the tested Mn biomarkers were associated with E2, T, or TSH levels. To date, despite several animal studies that have focused on the correlation between Mn exposure and the endocrine regulation of hormones and pubertal development, very few studies have reported a similar relationship between environmental Mn effects and the human endocrine system. Our findings support the hypothesis that elevated exposure to Mn in children may be associated with hormonal imbalances that might trigger the early onset of puberty.
Collapse
Affiliation(s)
- Nathália R Dos Santos
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Juliana L G Rodrigues
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Matheus J Bandeira
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Ana Laura Dos S Anjos
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil.
| | - Cecília de Freitas S Araújo
- Environmental and Public Health Program, National School of Public Health, Oswald Cruz Foundation, Rio de Janeiro, Brazil.
| | - Luis Fernando F Adan
- Graduate Program in Medicine and Health, School of Medicine, Federal University of Bahia, Brazil.
| | - José A Menezes-Filho
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Av. Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| |
Collapse
|
43
|
Taylor CA, Hutchens S, Liu C, Jursa T, Shawlot W, Aschner M, Smith DR, Mukhopadhyay S. SLC30A10 transporter in the digestive system regulates brain manganese under basal conditions while brain SLC30A10 protects against neurotoxicity. J Biol Chem 2018; 294:1860-1876. [PMID: 30559290 DOI: 10.1074/jbc.ra118.005628] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/12/2018] [Indexed: 01/18/2023] Open
Abstract
The essential metal manganese becomes neurotoxic at elevated levels. Yet, the mechanisms by which brain manganese homeostasis is regulated are unclear. Loss-of-function mutations in SLC30A10, a cell surface-localized manganese efflux transporter in the brain and liver, induce familial manganese neurotoxicity. To elucidate the role of SLC30A10 in regulating brain manganese, we compared the phenotypes of whole-body and tissue-specific Slc30a10 knockout mice. Surprisingly, unlike whole-body knockouts, brain manganese levels were unaltered in pan-neuronal/glial Slc30a10 knockouts under basal physiological conditions. Further, although transport into bile is a major route of manganese excretion, manganese levels in the brain, blood, and liver of liver-specific Slc30a10 knockouts were only minimally elevated, suggesting that another organ compensated for loss-of-function in the liver. Additional assays revealed that SLC30A10 was also expressed in the gastrointestinal tract. In differentiated enterocytes, SLC30A10 localized to the apical/luminal domain and transported intracellular manganese to the lumen. Importantly, endoderm-specific knockouts, lacking SLC30A10 in the liver and gastrointestinal tract, had markedly elevated manganese levels in the brain, blood, and liver. Thus, under basal physiological conditions, brain manganese is regulated by activity of SLC30A10 in the liver and gastrointestinal tract, and not the brain or just the liver. Notably, however, brain manganese levels of endoderm-specific knockouts were lower than whole-body knockouts, and only whole-body knockouts exhibited manganese-induced neurobehavioral defects. Moreover, after elevated exposure, pan-neuronal/glial knockouts had higher manganese levels in the basal ganglia and thalamus than controls. Therefore, when manganese levels increase, activity of SLC30A10 in the brain protects against neurotoxicity.
Collapse
Affiliation(s)
- Cherish A Taylor
- From the Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience and
| | - Steven Hutchens
- From the Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience and
| | - Chunyi Liu
- From the Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience and
| | - Thomas Jursa
- the Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064, and
| | - William Shawlot
- the Mouse Genetic Engineering Facility, University of Texas, Austin, Texas 78712
| | - Michael Aschner
- the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Donald R Smith
- the Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064, and
| | - Somshuvra Mukhopadhyay
- From the Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience and
| |
Collapse
|
44
|
El-Hady WM, Galal AAA. Neurotoxic Outcomes of Subchronic Manganese Chloride Exposure via Contaminated Water in Adult Male Rats and the Potential Benefits of Ebselen. Biol Trace Elem Res 2018. [PMID: 29516356 DOI: 10.1007/s12011-018-1291-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neurological effects of manganese (Mn) exposure on adults consuming contaminated water remain unclear. Accordingly, the current experiment was planned to explore the neurotoxic consequences of subchronic Mn exposure via contaminated water and to examine whether ebselen (Ebs) improved these outcomes. Rats exposed to oral MnCl2 (50 mg/kg body weight) for 30 successive days exhibited reduced rearing and ambulation. Furthermore, Mn administration increased brain Mn concentrations and induced superoxide dismutase, catalase, and glutathione depletion. Mn administration also increased lipid peroxidation biomarker levels. Additionally, Mn increased interleukin1-β and prostaglandin E2 levels and altered caspase-3 and Bcl-2 expression. Mn intoxication also induced marked gliosis, numerous vacuolations, and disoriented and pyknotic Purkinje cells as well as marked vascular congestion in brain tissue. Meanwhile, intraperitoneal administration of Ebs (15 mg/kg body weight) to Mn-intoxicated rats improved the behavioral performance and oxidative damage as well as inflammatory, apoptotic, and histopathological changes. The above results indicate that Ebs alleviated Mn neurotoxicity via its antioxidant, anti-inflammatory, and anti-apoptotic activities. Therefore, Ebs could represent a promising agent in the prevention of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Walaa M El-Hady
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Azza A A Galal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
45
|
Flores-Ramírez R, Pérez-Vázquez FJ, Medellín-Garibay SE, Camacho Aldrete A, Vallejo-Pérez M, Díaz de León-Martínez L, Carrizales Yáñez L, Díaz-Barriga F. Exposure to Mixtures of Pollutants in Mexican Children from Marginalized Urban Areas. Ann Glob Health 2018; 84:250-256. [PMID: 30873770 PMCID: PMC6748268 DOI: 10.29024/aogh.912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: Exposure to contaminant mixtures in developing countries is an important public health issue. Children are identified as the most susceptible group to adverse health effects due to the exposure. Objective: The aim of this study was to conduct a screening for mixture pollutants in Mexican children in urban marginalized communities. Methods: We analyzed children (aged 6–12 years old) who resided in four urban marginalized communities in San Luis Potosi, Mexico: i) Bellas Lomas (BEL), a site with vehicular traffic; ii) Tercera Chica (TC), a site with brick kilns; Iii) Rincon de San Jose (SJR), a site with a hazardous waste landfill; and (iv) Morales (MOR) a metallurgical zone with copper-arsenic and electrolytic zinc smelters. Polycyclic Aromatic Hydrocarbons (1-hydroxypyrene (1-OHP)), benzene (trans, trans-muconic acid (t,t-MA), manganese, arsenic and fluoride were quantified in urine and lead in blood samples. Findings: Our results indicate that median exposures to manganese were 4.4, 5.2, 5.8 and 6.3 µg/L for BEL, TC, SJR and MOR, respectively. For BEL, fluoride was present at a higher concentration with 2.3 mg/L followed by MOR, TC and SJR with 1.7, 1.5 and 1.2 mg/L respectively. The highest concentrations of arsenic that were found were 11 µg/L in MOR and lead concentration was reported between 4.2 and 6.8 µg/dL, in BEL, TC and MOR. 1-OHP and t,t-MA were higher in TC (0.23 µmol/mol creatinine (cr), 429.7 µg/g cr, respectively) followed by SJR (0.09 µmol/mol cr, 427.4 µg/g cr), MOR (0.03 µmol/mol cr, 258.6 µg/g cr) and BEL (0.06 µmol/mol cr, 220.6 µg/g cr). Conclusion: Considering the large number of people, especially children, exposed to multiple pollutants, it is important to design effective intervention programs that reduce exposure and the resultant risk in the numerous urban marginalized communities in Mexico.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, MX
| | - Francisco J Pérez-Vázquez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, SLP, MX
| | - Susanna E Medellín-Garibay
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, SLP, MX
| | - Andrea Camacho Aldrete
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, SLP, MX
| | - Moisés Vallejo-Pérez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, MX
| | - Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, SLP, MX
| | - Leticia Carrizales Yáñez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, SLP, MX
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, SLP, MX
| |
Collapse
|
46
|
Manganese Exposure and Cognition Across the Lifespan: Contemporary Review and Argument for Biphasic Dose-Response Health Effects. Curr Environ Health Rep 2018; 3:392-404. [PMID: 27722879 DOI: 10.1007/s40572-016-0108-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Manganese (Mn) is both an essential micronutrient and potential neurotoxicant. This dual role underlies a growing body of literature demonstrating that Mn exhibits a biphasic dose-response relationship with neurocognitive outcomes. We reviewed recent epidemiologic studies from 2007 to 2016 that investigated the relationship between Mn exposure and cognitive outcomes across the lifespan: early life, school-aged children, and adulthood. In total, 27 research articles were included in this review: 12 pediatric and 15 adult studies (10 occupational and five environmental exposures). The majority of these studies provided evidence of the negative effects of Mn exposure on cognition. The pediatric literature provides evidence that both high and low levels of Mn are negatively associated with intellectual development. Future Mn research should include examination of non-linear relationships and multiple neurotoxicants across the lifespan and particularly during critical developmental windows.
Collapse
|
47
|
Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, Baldé AB, Bertollini R, Bose-O'Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck OCP, Yadama GN, Yumkella K, Zhong M. The Lancet Commission on pollution and health. Lancet 2018; 391:462-512. [PMID: 29056410 DOI: 10.1016/s0140-6736(17)32345-0] [Citation(s) in RCA: 1921] [Impact Index Per Article: 274.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/09/2017] [Accepted: 08/02/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Philip J Landrigan
- Arnhold Institute for Global Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | | | - Olusoji Adeyi
- Department of Health, Nutrition, and Population Global Practice, The World Bank, Washington, DC, USA
| | - Robert Arnold
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Niladri Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | | | - Roberto Bertollini
- Scientific Committee on Health, Environmental and Emerging Risks of the European Commission, Luxembourg City, Luxembourg; Office of the Minister of Health, Ministry of Public Health, Doha, Qatar
| | - Stephan Bose-O'Reilly
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital of LMU Munich, Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment, University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | | | - Patrick N Breysse
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas Chiles
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | | | | | - Maureen L Cropper
- Department of Economics, University of Maryland, College Park, MD, USA; Resources for the Future, Washington, DC, USA
| | - Julius Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana
| | - Valentin Fuster
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Andy Haines
- Department of Social and Environmental Health Research and Department of Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | | | - David Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Mukesh Khare
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| | | | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Bindu Lohani
- Centennial Group, Washington, DC, USA; The Resources Center, Lalitpur, Nepal
| | - Keith Martin
- Consortium of Universities for Global Health, Washington, DC, USA
| | - Karen V Mathiasen
- Office of the US Executive Director, The World Bank, Washington, DC, USA
| | | | | | | | - Frederica Perera
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Janez Potočnik
- UN International Resource Panel, Paris, France; SYSTEMIQ, London, UK
| | - Alexander S Preker
- Department of Environmental Medicine and Global Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Health Policy and Management, Mailman School of Public Health, Columbia University, New York, NY, USA; Health Investment & Financing Corporation, New York, NY, USA
| | | | - Johan Rockström
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | | | - Leona D Samson
- Department of Biological Engineering and Department of Biology, Center for Environmental Health Sciences, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Kirk R Smith
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA
| | - Achim Steiner
- Oxford Martin School, University of Oxford, Oxford, UK
| | - Richard B Stewart
- Guarini Center on Environmental, Energy, and Land Use Law, New York University, New York, NY, USA
| | - William A Suk
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Onno C P van Schayck
- Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Gautam N Yadama
- School of Social Work, Boston College, Chestnut Hill, MA, USA
| | - Kandeh Yumkella
- United Nations Industrial Development Organization, Vienna, Austria
| | - Ma Zhong
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| |
Collapse
|
48
|
Cortez-Lugo M, Riojas-Rodríguez H, Moreno-Macías H, Montes S, Rodríguez-Agudelo Y, Hernández-Bonilla D, Catalán-Vázquez M, Díaz-Godoy R, Rodríguez-Dozal S. Evaluation of the effect of an environmental management program on exposure to manganese in a mining zone in Mexico. Neurotoxicology 2018; 64:142-151. [DOI: 10.1016/j.neuro.2017.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022]
|
49
|
Langley MR, Ghaisas S, Ay M, Luo J, Palanisamy BN, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson's disease: Relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology 2018; 64:240-255. [PMID: 28595911 PMCID: PMC5736468 DOI: 10.1016/j.neuro.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is now recognized as a neurodegenerative condition caused by a complex interplay of genetic and environmental influences. Chronic manganese (Mn) exposure has been implicated in the development of PD. Since mitochondrial dysfunction is associated with PD pathology as well as Mn neurotoxicity, we investigated whether Mn exposure augments mitochondrial dysfunction and neurodegeneration in the nigrostriatal dopaminergic system using a newly available mitochondrially defective transgenic mouse model of PD, the MitoPark mouse. This unique PD model recapitulates key features of the disease including progressive neurobehavioral changes and neuronal degeneration. We exposed MitoPark mice to a low dose of Mn (10mg/kg, p.o.) daily for 4 weeks starting at age 8 wks and then determined the behavioral, neurochemical and histological changes. Mn exposure accelerated the rate of progression of motor deficits in MitoPark mice when compared to the untreated MitoPark group. Mn also worsened olfactory function in this model. Most importantly, Mn exposure intensified the depletion of striatal dopamine and nigral TH neuronal loss in MitoPark mice. The neurodegenerative changes were accompanied by enhanced oxidative damage in the striatum and substantia nigra (SN) of MitoPark mice treated with Mn. Furthermore, Mn-treated MitoPark mice had significantly more oligomeric protein and IBA-1-immunoreactive microglia cells, suggesting Mn augments neuroinflammatory processes in the nigrostriatal pathway. To further confirm the direct effect of Mn on impaired mitochondrial function, we also generated a mitochondrially defective dopaminergic cell model by knocking out the TFAM transcription factor by using a CRISPR-Cas9 gene-editing method. Seahorse mitochondrial bioenergetic analysis revealed that Mn decreases mitochondrial basal and ATP-linked respiration in the TFAM KO cells. Collectively, our results reveal that Mn can augment mitochondrial dysfunction to exacerbate nigrostriatal neurodegeneration and PD-related behavioral symptoms. Our study also demonstrates that the MitoPark mouse is an excellent model to study the gene-environment interactions associated with mitochondrial defects in the nigral dopaminergic system as well as to evaluate the contribution of potential environmental toxicant interactions in a slowly progressive model of Parkinsonism.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Jie Luo
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
50
|
Bowler RM, Beseler CL, Gocheva VV, Colledge MA, Bollweg G, Kim Y, Adams SW, Lobdell DT. Response to: Comment on "Environmental exposure to manganese in air: Associations with tremor and motor function" by Bowler et al. 2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1369-1371. [PMID: 28525942 DOI: 10.1016/j.scitotenv.2017.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Rosemarie M Bowler
- San Francisco State University, Department of Psychology, 1600 Holloway Ave., San Francisco, CA 94132, USA.
| | - Cheryl L Beseler
- Colorado State University, 1879 Campus Delivery, Fort Collins, CO 80523, USA
| | - Vihra V Gocheva
- San Francisco State University, Department of Psychology, 1600 Holloway Ave., San Francisco, CA 94132, USA
| | - Michelle A Colledge
- Agency for Toxic Substances and Disease Registry, Region 5, 77W. Jackson Blvd., MS ATSD-4J, Chicago, IL 60604, USA
| | - George Bollweg
- U.S. EPA Region 5, 77W. Jackson Blvd., AR 18-J, Chicago, IL 60604, USA
| | - Yangho Kim
- Ulsan University Hospital, University of Ulsan College of Medicine, Department of Occupational and Environmental Medicine, Ulsan 682-060, South Korea
| | - Shane W Adams
- San Francisco State University, Department of Psychology, 1600 Holloway Ave., San Francisco, CA 94132, USA
| | - Danelle T Lobdell
- U.S. EPA, National Health and Environmental Effects Research Laboratory, MD 58A, Research Triangle Park, NC 27711, USA
| |
Collapse
|