1
|
Kanungo J, Sorkin BC, Krzykwa J, Mitchell CA, Embry M, Spencer P, Harry GJ, Cannon J, Liu F, McPherson CA, Gafner S, Westerink RH. Screening tools to evaluate the neurotoxic potential of botanicals: building a strategy to assess safety. Expert Opin Drug Metab Toxicol 2024; 20:629-646. [PMID: 38984683 PMCID: PMC11542175 DOI: 10.1080/17425255.2024.2378895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
AREAS COVERED This paper outlines the selection of NAMs, including in vitro assays using primary rat cortical neurons, zebrafish embryos, and Caenorhabditis elegans. These assays aim to assess neurotoxic endpoints such as neuronal activity and behavioral responses. Microelectrode array recordings of rat cortical neurons provide insights into the impact of botanical extracts on neuronal function, while the zebrafish embryos and C. elegans assays evaluate neurobehavioral responses. The paper also provides an account of the selection of botanical case studies based on expert judgment and existing neuroactivity/toxicity information. The proposed battery of assays will be tested with these case studies to evaluate their utility for neurotoxicity screening. EXPERT OPINION The complexity of botanicals necessitates the use of multiple NAMs for effective neurotoxicity screening. This paper discusses the evaluation of methodologies to develop a robust framework for evaluating botanical safety, including complex neuronal models and key neurodevelopmental process assays. It aims to establish a comprehensive screening framework.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Barbara C. Sorkin
- Office of Dietary Supplements, Division of Program Coordination, Planning, and Strategic Initiatives, U.S. National Institutes of Health, Bethesda, MD
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Health & Science University
| | - G. Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jason Cannon
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Christopher A. McPherson
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Stefan Gafner
- American Botanical Council, 6200 Manor Road, Austin, Texas 78723, United States
| | - Remco H.S. Westerink
- Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Kreir M, Putri D, Tekle F, Pibiri F, d’Ydewalle C, Van Ammel K, Geys H, Teisman A, Gallacher DJ, Lu HR. Development of a new hazard scoring system in primary neuronal cell cultures for drug-induced acute neuronal toxicity identification in early drug discovery. Front Pharmacol 2024; 15:1308547. [PMID: 38873414 PMCID: PMC11170107 DOI: 10.3389/fphar.2024.1308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
We investigated drug-induced acute neuronal electrophysiological changes using Micro-Electrode arrays (MEA) to rat primary neuronal cell cultures. Data based on 6-key MEA parameters were analyzed for plate-to-plate vehicle variability, effects of positive and negative controls, as well as data from over 100 reference drugs, mostly known to have pharmacological phenotypic and clinical outcomes. A Least Absolute Shrinkage and Selection Operator (LASSO) regression, coupled with expert evaluation helped to identify the 6-key parameters from many other MEA parameters to evaluate the drug-induced acute neuronal changes. Calculating the statistical tolerance intervals for negative-positive control effects on those 4-key parameters helped us to develop a new weighted hazard scoring system on drug-induced potential central nervous system (CNS) adverse effects (AEs). The weighted total score, integrating the effects of a drug candidate on the identified six-pivotal parameters, simply determines if the testing compound/concentration induces potential CNS AEs. Hereto, it uses four different categories of hazard scores: non-neuroactive, neuroactive, hazard, or high hazard categories. This new scoring system was successfully applied to differentiate the new compounds with or without CNS AEs, and the results were correlated with the outcome of in vivo studies in mice for one internal program. Furthermore, the Random Forest classification method was used to obtain the probability that the effect of a compound is either inhibitory or excitatory. In conclusion, this new neuronal scoring system on the cell assay is actively applied in the early de-risking of drug development and reduces the use of animals and associated costs.
Collapse
Affiliation(s)
- Mohamed Kreir
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - Dea Putri
- Statistics and Decision Sciences, Global Development, Janssen Research and Development, Beerse, Belgium
| | - Fetene Tekle
- Statistics and Decision Sciences, Global Development, Janssen Research and Development, Beerse, Belgium
| | - Francesca Pibiri
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | | | - Karel Van Ammel
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - Helena Geys
- Statistics and Decision Sciences, Global Development, Janssen Research and Development, Beerse, Belgium
| | - Ard Teisman
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - David J. Gallacher
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - Hua Rong Lu
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
3
|
Li W, Li H, Song J, Xing Y, Fang L, Wang X, Wu D, Min W. Mechanism of Intestinal Epithelial Absorption and Electrophysiological Regulation of the Shrimp Peptide QMDDQ. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:326-338. [PMID: 38155399 DOI: 10.1021/acs.jafc.3c05714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
We investigated the absorption mechanism of the shrimp peptide QMDDQ in small intestines, explored its physiological function in inhibiting neuronal hyperactivity, and verified its entry into the brain in vivo to display functional activity. The everted rat sac model and a Caco-2 paracellular absorption monolayer model were used, indicating that QMDDQ has a good absorption capacity with an apparent permeability coefficient (Papp) > 1 × 10-6 cm/s and the absorption of QMDDQ was concentration-dependent. When the concentration of QMDDQ was 1 mM and the transport time was 180 min, the highest absorption concentration of QMDDQ was 41.17 ± 3.48 μM (P < 0.05). The myosin light-chain kinase (MLCK)-specific inhibitor ML-7 and activator MPA, Western blotting, and immunofluorescence results showed that QMDDQ absorption takes place by mediating the MLCK-p-MLCK-MLC signaling pathway, reversibly opening the zonula occludens-1 (ZO-1), occludin in tight junctions (TJs), upregulating claudin-2 expression, and reaching targets through blood to inhibit neuronal overactivity. Results of fluorescence imaging in vivo verified that QMDDQ could enter the brain 4 h after oral administration. The results provide a theoretical foundation for the mechanism of paracellular absorption of active peptides and a starting point for the development of functional foods for Alzheimer's disease intervention.
Collapse
Affiliation(s)
- Weijia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Haoming Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Jiaqi Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, P.R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P.R. China
| |
Collapse
|
4
|
Ishibashi Y, Nagafuku N, Kanda Y, Suzuki I. Evaluation of neurotoxicity for pesticide-related compounds in human iPS cell-derived neurons using microelectrode array. Toxicol In Vitro 2023; 93:105668. [PMID: 37633473 DOI: 10.1016/j.tiv.2023.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
In vivo evaluations of chemicals in neurotoxicity have certain limitations due to the considerable time and cost required, necessity of extrapolation from rodents to humans, and limited information on toxicity mechanisms. To address this issue, the development of in vitro test methods using new approach methodologies (NAMs) is important to evaluate the chemicals in neurotoxicity. Microelectrode array (MEA) allows the assessment of changes in neural network activity caused by compound administration. However, studies on compound evaluation criteria are scarce. In this study, we evaluated the impact of pesticides on neural activity using MEA measurements of human iPSC-derived neurons. A principal component analysis was performed on the electrical physiological parameters obtained by MEA measurements, and the influence of excessive neural activity due to compound addition was defined using the standard deviation of neural activity with solvent addition as the reference. By using known seizurogenic compounds as positive controls for neurotoxicity in MEA and evaluating pesticides with insufficient verification of their neurotoxicity in humans, we demonstrated that these pesticides exhibit neurotoxicity in humans. In conclusion, our data suggest that the neurotoxicity evaluation method in human iPSC neurons using MEA measurements could be one of the in vitro neurotoxicity test methods that could replace animal experiments.
Collapse
Affiliation(s)
- Yuto Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan.
| |
Collapse
|
5
|
Choo SS, Keever JY, Brown J, Strickland JD, Shafer TJ. Assaying Spontaneous Network Activity and Cellular Viability Using Multi-Well Microelectrode Arrays. Methods Mol Biol 2023; 2644:133-154. [PMID: 37142920 DOI: 10.1007/978-1-0716-3052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microelectrode array (MEA) technology is a neurophysiological method that allows for the measurement of spontaneous or evoked neural activity to determine chemical effects thereon. Following assessment of compound effects on multiple endpoints that evaluate network function, a cell viability endpoint in the same well is determined using a multiplexed approach. Recently, it has become possible to measure electrical impedance of cells attached to the electrodes, where greater impedance indicates greater number of cells attached. This would allow rapid and repeated assessments of cell health as the neural network develops in longer exposure assays without impacting cell health. Typically, the lactate dehydrogenase (LDH) assay for cytotoxity and CellTiter-Blue® (CTB) assay for cell viability are only performed at the end of the chemical exposure period because these assays involve lysing of the cells. Procedures describing the multiplexed methods in acute and network formation screening are included in this chapter.
Collapse
Affiliation(s)
- Seline S Choo
- Oak Ridge Institute for Science and Engineering, Oak Ridge, TN, USA
- Rapid Assay Development Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jackson Y Keever
- Rapid Assay Development Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
- Oak Ridge Associated Universities Student Contractor, Oak Ridge, TN, USA
| | - Jasmine Brown
- Rapid Assay Development Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Jenna D Strickland
- Axion Biosystems, Atlanta, GA, USA
- LabCorp Drug Development, Madison, WI, USA
| | - Timothy J Shafer
- Rapid Assay Development Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
6
|
Abend A, Steele C, Schmidt S, Frank R, Jahnke HG, Zink M. Neuronal and glial cell co-culture organization and impedance spectroscopy on nanocolumnar TiN films for lab-on-a-chip devices. Biomater Sci 2022; 10:5719-5730. [PMID: 36039696 DOI: 10.1039/d2bm01066f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lab-on-a-chip devices, such as multielectrode arrays (MEAs), offer great advantages to study function and behavior of biological cells, such as neurons, outside the complex tissue structure. Nevertheless, in vitro systems can only succeed if they represent realistic conditions such as cell organization as similarly found in tissues. In our study, we employ a co-culture system of neuron-like (SH-SY5Y) and glial-like (U-87 MG) cells with various neuron-glial ratios to model different brain regions with different cellular compositions in vitro. We find that cell behavior in terms of cellular organization, as well as proliferation, depends on neuron-glial cell ratio, as well as the underlying substrate material. In fact, nanocolumnar titanium nitride (TiN nano), which exhibits improved electric properties for neural recording on MEA, shows improved biocompatible features compared to indium tin oxide (ITO). Moreover, electrochemical impedance spectroscopy experiments allow us to monitor cellular processes label-free in real-time over several days with multielectrode arrays. Additionally, electrochemical impedance experiments reveal superiority of TiN with nanocolumnar surface modification in comparison with ITO. TiN nano exhibits enhanced relative cell signals and improved signal-to-noise ratio, especially for smaller electrode sizes, which makes nanocolumnar TiN a promising candidate for research on neural recording and stimulation.
Collapse
Affiliation(s)
- Alice Abend
- Research Group Biotechnology and Biomedicine, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany.
| | - Chelsie Steele
- Research Group Biotechnology and Biomedicine, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany.
| | - Sabine Schmidt
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, 04103 Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, 04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, 04103 Leipzig, Germany
| | - Mareike Zink
- Research Group Biotechnology and Biomedicine, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
7
|
Kreir M, Floren W, Policarpo R, De Bondt A, Van den Wyngaert I, Teisman A, Gallacher DJ, Lu HR. Is the forming of neuronal network activity in human-induced pluripotent stem cells important for the detection of drug-induced seizure risks? Eur J Pharmacol 2022; 931:175189. [PMID: 35987255 DOI: 10.1016/j.ejphar.2022.175189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Functional network activity is a characteristic for neuronal cells, and the complexity of the network activity represents the necessary substrate to support complex brain functions. Drugs that drastically increase the neuronal network activity may have a potential higher risk for seizures in human. Although there has been some recent considerable progress made using cultures from different types of human-induced pluripotent stem cell (hiPSC) derived neurons, one of the primary limitations is the lack of - or very low - network activity. METHOD In the present study, we investigated whether the limited neuronal network activity in commercial hiPSC-neurons (CNS.4U®) is capable of detecting drug-induced potential seizure risks. Therefore, we compared the hiPSC-results to those in rat primary neurons with known high neuronal network activity in vitro. RESULTS Gene expression and electrical activity from in vitro developing neuronal networks were assessed at multiple time-points. Transcriptomes of 7, 28, and 50 days in vitro were analyzed and compared to those from human brain tissues. Data from measurements of electrical activity using multielectrode arrays (MEAs) indicate that neuronal networks matured gradually over time, albeit in hiPSC this developed slower than rat primary cultures. The response of neuronal networks to neuronal active reference drugs modulating glutamatergic, acetylcholinergic and GABAergic pathways could be detected in both hiPSC-neurons and rat primary neurons. However, in comparison, GABAergic responses were limited in hiPSC-neurons. CONCLUSION Overall, despite a slower network development and lower network activity, CNS.4U® hiPSC-neurons can be used to detect drug induced changes in neuronal network activity, as shown by well-known seizurogenic drugs (affecting e.g., the Glycine receptor and Na+ channel). However, lower sensitivity to GABA antagonists has been observed.
Collapse
Affiliation(s)
- Mohamed Kreir
- Global Safety Pharmacology, Predictive & Investigative Translational Toxicology, Nonclinical Safety, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Wim Floren
- Global Safety Pharmacology, Predictive & Investigative Translational Toxicology, Nonclinical Safety, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Rafaela Policarpo
- Neuroscience Therapeutic Area, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Belgium
| | - An De Bondt
- High Dimensional & Computational Biology, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ilse Van den Wyngaert
- High Dimensional & Computational Biology, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Predictive & Investigative Translational Toxicology, Nonclinical Safety, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Predictive & Investigative Translational Toxicology, Nonclinical Safety, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Hua Rong Lu
- Global Safety Pharmacology, Predictive & Investigative Translational Toxicology, Nonclinical Safety, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
8
|
Moser VC, Morris-Schaffer K, Richardson JR, Li AA. Glyphosate and neurological outcomes: A systematic literature review of animal studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:162-209. [PMID: 35676826 DOI: 10.1080/10937404.2022.2083739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of nervous system effects of glyphosate, a widely used herbicide, have not been critically examined. The aim of this paper was to systematically review glyphosate-induced neurotoxicity literature to determine its usefulness in regulatory decision-making. The review was restricted to mammalian studies of behavior, neuropathology, and neuropharmacology; in vitro and other biochemical studies were considered supplementary information. Glyphosate formulation studies were also considered, despite uncertainties regarding toxicities of the formulated products; no studies used a formulation vehicle as the control. Inclusion criteria were developed a priori to ensure consistent evaluation of studies, and in vivo investigations were also ranked using ToxRTool software to determine reliability. There were 27 in vivo studies (open literature and available regulatory reports), but 11 studies were considered unreliable (mostly due to critical methodological deficiencies). There were only seven acceptable investigations on glyphosate alone. Studies differed in terms of dosing scenarios, experimental designs, test species, and commercial product. Limitations included using only one dose and/or one test time, small sample sizes, limited data presentation, and/or overtly toxic doses. While motor activity was the most consistently affected endpoint (10 of 12 studies), there were considerable differences in outcomes. In six investigations, there were no marked neuropathological changes in the central or peripheral nervous system. Other neurological effects were less consistent, and some outcomes were less convincing due to influences including high variability and small effect sizes. Taken together, these studies do not demonstrate a consistent impact of glyphosate on the structure or function of the mammalian nervous system.
Collapse
Affiliation(s)
| | - Keith Morris-Schaffer
- Exponent Inc, Center for Chemical Regulation and Food Safety, Sacramento, California
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States
| | - Abby A Li
- Exponent Inc, Center for Health Sciences, Oakland, CA, United States
| |
Collapse
|
9
|
Gerber LS, van Melis LVJ, van Kleef RGDM, de Groot A, Westerink RHS. Culture of Rat Primary Cortical Cells for Microelectrode Array (MEA) Recordings to Screen for Acute and Developmental Neurotoxicity. Curr Protoc 2021; 1:e158. [PMID: 34152700 DOI: 10.1002/cpz1.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurotoxicity testing of chemicals, drug candidates, and environmental pollutants still relies on extensive in vivo studies that are very costly, time-consuming, and ethically debated due to the large number of animals typically used. Currently, rat primary cortical cultures are widely used for in vitro neurotoxicity studies, as they closely resemble the in vitro brain with respect to the diversity of cell types, their physiological functions, and the pathological processes that they undergo. Common in vitro assays for neurotoxicity screening often focus on very target-specific endpoints such as morphological, biochemical, or electrophysiological changes, and such narrow focus can hamper translation and interpretation. Microelectrode array (MEA) recordings provide a non-invasive platform for extracellular recording of electrical activity of cultured neuronal cells, thereby enabling the evaluation of changes in neuronal (network) function as a sensitive and integrated endpoint for neurotoxicity screening. Here, we describe an in vitro approach for assessing changes in neuronal network function as a measure for neurotoxicity, using rat primary cortical cultures grown on MEAs. We provide a detailed protocol for the culture of rat primary cortical cells, and describe several experimental procedures to address acute, subchronic, and chronic exposure scenarios. We additionally describe the steps for processing and analyzing MEA and cell viability data. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation and culture of rat primary cortical cells on 48-well MEA plates Support Protocol 1: Pretreatment and washing of 48-well MEA plates before first use or for re-use Support Protocol 2: Coating of 48-well MEA plates with 0.1% PEI solution Basic Protocol 2: MEA measurements during acute exposure Alternate Protocol 1: MEA measurements during subchronic exposure Alternate Protocol 2: MEA measurements during chronic exposure Support Protocol 3: Determination of cell viability after MEA experiments Basic Protocol 3: MEA data processing Basic Protocol 4: Analyzing MEA experiments after acute and subchronic exposure Alternate Protocol 3: Analyzing MEA experiments after chronic exposure.
Collapse
Affiliation(s)
- Lora-Sophie Gerber
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lennart V J van Melis
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aart de Groot
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Saavedra L, Wallace K, Freudenrich TF, Mall M, Mundy WR, Davila J, Shafer TJ, Wernig M, Haag D. Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures. Toxicol Sci 2021; 180:295-312. [PMID: 33537736 PMCID: PMC11811916 DOI: 10.1093/toxsci/kfab008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human-induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia cocultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on multielectrode arrays, albeit with noticeable delay compared with primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia cocultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including gamma amino butyric acid receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.
Collapse
Affiliation(s)
- Lorena Saavedra
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kathleen Wallace
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Theresa F. Freudenrich
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Moritz Mall
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - William R. Mundy
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jorge Davila
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Timothy J. Shafer
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Haag
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
11
|
Tukker AM, Wijnolts FMJ, de Groot A, Westerink RHS. Applicability of hiPSC-Derived Neuronal Cocultures and Rodent Primary Cortical Cultures for In Vitro Seizure Liability Assessment. Toxicol Sci 2020; 178:71-87. [PMID: 32866265 PMCID: PMC7657345 DOI: 10.1093/toxsci/kfaa136] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Seizures are life-threatening adverse drug reactions which are investigated late in drug development using rodent models. Consequently, if seizures are detected, a lot of time, money and animals have been used. Thus, there is a need for in vitro screening models using human cells to circumvent interspecies translation. We assessed the suitability of cocultures of human-induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared with rodent primary cortical cultures for in vitro seizure liability assessment using microelectrode arrays. hiPSC-derived and rodent primary cortical neuronal cocultures were exposed to 9 known (non)seizurogenic compounds (pentylenetetrazole, amoxapine, enoxacin, amoxicillin, linopirdine, pilocarpine, chlorpromazine, phenytoin, and acetaminophen) to assess effects on neuronal network activity using microelectrode array recordings. All compounds affect activity in hiPSC-derived cocultures. In rodent primary cultures all compounds, except amoxicillin changed activity. Changes in activity patterns for both cell models differ for different classes of compounds. Both models had a comparable sensitivity for exposure to amoxapine (lowest observed effect concentration [LOEC] 0.03 µM), linopirdine (LOEC 1 µM), and pilocarpine (LOEC 0.3 µM). However, hiPSC-derived cultures were about 3 times more sensitive for exposure to pentylenetetrazole (LOEC 30 µM) than rodent primary cortical cultures (LOEC 100 µM). Sensitivity of hiPSC-derived cultures for chlorpromazine, phenytoin, and enoxacin was 10-30 times higher (LOECs 0.1, 0.3, and 0.1 µM, respectively) than in rodent cultures (LOECs 10, 3, and 3 µM, respectively). Our data indicate that hiPSC-derived neuronal cocultures may outperform rodent primary cortical cultures with respect to detecting seizures, thereby paving the way towards animal-free seizure assessment.
Collapse
Affiliation(s)
- Anke M Tukker
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Fiona M J Wijnolts
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Aart de Groot
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| |
Collapse
|
12
|
Characterization and application of electrically active neuronal networks established from human induced pluripotent stem cell-derived neural progenitor cells for neurotoxicity evaluation. Stem Cell Res 2020; 45:101761. [PMID: 32244191 DOI: 10.1016/j.scr.2020.101761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurotoxicity is mediated by a variety of modes-of-actions leading to disturbance of neuronal function. In order to screen larger numbers of compounds for their neurotoxic potential, in vitro functional neuronal networks (NN) might be helpful tools. We established and characterized human NN (hNN) from hiPSC-derived neural progenitor cells by comparing hNN formation with two different differentiation media: in presence (CINDA) and absence (neural differentiation medium (NDM)) of maturation-supporting factors. As a NN control we included differentiating rat NN (rNN) in the study. Gene/protein expression and electrical activity from in vitro developing NN were assessed at multiple time points. Transcriptomes of 5, 14 and 28 days in vitro CINDA-grown hNN were compared to gene expression profiles of in vivo human developing brains. Molecular expression analyses as well as measures of electrical activity indicate that NN mature into neurons of different subtypes and astrocytes over time. In contrast to rNN, hNN are less electrically active within the same period of differentiation time, yet hNN grown in CINDA medium develop higher firing rates than hNN without supplements. Challenge of NN with neuronal receptor stimulators and inhibitors demonstrate presence of inhibitory, GABAergic neurons, whereas glutamatergic responses are limited. hiPSC-derived GABAergic hNN grown in CINDA medium might be a useful tool as part of an in vitro battery for assessing neurotoxicity.
Collapse
|
13
|
Carlson LM, Champagne FA, Cory-Slechta DA, Dishaw L, Faustman E, Mundy W, Segal D, Sobin C, Starkey C, Taylor M, Makris SL, Kraft A. Potential frameworks to support evaluation of mechanistic data for developmental neurotoxicity outcomes: A symposium report. Neurotoxicol Teratol 2020; 78:106865. [PMID: 32068112 PMCID: PMC7160758 DOI: 10.1016/j.ntt.2020.106865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
A key challenge in systematically incorporating mechanistic data into human health assessments is that, compared to studies of apical health endpoints, these data are both more abundant (mechanistic studies routinely outnumber other studies by several orders of magnitude) and more heterogeneous (e.g. different species, test system, tissue, cell type, exposure paradigm, or specific assays performed). A structured decision-making process for organizing, integrating, and weighing mechanistic DNT data for use in human health risk assessments will improve the consistency and efficiency of such evaluations. At the Developmental Neurotoxicology Society (DNTS) 2016 annual meeting, a symposium was held to address the application of existing organizing principles and frameworks for evaluation of mechanistic data relevant to interpreting neurotoxicology data. Speakers identified considerations with potential to advance the use of mechanistic DNT data in risk assessment, including considering the context of each exposure, since epigenetics, tissue type, sex, stress, nutrition and other factors can modify toxicity responses in organisms. It was also suggested that, because behavior is a manifestation of complex nervous system function, the presence and absence of behavioral change itself could be used to organize the interpretation of multiple complex simultaneous mechanistic changes. Several challenges were identified with frameworks and their implementation, and ongoing research to develop these approaches represents an early step toward full evaluation of mechanistic DNT data for assessments.
Collapse
Affiliation(s)
- Laura M Carlson
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC.
| | | | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School Rochester, NY
| | - Laura Dishaw
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC
| | - Elaine Faustman
- School of Public Health, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA
| | - William Mundy
- Neurotoxicologist, Durham, NC (formerly National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC))
| | - Deborah Segal
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC
| | - Christina Sobin
- Dept of Public Health Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Carol Starkey
- Booz Allen Hamilton (formerly research fellow with the Oak Ridge Institute for Science and Engineering (ORISE) with Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington DC))
| | - Michele Taylor
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC
| | - Susan L Makris
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC
| | - Andrew Kraft
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC; Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC
| |
Collapse
|
14
|
van der Ven LTM, Rorije E, Sprong RC, Zink D, Derr R, Hendriks G, Loo LH, Luijten M. A Case Study with Triazole Fungicides to Explore Practical Application of Next-Generation Hazard Assessment Methods for Human Health. Chem Res Toxicol 2020; 33:834-848. [PMID: 32041405 DOI: 10.1021/acs.chemrestox.9b00484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ongoing developments in chemical risk assessment have led to new concepts building on integration of sophisticated nonanimal models for hazard characterization. Here we explore a pragmatic approach for implementing such concepts, using a case study of three triazole fungicides, namely, flusilazole, propiconazole, and cyproconazole. The strategy applied starts with evaluating the overall level of concern by comparing exposure estimates to toxicological potential, followed by a combination of in silico tools and literature-derived high-throughput screening assays and computational elaborations to obtain insight into potential toxicological mechanisms and targets in the organism. Additionally, some targeted in vitro tests were evaluated for their utility to confirm suspected mechanisms of toxicity and to generate points of departure. Toxicological mechanisms instead of the current "end point-by-end point" approach should guide the selection of methods and assays that constitute a toolbox for next-generation risk assessment. Comparison of the obtained in silico and in vitro results with data from traditional in vivo testing revealed that, overall, nonanimal methods for hazard identification can produce adequate qualitative hazard information for risk assessment. Follow-up studies are needed to further refine the proposed approach, including the composition of the toolbox, toxicokinetics models, and models for exposure assessment.
Collapse
|
15
|
Kosnik MB, Strickland JD, Marvel SW, Wallis DJ, Wallace K, Richard AM, Reif DM, Shafer TJ. Concentration-response evaluation of ToxCast compounds for multivariate activity patterns of neural network function. Arch Toxicol 2020; 94:469-484. [PMID: 31822930 PMCID: PMC7371233 DOI: 10.1007/s00204-019-02636-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023]
Abstract
The US Environmental Protection Agency's ToxCast program has generated toxicity data for thousands of chemicals but does not adequately assess potential neurotoxicity. Networks of neurons grown on microelectrode arrays (MEAs) offer an efficient approach to screen compounds for neuroactivity and distinguish between compound effects on firing, bursting, and connectivity patterns. Previously, single concentrations of the ToxCast Phase II library were screened for effects on mean firing rate (MFR) in rat primary cortical networks. Here, we expand this approach by retesting 384 of those compounds (including 222 active in the previous screen) in concentration-response across 43 network activity parameters to evaluate neural network function. Using hierarchical clustering and machine learning methods on the full suite of chemical-parameter response data, we identified 15 network activity parameters crucial in characterizing activity of 237 compounds that were response actives ("hits"). Recognized neurotoxic compounds in this network function assay were often more potent compared to other ToxCast assays. Of these chemical-parameter responses, we identified three k-means clusters of chemical-parameter activity (i.e., multivariate MEA response patterns). Next, we evaluated the MEA clusters for enrichment of chemical features using a subset of ToxPrint chemotypes, revealing chemical structural features that distinguished the MEA clusters. Finally, we assessed distribution of neurotoxicants with known pharmacology within the clusters and found that compounds segregated differentially. Collectively, these results demonstrate that multivariate MEA activity patterns can efficiently screen for diverse chemical activities relevant to neurotoxicity, and that response patterns may have predictive value related to chemical structural features.
Collapse
Affiliation(s)
- Marissa B Kosnik
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Science for Life Laboratory, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Jenna D Strickland
- Axion Biosystems, Atlanta, GA, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Skylar W Marvel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dylan J Wallis
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kathleen Wallace
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, MD B105-05, Research Triangle Park, NC, 27711, USA
| | - Ann M Richard
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, MD B105-05, Research Triangle Park, NC, 27711, USA
| | - David M Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, MD B105-05, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
16
|
Kreir M, De Bondt A, Van den Wyngaert I, Teuns G, Lu HR, Gallacher DJ. Role of Kv7.2/Kv7.3 and M 1 muscarinic receptors in the regulation of neuronal excitability in hiPSC-derived neurons. Eur J Pharmacol 2019; 858:172474. [PMID: 31238068 DOI: 10.1016/j.ejphar.2019.172474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/12/2023]
Abstract
The Kv7 family of voltage-dependent non-inactivating potassium channels is composed of five members, of which four are expressed in the CNS. Kv7.2, 7.3 and 7.5 are responsible for the M-current, which plays a critical role in the regulation of neuronal excitability. Stimulation of M1 muscarinic acetylcholine receptor, M1 receptor, increases neuronal excitability by suppressing the M-current generated by the Kv7 channel family. The M-current modulation via M1 receptor is well-described in in vitro assays using cell lines and in native rodent tissue. However, this mechanism was not yet reported in human induced pluripotent stem cells (hiPSC) derived neurons. In the present study, we investigated the effects of both agonists and antagonists of Kv7.2/7.3 channel and M1 receptor in hiPSC derived neurons and in primary rat cortical neuronal cells. The role of M1 receptors in the modulation of neuronal excitability could be demonstrated in both rat primary and hiPSC neurons. The M1 receptors agonist, xanomeline, increased neuronal excitability in both rat cortical and the hiPSC neuronal cells. Furthermore, M1 receptor agonist-induced neuronal excitability in vitro was reduced by an agonist of Kv7.2/7.3 in both neuronal cells. These results show that hiPSC derived neurons recreate the modulation of the M-current by the muscarinic receptor in hiPSC neurons similarly to rat native neurons. Thus, hiPSC neurons could be a useful human-based cell assay for characterization of drugs that affect neuronal excitability and/or induce seizure activity by modulation of M1 receptors or inhibition of Kv7 channels.
Collapse
Affiliation(s)
- Mohamed Kreir
- Non-Clinical Safety, Discovery, Product Development & Supply, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - An De Bondt
- Computational Sciences, Discovery Sciences, Product Development & Supply, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ilse Van den Wyngaert
- Computational Sciences, Discovery Sciences, Product Development & Supply, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Greet Teuns
- Non-Clinical Safety, Discovery, Product Development & Supply, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Hua Rong Lu
- Non-Clinical Safety, Discovery, Product Development & Supply, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - David J Gallacher
- Non-Clinical Safety, Discovery, Product Development & Supply, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
17
|
Bradley JA, Luithardt HH, Metea MR, Strock CJ. In Vitro Screening for Seizure Liability Using Microelectrode Array Technology. Toxicol Sci 2019; 163:240-253. [PMID: 29432603 DOI: 10.1093/toxsci/kfy029] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug-induced seizure liabilities produce significant compound attrition during drug discovery. Currently available in vitro cytotoxicity assays cannot predict all toxicity mechanisms due to the failure of these assays to predict sublethal target-specific electrophysiological liabilities. Identification of seizurogenic and other electrophysiological effects at early stages of the drug development process is important to ensure that safe candidate compounds can be developed while chemical design is taking place, long before these liabilities are discovered in costly preclinical in vivo studies. The development of a high throughput and reliable in vitro assay to screen compounds for seizure liabilities would de-risk compounds significantly earlier in the drug discovery process and with greater dependability. Here we describe a method for screening compounds that utilizes rat cortical neurons plated onto multiwell microelectrode array plates to identify compounds that cause neurophysiological disruptions. Changes in 12 electrophysiological parameters (spike train descriptors) were measured after application of known seizurogenic compounds and the response pattern was mapped relative to negative controls, vehicle control and neurotoxic controls. Twenty chemicals with a variety of therapeutic indications and targets, including GABAA antagonists, glycine receptor antagonists, ion channel blockers, muscarinic agonist, δ-opioid receptor agonist, dopaminergic D2/adrenergic receptor blocker and nonsteroidal anti-inflammatory drugs, were tested to assess this system. Sixteen of the seventeen seizurogenic/neurotoxic compounds tested positive for seizure liability or neurotoxicity, moreover, different endpoint response patterns for firing rate, burst characteristics and synchrony that distinguished the chemicals into groups relating to target and seizurogenic response emerged from the data. The negative and vehicle control compounds had no effect on neural activity. In conclusion, the multiwell microelectrode array platform using cryopreserved rat cortical neurons is a highly effective high throughput method for reliably screening seizure liabilities within an early de-risking drug development paradigm.
Collapse
Affiliation(s)
| | | | - Monica R Metea
- Cyprotex US, LLC, An Evotec Company, Watertown, Massachusetts
| | | |
Collapse
|
18
|
Assessing seizure liability using multi-electrode arrays (MEA). Toxicol In Vitro 2019; 55:93-100. [DOI: 10.1016/j.tiv.2018.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
|
19
|
Pérez-Gómez A, Cabrera-García D, Warm D, Marini AM, Salas Puig J, Fernández-Sánchez MT, Novelli A. From the Cover: Selective Enhancement of Domoic Acid Toxicity in Primary Cultures of Cerebellar Granule Cells by Lowering Extracellular Na+ Concentration. Toxicol Sci 2019; 161:103-114. [PMID: 29029261 DOI: 10.1093/toxsci/kfx201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Domoic acid (DOM) is an excitatory amino acid analog of kainic acid (KA) that acts through glutamic acid (GLU) receptors, inducing a fast and potent neurotoxic response. Here, we present evidence for an enhancement of excitotoxicity following exposure of cultured cerebellar granule cells to DOM in the presence of lower than physiological Na+ concentrations. The concentration of DOM that reduced by 50% neuronal survival was approximately 3 µM in Na+-free conditions and 16 µM in presence of a physiological concentration of extracellular Na+. The enhanced neurotoxic effect of DOM was fully prevented by AMPA/KA receptor antagonist, while N-methyl-D-aspartate-receptor-mediated neurotoxicity did not seem to be involved, as the absence of extracellular Na+ failed to potentiate GLU excitotoxicity under the same experimental conditions. Lowering of extracellular Na+ concentration to 60 mM eliminated extracellular recording of spontaneous electrophysiological activity from cultured neurons grown on a multi electrode array and prevented DOM stimulation of the electrical activity. Although changes in the extracellular Na+ concentration did not alter the magnitude of the rapid increase in intracellular Ca2+ levels associated to DOM exposure, they did change significantly the contribution of voltage-sensitive calcium channels (VScaCs) and the recovery time to baseline. The prevention of Ca2+ influx via VSCaCs by nifedipine failed to prevent DOM toxicity at any extracellular Na+ concentration, while the reduction of extracellular Ca2+ concentration ameliorated DOM toxicity only in the absence of extracellular Na+, enhancing it in physiological conditions. Our data suggest a crucial role for extracellular Na+ concentration in determining excitotoxicity by DOM.
Collapse
Affiliation(s)
- Anabel Pérez-Gómez
- Department of Biochemistry and Molecular Biology, University of Oviedo, Oviedo, Spain
| | - David Cabrera-García
- Department of Biochemistry and Molecular Biology, University of Oviedo, Oviedo, Spain
| | - Davide Warm
- Department of Biochemistry and Molecular Biology, University of Oviedo, Oviedo, Spain
| | - Ann M Marini
- Department of Neurology and Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Javier Salas Puig
- Unit of Epilepsy, Vall d'Hebrón Hospital, Barcelona, Spain.,Department of Medicine, University Autonoma of Barcelona, Barcelona, Spain
| | - Maria Teresa Fernández-Sánchez
- Department of Biochemistry and Molecular Biology, University of Oviedo, Oviedo, Spain.,University Institute of Biotechnology
| | - Antonello Novelli
- University Institute of Biotechnology.,Department of Psychology, University of Oviedo, Oviedo, Spain
| |
Collapse
|
20
|
Shafer TJ. Application of Microelectrode Array Approaches to Neurotoxicity Testing and Screening. ADVANCES IN NEUROBIOLOGY 2019; 22:275-297. [PMID: 31073941 DOI: 10.1007/978-3-030-11135-9_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurotoxicity can be defined by the ability of a drug or chemical to alter the physiology, biochemistry, or structure of the nervous system in a manner that may negatively impact the health or function of the individual. Electrophysiological approaches have been utilized to study the mechanisms underlying neurotoxic actions of drugs and chemicals for over 50 years, and in more recent decades, high-throughput patch-clamp approaches have been utilized by the pharmaceutical industry for drug development. The use of microelectrode array recordings to study neural network electrophysiology is a relatively newer approach, with commercially available systems becoming available only in the early 2000s. However, MEAs have been rapidly adopted as a useful approach for neurotoxicity testing. In this chapter, I will review the use of MEA approaches as they have been applied to the field of neurotoxicity testing, especially as they have been applied to the need to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity. In addition, I will also identify challenges for the field that when addressed will improve the utility of MEA approaches for toxicity testing.
Collapse
Affiliation(s)
- Timothy J Shafer
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory (NHEERL), US EPA, Research Triangle Park, NC, USA.
| |
Collapse
|
21
|
Spanu A, Tedesco MT, Martines L, Martinoia S, Bonfiglio A. An organic neurophysiological tool for neuronal metabolic activity monitoring. APL Bioeng 2018; 2:046105. [PMID: 31069327 PMCID: PMC6481818 DOI: 10.1063/1.5050170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Monitoring cell metabolism in vitro is considered a relevant methodology in several scientific fields ranging from fundamental biology research to neuro-toxicology. In the last 20 years, several in vitro neuro-pharmacological and neuro-toxicological approaches have been developed, with the intent of addressing the increasing demand for real-time, non-invasive in vitro systems capable of continuously and reliably monitoring cellular activity. In this paper, an Organic Charge Modulated Field Effect Transistor-based device is proposed as a promising tool for neuro-pharmacological applications, thanks to its ultra-high pH sensitivity and a simple fabrication technology. The preliminary characterization of this versatile organic device with primary neuronal cultures shows how these remarkable properties can be exploited for the realization of ultra-sensitive metabolic probes, which are both reference-less and low cost. These features, together with the already assessed capability of this sensor to also monitor the electrical activity of electrogenic cells, could provide important advances in the fabrication of multi-sensing lab-on-chip devices, thus opening up interesting perspectives in the neuro-pharmacological field.
Collapse
Affiliation(s)
| | - M T Tedesco
- Department of Bioengineering, Robotics and System Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genova (GE), Italy
| | | | - S Martinoia
- Department of Bioengineering, Robotics and System Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genova (GE), Italy
| | - A Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo, 09123 Cagliari (CA), Italy
| |
Collapse
|
22
|
Chronic Electrical Stimulation Promotes the Excitability and Plasticity of ESC-derived Neurons following Glutamate-induced Inhibition In vitro. Sci Rep 2018; 8:10957. [PMID: 30026496 PMCID: PMC6053382 DOI: 10.1038/s41598-018-29069-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023] Open
Abstract
Functional electrical stimulation (FES) is rapidly gaining traction as a therapeutic tool for mediating the repair and recovery of the injured central nervous system (CNS). However, the underlying mechanisms and impact of these stimulation paradigms at a molecular, cellular and network level remain largely unknown. In this study, we used embryonic stem cell (ESC)-derived neuron and glial co-cultures to investigate network maturation following acute administration of L-glutamate, which is a known mediator of excitotoxicity following CNS injury. We then modulated network maturation using chronic low frequency stimulation (LFS) and direct current stimulation (DCS) protocols. We demonstrated that L-glutamate impaired the rate of maturation of ESC-derived neurons and glia immediately and over a week following acute treatment. The administration of chronic LFS and DCS protocols individually following L-glutamate infusion significantly promoted the excitability of neurons as well as network synchrony, while the combination of LFS/DCS did not. qRT-PCR analysis revealed that LFS and DCS alone significantly up-regulated the expression of excitability and plasticity-related transcripts encoding N-methyl-D-aspartate (NMDA) receptor subunit (NR2A), brain-derived neurotrophic factor (BDNF) and Ras-related protein (RAB3A). In contrast, the simultaneous administration of LFS/DCS down-regulated BDNF and RAB3A expression. Our results demonstrate that LFS and DCS stimulation can modulate network maturation excitability and synchrony following the acute administration of an inhibitory dose of L-glutamate, and upregulate NR2A, BDNF and RAB3A gene expression. Our study also provides a novel framework for investigating the effects of electrical stimulation on neuronal responses and network formation and repair after traumatic brain injury.
Collapse
|
23
|
Belle AM, Enright HA, Sales AP, Kulp K, Osburn J, Kuhn EA, Fischer NO, Wheeler EK. Evaluation of in vitro neuronal platforms as surrogates for in vivo whole brain systems. Sci Rep 2018; 8:10820. [PMID: 30018409 PMCID: PMC6050270 DOI: 10.1038/s41598-018-28950-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Quantitatively benchmarking similarities and differences between the in vivo central nervous system and in vitro neuronal cultures can qualify discrepancies in functional responses and establish the utility of in vitro platforms. In this work, extracellular electrophysiology responses of cortical neurons in awake, freely-moving animals were compared to in vitro cultures of dissociated cortical neurons. After exposure to two well-characterized drugs, atropine and ketamine, a number of key points were observed: (1) significant differences in spontaneous firing activity for in vivo and in vitro systems, (2) similar response trends in single-unit spiking activity after exposure to atropine, and (3) greater sensitivity to the effects of ketamine in vitro. While in vitro cultures of dissociated cortical neurons may be appropriate for many types of pharmacological studies, we demonstrate that for some drugs, such as ketamine, this system may not fully capture the responses observed in vivo. Understanding the functionality associated with neuronal cultures will enhance the relevance of electrophysiology data sets and more accurately frame their conclusions. Comparing in vivo and in vitro rodent systems will provide the critical framework necessary for developing and interpreting in vitro systems using human cells that strive to more closely recapitulate human in vivo function and response.
Collapse
Affiliation(s)
- Anna M Belle
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Heather A Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Ana Paula Sales
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Kristen Kulp
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Joanne Osburn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Edward A Kuhn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nicholas O Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA.
| | - Elizabeth K Wheeler
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA.
| |
Collapse
|
24
|
Do in vitro assays in rat primary neurons predict drug-induced seizure liability in humans? Toxicol Appl Pharmacol 2018; 346:45-57. [PMID: 29596924 DOI: 10.1016/j.taap.2018.03.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/22/2022]
Abstract
Drug-induced seizures contribute to the high attrition rate of pharmaceutical compounds in development. The assessment of drug-induced seizure liability generally occurs in later phases of development using low throughput and intensive in vivo assays. In the present study, we evaluated the potential of an in vitro assay for detecting drug-induced seizure risk compared to evaluation in rats in vivo. We investigated the effects of 8 reference drugs with a known seizurogenic risk using micro-electrode array (MEA) recordings from freshly-dissociated rat primary neurons cultured on 48-well dishes for 28 days, compared to their effects on the EEG in anesthetized rats. In addition, we evaluated functional responses and mRNA expression levels of different receptors in vitro to understand the potential mechanisms of drug-induced seizure risk. Combining the functional MEA in vitro data with concomitant gene expression allowed us to identify several potential molecular targets that might explain the drug-induced seizures occurring in both rats and humans. Our data 1) demonstrate the utility of a group of MEA parameters for detecting potential drug-induced seizure risk in vitro; 2) suggest that an in vitro MEA assay with rat primary neurons may have advantages over an in vivo rat model; and 3) identify potential mechanisms for the discordance between rat assays and human seizure risk for certain seizurogenic drugs.
Collapse
|
25
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
26
|
Strickland JD, Martin MT, Richard AM, Houck KA, Shafer TJ. Screening the ToxCast phase II libraries for alterations in network function using cortical neurons grown on multi-well microelectrode array (mwMEA) plates. Arch Toxicol 2018; 92:487-500. [PMID: 28766123 PMCID: PMC6438628 DOI: 10.1007/s00204-017-2035-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Methods are needed for rapid screening of environmental compounds for neurotoxicity, particularly ones that assess function. To demonstrate the utility of microelectrode array (MEA)-based approaches as a rapid neurotoxicity screening tool, 1055 chemicals from EPA's phase II ToxCast library were evaluated for effects on neural function and cell health. Primary cortical networks were grown on multi-well microelectrode array (mwMEA) plates. On day in vitro 13, baseline activity (40 min) was recorded prior to exposure to each compound (40 µM). Changes in spontaneous network activity [mean firing rate (MFR)] and cell viability (lactate dehydrogenase and CellTiter Blue) were assessed within the same well following compound exposure. Following exposure, 326 compounds altered (increased or decreased) normalized MFR beyond hit thresholds based on 2× the median absolute deviation of DMSO-treated wells. Pharmaceuticals, pesticides, fungicides, chemical intermediates, and herbicides accounted for 86% of the hits. Further, changes in MFR occurred in the absence of cytotoxicity, as only eight compounds decreased cell viability. ToxPrint chemotype analysis identified several structural domains (e.g., biphenyls and alkyl phenols) significantly enriched with MEA actives relative to the total test set. The top 5 enriched ToxPrint chemotypes were represented in 26% of the MEA hits, whereas the top 11 ToxPrints were represented in 34% of MEA hits. These results demonstrate that large-scale functional screening using neural networks on MEAs can fill a critical gap in assessment of neurotoxicity potential in ToxCast assay results. Further, a data-mining approach identified ToxPrint chemotypes enriched in the MEA-hit subset, which define initial structure-activity relationship inferences, establish potential mechanistic associations to other ToxCast assay endpoints, and provide working hypotheses for future studies.
Collapse
Affiliation(s)
- Jenna D Strickland
- Axion Biosystems, Atlanta, GA, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Matthew T Martin
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, MD D143-02, Research Triangle Park, NC, 27711, USA
- Pfizer Inc, Groton, CT, USA
| | - Ann M Richard
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, MD D143-02, Research Triangle Park, NC, 27711, USA
| | - Keith A Houck
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, MD D143-02, Research Triangle Park, NC, 27711, USA
| | - Timothy J Shafer
- Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, MD105-05, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
27
|
Hong HJ, Koom WS, Koh WG. Cell Microarray Technologies for High-Throughput Cell-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1293. [PMID: 28587242 PMCID: PMC5492771 DOI: 10.3390/s17061293] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/27/2022]
Abstract
Due to the recent demand for high-throughput cellular assays, a lot of efforts have been made on miniaturization of cell-based biosensors by preparing cell microarrays. Various microfabrication technologies have been used to generate cell microarrays, where cells of different phenotypes are immobilized either on a flat substrate (positional array) or on particles (solution or suspension array) to achieve multiplexed and high-throughput cell-based biosensing. After introducing the fabrication methods for preparation of the positional and suspension cell microarrays, this review discusses the applications of the cell microarray including toxicology, drug discovery and detection of toxic agents.
Collapse
Affiliation(s)
- Hye Jin Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea.
| |
Collapse
|
28
|
Hempel CM, Werley CA, Dempsey GT, Gerber DJ. Targeting neuronal function for CNS drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017. [PMID: 28647082 DOI: 10.1016/j.ddtec.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is a pressing need for new and more effective treatments for central nervous system (CNS) disorders. A large body of evidence now suggests that alterations in synaptic transmission and neuronal excitability represent underlying factors for many neurological and psychiatric diseases. However, it has been challenging to target these complex functional domains for therapeutic discovery using traditional neuronal assay methods. Here we review advances in neuronal screening technologies and cellular model systems that enable phenotypic screening of neuronal function as a basis for novel CNS drug discovery approaches.
Collapse
Affiliation(s)
- Chris M Hempel
- Q-State Biosciences, 179 Sidney Street, Cambridge, MA 02139, USA
| | | | - Graham T Dempsey
- Q-State Biosciences, 179 Sidney Street, Cambridge, MA 02139, USA
| | - David J Gerber
- Q-State Biosciences, 179 Sidney Street, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Johnstone AFM, Strickland JD, Crofton KM, Gennings C, Shafer TJ. Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays. Neurotoxicology 2017; 60:234-239. [PMID: 27177986 PMCID: PMC5831128 DOI: 10.1016/j.neuro.2016.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 01/18/2023]
Abstract
Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC function and neuronal excitability, yet studies examining effects of complex pyrethroid mixtures in mammalian neurons, especially in environmentally relevant mixture ratios, are limited. In the present study, concentration-response functions were characterized for five pyrethroids (permethrin, deltamethrin, cypermethrin, β-cyfluthrin and esfenvalerate) in an in vitro preparation containing cortical neurons and glia. As a metric of neuronal network activity, spontaneous mean network firing rates (MFR) were measured using microelectorde arrays (MEAs). In addition, the effect of a complex and exposure relevant mixture of the five pyrethroids (containing 52% permethrin, 28.8% cypermethrin, 12.9% β-cyfluthrin, 3.4% deltamethrin and 2.7% esfenvalerate) was also measured. Data were modeled to determine whether effects of the pyrethroid mixture were predicted by dose-addition. At concentrations up to 10μM, all compounds except permethrin reduced MFR. Deltamethrin and β-cyfluthrin were the most potent and reduced MFR by as much as 60 and 50%, respectively, while cypermethrin and esfenvalerate were of approximately equal potency and reduced MFR by only ∼20% at the highest concentration. Permethrin caused small (∼24% maximum), concentration-dependent increases in MFR. Effects of the environmentally relevant mixture did not depart from the prediction of dose-addition. These data demonstrate that an environmentally relevant mixture caused dose-additive effects on spontaneous neuronal network activity in vitro, and is consistent with other in vitro and in vivo assessments of pyrethroid mixtures.
Collapse
Affiliation(s)
- Andrew F M Johnstone
- National Health and Environmental Effects Research Laboratory (NHEERL), US EPA, Research Triangle Park, NC, United States
| | | | | | - Chris Gennings
- Population Health and Science Policy, Mt Sinai Hospital, NY, NY, United States
| | - Timothy J Shafer
- National Health and Environmental Effects Research Laboratory (NHEERL), US EPA, Research Triangle Park, NC, United States.
| |
Collapse
|
30
|
Posadas I, Alonso-Moreno C, Bravo I, Carrillo-Hermosilla F, Garzón A, Villaseca N, López-Solera I, Albaladejo J, Ceña V. Synthesis, characterization, DNA interactions and antiproliferative activity on glioblastoma of iminopyridine platinum(II) chelate complexes. J Inorg Biochem 2017; 168:46-54. [DOI: 10.1016/j.jinorgbio.2016.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
|
31
|
Brown JP, Lynch BS, Curry-Chisolm IM, Shafer TJ, Strickland JD. Assaying Spontaneous Network Activity and Cellular Viability Using Multi-well Microelectrode Arrays. Methods Mol Biol 2017; 1601:153-170. [PMID: 28470525 DOI: 10.1007/978-1-4939-6960-9_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microelectrode array (MEA) technology is a neurophysiological method that allows for the spontaneous measure of activity in neural cultures and determination of drug and chemical effects thereon. Recent introduction of multi-well MEA (mwMEA) formats have dramatically increased the throughput of this technology, allowing more efficient compound screening. Rapid characterization of compounds for neuroactivity or neurotoxicity hazard evaluation following acute, chronic, or developmental exposures ideally would also consider compound effects on cell health, and to do so in the same well requires a multiplexed approach. Procedures describing the multiplexed method to acute and developmental screening are described in this chapter.
Collapse
Affiliation(s)
- Jasmine P Brown
- Integrated Systems Toxicology Division, NHEERL, US EPA, MD105-05, Research Triangle Park, NC, 27711, USA
| | - Brittany S Lynch
- Integrated Systems Toxicology Division, NHEERL, US EPA, MD105-05, Research Triangle Park, NC, 27711, USA
| | - Itaevia M Curry-Chisolm
- Integrated Systems Toxicology Division, NHEERL, US EPA, MD105-05, Research Triangle Park, NC, 27711, USA
| | - Timothy J Shafer
- Integrated Systems Toxicology Division, NHEERL, US EPA, MD105-05, Research Triangle Park, NC, 27711, USA.
| | - Jenna D Strickland
- Axion Biosystems, Atlanta, GA, USA
- Department of Pharmacology and Toxicology, Michigan State University, E. Lansing, MI, USA
| |
Collapse
|
32
|
Broomfield LM, Alonso-Moreno C, Martin E, Shafir A, Posadas I, Ceña V, Castro-Osma JA. Aminophosphine ligands as a privileged platform for development of antitumoral ruthenium(ii) arene complexes. Dalton Trans 2017; 46:16113-16125. [DOI: 10.1039/c7dt03369a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The potential utility of aminophosphine ligands in both high-throughput testing and rational design of new anticancer metallodrugs.
Collapse
Affiliation(s)
- L. M. Broomfield
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology
- Tarragona
- Spain
| | - C. Alonso-Moreno
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Farmacia
- Universidad de Castilla-La Man-cha
- 02071-Albacete
| | - E. Martin
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology
- Tarragona
- Spain
| | - A. Shafir
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology
- Tarragona
- Spain
| | - I. Posadas
- CIBERNED
- Instituto de Salud Carlos III
- Madrid
- Spain
- Unidad Asociada Neurodeath CSIC-UCLM
| | - V. Ceña
- CIBERNED
- Instituto de Salud Carlos III
- Madrid
- Spain
- Unidad Asociada Neurodeath CSIC-UCLM
| | - J. A. Castro-Osma
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Farmacia
- Universidad de Castilla-La Man-cha
- 02071-Albacete
| |
Collapse
|
33
|
Dingemans MM, Schütte MG, Wiersma DM, de Groot A, van Kleef RG, Wijnolts FM, Westerink RH. Chronic 14-day exposure to insecticides or methylmercury modulates neuronal activity in primary rat cortical cultures. Neurotoxicology 2016; 57:194-202. [DOI: 10.1016/j.neuro.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
34
|
Hiolski EM, Ito S, Beggs JM, Lefebvre KA, Litke AM, Smith DR. Domoic acid disrupts the activity and connectivity of neuronal networks in organotypic brain slice cultures. Neurotoxicology 2016; 56:215-224. [PMID: 27506300 DOI: 10.1016/j.neuro.2016.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Domoic acid is a neurotoxin produced by algae and is found in seafood during harmful algal blooms. As a glutamate agonist, domoic acid inappropriately stimulates excitatory activity in neurons. At high doses, this leads to seizures and brain lesions, but it is unclear how lower, asymptomatic exposures disrupt neuronal activity. Domoic acid has been detected in an increasing variety of species across a greater geographical range than ever before, making it critical to understand the potential health impacts of low-level exposure on vulnerable marine mammal and human populations. To determine whether prolonged domoic acid exposure altered neuronal activity in hippocampal networks, we used a custom-made 512 multi-electrode array with high spatial and temporal resolution to record extracellular potentials (spikes) in mouse organotypic brain slice cultures. We identified individual neurons based on spike waveform and location, and measured the activity and functional connectivity within the neuronal networks of brain slice cultures. Domoic acid exposure significantly altered neuronal spiking activity patterns, and increased functional connectivity within exposed cultures, in the absence of overt cellular or neuronal toxicity. While the overall spiking activity of neurons in domoic acid-exposed cultures was comparable to controls, exposed neurons spiked significantly more often in bursts. We also identified a subset of neurons that were electrophysiologically silenced in exposed cultures, and putatively identified those neurons as fast-spiking inhibitory neurons. These results provide evidence that domoic acid affects neuronal activity in the absence of cytotoxicity, and suggest that neurodevelopmental exposure to domoic acid may alter neurological function in the absence of clinical symptoms.
Collapse
Affiliation(s)
- E M Hiolski
- Department of Microbiology & Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - S Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, USA
| | - J M Beggs
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - K A Lefebvre
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA, USA
| | - A M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, USA
| | - D R Smith
- Department of Microbiology & Environmental Toxicology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
35
|
Brown JP, Hall D, Frank CL, Wallace K, Mundy WR, Shafer TJ. Editor's Highlight: Evaluation of a Microelectrode Array-Based Assay for Neural Network Ontogeny Using Training Set Chemicals. Toxicol Sci 2016; 154:126-139. [PMID: 27492221 DOI: 10.1093/toxsci/kfw147] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thousands of compounds in the environment have not been characterized for developmental neurotoxicity (DNT) hazard. To address this issue, methods to screen compounds rapidly for DNT hazard evaluation are necessary and are being developed for key neurodevelopmental processes. In order to develop an assay for network formation, this study evaluated effects of a training set of chemicals on network ontogeny by measuring spontaneous electrical activity in neural networks grown on microelectrode arrays (MEAs). Rat (0-24 h old) primary cortical cells were plated in 48 well-MEA plates and exposed to 6 compounds: acetaminophen, bisindolylmaleimide-1 (Bis-1), domoic acid, mevastatin, sodium orthovanadate, and loperamide for a period of 12 days. Spontaneous network activity was recorded on days 2, 5, 7, 9, and 12 and viability was assessed using the Cell Titer Blue assay on day 12. Network activity (e.g. mean firing rate [MFR], burst rate [BR], etc), increased between days 5 and 12. Random Forest analysis indicated that across all compounds and times, temporal correlation of firing patterns (r), MFR, BR, number of active electrodes and % of spikes in a burst were the most influential parameters in separating control from treated wells. All compounds except acetaminophen (≤ 30 µM) caused concentration-related effects on one or more of these parameters. Domoic acid and sodium orthovanadate altered several of these parameters in the absence of cytotoxicity. Although cytotoxicity was observed with Bis1, mevastatin, and loperamide, some parameters were affected by these compounds at concentrations below those resulting in cytotoxicity. These results demonstrate that this assay may be suitable for screening of compounds for DNT hazard identification.
Collapse
Affiliation(s)
| | - Diana Hall
- NHEERL, US EPA, Research Triangle Park, NC, USA
| | | | | | | | | |
Collapse
|
36
|
Cotterill E, Hall D, Wallace K, Mundy WR, Eglen SJ, Shafer TJ. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:510-9. [PMID: 27028607 PMCID: PMC4904353 DOI: 10.1177/1087057116640520] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
Abstract
We examined neural network ontogeny using microelectrode array (MEA) recordings made in multiwell MEA (mwMEA) plates over the first 12 days in vitro (DIV). In primary cortical cultures, action potential spiking activity developed rapidly between DIV 5 and 12. Spiking was sporadic and unorganized at early DIV, and became progressively more organized with time, with bursting parameters, synchrony, and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity; principal components analysis using these features demonstrated segregation of data by age at both the well and plate levels. Using random forest classifiers and support vector machines, we demonstrated that four features (coefficient of variation [CV] of within-burst interspike interval, CV of interburst interval, network spike rate, and burst rate) could predict the age of each well recording with >65% accuracy. When restricting the classification to a binary decision, accuracy improved to as high as 95%. Further, we present a novel resampling approach to determine the number of wells needed for comparing different treatments. Overall, these results demonstrate that network development on mwMEA plates is similar to development in single-well MEAs. The increased throughput of mwMEAs will facilitate screening drugs, chemicals, or disease states for effects on neurodevelopment.
Collapse
Affiliation(s)
- Ellese Cotterill
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Diana Hall
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kathleen Wallace
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - William R Mundy
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Timothy J Shafer
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
37
|
Hondebrink L, Verboven AHA, Drega WS, Schmeink S, de Groot MWGDM, van Kleef RGDM, Wijnolts FMJ, de Groot A, Meulenbelt J, Westerink RHS. Neurotoxicity screening of (illicit) drugs using novel methods for analysis of microelectrode array (MEA) recordings. Neurotoxicology 2016; 55:1-9. [PMID: 27149913 DOI: 10.1016/j.neuro.2016.04.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/18/2016] [Accepted: 04/29/2016] [Indexed: 01/11/2023]
Abstract
Annual prevalence of the use of common illicit drugs and new psychoactive substances (NPS) is high, despite the often limited knowledge on the health risks of these substances. Recently, cortical cultures grown on multi-well microelectrode arrays (mwMEAs) have been used for neurotoxicity screening of chemicals, pharmaceuticals, and toxins with a high sensitivity and specificity. However, the use of mwMEAs to investigate the effects of illicit drugs on neuronal activity is largely unexplored. We therefore first characterised the cortical cultures using immunocytochemistry and show the presence of astrocytes, glutamatergic and GABAergic neurons. Neuronal activity is concentration-dependently affected following exposure to six neurotransmitters (glutamate, GABA, serotonin, dopamine, acetylcholine and nicotine). Most neurotransmitters inhibit neuronal activity, although glutamate and acetylcholine transiently increase activity at specific concentrations. These transient effects are not detected when activity is determined during the entire 30min exposure window, potentially resulting in false-negative results. As expected, exposure to the GABAA-receptor antagonist bicuculline increases neuronal activity. Exposure to a positive allosteric modulator of the GABAA-receptor (diazepam) or to glutamate receptor antagonists (CNQX and MK-801) reduces neuronal activity. Further, we demonstrate that exposure to common drugs (3,4-methylenedioxymethamphetamine (MDMA) and amphetamine) and NPS (1-(3-chlorophenyl)piperazine (mCPP), 4-fluoroamphetamine (4-FA) and methoxetamine (MXE)) decreases neuronal activity. MXE most potently inhibits neuronal activity with an IC50 of 0.5μM, whereas 4-FA is least potent with an IC50 of 113μM. Our data demonstrate the importance of analysing neuronal activity within different time windows during exposure to prevent false-negative results. We also show that cortical cultures grown on mwMEAs can successfully be applied to investigate the effects of different (illicit) drugs on neuronal activity. Compared to investigating multiple single endpoints for neurotoxicity or neuromodulation, such as receptor activation or calcium channel function, mwMEAs can provide information on integrated aspects of drug-induced neurotoxicity more rapidly. Therefore, this approach could contribute to a faster insight in possible health risks and shorten the regulation process.
Collapse
Affiliation(s)
- L Hondebrink
- National Poisons Information Center (NVIC), University Medical Center Utrecht, P.O. Box 85500, NL-3508 GA Utrecht, The Netherlands.
| | - A H A Verboven
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 Utrecht, The Netherlands
| | - W S Drega
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 Utrecht, The Netherlands
| | - S Schmeink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 Utrecht, The Netherlands
| | - M W G D M de Groot
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 Utrecht, The Netherlands
| | - R G D M van Kleef
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 Utrecht, The Netherlands
| | - F M J Wijnolts
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 Utrecht, The Netherlands
| | - A de Groot
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 Utrecht, The Netherlands
| | - J Meulenbelt
- National Poisons Information Center (NVIC), University Medical Center Utrecht, P.O. Box 85500, NL-3508 GA Utrecht, The Netherlands; Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 Utrecht, The Netherlands; Department of Intensive Care Medicine, University Medical Center Utrecht, P.O. Box 85500, NL-3508 GA, Utrecht, The Netherlands
| | - R H S Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 Utrecht, The Netherlands
| |
Collapse
|
38
|
Strickland JD, LeFew WR, Crooks J, Hall D, Ortenzio JN, Dreher K, Shafer TJ. In vitro screening of silver nanoparticles and ionic silver using neural networks yields differential effects on spontaneous activity and pharmacological responses. Toxicology 2016; 355-356:1-8. [DOI: 10.1016/j.tox.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/26/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
|
39
|
Vassallo A, Chiappalone M, De Camargos Lopes R, Scelfo B, Novellino A, Defranchi E, Palosaari T, Weisschu T, Ramirez T, Martinoia S, Johnstone AFM, Mack CM, Landsiedel R, Whelan M, Bal-Price A, Shafer TJ. A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing. Neurotoxicology 2016; 60:280-292. [PMID: 27036093 DOI: 10.1016/j.neuro.2016.03.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/25/2016] [Accepted: 03/28/2016] [Indexed: 12/19/2022]
Abstract
There is a need for methods to screen and prioritize chemicals for potential hazard, including neurotoxicity. Microelectrode array (MEA) systems enable simultaneous extracellular recordings from multiple sites in neural networks in real time and thereby provide a robust measure of network activity. In this study, spontaneous activity measurements from primary neuronal cultures treated with three neurotoxic or three non-neurotoxic compounds was evaluated across four different laboratories. All four individual laboratories correctly identifed the neurotoxic compounds chlorpyrifos oxon (an organophosphate insecticide), deltamethrin (a pyrethroid insecticide) and domoic acid (an excitotoxicant). By contrast, the other three compounds (glyphosate, dimethyl phthalate and acetaminophen) considered to be non-neurotoxic ("negative controls"), produced only sporadic changes of the measured parameters. The results were consistent across the different laboratories, as all three neurotoxic compounds caused concentration-dependent inhibition of mean firing rate (MFR). Further, MFR appeared to be the most sensitive parameter for effects of neurotoxic compounds, as changes in electrical activity measured by mean frequency intra burst (MFIB), and mean burst duration (MBD) did not result in concentration-response relationships for some of the positive compounds, or required higher concentrations for an effect to be observed. However, greater numbers of compounds need to be tested to confirm this. The results obtained indicate that measurement of spontaneous electrical activity using MEAs provides a robust assessment of compound effects on neural network function.
Collapse
Affiliation(s)
- Andrea Vassallo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Infomatics Bioengineering, Robotics, SystemEngeneering, University of Genova, Genova, Italy
| | - Michela Chiappalone
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Ricardo De Camargos Lopes
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Clinical Engineering, University Hospital of Santa Maria, Av. Roraima, 1000-Predio 22, Bairro Camobi, Santa Maria, CEP: 97105-900 RS, Brazil
| | - Bibiana Scelfo
- Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Antonio Novellino
- Alternative Toxicity Service Unit-ETT SpA, via Sestri 37, 16154 Genova, Italy
| | - Enrico Defranchi
- Alternative Toxicity Service Unit-ETT SpA, via Sestri 37, 16154 Genova, Italy
| | - Taina Palosaari
- Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Timo Weisschu
- Experimental Toxicology and Ecology, BASF, Carl Bosch-Strasse, 67056 Ludwigshafen am Rhein, Germany
| | - Tzutzuy Ramirez
- Experimental Toxicology and Ecology, BASF, Carl Bosch-Strasse, 67056 Ludwigshafen am Rhein, Germany
| | - Sergio Martinoia
- Department of Infomatics Bioengineering, Robotics, SystemEngeneering, University of Genova, Genova, Italy
| | - Andrew F M Johnstone
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Cina M Mack
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, BASF, Carl Bosch-Strasse, 67056 Ludwigshafen am Rhein, Germany
| | - Maurice Whelan
- Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Anna Bal-Price
- Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Timothy J Shafer
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
40
|
Curley JL, Sklare SC, Bowser DA, Saksena J, Moore MJ, Chrisey DB. Isolated node engineering of neuronal systems using laser direct write. Biofabrication 2016; 8:015013. [DOI: 10.1088/1758-5090/8/1/015013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity. Neurotoxicology 2016; 53:271-281. [PMID: 26854185 DOI: 10.1016/j.neuro.2016.02.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/21/2022]
Abstract
Due to the increasing prevalence of neurological disorders and the large number of untested compounds in the environment, there is a need to develop reliable and efficient screening tools to identify environmental chemicals that could potentially affect neurological development. Herein, we report on a library of 80 compounds screened for their ability to inhibit neurite outgrowth, a process by which compounds may elicit developmental neurotoxicity, in a high-throughput, high-content assay using human neurons derived from induced pluripotent stem cells (iPSC). The library contains a diverse set of compounds including those that have been known to be associated with developmental neurotoxicity (DNT) and/or neurotoxicity (NT), environmental compounds with unknown neurotoxic potential (e.g., polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs)), as well as compounds with no documented neurotoxic potential. Neurons were treated for 72h across a 6-point concentration range (∼0.3-100μM) in 384-well plates. Effects on neurite outgrowth were assessed by quantifying total outgrowth, branches, and processes. We also assessed the number ofviable cells per well. Concentration-response profiles were evaluated using a Hill model to derive benchmark concentration (BMC) values. Assay performance was evaluated using positive and negative controls and test replicates. Compounds were ranked by activity and selectivity (i.e., specific effects on neurite outgrowth in the absence of concomitant cytotoxicity) and repeat studies were conducted to confirm selectivity. Among the 80 compounds tested, 38 compounds were active, of which 16 selectively inhibited neurite outgrowth. Of these 16 compounds, 12 were known to cause DNT/NT and the remaining 4 compounds included 3 PAHs and 1 FR. In independent repeat studies, 14/16 selective compounds were reproducibly active in the assay, of which only 6 were selective for inhibition of neurite outgrowth. These 6 compounds were previously shown in the literature to be neurotoxic. These studies shed light on the current status of human iPSCs in DNT/NT screening and their utility in identifying, ranking, and prioritizing compounds with DNT/NT potential for further in vivo testing.
Collapse
|
42
|
Bravo I, Alonso-Moreno C, Posadas I, Albaladejo J, Carrillo-Hermosilla F, Ceña V, Garzón A, López-Solera I, Romero-Castillo L. Phenyl-guanidine derivatives as potential therapeutic agents for glioblastoma multiforme: catalytic syntheses, cytotoxic effects and DNA affinity. RSC Adv 2016. [DOI: 10.1039/c5ra17920c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma is a highly malignant form of brain tumor. In the work described here, several substituted phenyl-guanidine derivatives were developed for application in glioblastoma treatment.
Collapse
Affiliation(s)
- I. Bravo
- Departamento de Química-Física
- Universidad de Castilla-La Mancha
- Facultad de Farmacia
- Campus Universitario de Albacete
- 02071-Albacete
| | - C. Alonso-Moreno
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Universidad de Castilla-La Mancha
- Facultad de Farmacia
- Campus Universitario de Albacete
| | - I. Posadas
- Unidad Asociada Neurodeath CSIC-UCLM
- Departamento de Ciencias Médicas
- Facultad de Farmacia
- Universidad de Castilla-La Mancha
- Campus Universitario de Albacete
| | - J. Albaladejo
- Departamento de Química-Física
- Universidad de Castilla-La Mancha
- Facultad de Ciencias y Tecnologías Químicas
- Campus Universitario de Ciudad Real
- 13071-Ciudad Real
| | - F. Carrillo-Hermosilla
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Universidad de Castilla-La Mancha
- Facultad de Ciencias y Tecnologías Químicas
- Campus Universitario de Ciudad Real
| | - V. Ceña
- Unidad Asociada Neurodeath CSIC-UCLM
- Departamento de Ciencias Médicas
- Facultad de Medicina
- Universidad de Castilla-La Mancha
- Campus Universitario de Albacete
| | - A. Garzón
- Departamento de Química-Física
- Universidad de Castilla-La Mancha
- Facultad de Farmacia
- Campus Universitario de Albacete
- 02071-Albacete
| | - I. López-Solera
- Departamento de Química Inorgánica
- Orgánica y Bioquímica
- Universidad de Castilla-La Mancha
- Facultad de Ciencias y Tecnologías Químicas
- Campus Universitario de Ciudad Real
| | - L. Romero-Castillo
- Unidad Asociada Neurodeath CSIC-UCLM
- Departamento de Ciencias Médicas
- Facultad de Farmacia
- Universidad de Castilla-La Mancha
- Campus Universitario de Albacete
| |
Collapse
|
43
|
Singh S, Srivastava A, Kumar V, Pandey A, Kumar D, Rajpurohit CS, Khanna VK, Yadav S, Pant AB. Stem Cells in Neurotoxicology/Developmental Neurotoxicology: Current Scenario and Future Prospects. Mol Neurobiol 2015; 53:6938-6949. [DOI: 10.1007/s12035-015-9615-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/03/2015] [Indexed: 12/26/2022]
|
44
|
In VitroDevelopmental Neurotoxicity Following Chronic Exposure to 50 Hz Extremely Low-Frequency Electromagnetic Fields in Primary Rat Cortical Cultures. Toxicol Sci 2015; 149:433-40. [DOI: 10.1093/toxsci/kfv242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|