1
|
Albers JL, Ivan LN, Clark BW, Nacci DE, Klingler RH, Thrash A, Steibel JP, Vinas NGR, Carvan MJ, Murphy CA. Impacts on Atlantic Killifish from Neurotoxicants: Genes, Behavior, and Population-Relevant Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17235-17246. [PMID: 39287556 PMCID: PMC11447911 DOI: 10.1021/acs.est.4c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Molecular, cellular, and organismal alterations are important descriptors of toxic effects, but our ability to extrapolate and predict ecological risks is limited by the availability of studies that link measurable end points to adverse population relevant outcomes such as cohort survival and growth. In this study, we used laboratory gene expression and behavior data from two populations of Atlantic killifish Fundulus heteroclitus [one reference site (SCOKF) and one PCB-contaminated site (NBHKF)] to inform individual-based models simulating cohort growth and survival from embryonic exposures to environmentally relevant concentrations of neurotoxicants. Methylmercury exposed SCOKF exhibited brain gene expression changes in the si:ch211-186j3.6, si:dkey-21c1.4, scamp1, and klhl6 genes, which coincided with changes in feeding and swimming behaviors, but our models simulated no growth or survival effects of exposures. PCB126-exposed SCOKF had lower physical activity levels coinciding with a general upregulation in nucleic and cellular brain gene sets (BGS) and downregulation in signaling, nucleic, and cellular BGS. The NBHKF, known to be tolerant to PCBs, had altered swimming behaviors that coincided with 98% fewer altered BGS. Our models simulated PCB126 decreased growth in SCOKF and survival in SCOKF and NBHKF. Overall, our study provides a unique demonstration linking molecular and behavioral data to develop quantitative, testable predictions of ecological risk.
Collapse
Affiliation(s)
- Janice L Albers
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lori N Ivan
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bryan W Clark
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882, United States
| | - Diane E Nacci
- Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882, United States
| | - Rebekah H Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Adam Thrash
- Biocomputing and Biotechnology, Institute for Genomics, Mississippi State University, Starkville, Mississippi 39759, United States
| | - Juan P Steibel
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Natalia Garcia-Reyero Vinas
- Environmental Laboratory, US Army Engineer Research and Development Center, U.S. Army Corps of Engineers, Vicksburg, Mississippi 39180, United States
| | - Michael J Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Alfonso S, Blanc M, Cousin X, Bégout ML. Exposure of zebrafish to an environmental mixture of persistent organic pollutants triggers an increase in anxiety-like syndrome but does not affect boldness in unexposed offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21439-21452. [PMID: 36269479 DOI: 10.1007/s11356-022-23689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants (POPs) that are present as complex mixtures in all environmental compartments, including aquatic ecosystems. However, little is known about the effects of such complex mixtures on teleost behaviour. In this study, zebrafish (Danio rerio) were chronically exposed to an environmentally relevant mixture (MIX) containing 22 PCB and 7 PBDE congeners through diet from 5 days post fertilization onwards. MIX-exposed F0 fish produced offspring (F1 and F2 generations) that were fed using plain food and grown until adulthood. In each generation, five behavioural traits (i.e. boldness, activity, sociality, exploration and anxiety) were evaluated by the mean of different experimental set-ups. Two distinct behavioural syndromes were identified: boldness, positively correlated to activity and exploration; and anxiety, associated with low sociality. F0 fish did not display any behavioural disruption resulting from POP exposure whereas F1 MIX fish were bolder than fish from other generations but did not differ significantly from F1 controls. F2 MIX fish displayed a higher anxiety syndrome than F2 controls. This is of particular importance since such behavioural changes in offspring generations may have persistent ecological consequences, may affect fitness and hence cause detrimental effects on wild fish populations exposed to POP mixtures.
Collapse
Affiliation(s)
- Sébastien Alfonso
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France.
- COISPA Tecnologia & Ricerca, Via dei trulli 18/20, Torre a Mare, 70126, Bari, Italy.
| | - Mélanie Blanc
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France
| | - Xavier Cousin
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France
| | - Marie-Laure Bégout
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France
| |
Collapse
|
3
|
Tian Y, Rimal B, Gui W, Koo I, Yokoyama S, Perdew GH, Patterson AD. Early Life Short-Term Exposure to Polychlorinated Biphenyl 126 in Mice Leads to Metabolic Dysfunction and Microbiota Changes in Adulthood. Int J Mol Sci 2022; 23:8220. [PMID: 35897801 PMCID: PMC9330872 DOI: 10.3390/ijms23158220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/02/2023] Open
Abstract
Early life exposure to environmental pollutants may have long-term consequences and harmful impacts on health later in life. Here, we investigated the short- and long-term impact of early life 3,3',4,4',5-pentacholorobiphenyl (PCB 126) exposure (24 μg/kg body weight for five days) in mice on the host and gut microbiota using 16S rRNA gene sequencing, metagenomics, and 1H NMR- and mass spectrometry-based metabolomics. Induction of Cyp1a1, an aryl hydrocarbon receptor (AHR)-responsive gene, was observed at 6 days and 13 weeks after PCB 126 exposure consistent with the long half-life of PCB 126. Early life, Short-Term PCB 126 exposure resulted in metabolic abnormalities in adulthood including changes in liver amino acid and nucleotide metabolism as well as bile acid metabolism and increased hepatic lipogenesis. Interestingly, early life PCB 126 exposure had a greater impact on bacteria in adulthood at the community structure, metabolic, and functional levels. This study provides evidence for an association between early life environmental pollutant exposure and increased risk of metabolic disorders later in life and suggests the microbiome is a key target of environmental chemical exposure.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Wei Gui
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Shigetoshi Yokoyama
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (Y.T.); (B.R.); (I.K.); (S.Y.); (G.H.P.)
| |
Collapse
|
4
|
Ruan F, Liu C, Hu W, Ruan J, Ding X, Zhang L, Yang C, Zuo Z, He C, Huang J. Early life PCB138 exposure induces kidney injury secondary to hyperuricemia in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118977. [PMID: 35157936 DOI: 10.1016/j.envpol.2022.118977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 05/26/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants (POPs) that have adverse effects on human health. However, the long-term health effects and potential mechanism of neonatal exposure to PCBs are still unclear. In this study, nursing male mice exposed to PCB138 at 0.5, 5, and 50 μg/kg body weight (bw) from postnatal day (PND) 3 to PND 21 exhibited increased serum uric acid levels and liver uric acid synthase activity at 210 days of age. We also found an increased kidney somatic index in the 50 μg/kg group and kidney fibrosis in the 5 and 50 μg/kg groups. Mechanistically, PCB138 induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which might have led to inflammatory responses, such as activation of the NF-κB (nuclear factor kappa-B) and NLRP3 (NOD-like receptor protein 3) pathways. The inflammatory response might regulate renal fibrosis and hypertrophy. In summary, this study reports a long-term effect of neonatal PCB exposure on uric acid metabolism and secondary nephrotoxicity and clarifies the underlying mechanism. Our work also indicates that early life pollutant exposure may be an important cause of diseases later in life.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Weiping Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
5
|
Albers JL, Steibel JP, Klingler RH, Ivan LN, Garcia-Reyero N, Carvan MJ, Murphy CA. Altered Larval Yellow Perch Swimming Behavior Due to Methylmercury and PCB126 Detected Using Hidden Markov Chain Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3514-3523. [PMID: 35201763 DOI: 10.1021/acs.est.1c07505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae (Perca flavescens) using three doses. Both approaches indicate larvae increase activity after exposure to either chemical. The middle methylmercury-dosed larvae showed multiple altered behavior patterns. First, larvae had a general increase in activity, typically performing more behavior states, more time swimming, and more swimming bouts per second. Second, when larvae were in a slow or medium swimming state, these larvae tended to switch between these states more often. Third, larvae swam slower during the swimming bouts. The upper PCB126-dosed larvae exhibited a higher proportion and a fast swimming state, but the total time spent swimming fast decreased. The middle PCB126-dosed larvae transitioned from fast to slow swimming states less often than the control larvae. These results indicate that developmental exposure to very low doses of these neurotoxicants alters YP larvae overall swimming behaviors, suggesting neurodevelopment alteration.
Collapse
Affiliation(s)
- Janice L Albers
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Juan P Steibel
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rebekah H Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Lori N Ivan
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi, 39180, United States
| | - Michael J Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Influence of the Aryl Hydrocarbon Receptor Activating Environmental Pollutants on Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22179258. [PMID: 34502168 PMCID: PMC8431328 DOI: 10.3390/ijms22179258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.
Collapse
|
7
|
Su J, Duan X, Qiu Y, Zhou L, Zhang H, Gao M, Liu Y, Zou Z, Qiu J, Chen C. Pregnancy exposure of titanium dioxide nanoparticles causes intestinal dysbiosis and neurobehavioral impairments that are not significant postnatally but emerge in adulthood of offspring. J Nanobiotechnology 2021; 19:234. [PMID: 34362405 PMCID: PMC8349049 DOI: 10.1186/s12951-021-00967-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pregnancy exposure to titanium dioxide nanoparticles (TiO2NPs) is a vital consideration due to their inadvertent ingestion from environmental contamination. The potential health effects of TiO2NPs on the neurodevelopmental process should be seriously concerned in health risk assessment, especially for the pregnant women who are susceptible to the neurodevelopmental toxicity of nano-sized particles. However, the available evidence of neurodevelopmental toxicity of TiO2NPs remains very limited. METHODS In the present study, the pregnant mice were intragastric administered with 150 mg/kg TiO2NPs from gestational day (GD) 8 to 21, the maternal behaviors and neurodevelopment-related indicators in offspring were all assessed at different time points after delivery. The gut microbial community in both dams and their offspring were detected by using 16S ribosomal RNA (rRNA) gene sequencing. The gut-brain axis related indicators were also determined in the offspring. RESULTS The results clearly demonstrated that exposure to TiO2NPs did not affect the maternal behaviors of pregnant mice, or cause the deficits on the developmental milestones and perturbations in the early postnatal development of offspring. Intriguingly, our data revealed that pregnancy exposure of TiO2NPs did not affect locomotor function, learning and memory ability and anxiety-like behavior in offspring at postnatal day (PD) 21, but resulted in obvious impairments on these neurobehaviors at PD49. Similar phenomena were obtained in the composition of gut microbial community, intestinal and brain pathological damage in offspring in adulthood. Moreover, the intestinal dysbiosis induced by TiO2NPs might be highly associated with the delayed appearance of neurobehavioral impairments in offspring, possibly occurring through disruption of gut-brain axis. CONCLUSIONS This is the first report elucidated that pregnancy exposure to TiO2NPs caused delayed appearance of neurobehavioral impairments in offspring when they reached adulthood, although these perturbations did not happen at early life after delivery. These findings will provide valuable insights about neurodevelopmental toxicity of TiO2NPs, and call for comprehensive health risk assessment of TiO2NPs on the susceptible population, such as pregnant women.
Collapse
Affiliation(s)
- Junhao Su
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yu Qiu
- Department of Neurology, The Affiliated University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Min Gao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yijun Liu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
8
|
Wang Y, Hu C, Fang T, Jin Y, Wu R. Perspective on prenatal polychlorinated biphenyl exposure and the development of the progeny nervous system (Review). Int J Mol Med 2021; 48:150. [PMID: 34132363 PMCID: PMC8219518 DOI: 10.3892/ijmm.2021.4983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
The developmental origins of health and disease concept illustrates that exposure in early life to various factors may affect the offspring's long-term susceptibility to disease. During development, the nervous system is sensitive and vulnerable to the environmental insults. Polychlorinated biphenyls (PCBs), which are divided into dioxin-like (DL-PCBs) and non-dioxin-like PCBs (NDL-PCBs), are synthetic persistent environmental endocrine-disrupting chemicals. The toxicological mechanisms of DL-PCBs have been associated with the activation of the aryl hydrocarbon receptor and NDL-PCBs have been associated with ryanodine receptor-mediated calcium ion channels, which affect neuronal migration, promote dendritic growth and alter neuronal connectivity. In addition, PCB accumulation in the placenta destroys the fetal placental unit and affects endocrine function, particularly thyroid hormones and the dopaminergic system, leading to neuroendocrine disorders. However, epidemiological investigations have not achieved a consistent result in different study cohorts. The present review summarizes the epidemiological differences and possible mechanisms of the effects of intrauterine PCB exposure on neurological development.
Collapse
Affiliation(s)
- Yinfeng Wang
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Changchang Hu
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Tao Fang
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yang Jin
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ruijin Wu
- Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
9
|
Bownik A, Wlodkowic D. Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145577. [PMID: 33770877 DOI: 10.1016/j.scitotenv.2021.145577] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Despite mounting evidence of pleiotropic ecological risks, the understanding of the eco-neurotoxic impact of most industrially relevant chemicals is still very limited. In particularly the acute and chronic exposures to industrial pollutants on nervous systems and thus potential alterations in ecological fitness remain profoundly understudied. Since the behavioral phenotype is the highest-level and functional manifestation of integrated neurological functions, the alterations in neuro-behavioral traits have been postulated as very sensitive and physiologically integrative endpoints to assess eco-neurotoxicological risks associated with industrial pollutants. Due to a considerable backlog of risk assessments of existing and new production chemicals there is a need for a paradigm shift from high cost, low throughput ecotoxicity test models to next generation systems amenable to higher throughput. In this review we concentrate on emerging aspects of laboratory-based neuro-behavioral phenotyping approaches that can be amenable for rapid prioritizing pipelines. We outline the importance of development and applications of innovative neuro-behavioral assays utilizing small aquatic biological indicators and demonstrate emerging concepts of high-throughput chemo-behavioral phenotyping. We also discuss new analytical approaches to effectively and rapidly evaluate the impact of pollutants on higher behavioral functions such as sensory-motor assays, decision-making and cognitive behaviors using innovative model organisms. Finally, we provide a snapshot of most recent analytical approaches that can be applied to elucidate mechanistic rationale that underlie the observed neuro-behavioral alterations upon exposure to pollutants. This review is intended to outline the emerging opportunities for innovative multidisciplinary research and highlight the existing challenges as well barriers to future development.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|
10
|
Aluru N, Krick KS, McDonald AM, Karchner SI. Developmental Exposure to PCB153 (2,2',4,4',5,5'-Hexachlorobiphenyl) Alters Circadian Rhythms and the Expression of Clock and Metabolic Genes. Toxicol Sci 2021; 173:41-52. [PMID: 31621872 DOI: 10.1093/toxsci/kfz217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are highly persistent and ubiquitously distributed environmental pollutants. Based on their chemical structure, PCBs are classified into non-ortho-substituted and ortho-substituted congeners. Non-ortho-substituted PCBs are structurally similar to dioxin and their toxic effects and mode of action are well-established. In contrast, very little is known about the effects of ortho-substituted PCBs, particularly, during early development. The objective of this study is to investigate the effects of exposure to an environmentally prominent ortho-substituted PCB (2,2',4,4',5,5'-hexachlorobiphenyl; PCB153) on zebrafish embryos. We exposed zebrafish embryos to 3 different concentrations of PCB153 starting from 4 to 120 hours post-fertilization (hpf). We quantified gross morphological changes, behavioral phenotypes, gene expression changes, and circadian behavior in the larvae. There were no developmental defects during the exposure period, but starting at 7 dpf, we observed spinal deformity in the 10 μM PCB153 treated group. A total of 633, 2227, and 3378 differentially expressed genes were observed in 0.1 μM (0.036 μg/ml), 1 μM (0.36 μg/ml), and 10 μM (3.6 μg/ml) PCB153-treated embryos, respectively. Of these, 301 genes were common to all treatment groups. KEGG pathway analysis revealed enrichment of genes related to circadian rhythm, FoxO signaling, and insulin resistance pathways. Behavioral analysis revealed that PCB153 exposure significantly alters circadian behavior. Disruption of circadian rhythms has been associated with the development of metabolic and neurological diseases. Thus, understanding the mechanisms of action of environmental chemicals in disrupting metabolism and other physiological processes is essential.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Keegan S Krick
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Adriane M McDonald
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543.,Biology Department, Spelman College, Atlanta, Georgia 30314
| | - Sibel I Karchner
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
11
|
Aluru N, Karchner SI. PCB126 Exposure Revealed Alterations in m6A RNA Modifications in Transcripts Associated With AHR Activation. Toxicol Sci 2021; 179:84-94. [PMID: 33064826 PMCID: PMC8453794 DOI: 10.1093/toxsci/kfaa158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3' UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3' UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Sibel I Karchner
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
12
|
da Costa Araújo AP, Malafaia G. Microplastic ingestion induces behavioral disorders in mice: A preliminary study on the trophic transfer effects via tadpoles and fish. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123263. [PMID: 32629346 DOI: 10.1016/j.jhazmat.2020.123263] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 05/04/2023]
Abstract
In this study, the hypothesis that polyethylene microplastics (MPs) can accumulate in animals, reach the upper trophic level and trigger behavioral changes was tested. Physalaemus cuvieri tadpoles were exposed to MPs (for 7 days) and fed on tambatinga fish for the same period. Subsequently, these fish were given as food to Swiss mice. The MP amount in animals' liver was quantified and results have evidenced its accumulation at all assessed trophic levels [tadpole: 18,201.9 particles/g; fish: 1.26 particles/g; mice receiving tambatingas who had fed on tadpoles exposed to MPs: 57.07 particles/g and mice receiving water added with MPs: 89.12 particles/g). Such accumulation in the last group was associated with shorter traveled distance, slower locomotion speed and higher anxiety index in the open field test. Mice receiving tambatingas who had fed on tadpoles exposed to MPs were confronted to a potential predator and showed responses similar to those of animals who had ingested water added with MPs (lack of defensive social aggregation and reduced risk assessment behavior). Thus, results have preliminarily confirmed the initial hypothesis about how MPs in water can reach terrestrial trophic levels and have negative impact on the survival of these animals.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil.
| |
Collapse
|
13
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
14
|
Abstract
The industry is increasingly relying on fish for toxicity assessment. However, current guidelines for toxicity assessment focus on teratogenicity and mortality. From an ecotoxicological point of view, however, these endpoints may not reflect the “full picture” of possible deleterious effects that can nonetheless result in decreased fitness and/or inability to adapt to a changing environment, affecting whole populations. Therefore, assessing sublethal effects add relevant data covering different aspects of toxicity at different levels of analysis. The impacts of toxicants on neurobehavioral function have the potential to affect many different life-history traits, and are easier to assess in the laboratory than in the wild. We propose that carefully-controlled laboratory experiments on different behavioral domains—including anxiety, aggression, and exploration—can increase our understanding of the ecotoxicological impacts of contaminants, since these domains are related to traits such as defense, sociality, and reproduction, directly impacting life-history traits. The effects of selected contaminants on these tests are reviewed, focusing on larval and adult zebrafish, showing that these behavioral domains are highly sensitive to small concentrations of these substances. These strategies suggest a way forward on ecotoxicological research using fish.
Collapse
|
15
|
Wei P, Zhao F, Zhang X, Ru S. Long-term exposure of zebrafish to bisphenol S impairs stress function of hypothalamic-pituitary-interrenal axis and causes anxiety-like behavioral responses to novelty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137092. [PMID: 32044495 DOI: 10.1016/j.scitotenv.2020.137092] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol S (BPS), a main substitute of bisphenol A, has been reported to induce multiple endocrine disrupting effects on animals, however, whether it can interfere with the corticosteroid-endocrine system still remains unknown. Furthermore, previous studies mainly investigated the influences of environmental pollutants on corticosteroid levels and gene expressions of hypothalamic-pituitary-interrenal/adrenal (HPI/A) axis, while the downstream toxic effects caused thereafter have not yet been fully elucidated. Considering the key role of cortisol, a primary corticosteroid hormone in teleost, in mediating stress adaptation and the highly positive correlation between cortisol level and anxious phenotype in the novel environment, we hypothesized that an imbalanced cortisol homeostasis due to environmental pollutant exposure may further affect the behavioral responses to novelty stress. In the present study, zebrafish, a valuable model in studying human stress physiology and anxiety behavior, were exposed to BPS from embryos to adults (120 days) at environmentally relevant concentrations (1 and 10 μg/L) and 100 μg/L. Results found that long-term exposure to BPS increased whole-body cortisol levels and caused abnormal expressions of HPI axis genes. Moreover, the excessive cortisol levels may be due to the inhibition of cortisol catabolism and excretion, as evidenced by the down-regulated expressions of hydroxysteroid 11-beta dehydrogenase 2 and hydroxysteroid 20-beta dehydrogenase 2 genes. More importantly, as we speculated, excessive cortisol levels may be responsible for the occurrence of anxiety-like behavioral responses indicated by longer latency, fewer time spent in the upper half, and more erratic movements in a 6-min novel tank test. Overall, our study provides basic data for the comprehensive understanding of BPS toxicity, and emphasizes environmental health risks of BPS in inducing anxiety syndrome at environmentally realistic concentrations.
Collapse
Affiliation(s)
- Penghao Wei
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong province, China
| | - Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, Shandong province, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong province, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong province, China.
| |
Collapse
|
16
|
Alfonso S, Blanc M, Joassard L, Keiter SH, Munschy C, Loizeau V, Bégout ML, Cousin X. Examining multi- and transgenerational behavioral and molecular alterations resulting from parental exposure to an environmental PCB and PBDE mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:29-38. [PMID: 30605867 DOI: 10.1016/j.aquatox.2018.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants extensively used during the 20th century and still present in aquatic environments despite their ban. Effects of exposure to these compounds over generations are poorly documented. Therefore, our aims were to characterize behavioral responses and underlying molecular mechanisms in zebrafish exposed to an environmentally relevant mixture of PCBs and PBDEs as well as in four unexposed offspring generations. Zebrafish (F0) were chronically exposed from the first meal onward to a diet spiked with a mixture containing 22 PCB and 7 PBDE congeners in proportions and concentrations reflecting environmental situations (ΣPCBs = 1991 and ΣPBDEs = 411 ng/g). Four offspring generations (F1 to F4) were obtained from this F0 and were not further exposed. Behavior was assessed at both larval and adult stages. Mechanisms related to behavioral defects (habenula maturation and c-fos transcription) and methylation (dnmts transcription) were monitored in larvae. Exposed adult F0 as well as F1 and F3 adults displayed no behavioral change while F2 expressed anxiety-like behavior. Larval behavior was also disrupted, i.e. hyperactive after light to dark transition in F1 or hypoactive in F2, F3 and F4. Behavioral disruptions may be related to defect in habenula maturation (observed in F1) and change in c-fos transcription (observed in F1 and F2). Transcription of the gene encoding DNA methyltransferase (dnmt3ba) was also modified in all generations. Our results lead us to hypothesize that chronic dietary exposure to an environmentally relevant mixture of PCB and PBDE triggers multigenerational and transgenerational molecular and behavioral disruptions in a vertebrate model.
Collapse
Affiliation(s)
- Sébastien Alfonso
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France; UMR MARBEC, Ifremer, IRD, UM2, CNRS, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, F-34250, Palavas-les-Flots, France.
| | - Mélanie Blanc
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France; Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Lucette Joassard
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82, Örebro, Sweden
| | - Catherine Munschy
- Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, Rue de l'Ile d'Yeu, BP 21105, F-44311, Nantes, Cedex 3, France
| | - Véronique Loizeau
- Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, ZI Pointe du Diable, CS 10070, F-29280, Plouzané, France
| | - Marie-Laure Bégout
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, F-17137, L'Houmeau, France
| | - Xavier Cousin
- UMR MARBEC, Ifremer, IRD, UM2, CNRS, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, F-34250, Palavas-les-Flots, France; Inra, UMR GABI, Inra, AgroParisTech, Domaine de Vilvert, Batiment 231, F-78350 Jouy-en-Josas, France
| |
Collapse
|
17
|
Hanano A, Shaban M, Almutlk D, Almousally I. The cytochrome P450 BM-1 of Bacillus megaterium A14K is induced by 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin: Biophysical, molecular and biochemical determinants. CHEMOSPHERE 2019; 216:258-270. [PMID: 30384294 DOI: 10.1016/j.chemosphere.2018.10.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
The current study describes biological changes in Bacillus megaterium A14K cells growing in the presence of 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin (TCDD), the most potent congener of dioxins. The results indicate that the metabolizing of 2,3,7,8-TCDD by BmA14K was accompanied with a novel morphological and biophysical profile typified by the growth of single cells with high levels of biosurfactant production, surface hydrophobicity and cell membrane permeability. Moreover, the TCDD-grown bacteria exhibited a specific fatty acid profile characterized by low ratios of branched/straight chain fatty acids (BCFAs/SCFAs) and saturated/unsaturated fatty acids (SFAs/USFAs) with a specific "signature" due to the presence of branched chain unsaturated fatty acids (BCUFAs). This was synchronized with a significant induction of P450BM-1, an unsaturated fatty acid-metabolizing enzyme in B. megaterium. Subsequently, the profile of oxygenated fatty acids in the TCDD-grown bacteria was typified by the presence of 5,6-epoxy derived from unsaturated C15, C16 and C17 fatty acids, that were absent in control bacteria. A net increase was also detected in both hydroxylated and epoxidized fatty acids, especially those derived from C15:0 and C16:1, respectively, suggesting a specific TCDD-induced "signature" of oxygenated fatty acids in BmA14K. Overall, this study sheds light on the use of B. megaterium A14K as a promising bioindicator/biodegrader of dioxins.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Douaa Almutlk
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| |
Collapse
|
18
|
Sethi S, Keil KP, Lein PJ. 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 2018; 92:3337-3345. [PMID: 30225637 PMCID: PMC6196112 DOI: 10.1007/s00204-018-2307-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
PCB 11 (3,3'-dichlorobiphenyl), a contemporary congener produced as a byproduct of current pigment production processes, has recently emerged as a prevalent worldwide pollutant. We recently demonstrated that exposure to PCB 11 increases dendritic arborization in vitro, but the mechanism(s) mediating this effect remain unknown. To address this data gap, primary cortical neuron-glia co-cultures derived from neonatal Sprague-Dawley rats were exposed for 48 h to either vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM in the absence or presence of pharmacologic antagonists of established molecular targets of higher chlorinated PCBs. Reporter cell lines were used to test activity of PCB 11 at the aryl hydrocarbon receptor (AhR) and thyroid hormone receptor (THR). PCB 11 lacked activity at the AhR and THR, and antagonism of these receptors had no effect on the dendrite-promoting activity of PCB 11. Pharmacologic antagonism of various calcium channels or treatment with antioxidants also did not alter PCB 11-induced dendritic arborization. In contrast, pharmacologic blockade or shRNA knockdown of cAMP response element-binding protein (CREB) significantly decreased dendritic growth in PCB 11-exposed cultures, suggesting PCB 11 promotes dendritic growth via CREB-mediated mechanisms. Since CREB signaling is crucial for normal neurodevelopment, and perturbations of CREB signaling have been associated with neurodevelopmental disorders, our findings suggest that this contemporary pollutant poses a threat to the developing brain, particularly in individuals with heritable mutations that promote CREB signaling.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
19
|
Glazer L, Hawkey AB, Wells CN, Drastal M, Odamah KA, Behl M, Levin ED. Developmental Exposure to Low Concentrations of Organophosphate Flame Retardants Causes Life-Long Behavioral Alterations in Zebrafish. Toxicol Sci 2018; 165:487-498. [PMID: 29982741 PMCID: PMC6154272 DOI: 10.1093/toxsci/kfy173] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the older class of brominated flame retardants (BFRs) are phased out of commercial use because of findings of neurotoxicity with developmental exposure, a newer class of flame retardants have been introduced, the organophosphate flame retardants (OPFRs). Presently, little is known about the potential for developmental neurotoxicity or the behavioral consequences of OPFR exposure. Our aim was to characterize the life-long neurobehavioral effects of 4 widely used OPFRs using the zebrafish model. Zebrafish embryos were exposed to 0.1% DMSO (vehicle control); or one of the following treatments; isopropylated phenyl phosphate (IPP) (0.01, 0.03, 0.1, 0.3 µM); butylphenyl diphenyl phosphate (BPDP) (0.003, 0.03, 0.3, 3 µM); 2-ethylhexyl diphenyl phosphate (EHDP) (0.03, 0.3, 1 µM); isodecyl diphenyl phosphate (IDDP) (0.1, 0.3, 1, 10 µM) from 0- to 5-days postfertilization. On Day 6, the larvae were tested for motility under alternating dark and light conditions. Finally, at 5-7 months of age the exposed fish and controls were tested on a battery of behavioral tests to assess emotional function, sensorimotor response, social interaction and predator evasion. These tests showed chemical-specific short-term effects of altered motility in larvae in all of the tested compounds, and long-term impairment of anxiety-related behavior in adults following IPP, BPDP, or EHDP exposures. Our results show that OPFRs may not be a safe alternative to the phased-out BFRs and may cause behavioral impacts throughout the lifespan. Further research should evaluate the risk to mammalian experimental models and humans.
Collapse
Affiliation(s)
- Lilah Glazer
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| | - Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| | - Corinne N Wells
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| | - Meghan Drastal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| | - Kathryn-Ann Odamah
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| | - Mamta Behl
- Toxicology Branch, National Toxicology Program Division, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, 27709
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
20
|
Hanano A, Almousally I, Shaban M, Murphy DJ. Arabidopsis plants exposed to dioxin result in a WRINKLED seed phenotype due to 20S proteasomal degradation of WRI1. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1781-1794. [PMID: 29394403 DOI: 10.1093/jxb/ery027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dioxins are highly toxic persistent organic pollutants bioaccumulated by both plants and animals that cause severe developmental abnormalities in humans. We investigated the effects of dioxins on seed development in Arabidopsis. Plants were exposed to various concentrations of the most toxic congener of dioxins, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the effects on seed development were analysed in-depth at transcriptome, proteome and metabolome levels. Exposure to dioxin led to generalized effects on vegetative tissues plus a specific set of perturbations to seed development. Mature seeds from TCDD-treated plants had a characteristic 'wrinkled' phenotype, due to a two-thirds reduction in storage oil content. Transcriptional analysis of a panel of genes related to lipid and carbohydrate metabolism was consistent with the observed biochemical phenotypes. There were increases in WRI1 and LEC1 expression but decreases in ABI3 and FUS3 expression, which is puzzling in view of the low seed oil phenotype. This anomaly was explained by increased expression of 20S proteasome components that resulted in a substantial degradation of WRI1 protein, despite the up-regulation of the WRI1 gene. Our findings reveal novel effects of dioxins that lead to altered gene regulation patterns that profoundly affect seed development in Arabidopsis.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Denis J Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, UK
| |
Collapse
|
21
|
Aluru N, Karchner SI, Krick KS, Zhu W, Liu J. Role of DNA methylation in altered gene expression patterns in adult zebrafish ( Danio rerio) exposed to 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB 126). ENVIRONMENTAL EPIGENETICS 2018; 4:dvy005. [PMID: 29686887 PMCID: PMC5905506 DOI: 10.1093/eep/dvy005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/09/2018] [Accepted: 03/08/2018] [Indexed: 05/08/2023]
Abstract
There is growing evidence that environmental toxicants can affect various physiological processes by altering DNA methylation patterns. However, very little is known about the impact of toxicant-induced DNA methylation changes on gene expression patterns. The objective of this study was to determine the genome-wide changes in DNA methylation concomitant with altered gene expression patterns in response to 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) exposure. We used PCB126 as a model environmental chemical because the mechanism of action is well-characterized, involving activation of aryl hydrocarbon receptor, a ligand-activated transcription factor. Adult zebrafish were exposed to 10 nM PCB126 for 24 h (water-borne exposure) and brain and liver tissues were sampled at 7 days post-exposure in order to capture both primary and secondary changes in DNA methylation and gene expression. We used enhanced Reduced Representation Bisulfite Sequencing and RNAseq to quantify DNA methylation and gene expression, respectively. Enhanced reduced representation bisulfite sequencing analysis revealed 573 and 481 differentially methylated regions in the liver and brain, respectively. Most of the differentially methylated regions are located more than 10 kilobases upstream of transcriptional start sites of the nearest neighboring genes. Gene Ontology analysis of these genes showed that they belong to diverse physiological pathways including development, metabolic processes and regeneration. RNAseq results revealed differential expression of genes related to xenobiotic metabolism, oxidative stress and energy metabolism in response to polychlorinated biphenyl exposure. There was very little correlation between differentially methylated regions and differentially expressed genes suggesting that the relationship between methylation and gene expression is dynamic and complex, involving multiple layers of regulation.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Correspondence address. Department of Biology, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543, USA. Tel: 508-289-3607; Fax: 508-457-2134; E-mail:
| | - Sibel I Karchner
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Keegan S Krick
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Wei Zhu
- CAS Key Laboratory of Genomic Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing 100101, China
| | - Jiang Liu
- CAS Key Laboratory of Genomic Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing 100101, China
| |
Collapse
|
22
|
Aluru N, Karchner SI, Glazer L. Early Life Exposure to Low Levels of AHR Agonist PCB126 (3,3',4,4',5-Pentachlorobiphenyl) Reprograms Gene Expression in Adult Brain. Toxicol Sci 2017; 160:386-397. [PMID: 28973690 PMCID: PMC5837202 DOI: 10.1093/toxsci/kfx192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Early life exposure to environmental chemicals can have long-term consequences that are not always apparent until later in life. We recently demonstrated that developmental exposure of zebrafish to low, nonembryotoxic levels of 3,3',4,4',5-pentachlorobiphenyl (PCB126) did not affect larval behavior, but caused changes in adult behavior. The objective of this study was to investigate the underlying molecular basis for adult behavioral phenotypes resulting from early life exposure to PCB126. We exposed zebrafish embryos to PCB126 during early development and measured transcriptional profiles in whole embryos, larvae and adult male brains using RNA-sequencing. Early life exposure to 0.3 nM PCB126 induced cyp1a transcript levels in 2-dpf embryos, but not in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor with this treatment. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, a total of 2209 and 1628 genes were differentially expressed in 0.3 and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analyses of upregulated genes in the brain suggest enrichment of calcium signaling, MAPK and notch signaling, and lysine degradation pathways. Calcium is an important signaling molecule in the brain and altered calcium homeostasis could affect neurobehavior. The downregulated genes in the brain were enriched with oxidative phosphorylation and various metabolic pathways, suggesting that the metabolic capacity of the brain is impaired. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns, which may result in alterations in adult behavior.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| | - Lilah Glazer
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543
| |
Collapse
|
23
|
Abstract
Zebrafish have been extensively used for studying vertebrate development and modeling human diseases such as cancer. In the last two decades, they have also emerged as an important model for developmental toxicology research and, more recently, for studying the developmental origins of health and disease (DOHaD). It is widely recognized that epigenetic mechanisms mediate the persistent effects of exposure to chemicals during sensitive windows of development. There is considerable interest in understanding the epigenetic mechanisms associated with DOHaD using zebrafish as a model system. This review summarizes our current knowledge on the effects of environmental chemicals on DNA methylation, histone modifications and noncoding RNAs in the context of DOHaD, and suggest some key considerations in designing experiments for characterizating the mechanisms of action.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
24
|
Vignet C, Trenkel VM, Vouillarmet A, Bricca G, Bégout ML, Cousin X. Changes in Brain Monoamines Underlie Behavioural Disruptions after Zebrafish Diet Exposure to Polycyclic Aromatic Hydrocarbons Environmental Mixtures. Int J Mol Sci 2017; 18:ijms18030560. [PMID: 28273853 PMCID: PMC5372576 DOI: 10.3390/ijms18030560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 01/03/2023] Open
Abstract
Zebrafish were exposed through diet to two environmentally relevant polycyclic aromatic hydrocarbons (PAHs) mixtures of contrasted compositions, one of pyrolytic (PY) origin and one from light crude oil (LO). Monoamine concentrations were quantified in the brains of the fish after six month of exposure. A significant decrease in noradrenaline (NA) was observed in fish exposed to both mixtures, while a decrease in serotonin (5HT) and dopamine (DA) was observed only in LO-exposed fish. A decrease in metabolites of 5HT and DA was observed in fish exposed to both mixtures. Several behavioural disruptions were observed that depended on mixtures, and parallels were made with changes in monoamine concentrations. Indeed, we observed an increase in anxiety in fish exposed to both mixtures, which could be related to the decrease in 5HT and/or NA, while disruptions of daily activity rhythms were observed in LO fish, which could be related to the decrease in DA. Taken together, these results showed that (i) chronic exposures to PAHs mixtures disrupted brain monoamine contents, which could underlie behavioural disruptions, and that (ii) the biological responses depended on mixture compositions.
Collapse
Affiliation(s)
- Caroline Vignet
- Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, 17137 L’Houmeau, France; (C.V.); (M.-L.B.)
| | - Verena M. Trenkel
- Unité Écologie et Modèles pour l’Halieutique, Ifremer, B.P. 21105, 44311 Nantes CEDEX 03, France;
| | - Annick Vouillarmet
- Génomique Fonctionnelle de l'Hypertension Artérielle, EA 4173, University Lyon 1, 8 Avenue Rockefeller, 69373 Lyon CEDEX 08, France;
| | - Giampiero Bricca
- Génomique Fonctionnelle de l'Hypertension Artérielle, EA 4173, University Lyon 1, 8 Avenue Rockefeller, 69373 Lyon CEDEX 08, France;
| | - Marie-Laure Bégout
- Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, 17137 L’Houmeau, France; (C.V.); (M.-L.B.)
| | - Xavier Cousin
- Laboratoire Ressources Halieutiques, Ifremer, Place Gaby Coll, 17137 L’Houmeau, France; (C.V.); (M.-L.B.)
- Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, UMR MARBEC, Ifremer, Route de Maguelone, 34250 Palavas, France
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- Correspondence: ; Tel.: +33-5-46-50-06-21
| |
Collapse
|
25
|
Ruiter S, Sippel J, Bouwmeester MC, Lommelaars T, Beekhof P, Hodemaekers HM, Bakker F, van den Brandhof EJ, Pennings JLA, van der Ven LTM. Programmed Effects in Neurobehavior and Antioxidative Physiology in Zebrafish Embryonically Exposed to Cadmium: Observations and Hypothesized Adverse Outcome Pathway Framework. Int J Mol Sci 2016; 17:ijms17111830. [PMID: 27827847 PMCID: PMC5133831 DOI: 10.3390/ijms17111830] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 02/02/2023] Open
Abstract
Non-communicable diseases (NCDs) are a major cause of premature mortality. Recent studies show that predispositions for NCDs may arise from early-life exposure to low concentrations of environmental contaminants. This developmental origins of health and disease (DOHaD) paradigm suggests that programming of an embryo can be disrupted, changing the homeostatic set point of biological functions. Epigenetic alterations are a possible underlying mechanism. Here, we investigated the DOHaD paradigm by exposing zebrafish to subtoxic concentrations of the ubiquitous contaminant cadmium during embryogenesis, followed by growth under normal conditions. Prolonged behavioral responses to physical stress and altered antioxidative physiology were observed approximately ten weeks after termination of embryonal exposure, at concentrations that were 50–3200-fold below the direct embryotoxic concentration, and interpreted as altered developmental programming. Literature was explored for possible mechanistic pathways that link embryonic subtoxic cadmium to the observed apical phenotypes, more specifically, the probability of molecular mechanisms induced by cadmium exposure leading to altered DNA methylation and subsequently to the observed apical phenotypes. This was done using the adverse outcome pathway model framework, and assessing key event relationship plausibility by tailored Bradford-Hill analysis. Thus, cadmium interaction with thiols appeared to be the major contributor to late-life effects. Cadmium-thiol interactions may lead to depletion of the methyl donor S-adenosyl-methionine, resulting in methylome alterations, and may, additionally, result in oxidative stress, which may lead to DNA oxidation, and subsequently altered DNA methyltransferase activity. In this way, DNA methylation may be affected at a critical developmental stage, causing the observed apical phenotypes.
Collapse
Affiliation(s)
- Sander Ruiter
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Josefine Sippel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Manon C. Bouwmeester
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Tobias Lommelaars
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Piet Beekhof
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Hennie M. Hodemaekers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Frank Bakker
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Evert-Jan van den Brandhof
- Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands;
| | - Jeroen L. A. Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Leo T. M. van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
- Correspondence: ; Tel.: +31-30-2742681
| |
Collapse
|
26
|
Zhang J, Zhang C, Sun P, Shao X. Tributyltin affects shoaling and anxiety behavior in female rare minnow (Gobiocypris rarus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:80-87. [PMID: 27472783 DOI: 10.1016/j.aquatox.2016.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Effects of tributyltin (TBT) on reproduction are well established in many fish species. However, few studies report the effects of TBT on non-reproductive behaviors, which is a novel aspect of endocrine disruption in fish. Thus, the present study used rare minnow (Gobiocypris rarus) to investigate the effects of TBT, at environmental concentrations of 1, 10 and 100ng/L, on shoaling and anxiety behaviors. The results showed that fish exposed to TBT had less group cohesion during the course of the 10-min observation period as compared with the control fish. Further, TBT altered the shoaling in the Novel tank test, where shoaling is determined as the tendency to leave a shoal of littermates trapped behind a Plexiglas barrier at one end of the test tank. Fish exposed to TBT had shorter latency before leaving shoal mates and spent more time away from shoal than control fish. In addition, we also used Novel tanks to study the anxiety behavior as the tendency to stay at the bottom when introduced into an unfamiliar environment. The fish exposed to TBT showed increased anxiety, manifested as increased latency to enter the upper half and decreased time in upper half when compared with the control fish. TBT exposure increased the levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid, and decreased the levels of 5-hydroxytryptamine and its metabolite 5-hydroxy indole acetic acid in the brain. Thus, the hypofunction of the dopaminergic system or of the serotoninergic system or the combination of the two may underlie the observed behavioral change, which might affect the fitness of fish in their natural environment.
Collapse
Affiliation(s)
- Jiliang Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China.
| | - Chunnuan Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Ping Sun
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Xian Shao
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| |
Collapse
|