1
|
Jing R, Mu L, Wang C, Liu L, Wang Y, Wang Y, Li X, Yin H, Hu Y. KaiXinSan improves learning and memory impairment by regulating cholesterol homeostasis in mice overloaded with 27-OHC. J Steroid Biochem Mol Biol 2025; 245:106622. [PMID: 39326716 DOI: 10.1016/j.jsbmb.2024.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Cholesterol and its oxidative products-oxysterols homeostasis- play a crucial role in maintaining cognitive function. Chinese medicine KaiXinSan (KXS) has demonstrated effectiveness in treating mental illness and regulating cognitive dysfunction of Alzheimer's disease (AD). The purpose of this article is to explore whether the KXS can enhance cognitive function by regulating cholesterol homeostasis. Employing the 27-hydroxy cholesterol (27-OHC) induced mice model of cognitive dysfunction and coculture model of assessment neurocyte damage, we investigated learning and memory abilities while concurrently addressing the reduction of neuronal cell damage through the regulation of cholesterol metabolism. 21 days of KXS treatment improved the learning and memory ability in mice 27-OHC-overloading by alleviating the exacerbated deposition of amyloid-β (Aβ), reducing inflammatory reactions, and mitigating synaptic plasticity damage. Additionally, it repaired myelin sheath function. More importantly, KXS significantly affects the metabolism of central cholesterol by substantially inhibiting the expression of liver X receptor (LXR), ATP-binding cassette transporter (ABCA1, ABCG1), apolipoprotein E (ApoE) and upregulated cytochrome P450 46A1(CYP46A1). Furthermore, KXS may alleviate 27-OHC-induced neuronal inflammation and apoptosis by promoting the conversion of cholesterol to 24-hydroxycholesterol (24-OHC) via CYP46A1 and suppressing cholesterol release from astrocyte cells. Altogether, our results demonstrate that KXS can prevent learning and memory impairments induced by 27-OHC loading. This effect may be related to its multitarget capability in promoting the conversion of excessive cholesterol to 24-OHC and maintaining a balance in cholesterol homeostasis and metabolism between neurons and astrocyte cells.
Collapse
Affiliation(s)
- Rui Jing
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lihua Mu
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Chaochen Wang
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China; Graduate School of PLA General Hospital, Beijing 100853, China
| | - Lijun Liu
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanbo Wang
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China; Graduate School of PLA General Hospital, Beijing 100853, China
| | - Yuanbo Wang
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xia Li
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong Yin
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Kim J, Spears I, Erice C, Kim HYH, Porter NA, Tressler C, Tucker EW. Spatially heterogeneous lipid dysregulation in tuberculous meningitis. Neurobiol Dis 2024; 202:106721. [PMID: 39489454 DOI: 10.1016/j.nbd.2024.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Tuberculous (TB) meningitis is the deadliest form of extrapulmonary TB which disproportionately affects children and immunocompromised individuals. Studies in pulmonary TB have shown that Mycobacterium tuberculosis can alter host lipid metabolism to evade the immune system. Cholesterol lowering drugs (i.e., statins) reduce the risk of infection, making them a promising host-directed therapy in pulmonary TB. However, the effect of M. tuberculosis infection on the young or adult brain lipidome has not been studied. The brain is the second-most lipid-rich organ, after adipose tissue, with a temporally and spatially heterogeneous lipidome that changes from infancy to adulthood. The young, developing brain in children may be uniquely vulnerable to alterations in lipid composition and homeostasis, as perturbations in cholesterol metabolism can cause developmental disorders leading to intellectual disabilities. To begin to understand the alterations to the brain lipidome in pediatric TB meningitis, we utilized our previously published young rabbit model of TB meningitis and applied mass spectrometry (MS) techniques to elucidate spatial differences. We used matrix assisted laser desorption/ionization-MS imaging (MALDI-MSI) and complemented it with region-specific liquid chromatography (LC)-MS/MS developed to identify and quantify sterols and oxysterols difficult to identify by MALDI-MSI. MALDI-MSI revealed several sphingolipids, glycerolipids and glycerophospholipids that were downregulated in brain lesions. LC-MS/MS revealed the downregulation of cholesterol, several sterol intermediates along the cholesterol biosynthesis pathway and enzymatically produced oxysterols as a direct result of M. tuberculosis infection. However, oxysterols produced by oxidative stress were increased in brain lesions. Together, these results demonstrate significant spatially regulated brain lipidome dysregulation in pediatric TB meningitis.
Collapse
Affiliation(s)
- John Kim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ian Spears
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Clara Erice
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hye-Young H Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Caitlin Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer, Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Elizabeth W Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
3
|
Ksila M, Ghzaiel I, Sassi K, Zarrouk A, Leoni V, Poli G, Rezig L, Pires V, Meziane S, Atanasov AG, Hammami S, Hammami M, Masmoudi-Kouki O, Hamdi O, Jouanny P, Samadi M, Vejux A, Ghrairi T, Lizard G. Therapeutic Applications of Oxysterols and Derivatives in Age-Related Diseases, Infectious and Inflammatory Diseases, and Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:379-400. [PMID: 38036890 DOI: 10.1007/978-3-031-43883-7_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols, resulting from the oxidation of cholesterol, are formed either by autoxidation, enzymatically, or by both processes. These molecules, which are provided in more or less important quantities depending on the type of diet, are also formed in the body and their presence is associated with a normal physiological activity. Their increase and decrease at the cellular level and in biological fluids can have significant consequences on health due or not to the interaction of some of these molecules with different types of receptors but also because oxysterols are involved in the regulation of RedOx balance, cytokinic and non-cytokinic inflammation, lipid metabolism, and induction of cell death. Currently, various pathologies such as age-related diseases, inflammatory and infectious diseases, and several cancers are associated with abnormal levels of oxysterols. Due to the important biological activities of oxysterols, their interaction with several receptors and their very likely implications in several diseases, this review focuses on these molecules and on oxysterol derivatives, which are often more efficient, in a therapeutic context. Currently, several oxysterol derivatives are developed and are attracting a lot of interest.
Collapse
Affiliation(s)
- Mohamed Ksila
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Khouloud Sassi
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Amira Zarrouk
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- Faculty of Medicine, University of Sousse, Laboratory of Biochemistry, Sousse, Tunisia
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Desio, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia
- University of Carthage, High Institute of Food Industries, El Khadra City, Tunis, Tunisia
| | - Vivien Pires
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Smail Meziane
- Institut Européen des Antioxydants (IEA), Neuves-Maisons, France
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Sonia Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Mohamed Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Oumaima Hamdi
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Pierre Jouanny
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, Metz, France
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France.
| |
Collapse
|
4
|
Shen S, Shen M, Kuang L, Yang K, Wu S, Liu X, Wang Y, Wang Y. SIRT1/SREBPs-mediated regulation of lipid metabolism. Pharmacol Res 2024; 199:107037. [PMID: 38070792 DOI: 10.1016/j.phrs.2023.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Sirtuins, also called silent information regulator 2, are enzymes that rely on nicotinamide adenine dinucleotide (NAD+) to function as histone deacetylases. Further investigation is warranted to explore the advantageous impacts of Sirtuin 1 (SIRT1), a constituent of the sirtuin group, on lipid metabolism, in addition to its well-researched involvement in extending lifespan. The regulation of gene expression has been extensively linked to SIRT1. Sterol regulatory element-binding protein (SREBP) is a substrate of SIRT1 that has attracted significant interest due to its role in multiple cellular processes including cell cycle regulation, DNA damage repair, and metabolic functions. Hence, the objective of this analysis was to investigate and elucidate the correlation between SIRT1 and SREBPs, as well as assess the contribution of SIRT1/SREBPs in mitigating lipid metabolism dysfunction. The objective of this research was to investigate whether SIRT1 and SREBPs could be utilized as viable targets for therapeutic intervention in managing complications associated with diabetes.
Collapse
Affiliation(s)
- Shan Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Mingyang Shen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lirun Kuang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Keyu Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shiran Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xinde Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yuting Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
5
|
Panada J, Klopava V, Kulahava T, Koran S, Faletrov Y, Frolova N, Fomina E, Shkumatov V. Differential induction of C6 glioma apoptosis and autophagy by 3β-hydroxysteroid-indolamine conjugates. Steroids 2023; 200:109326. [PMID: 37827441 DOI: 10.1016/j.steroids.2023.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In a previous work, we reported the synthesis of four novel indole steroids and their effect on rat C6 glioma proliferation in vitro. The steroid derived from dehydroepiandrosterone and tryptamine (IS-1) was the most active (52 % inhibition at 10 µM), followed by one of the epimers derived from pregnenolone and tryptamine (IS-3, 36 % inhibition at 10 µM). By contrast, the steroid derived from estrone and tryptamine (IS-2) showed negligible activity at 10 µM. No necrosis, increase in intracellular calcium or ROS levels was observed. In this work, the effect of compounds on C6 glioma apoptosis and autophagy is examined by fluorimetry and fluorescent microscopy. The IS-3 epimers disrupt the mitochondrial membrane potential and induce apoptosis in vitro moderately whereas IS-1 and IS-2 do not. However, IS-1 produces a large increase in monodansylcadaverine-positive autophagic vesicles over 24 h. The antiproliferative effect of indole steroids is ameliorated by autophagy inhibitor hydroxychloroquine, suggesting an autophagy-dependent mechanism of cell death.
Collapse
Affiliation(s)
- Jan Panada
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Valeriya Klopava
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Tatsiana Kulahava
- Institute for Nuclear Problems of the Belarusian State University, 220006, 11 Babrujskaja str., Minsk, Belarus
| | - Siarhei Koran
- Republican Research and Practical Center for Epidemiology and Microbiology, 220114, 23 Filimonava str., Minsk, Belarus
| | - Yaroslav Faletrov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus; Department of Chemistry, Belarusian State University, 220050, 4 Independence ave., Minsk, Belarus
| | - Nina Frolova
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Elena Fomina
- Republican Research and Practical Center for Epidemiology and Microbiology, 220114, 23 Filimonava str., Minsk, Belarus
| | - Vladimir Shkumatov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus; Department of Chemistry, Belarusian State University, 220050, 4 Independence ave., Minsk, Belarus.
| |
Collapse
|
6
|
Hjazi A, Ahsan M, Alghamdi MI, Kareem AK, Al-Saidi DN, Qasim MT, Romero-Parra RM, Zabibah RS, Ramírez-Coronel AA, Mustafa YF, Hosseini-Fard SR, Karampoor S, Mirzaei R. Unraveling the impact of 27-hydroxycholesterol in autoimmune diseases: Exploring promising therapeutic approaches. Pathol Res Pract 2023; 248:154737. [PMID: 37542860 DOI: 10.1016/j.prp.2023.154737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The role of 27-hydroxycholesterol (27-OHC) in autoimmune diseases has become a subject of intense research in recent years. This oxysterol, derived from cholesterol, has been identified as a significant player in modulating immune responses and inflammation. Its involvement in autoimmune pathogenesis has drawn attention to its potential as a therapeutic target for managing autoimmune disorders effectively. 27-OHC, an oxysterol derived from cholesterol, has emerged as a key player in modulating immune responses and inflammatory processes. It exerts its effects through various mechanisms, including activation of nuclear receptors, interaction with immune cells, and modulation of neuroinflammation. Additionally, 27-OHC has been implicated in the dysregulation of lipid metabolism, neurotoxicity, and blood-brain barrier (BBB) disruption. Understanding the intricate interplay between 27-OHC and autoimmune diseases, particularly neurodegenerative disorders, holds promise for developing targeted therapeutic strategies. Additionally, emerging evidence suggests that 27-OHC may interact with specific receptors and transcription factors, thus influencing gene expression and cellular processes in autoimmune disorders. Understanding the intricate mechanisms by which 27-OHC influences immune dysregulation and tissue damage in autoimmune diseases is crucial for developing targeted therapeutic interventions. Further investigations into the molecular pathways and signaling networks involving 27-OHC are warranted to unravel its full potential as a therapeutic target in autoimmune diseases, thereby offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Maria Ahsan
- King Edward Medical University Lahore, Pakistan
| | - Mohammed I Alghamdi
- Department of Computer Science, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia
| | - A K Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Dahlia N Al-Saidi
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Research group in educational statistics, National University of Education, Azogues, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
27-Hydroxycholesterol-Induced Dysregulation of Cholesterol Metabolism Impairs Learning and Memory Ability in ApoE ε4 Transgenic Mice. Int J Mol Sci 2022; 23:ijms231911639. [PMID: 36232940 PMCID: PMC9569856 DOI: 10.3390/ijms231911639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulated brain cholesterol metabolism is one of the characteristics of Alzheimer’s disease (AD). 27-Hydroxycholesterol (27-OHC) is a cholesterol metabolite that plays an essential role in regulating cholesterol metabolism and it is suggested that it contributes to AD-related cognitive deficits. However, the link between 27-OHC and cholesterol homeostasis, and how this relationship relates to AD pathogenesis, remain elusive. Here, 12-month-old ApoE ε4 transgenic mice were injected with saline, 27-OHC, 27-OHC synthetase inhibitor (anastrozole, ANS), and 27-OHC+ANS for 21 consecutive days. C57BL/6J mice injected with saline were used as wild-type controls. The indicators of cholesterol metabolism, synaptic structure, amyloid β 1-42 (Aβ1-42), and learning and memory abilities were measured. Compared with the wild-type mice, ApoE ε4 mice had poor memory and dysregulated cholesterol metabolism. Additionally, damaged brain tissue and synaptic structure, cognitive decline, and higher Aβ1-42 levels were observed in the 27-OHC group. Moreover, cholesterol transport proteins such as ATP-binding cassette transporter A1 (ABCA1), apolipoprotein E (ApoE), low-density lipoprotein receptor (LDLR), and low-density lipoprotein receptor-related protein1 (LRP1) were up-regulated in the cortex after the 27-OHC treatment. The levels of cholesterol metabolism-related indicators in the hippocampus were not consistent with those in the cortex. Additionally, higher serum apolipoprotein A1 (ApoA1) levels and lower serum ApoE levels were observed in the 27-OHC group. Notably, ANS partially reversed the effects of 27-OHC. In conclusion, the altered cholesterol metabolism induced by 27-OHC was involved in Aβ1-42 deposition and abnormalities in both the brain tissue and synaptic structure, ultimately leading to memory loss in the ApoE ε4 transgenic mice.
Collapse
|
8
|
Abdalkareem Jasim S, Kzar HH, Haider Hamad M, Ahmad I, Al-Gazally ME, Ziyadullaev S, Sivaraman R, Abed Jawad M, Thaeer Hammid A, Oudaha KH, Karampoor S, Mirzaei R. The emerging role of 27-hydroxycholesterol in cancer development and progression: An update. Int Immunopharmacol 2022; 110:109074. [PMID: 35978522 DOI: 10.1016/j.intimp.2022.109074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
Abstract
Oxysterols are cholesterol metabolites generated in the liver and other peripheral tissues as a mechanism of removing excess cholesterol. Oxysterols have a wide range of biological functions, including the regulation of sphingolipid metabolism, platelet aggregation, and apoptosis. However, it has been found that metabolites derived from cholesterol play essential functions in cancer development and immunological suppression. In this regard, research indicates that 27-hydroxycholesterol (27-HC) might act as an estrogen, promoting the growth of estrogen receptor (ER) positive breast cancer cells. The capacity of cholesterol to dynamically modulate signaling molecules inside the membrane and particular metabolites serving as signaling molecules are two possible contributory processes. 27-HC is a significant metabolite produced mainly through the CYP27A1 (Cytochrome P450 27A1) enzyme. 27-HC maintains cholesterol balance biologically by promoting cholesterol efflux via the liver X receptor (LXR) and suppressing de novo cholesterol production through the Insulin-induced Genes (INSIGs). It has been demonstrated that 27-HC is able to function as a selective ER regulator. Moreover, enhanced 27-HC production is in favor of the growth of end-stage malignancies in the brain, thyroid organs, and colon, as shown in breast cancer, probably due to pro-survival and pro-inflammatory signaling induced by unbalanced levels of oxysterols. However, the actual role of 27-HC in cancer promotion and progression remains debatable, and many studies are warranted to be performed to unravel the precise function of these molecules. This review article will summarize the latest evidence on the deleterious or beneficial functions of 27-HC in various types of cancer, such as breast cancer, prostate cancer, colon cancer, gastric cancer, ovarian cancer, endometrial cancer, lung cancer, melanoma, glioblastoma, thyroid cancer, adrenocortical cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Hamzah H Kzar
- Veterinary medicine college, Al-Qasim green University, Al-Qasim, Iraq
| | - Mohammed Haider Hamad
- Medical Laboratory Techniques Department, Al Mustaqbal University college, Babylon, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Shukhrat Ziyadullaev
- Professor, Doctor of Medical Sciences, No.1 Department of Internal Diseases, Vice-rector for Scientific Affairs and Innovations, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - R Sivaraman
- Department of Mathematics, Institution of Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, University of Madras, Chennai, India
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University Thi-Qar, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
El Khayari A, Bouchmaa N, Taib B, Wei Z, Zeng A, El Fatimy R. Metabolic Rewiring in Glioblastoma Cancer: EGFR, IDH and Beyond. Front Oncol 2022; 12:901951. [PMID: 35912242 PMCID: PMC9329787 DOI: 10.3389/fonc.2022.901951] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), a highly invasive and incurable tumor, is the humans’ foremost, commonest, and deadliest brain cancer. As in other cancers, distinct combinations of genetic alterations (GA) in GBM induce a diversity of metabolic phenotypes resulting in enhanced malignancy and altered sensitivity to current therapies. Furthermore, GA as a hallmark of cancer, dysregulated cell metabolism in GBM has been recently linked to the acquired GA. Indeed, Numerous point mutations and copy number variations have been shown to drive glioma cells’ metabolic state, affecting tumor growth and patient outcomes. Among the most common, IDH mutations, EGFR amplification, mutation, PTEN loss, and MGMT promoter mutation have emerged as key patterns associated with upregulated glycolysis and OXPHOS glutamine addiction and altered lipid metabolism in GBM. Therefore, current Advances in cancer genetic and metabolic profiling have yielded mechanistic insights into the metabolism rewiring of GBM and provided potential avenues for improved therapeutic modalities. Accordingly, actionable metabolic dependencies are currently used to design new treatments for patients with glioblastoma. Herein, we capture the current knowledge of genetic alterations in GBM, provide a detailed understanding of the alterations in metabolic pathways, and discuss their relevance in GBM therapy.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| | - Bouchra Taib
- Institute of Sport Professions (IMS), Ibn Tofail University, Avenida de l’Université, Kenitra, Morocco
- Research Unit on Metabolism, Physiology and Nutrition, Department of Biology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ailiang Zeng
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- *Correspondence: Rachid El Fatimy,
| |
Collapse
|
10
|
Deng X, Milligan K, Ali-Adeeb R, Shreeves P, Brolo A, Lum JJ, Andrews JL, Jirasek A. Group and Basis Restricted Non-Negative Matrix Factorization and Random Forest for Molecular Histotype Classification and Raman Biomarker Monitoring in Breast Cancer. APPLIED SPECTROSCOPY 2022; 76:462-474. [PMID: 34355582 PMCID: PMC9003771 DOI: 10.1177/00037028211035398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 05/10/2023]
Abstract
Raman spectroscopy is a non-invasive optical technique that can be used to investigate biochemical information embedded in cells and tissues exposed to ionizing radiation used in cancer therapy. Raman spectroscopy could potentially be incorporated in personalized radiation treatment design as a tool to monitor radiation response in at the metabolic level. However, tracking biochemical dynamics remains challenging for Raman spectroscopy. Here we developed a novel analytical framework by combining group and basis restricted non-negative matrix factorization and random forest (GBR-NMF-RF). This framework can monitor radiation response profiles in different molecular histotypes and biochemical dynamics in irradiated breast cancer cells. Five subtypes of; human breast cancer (MCF-7, BT-474, MDA-MB-230, and SK-BR-3) and normal cells derived from human breast tissue (MCF10A) which had been exposed to ionizing radiation were tested in this framework. Reference Raman spectra of 20 biochemicals were collected and used as the constrained Raman biomarkers in the GBR-NMF-RF framework. We obtained scores for individual biochemicals corresponding to the contribution of each Raman reference spectrum to each spectrum obtained from the five cell types. A random forest classifier was then fitted to the chemical scores for performing molecular histotype classifications (HER2, PR, ER, Ki67, and cancer versus non-cancer) and assessing the importance of the Raman biochemical basis spectra for each classification test. Overall, the GBR-NMF-RF framework yields classification results with high accuracy (>97%), high sensitivity (>97%), and high specificity (>97%). Variable importance calculated in the random forest model indicated high contributions from glycogen and lipids (cholesterol, phosphatidylserine, and stearic acid) in molecular histotype classifications.
Collapse
Affiliation(s)
- Xinchen Deng
- Department of Physics, The University of British Columbia Kelowna, Canada
| | - Kirsty Milligan
- Department of Physics, The University of British Columbia Kelowna, Canada
| | - Ramie Ali-Adeeb
- Department of Physics, The University of British Columbia Kelowna, Canada
| | - Phillip Shreeves
- Department of Statistics, The University of British Columbia, Kelowna, Canada
| | - Alexandre Brolo
- Department of Chemistry, University of Victoria, Victoria, Canada
| | - Julian J. Lum
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, Canada
| | - Jeffrey L. Andrews
- Department of Statistics, The University of British Columbia, Kelowna, Canada
| | - Andrew Jirasek
- Department of Physics, The University of British Columbia Kelowna, Canada
| |
Collapse
|
11
|
Staurenghi E, Giannelli S, Testa G, Sottero B, Leonarduzzi G, Gamba P. Cholesterol Dysmetabolism in Alzheimer's Disease: A Starring Role for Astrocytes? Antioxidants (Basel) 2021; 10:antiox10121890. [PMID: 34943002 PMCID: PMC8750262 DOI: 10.3390/antiox10121890] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023] Open
Abstract
In recent decades, the impairment of cholesterol metabolism in the pathogenesis of Alzheimer’s disease (AD) has been intensively investigated, and it has been recognized to affect amyloid β (Aβ) production and clearance, tau phosphorylation, neuroinflammation and degeneration. In particular, the key role of cholesterol oxidation products, named oxysterols, has emerged. Brain cholesterol metabolism is independent from that of peripheral tissues and it must be preserved in order to guarantee cerebral functions. Among the cells that help maintain brain cholesterol homeostasis, astrocytes play a starring role since they deliver de novo synthesized cholesterol to neurons. In addition, other physiological roles of astrocytes are to modulate synaptic transmission and plasticity and support neurons providing energy. In the AD brain, astrocytes undergo significant morphological and functional changes that contribute to AD onset and development. However, the extent of this contribution and the role played by oxysterols are still unclear. Here we review the current understanding of the physiological role exerted by astrocytes in the brain and their contribution to AD pathogenesis. In particular, we focus on the impact of cholesterol dysmetabolism on astrocyte functions suggesting new potential approaches to develop therapeutic strategies aimed at counteracting AD development.
Collapse
|
12
|
Kim BY, Son Y, Cho HR, Lee D, Eo SK, Kim K. Miconazole Suppresses 27-Hydroxycholesterol-induced Inflammation by Regulating Activation of Monocytic Cells to a Proinflammatory Phenotype. Front Pharmacol 2021; 12:691019. [PMID: 34744703 PMCID: PMC8570190 DOI: 10.3389/fphar.2021.691019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Miconazole is effective in treating inflammatory skin conditions and has well-established antifungal effects. To elucidate the underlying mechanisms mediating its additional beneficial effects, we assessed whether miconazole influences the inflammation induced by 27-hydroxycholesterol (27OHChol), an oxygenated cholesterol derivative with high proinflammatory activity, using THP-1 monocytic cells. Miconazole dose-dependently inhibited the expression of proinflammatory markers, including CCL2 and CCR5 ligands such as CCL3 and CCL4, and impaired the migration of monocytic cells and CCR5-positive T cells. In the presence of 27OHChol, miconazole decreased CD14 surface levels and considerably weakened the lipopolysaccharide response. Furthermore, miconazole blocked the release of soluble CD14 and impaired the transcription of the matrix metalloproteinase-9 gene and secretion of its active gene product. Additionally, it downregulated the expression of ORP3 and restored the endocytic function of THP-1 cells. Collectively, these findings indicate that miconazole regulates the 27OHChol-induced expression of proinflammatory molecules in monocytic cells, thereby suppressing inflammation in an oxysterol-rich milieu.
Collapse
Affiliation(s)
- Bo-Young Kim
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Korea
| | - Yonghae Son
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Korea
| | - Hyok-Rae Cho
- Department of Neurosurgery, College of Medicine, Kosin University, Busan, Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University-School of Medicine, Yangsan, Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University-School of Medicine, Yangsan, Korea
| |
Collapse
|
13
|
Huang Y, Tocmo R, Nauman MC, Haughan MA, Johnson JJ. Defining the Cholesterol Lowering Mechanism of Bergamot ( Citrus bergamia) Extract in HepG2 and Caco-2 Cells. Nutrients 2021; 13:nu13093156. [PMID: 34579033 PMCID: PMC8469228 DOI: 10.3390/nu13093156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Bergamot, a Mediterranean citrus fruit native to southern Italy, has been reported to have cholesterol-lowering properties; however, the mechanism of action is not well understood. Due to structural similarities with 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitors, it has been proposed that the phenolic compounds in bergamot may also inhibit HMGCR. Statins are widely used for their cholesterol-lowering properties; however, they are not universally well tolerated, suggesting there is a need to identify novel cholesterol-lowering strategies. In the present study, we investigated bergamot fruit extract (BFE) and its principal components (neoeriocitrin, naringin, neohesperidin, melitidin, and brutieridin) for their ability to regulate cholesterol levels in HepG2 and Caco-2 cells. BFE at increasing concentrations decreased the levels of total and free cholesterol in HepG2 cells. BFE and its constituents did not directly inhibit HMGCR activity. However, BFE and neohesperidin decreased HMGCR levels in HepG2 cells, suggesting that neohesperidin and BFE may downregulate HMGCR expression. An increase in AMP-kinase phosphorylation was observed in BFE and neohesperidin-treated cells. In Caco-2 cells, brutieridin exhibited a significant reduction in cholesterol uptake and decreased the level of Niemann-Pick C1 Like 1, an important cholesterol transporter. Taken together, our data suggest that the cholesterol-lowering activity of bergamot is distinct from statins. We hypothesize that BFE and its principal constituents lower cholesterol by inhibiting cholesterol synthesis and absorption.
Collapse
Affiliation(s)
- Yunying Huang
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.H.); (R.T.); (M.C.N.); (M.A.H.)
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Restituto Tocmo
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.H.); (R.T.); (M.C.N.); (M.A.H.)
| | - Mirielle C. Nauman
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.H.); (R.T.); (M.C.N.); (M.A.H.)
| | - Monica A. Haughan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.H.); (R.T.); (M.C.N.); (M.A.H.)
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jeremy J. Johnson
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.H.); (R.T.); (M.C.N.); (M.A.H.)
- Correspondence: ; Tel.: +1-312-996-4368
| |
Collapse
|
14
|
Eskandari M, Mellati AA. Liver X Receptor as a Possible Drug Target for Blood-Brain Barrier Integrity. Adv Pharm Bull 2021; 12:466-475. [PMID: 35935038 PMCID: PMC9348539 DOI: 10.34172/apb.2022.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: blood-brain barrier (BBB) is made of specialized cells that are responsible for the selective passage of substances directed to the brain. The integrated BBB is essential for precise controlling of the different substances passage as well as protecting the brain from various damages. In this article, we attempted to explain the role of liver X receptor (LXR) in maintaining BBB integrity as a possible drug target.
Methods: In this study, various databases, including PubMed, Google Scholar, and Scopus were searched using the following keywords: blood-brain barrier, BBB, liver X receptor, and LXR until July, 2020. Additionally, contents close to the subject of our study were surveyed.
Results: LXR is a receptor the roles of which in various diseases have been investigated. LXR can affect maintaining BBB by affecting various ways such as ATP-binding cassette transporter A1 (ABCA1), matrix metalloproteinase-9 (MMP9), insulin-like growth factor 1 (IGF1), nuclear factor-kappa B (NF-κB) signaling, mitogen-activated protein kinase (MAPK), tight junction molecules, both signal transducer and activator of transcription 1 (STAT1), Wnt/β-catenin Signaling, transforming growth factor beta (TGF-β) signaling, and expressions of Smad 2/3 and Snail.
Conclusion: LXR could possibly be used either as a target for drug delivery to brain tissue or as a target for maintaining the BBB integrity in different diseases; thereby the drug will be conducted to tissues, other than the brain. If it is verified that only LXRα is necessary for protecting BBB, some specific LXRα ligands must be found and then used in medication.
Collapse
Affiliation(s)
- Mahsa Eskandari
- Medical school, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Awsat Mellati
- Zanjan Metabolic Disease Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
15
|
Abstract
Mesenchymal stem cells have the ability to differentiate into several cell types when exposed to determined substances, including oxysterols. Oxysterols are cholesterol products derived from its auto-oxidation by reactive species or from enzymatic action. They are present in the body in low quantities under physiological conditions and exhibit several physiological and pharmacological actions according to both the types of oxysterol and tissue. Some of them are cytotoxic while others have been shown to promote cell differentiation through the action on several different receptors, such as nuclear LXR receptors and Smoothened receptor ligands. Here, we review the main pathways by which oxysterols have been associated with cell differentiation and death of mesenchymal stem cells.
Collapse
|
16
|
Circulating lipids and glioma risk: results from the UK Biobank, Nurses' Health Study, and Health Professionals Follow-Up Study. Cancer Causes Control 2021; 32:347-355. [PMID: 33484419 DOI: 10.1007/s10552-021-01391-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Evidence is mixed on whether cholesterol plays a role in the pathogenesis of glioma. We explored the associations between circulating lipids and glioma risk in three prospective cohorts. METHODS Using prospective data from the UK Biobank, we examined the associations of total cholesterol (TC), high- and low-density lipoprotein cholesterol (HDL-C, LDL-C), and triglycerides (TG) with glioma risk in multivariable (MV)-adjusted Cox proportional hazards models. Within the Nurses' Health Study (NHS) and the Health Professionals Follow-Up Study (HPFS), we carried out a matched, nested case-control study to examine these same associations. RESULTS In the UK Biobank, 490 gliomas accrued over 2,358,964 person-years. TC was not significantly associated with glioma risk (MV HR = 1.20, 95% CI 0.89-1.61 for highest quartile vs. lowest, p-trend = 0.24). In 4-year lagged analyses (n = 229), higher TC was associated with significantly higher risk of glioma in men (MV HR = 2.26, 95% CI 1.32-3.89, p-trend = 0.002) but not women (MV HR = 1.28, 95% CI 0.61-2.68, p-trend = 0.72); similar findings emerged for HDL-C and, to a lesser extent, LDL-C. In the NHS/HPFS, no significant associations were found between cholesterol and glioma risk. No significant associations were identified for TG. CONCLUSION In the UK Biobank, higher prediagnostic TC and HDL-C levels were associated with higher risk of glioma in 4-year lagged analyses, but not in non-lagged analyses, in men only. These findings merit further investigation, given that there are few risk factors and no reliable biomarkers of risk identified for glioma.
Collapse
|
17
|
Sun Z, Zhao L, Bo Q, Mao Z, He Y, Jiang T, Li Y, Wang C, Li R. Brain-Specific Oxysterols and Risk of Schizophrenia in Clinical High-Risk Subjects and Patients With Schizophrenia. Front Psychiatry 2021; 12:711734. [PMID: 34408685 PMCID: PMC8367079 DOI: 10.3389/fpsyt.2021.711734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidence from clinical, genetic, and epidemiologic studies suggest that schizophrenia might be a neuronal development disorder. While oxysterols are important factors in neurodevelopment, it is unknown whether oxysterols might be involved in development of schizophrenia. The present study investigated the relationship between tissue-specifically originated oxysterols and risk of schizophrenia. A total of 216 individuals were recruited in this study, including 76 schizophrenia patients, 39 clinical high-risk (CHR) subjects, and 101 healthy controls (HC). We investigated the circulating levels of brain-specific oxysterol 24(S)-hydroxycholesterol (24OHC) and peripheral oxysterol 27-hydroxycholesterol (27OHC) in all participants and analyzed the potential links between the oxysterols and specific clinical symptoms in schizophrenic patients and CHR. Our data showed an elevation of 24OHC in both schizophrenia patients and CHR than that in HC, while a lower level of 27OHC in the schizophrenia group only. The ratio of 24OHC to 27OHC was only increased in the schizophrenic group compared with CHR and HC. For the schizophrenic patients, the circulating 24OHC levels are significantly associated with disease duration, positively correlated with the positive and negative syndrome total scores, while the 27OHC levels were inversely correlated with the positive symptom scores. Together, our data demonstrated the disruption of tissue-specifically originated cholesterol metabolism in schizophrenia and CHR, suggesting the circulating 24OHC or 24OHC/27OHC ratio might not only be a potential indicator for risk for schizophrenia but also be biomarkers for functional abnormalities in neuropathology of schizophrenia.
Collapse
Affiliation(s)
- Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhen Mao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rena Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Staurenghi E, Cerrato V, Gamba P, Testa G, Giannelli S, Leoni V, Caccia C, Buffo A, Noble W, Perez-Nievas BG, Leonarduzzi G. Oxysterols present in Alzheimer's disease brain induce synaptotoxicity by activating astrocytes: A major role for lipocalin-2. Redox Biol 2020; 39:101837. [PMID: 33360775 PMCID: PMC7772793 DOI: 10.1016/j.redox.2020.101837] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 01/19/2023] Open
Abstract
Among Alzheimer's disease (AD) brain hallmarks, the presence of reactive astrocytes was demonstrated to correlate with neuronal loss and cognitive deficits. Evidence indeed supports the role of reactive astrocytes as mediators of changes in neurons, including synapses. However, the complexity and the outcomes of astrocyte reactivity are far from being completely elucidated. Another key role in AD pathogenesis is played by alterations in brain cholesterol metabolism. Oxysterols (cholesterol oxidation products) are crucial for brain cholesterol homeostasis, and we previously demonstrated that changes in the brain levels of various oxysterols correlate with AD progression. Moreover, oxysterols have been shown to contribute to various pathological mechanisms involved in AD pathogenesis. In order to deepen the role of oxysterols in AD, we investigated whether they could contribute to astrocyte reactivity, and consequently impact on neuronal health. Results showed that oxysterols present in mild or severe AD brains induce a clear morphological change in mouse primary astrocytes, accompanied by the upregulation of some reactive astrocyte markers, including lipocalin-2 (Lcn2). Moreover, astrocyte conditioned media analysis revealed a significant increase in the release of Lcn2, cytokines, and chemokines in response to oxysterols. A significant reduction of postsynaptic density protein 95 (PSD95) and a concurrent increase in cleaved caspase-3 protein levels have been demonstrated in neurons co-cultured with oxysterol-treated astrocytes, pointing out that mediators released by astrocytes have an impact on neurons. Among these mediators, Lcn2 has been demonstrated to play a major role on synapses, affecting neurite morphology and decreasing dendritic spine density. These data demonstrated that oxysterols present in the AD brain promote astrocyte reactivity, determining the release of several mediators that affect neuronal health and synapses. Lcn2 has been shown to exert a key role in mediating the synaptotoxic effect of oxysterol-treated astrocytes.
Collapse
Affiliation(s)
- Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Valerio Leoni
- Department of Medicine and Surgery, University of Milan-Bicocca, Desio, Monza-Brianza (MB), Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin, Italy
| | - Wendy Noble
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Beatriz Gomez Perez-Nievas
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
19
|
Panada J, Klopava V, Kulahava T, Frolova N, Faletrov Y, Shkumatov V. New 3β-hydroxysteroid-indolamine conjugates: Design, synthesis and inhibition of C6 glioma cell proliferation. Steroids 2020; 164:108728. [PMID: 32931809 DOI: 10.1016/j.steroids.2020.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Four novel indole steroids based on dehydroepiandrosterone (IS-1), estrone (IS-2) and pregnenolone (IS-3) were obtained and studied for their ability to inhibit C6 glioma proliferation. A reduction in cell proliferation by 52 ± 13% was observed for IS-1 at 10 μM, whereas IS-3 and abiraterone acetate at 10 μM caused a 36 ± 8% decrease. Surprisingly, the cellular effects reported for abiraterone, namely, cytochrome P450 CYP17A1 inhibition and endoplasmic reticulum stress were not detected for IS-1. However, both abiraterone and IS-1 significantly increased glutathione levels. Docking studies predicted good affinity of IS-1 to liver X receptors and regulatory protein Keap1, which are proposed to be involved in the compounds' antiproliferative activity.
Collapse
Affiliation(s)
- Jan Panada
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus; Chemistry Faculty of Belarusian State University, Minsk, Belarus
| | - Valeriya Klopava
- Department of Biophysics, Physics Faculty of Belarusian State University, Minsk, Belarus
| | - Tatsiana Kulahava
- Department of Biophysics, Physics Faculty of Belarusian State University, Minsk, Belarus; Institute for Nuclear Problems of the Belarusian State University, Minsk, Belarus
| | - Nina Frolova
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Yaroslav Faletrov
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus; Chemistry Faculty of Belarusian State University, Minsk, Belarus
| | - Vladimir Shkumatov
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus; Chemistry Faculty of Belarusian State University, Minsk, Belarus.
| |
Collapse
|
20
|
Wang Y, Zhang X, Wang T, Liu W, Wang L, Hao L, Ju M, Xiao R. 27-Hydroxycholesterol Promotes the Transfer of Astrocyte-Derived Cholesterol to Neurons in Co-cultured SH-SY5Y Cells and C6 Cells. Front Cell Dev Biol 2020; 8:580599. [PMID: 33330456 PMCID: PMC7732486 DOI: 10.3389/fcell.2020.580599] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Abnormality in cholesterol homeostasis in the brain is a feature of Alzheimer’s disease (AD). 27-Hydroxycholesterol (27-OHC) has been identified as a possible biomarker of AD, but its effects on cholesterol metabolism have not been fully characterized. This study was aimed to investigate the impacts of 27-OHC on cholesterol metabolism in nerve cells. SH-SY5Y cells and C6 cells were co-cultured and treated with 5, 10, and 20 μM 27-OHC for 24 h. Results showed that 27-OHC decreased cholesterol levels and up-regulated the expression of transport-related proteins in C6 cells. In SH-SY5Y cells, 27-OHC increased cholesterol accumulation, especially on plasma membrane (PM), which was consistent with the up-regulation of expressions of cholesterol endocytosis receptors, lipid raft-related proteins, and cholesterol esterase. Simultaneously, accumulation of membrane cholesterol promoted cholesterol conversion to 24S-OHC by CYP46A1(24S-hydroxylase) transfer from the endoplasmic reticulum (ER) to PM. Besides, Aβ levels were elevated in SH-SY5Y cells after 27-OHC treatment. Our results suggest that 27-OHC motivates the transfer of astrocyte-derived cholesterol to neurons. Although there exists a feedback mechanism that excessive cholesterol promotes its conversion to 24S-OHC, the increased cholesterol induced by 27-OHC could not be wholly offset in neurons.
Collapse
Affiliation(s)
- Yushan Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tao Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Wen Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lijing Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ling Hao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Mengwei Ju
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
XCHD Inhibits C6 Cell Growth Primarily via the p53/Caspase Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7973639. [PMID: 33029173 PMCID: PMC7528083 DOI: 10.1155/2020/7973639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
The effects of XCHD on the proliferation of C6 cells and on factors associated with the microRNA-34a (miR-34a)/p53/caspase-3 signaling pathway in vitro were investigated. Methods. XCHD was purchased too much to complete the study. CCK-8 assay was used to measure the XCHD concentration, and qPCR was used to quantify miR-34a expression at the mRNA level. Apoptosis was assessed using TUNEL. Western blots were used to determine the p53, caspase-3, caspase-8, and Bcl-2 expression levels. Results. The optimal XCHD concentration and time effect for C6 cells were observed after 36 h of exposure to a concentration of 100 µg/ml XCHD. miR-34a expression increased 8 and 12 h after the addition of XCHD. The presence of XCHD decreased Bcl-2 expression but increased p53, cleaved caspase-3, Bax, and caspase-8 expression. When p53 was inhibited, miR-34a expression was unaffected by the addition of XCHD, Bcl-2 expression was low, and cleaved caspase-3, Bax, and caspase-8 expression increased. The inhibition of p53 promoted C6 cell growth when compared with C6 cells exposed to XCHD and with no inhibition of p53. Conclusions. XCHD inhibits C6 cell growth which was influenced by the p53/caspase pathway.
Collapse
|
22
|
Zárybnický T, Matoušková P, Skálová L, Boušová I. The Hepatotoxicity of Alantolactone and Germacrone: Their Influence on Cholesterol and Lipid Metabolism in Differentiated HepaRG Cells. Nutrients 2020; 12:nu12061720. [PMID: 32521813 PMCID: PMC7353089 DOI: 10.3390/nu12061720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
The sesquiterpenes alantolactone (ATL) and germacrone (GER) are potential anticancer agents of natural origin. Their toxicity and biological activity have been evaluated using the differentiated HepaRG (dHepaRG) cells, a hepatocyte-like model. The half-maximal inhibitory concentrations of cell viability after 24-h treatment of dHepaRG cells are approximately 60 µM for ATL and 250 µM for GER. However, both sesquiterpenes induce reactive oxygen species (ROS) formation in non-toxic concentrations and significantly dysregulate the mRNA expression of several functional markers of mature hepatocytes. They similarly decrease the protein level of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and their transcription target, intercellular adhesion molecule 1 (ICAM-1). Based on the results of a BATMAN-TCM analysis, the effects of sesquiterpenes on cholesterol and lipid metabolism were studied. Sesquiterpene-mediated dysregulation of both cholesterol and lipid metabolism was observed, during which these compounds influenced the protein expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and sterol regulatory element-binding protein 2 (SREBP-2), as well as the mRNA expression of HMGCR, CYP19A1, PLIN2, FASN, SCD, ACACB, and GPAM genes. In conclusion, the two sesquiterpenes caused ROS induction at non-toxic concentrations and alterations in cholesterol and lipid metabolism at slightly toxic and toxic concentrations, suggesting a risk of liver damage if administered to humans.
Collapse
|
23
|
Ando H, Horibata Y, Aoyama C, Shimizu H, Shinohara Y, Yamashita S, Sugimoto H. Side-chain oxysterols suppress the transcription of CTP: Phosphoethanolamine cytidylyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase by inhibiting the interaction of p300 and NF-Y, and H3K27 acetylation. J Steroid Biochem Mol Biol 2019; 195:105482. [PMID: 31580889 DOI: 10.1016/j.jsbmb.2019.105482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
CTP: phosphoethanolamine cytidylyltransferase (Pcyt2) is the rate-limiting enzyme in mammalian phosphatidylethanolamine (PE) biosynthesis. Previously, we reported that increasedPcyt2 mRNA levels after serum starvation are suppressed by 25-hydroxycholesterol (HC) (25-HC), and that nuclear factor-Y (NF-Y) is involved in the inhibitory effects. Transcription of Hmgcr, which encodes 3-hydroxy-3-methylglutaryl-CoA reductase, is suppressed in the same manner. However, no typical sterol regulatory element (SRE) was detected in the Pcyt2 promoter. We were therefore interested in the effect of 25-HC on the modification of histones and thus treated cells with histone acetyltransferase inhibitor (anacardic acid) or histone deacetylase inhibitor (trichostatin A). The suppressive effect of 25-HC on Pcyt2 and Hmgcr mRNA transcription was ameliorated by trichostatin A. Anacardic acid, 25-HC and 24(S)-HC suppressed their transcription by inhibiting H3K27 acetylation in their promoters as evaluated by chromatin immunoprecipitation (ChIP) assays. 27-HC, 22(S)-HC and 22(R)-HC also suppressed their transcription, but 7α-HC, 7β-HC, the synthetic LXR agonist T0901317 and cholesterol did not. Furthermore, 25-HC inhibited p300 recruitment to the Pcyt2 and Hmgcr promoters, and suppressed H3K27 acetylation. 25-HC in the medium was easily conducted into cells. Based on these results, we concluded that 25-HC (and other side-chain oxysterols) in the medium was easily transferred into cells, suppressed H3K27 acetylation via p300 recruitment on the NF-Y complex in the Pcyt2 and Hmgcr promoters, and then suppressed transcription of these genes although LXR is not involved.
Collapse
Affiliation(s)
- Hiromi Ando
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Chieko Aoyama
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Hiroaki Shimizu
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Yasutake Shinohara
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Satoko Yamashita
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan.
| |
Collapse
|
24
|
Léger-Charnay E, Masson EAY, Morala T, Martine L, Buteau B, Leclere L, Bretillon L, Gambert S. Is 24(S)-hydroxycholesterol a potent modulator of cholesterol metabolism in Müller cells? An in vitro study about neuron to glia communication in the retina. Exp Eye Res 2019; 189:107857. [PMID: 31654618 DOI: 10.1016/j.exer.2019.107857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 11/19/2022]
Abstract
Communication between neurons and glia plays a major role in nervous tissue homeostasis. It is thought to participate in tuning cholesterol metabolism to cellular demand, which is a critical issue for neuronal health. Cholesterol is a membrane lipid crucial for nervous tissue functioning, and perturbed regulation of its metabolism has been linked to several neurodegenerative disorders. In the brain, 24(S)-hydroxycholesterol (24S-OHC) is an oxysterol synthesized by neurons to eliminate cholesterol, and 24S-OHC has been shown to regulate cholesterol metabolism in astrocytes, glial cells which provide cholesterol to neurons. In the retina, 24S-OHC is also an elimination product of cholesterol produced by neurons, especially the retinal ganglion cells. However, it is not known whether Müller cells, the major macroglial cells of the retina, play the role of cholesterol provider for retinal neurons and whether they respond to 24S-OHC signaling, similarly to brain glial cells. In the present study, primary cultures of rat Müller cells were treated with 0, 0.5 or 1.5 μM 24S-OHC for 48 hours. The levels of cholesterol, precursors and oxysterols were quantified using gas chromatography coupled to flame-ionization detection or mass spectrometry. In addition, the expression of key genes related to cholesterol metabolism was analyzed using RTq-PCR. Müller cells were shown to express many genes linked to cholesterol metabolism, including genes coding for proteins implicated in cholesterol biosynthesis (HMGCR), cholesterol uptake and export via lipoproteins (LDL-R, SR-BI, ApoE and ABACA1) and regulation of cholesterol metabolism (SREBP2 and LXRβ). Cholesterol and several of its precursors and oxidative products were present. CYP27A1, the main retinal enzyme implicated in cholesterol elimination via oxysterol production, was quantified at low transcript levels but neither of its two typical products were detected in Müller cells. Furthermore, our results demonstrate that 24S-OHC has a strong hypocholesterolemic effect in Müller cells, leading to cholesterol depletion (-37 % at 1.5 μM). This was mediated by a decrease in cholesterol synthesis, as illustrated by reduced levels of cholesterol precursors: desmosterol (-38 % at 1.5 μM) and lathosterol (-84 % at 1.5 μM), and strong downregulation of HMGCR gene expression (2.4 fold decrease at 1.5μM). In addition, LDL-R and SR-BI gene expression were reduced in response to 24S-OHC treatment (2 fold and 1.6 fold at 1.5 μM, respectively), suggesting diminished lipoprotein uptake by the cells. On the contrary, there was a dramatic overexpression of ABCA1 transporter (10 fold increase at 1.5 μM), probably mediating an increase in cholesterol efflux. Finally, 24S-OHC induced a small but significant upregulation of the CYP27A1 gene. These data indicate that Müller cells possess the necessary cholesterol metabolism machinery and that they are able to sharply adjust their cholesterol metabolism in response to 24S-OHC, a signal molecule of neuronal cholesterol status. This suggests that Müller cells could be major players of cholesterol homeostasis in the retina via neuron-glia crosstalk.
Collapse
Affiliation(s)
- Elise Léger-Charnay
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Elodie A Y Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Tristan Morala
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Bénédicte Buteau
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Laurent Leclere
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Ségolène Gambert
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France; Laboratoire de Biochimie Médicale, Plateforme de Biologie Hospitalo-Universitaire, F-21000, Dijon, France.
| |
Collapse
|
25
|
Sharma B, Agnihotri N. Role of cholesterol homeostasis and its efflux pathways in cancer progression. J Steroid Biochem Mol Biol 2019; 191:105377. [PMID: 31063804 DOI: 10.1016/j.jsbmb.2019.105377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/09/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022]
Abstract
Tumor cells show high avidity for cholesterol in order to support their inherent nature to divide and proliferate. This results in the rewiring of cholesterol homeostatic pathways by influencing not only de novo synthesis but also uptake or efflux pathways of cholesterol. Recent findings have pointed towards the importance of cholesterol efflux in tumor pathogenesis. Cholesterol efflux is the first and foremost step in reverse cholesterol transport and any perturbation in this pathway may lead to the accumulation of intracellular cholesterol, thereby altering the cellular equilibrium. This review addresses the different mechanisms of cholesterol efflux from the cell and highlights their role and regulation in context to tumor development. There are four different routes by which cholesterol can be effluxed from the cell namely, 1) passive diffusion of cholesterol to mature HDL particles, 2) SR-B1 mediated facilitated diffusion, 3) Active efflux to apo A1 via ABCA1 and 4) ABCG1 mediated efflux to mature HDL. These molecular players facilitating cholesterol efflux are engaged in a complex interplay with different signaling pathways. Thus, an understanding of the efflux pathways, their regulation and cross-talk with signaling molecules may provide novel prognostic markers and therapeutic targets to combat the onset of carcinogenesis.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Navneet Agnihotri
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
26
|
Saint-Pol J, Gosselet F. Oxysterols and the NeuroVascular Unit (NVU): A far true love with bright and dark sides. J Steroid Biochem Mol Biol 2019; 191:105368. [PMID: 31026511 DOI: 10.1016/j.jsbmb.2019.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
The brain is isolated from the whole body by the blood-brain barrier (BBB) which is located in brain microvessel endothelial cells (ECs). Through physical and metabolic properties induced by brain pericytes, astrocytes and neurons (these cells and the ECs referred to as the neurovascular unit (NVU)), the BBB hardly restricts exchanges of molecules between the brain and the bloodstream. Among them, cholesterol exchanges between these two compartments are very limited and occur through the transport of LDLs across the BBB. Oxysterols (mainly 24S and 27-hydroxycholesterol) daily cross the BBB and regulate molecule/cholesterol exchanges via Liver X nuclear Receptors (LXRs). In addition, these oxysterols have been linked to pathological processes in neurodegenerative diseases such as Alzheimer's disease. Here we propose an overview of the actual knowledge concerning oxysterols and the NVU cells in physiological and in Alzheimer's disease.
Collapse
Affiliation(s)
- Julien Saint-Pol
- University of Artois, Blood-Brain Barrier Laboratory (BBB Lab), EA2465, F-62300 Lens, France.
| | - Fabien Gosselet
- University of Artois, Blood-Brain Barrier Laboratory (BBB Lab), EA2465, F-62300 Lens, France
| |
Collapse
|
27
|
Gamba P, Staurenghi E, Testa G, Giannelli S, Sottero B, Leonarduzzi G. A Crosstalk Between Brain Cholesterol Oxidation and Glucose Metabolism in Alzheimer's Disease. Front Neurosci 2019; 13:556. [PMID: 31213973 PMCID: PMC6554318 DOI: 10.3389/fnins.2019.00556] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
In Alzheimer’s disease (AD), both cholesterol and glucose dysmetabolism precede the onset of memory deficit and contribute to the disease’s progression. It is indeed now believed that oxidized cholesterol in the form of oxysterols and altered glucose uptake are the main triggers in AD affecting production and clearance of Aβ, and tau phosphorylation. However, only a few studies highlight the relationship between them, suggesting the importance of further extensive studies on this topic. Recently, a molecular link was demonstrated between cholesterol oxidative metabolism and glucose uptake in the brain. In particular, 27-hydroxycholesterol, a key linker between hypercholesterolemia and the increased AD risk, is considered a biomarker for reduced glucose metabolism. In fact, its excess increases the activity of the renin-angiotensin system in the brain, thus reducing insulin-mediated glucose uptake, which has a major impact on brain functioning. Despite this important evidence regarding the role of 27-hydroxycholesterol in regulating glucose uptake by neurons, the involvement of other cholesterol oxidation products that have been clearly demonstrated to be key players in AD cannot be ruled out. This review highlights the current understanding of the potential role of cholesterol and glucose dysmetabolism in AD progression, and the bidirectional crosstalk between these two phenomena.
Collapse
Affiliation(s)
- Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| |
Collapse
|
28
|
Ma W, Li C, Zhao L, Wang Y, Xiao R. NF-κB-mediated inflammatory damage is differentially affected in SH-SY5Y and C6 cells treated with 27-hydroxycholesterol. Food Sci Nutr 2019; 7:1685-1694. [PMID: 31139381 PMCID: PMC6526694 DOI: 10.1002/fsn3.1005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Previous studies have demonstrated that 27-hydroxycholesterol (27-OHC), a cholesterol metabolite, was involved in the inflammatory process of Alzheimer's disease (AD). The present study aimed to investigate the 27-OHC-induced inflammatory damage to neurons and astrocytes and the underlying mechanism(s) accounting for this damage. Human neuroblastoma cells (SH-SY5Y cells) and rat glioma cells (C6 cells) were treated with vehicle or 27-OHC (5, 10, or 20 μM) for 24 hr. The levels of secreted interleukin-1β (IL-1β), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS) were determined by using an enzyme-linked immunosorbent assay (ELISA). Immunofluorescence staining was used to determine the cellular expression of toll-like receptor 4 (TLR4) and transforming growth factor-β (TGF-β). The mRNA and protein expression levels of nuclear factor-κB p65 (NF-κB p65), nuclear factor-κB p50 (NF-κB p50) and cyclooxygenase-2 (COX-2) in both SH-SY5Y and C6 cells were also detected by real-time PCR and Western blot, respectively. The results of this study showed that 27-OHC treatment increased secretion of TNF-α and iNOS and decreased secretion of IL-10, upregulated expression of TGF-β, NF-κB p65 and p50, and downregulated expression of COX-2 in SH-SY5Y cells. In C6 cells, treatment with 27-OHC resulted in decreased secretion of IL-1β, IL-10, TNF-α, and iNOS, and increased expression of TLR4 and TGF-β. These results suggest that 27-OHC may cause inflammatory damage to neurons by activating the TGF-β/NF-κB signaling pathway and to astrocytes by activating the TLR4/TGF-β signaling, which results in the subsequent release of inflammatory cytokines.
Collapse
Affiliation(s)
- Wei‐Wei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijingChina
| | - Chao‐Qun Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijingChina
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer CenterUniversity of Iowa Carver College of MedicineIowa CityIowa
| | - Yu‐Shan Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijingChina
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijingChina
| |
Collapse
|
29
|
Wang Y, An Y, Zhang D, Yu H, Zhang X, Wang Y, Tao L, Xiao R. 27-Hydroxycholesterol Alters Synaptic Structural and Functional Plasticity in Hippocampal Neuronal Cultures. J Neuropathol Exp Neurol 2019; 78:238-247. [PMID: 30753597 PMCID: PMC7967841 DOI: 10.1093/jnen/nlz002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study aimed to explore the neurotoxic effects of 27-hydroxycholesterol (27-OHC), a major circulating cholesterol active derivative in brain on synaptic structural and functional plasticity in primary hippocampal neurons. Newborn SD rat primary hippocampal neurons were treated with 0, 1, 3, 10, and 30 μM 27-OHC for 24 hours. MTT and CCK-8 assays were used to monitor the cell viability of neurons with different treatments. Neurite morphology was assessed by staining for microtubule-associated protein-2 (MAP2) and analyzed by immunofluorescence. Synaptic ultrastructure was evaluated by transmission electron microscopy. Real-time polymerase chain reaction and Western blot analyses were used to evaluate the expression of key synaptic proteins: synaptophysin (SYP), postsynaptic density protein-95 (PSD-95), synaptosomal-associated protein 25 (SNAP-25), growth-associated protein-43 (GAP-43), MAP2, and activity-regulated cytoskeleton-associated protein (Arc). Treatment with 27-OHC at various doses stimulated cell death and resulted in significant decreases in neurite number and length, alteration of synaptic ultrastructure, and downregulated expression of synaptic proteins in a dose-dependent manner. These results suggest that 27-OHC is deleterious for synaptic structural and functional plasticity, which may partially account for its neurotoxic effects.
Collapse
Affiliation(s)
- Yushan Wang
- School of Public Health, Capital Medical University, Beijing, China
| | - Yu An
- School of Public Health, Capital Medical University, Beijing, China
| | - Dandi Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Huiyan Yu
- School of Public Health, Capital Medical University, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Public Health, Capital Medical University, Beijing, China
| | - Lingwei Tao
- School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Chen S, Zhou C, Yu H, Tao L, An Y, Zhang X, Wang Y, Wang Y, Xiao R. 27-Hydroxycholesterol Contributes to Lysosomal Membrane Permeabilization-Mediated Pyroptosis in Co-cultured SH-SY5Y Cells and C6 Cells. Front Mol Neurosci 2019; 12:14. [PMID: 30881285 PMCID: PMC6405519 DOI: 10.3389/fnmol.2019.00014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose: Emerging evidence suggests that 27-Hydroxycholesterol (27-OHC) causes neurodegenerative diseases through the induction of cytotoxicity and cholesterol metabolism disorder. The objective of this study is to determine the impacts of 27-OHC on lysosomal membrane permeabilization (LMP) and pyroptosis in neurons in the development of neural degenerative diseases. Methods: In this study, SH-SY5Y cells and C6 cells were co-cultured in vitro to investigate the influence of 27-OHC on the function of lysosome, LMP and pyroptosis related factors in neuron. Lyso Tracker Red (LTR) was used to detect the changes of lysosome pH, volume and number. Acridine orange (AO) staining was also used to detect the LMP in neurons. Then the morphological changes of cells were observed by a scanning electron microscope (SEM). The content of lysosome function associated proteins [including Cathepsin B (CTSB), Cathepsin D (CTSD), lysosomal-associated membraneprotein-1 (LAMP-1), LAMP-2] and the pyroptosis associated proteins [including nod-like recepto P3 (NLRP3), gasdermin D (GSDMD), caspase-1 and interleukin (IL)-1β] were detected through Western blot. Results: Results showed higher levels of lysosome function associated proteins, such as CTSB (p < 0.05), CTSD (p < 0.05), LAMP-1 (p < 0.01), LAMP-2; p < 0.01) in 27-OHC treated group than that in the control group. AO staining and LTR staining showed that 27-OHC induced lysosome dysfunction with LMP. Content of pyroptosis related factor proteins, such as GSDMD (p < 0.01), NLRP3 (p < 0.001), caspase-1 (p < 0.01) and IL-1β (p < 0.01) were increased in 27-OHC treated neurons. Additionally, CTSB was leaked through LMP into the cytosol and induced pyroptosis. Results from the present study also suggested that the CTSB is involved in activation of pyroptosis. Conclusion: Our data indicate that 27-OHC contributes to the pathogenesis of cell death by inducing LMP and pyroptosis in neurons.
Collapse
Affiliation(s)
- Si Chen
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Cui Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Huiyan Yu
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Lingwei Tao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yu An
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaona Zhang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yushan Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Pirmoradi L, Seyfizadeh N, Ghavami S, Zeki AA, Shojaei S. Targeting cholesterol metabolism in glioblastoma: a new therapeutic approach in cancer therapy. J Investig Med 2019; 67:715-719. [PMID: 30765502 DOI: 10.1136/jim-2018-000962] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor known with a poor survival rate despite current advances in the field of cancer. Additional research into the pathophysiology of GBM is urgently needed given the devastating nature of this disease. Recent studies have revealed the unique cellular physiology of GBM cells as compared with healthy astrocytes. Intriguingly, GBM cells are incapable of de novo cholesterol synthesis via the mevalonate pathway. Thus, the survival of GBM cells depends on cholesterol uptake via low-density lipoprotein receptors (LDLRs) in the form of apolipoprotein-E-containing lipoproteins and ATP-binding cassette transporter A1 (ABCA1) that efflux surplus cholesterol out of cells. Liver X receptors regulate intracellular cholesterol levels in neurons and healthy astrocytes through changes in the expression of LDLR and ABCA1 in response to cholesterol and its derivatives. In GBM cells, due to the dysregulation of this surveillance pathway, there is an accumulation of intracellular cholesterol. Furthermore, intracellular cholesterol regulates temozolomide-induced cell death in glioblastoma cells via accumulation and activation of death receptor 5 in plasma membrane lipid rafts. The mevalonate pathway and autophagy flux are also fundamentally related with implications for cell health and death. Thus, via cholesterol metabolism, the mevalonate pathway may be a crucial player in the pathogenesis and treatment of GBM where our current understanding is still lacking. Targeting cholesterol metabolism in GBM may hold promise as a novel adjunctive clinical therapy for this devastating cancer.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Kurdistan, Iran
| | - Nayer Seyfizadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada.,Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA.,Center for Comparative Respiratory Biology and Medicine, University of California, Davis, School of Medicine, Davis, California, USA
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Isfahan, Iran
| |
Collapse
|
32
|
Han T, Lv Y, Wang S, Hu T, Hong H, Fu Z. PPARγ overexpression regulates cholesterol metabolism in human L02 hepatocytes. J Pharmacol Sci 2019; 139:1-8. [DOI: 10.1016/j.jphs.2018.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
|
33
|
Testa G, Rossin D, Poli G, Biasi F, Leonarduzzi G. Implication of oxysterols in chronic inflammatory human diseases. Biochimie 2018; 153:220-231. [DOI: 10.1016/j.biochi.2018.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022]
|
34
|
The effect of electronic-cigarettes aerosol on rat brain lipid profile. Biochimie 2018; 153:99-108. [PMID: 30077815 DOI: 10.1016/j.biochi.2018.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
The electronic cigarettes (e-cigarettes, e-cigs) have become the most sought-after alternative to the traditional cigarettes, partly due to the widespread perception of safety. However, the high temperature reached by e-cig solutions can generate toxic compounds, some of which are listed as known human carcinogens. To evaluate the impact of e-cig aerosol on rat brain lipid profile, twenty male Sprague Dawley rats were exposed to 11 cycles/day (E-cig group), to consume 1 mL/day of e-liquid, for 5 days/week up to 8 weeks. Ten rats were sacrificed after 4 weeks (4w) and ten at the end of treatment (8w). The composition of total fatty acids, sterols and oxysterols of the lipid fraction of rat brains, was analyzed. The results of the E-cig group were compared with those of the control group (not exposed). After 8 weeks, the saturated fatty acids significantly raised up to 7.35 mg/g tissue, whereas polyunsaturated fatty acids decreased reaching 3.17 mg/g. The e-cig vaping increased both palmitic (3.43 mg/g) and stearic acids (3.82 mg/g), while a significant decrement of arachidonic (1.32 mg/g) and docosahexaenoic acids (1.00 mg/g) was found. Atherogenic (0.5) and thrombogenic (1.12) indices also increased in 8w treated animals. The e-cig aerosol significantly impacted the cholesterol homeostasis, since the latter at 8w (21.57 mg/g) was significantly lower than control (24.56 mg/g); moreover, a significant increase of 7-dehydrocholesterol (1.87 mg/g) was also denoted in e-cig group. The e-cig aerosol also reduced the oxysterol formation (19.55 μg/g) after 4 weeks of exposure, except for triol and 5α,6α-epoxycholesterol (α-EC). The principal component analysis (PCA) separated all E-cig from control groups, evidencing that oxysterols (except triol and 24(S)-hydroxycholesterol (24(S)-HC)) were inversely correlated to 7-DHC and TI. The present research revealed that e-cigs aerosol affected the lipid and cholesterol homeostasis in rat brain, which could contribute to the new occurrence of some neurodegenerative diseases.
Collapse
|
35
|
Sottero B, Leonarduzzi G, Testa G, Gargiulo S, Poli G, Biasi F. Lipid Oxidation Derived Aldehydes and Oxysterols Between Health and Disease. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700047] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| |
Collapse
|
36
|
Zhang X, Lv C, An Y, Liu Q, Rong H, Tao L, Wang Y, Wang Y, Xiao R. Increased Levels of 27-Hydroxycholesterol Induced by Dietary Cholesterol in Brain Contribute to Learning and Memory Impairment in Rats. Mol Nutr Food Res 2018; 62. [PMID: 29193679 DOI: 10.1002/mnfr.201700531] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/08/2017] [Indexed: 12/22/2022]
Abstract
SCOPE Dietary cholesterol has been shown to play a role in the development of Alzheimer's disease (AD). It is proposed that oxysterol especially 27-hydroxycholesterol (27-OHC) may play a potential role in β-amyloid peptides (Aβ) production and accumulation during AD progression. METHODS AND RESULTS To investigate the mechanisms of dietary cholesterol and 27-OHC on learning and memory impairment, male Sprague-Dawley rats are fed with cholesterol diet with or without 27-OHC synthetase inhibitor (anastrozole) injection. The levels of cholesterol, 27-OHC, 24-hydroxycholesterol (24S-OHC), 7α-hydroxycholesterol, and 7β-hydroxycholesterol in plasma are determined; apolipoprotein A (ApoA), apolipoprotein B (ApoB), HDL-cholesterol (HDL-C), and LDL-cholesterol (LDL-C) in plasma or brain; CYP27A1 and CYP7A1 in liver and CYP46A1 and CYP7B1 in brain; cathepsin B, cathepsin D, and acid phosphatase in lysosome; and Aβ1-40 and Aβ1-42 in brain. Results show increased levels of 27-OHC (p < 0.01), LDL-C (p < 0.01), and ApoB (p < 0.01), and decreased level of HDL-C (p < 0.05) in plasma, upregulated CYP27A1 (p < 0.01) and CYP7A1 (p < 0.01) expression in liver, altered lysosomal function, and increased level of Aβ in brain (p < 0.05). CONCLUSIONS This study indicates that the mechanisms of dietary cholesterol on learning and memory impairment may be involved in cholesterol metabolism and lysosome function with the increase of plasma 27-OHC, thus resulting in Aβ formation and accumulation.
Collapse
Affiliation(s)
- Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Chenyan Lv
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yu An
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Quanri Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hongguo Rong
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lingwei Tao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yushan Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Toxic effects of phytol and retinol on human glioblastoma cells are associated with modulation of cholesterol and fatty acid biosynthetic pathways. J Neurooncol 2017; 136:435-443. [PMID: 29159775 DOI: 10.1007/s11060-017-2672-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor. Genetic mutations may reprogram the metabolism of neoplastic cells. Particularly, alterations in cholesterol and fatty acid biosynthetic pathways may favor biomass synthesis and resistance to therapy. Therefore, compounds that interfere with those pathways, such as phytol (PHY) and retinol (RET), may be appropriate for cytotoxic approaches. We tested the effect of PHY or RET on the viability of human GBM cell lines (U87MG, A172 and T98G). Since the compounds showed a dose-dependent cytotoxic effect, additional analyses were performed with IC50 values. Transcriptome analyses of A172 cells treated with PHY IC50 or RET IC50 revealed down-regulated genes involved in cholesterol and/or fatty acid biosynthetic pathways. Thus, we investigated the expression of proteins required for cholesterol and/or fatty acid synthesis after treating all lineages with PHY IC50 or RET IC50 and comparing them with controls. Sterol regulatory element-binding protein 1 (SREBP-1) expression was reduced by PHY in U87 and T98G cells. However, fatty acid synthase (FAS) protein expression, which is regulated by SREBP-1, was down-regulated in all lineages after both treatments. Moreover, farnesyl-diphosphate farnesyltransferase (FDFT1) levels, a protein associated with cholesterol synthesis, were reduced in all lineages by PHY and in U87MG and A172 cells by RET. Our results suggest that SREBP-1, FAS and FDFT1 are potential target(s) for future in vivo approaches against GBM and support the use of inhibitors of their synthesis, including PHY and RET, for such approaches.
Collapse
|
38
|
Cardenia V, Vivarelli F, Cirillo S, Paolini M, Rodriguez-Estrada MT, Canistro D. Dietary effects of Raphanus sativus cv Sango on lipid and oxysterols accumulation in rat brain: A lipidomic study on a non-genetic obesity model. Chem Phys Lipids 2017; 207:206-213. [DOI: 10.1016/j.chemphyslip.2017.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/17/2017] [Indexed: 12/15/2022]
|