1
|
Bradley PM, Romanok KM, Smalling KL, Donahue L, Gaikowski MP, Hines RK, Breitmeyer SE, Gordon SE, Loftin KA, McCleskey RB, Meppelink SM, Schreiner ML. Tapwater exposures, residential risk, and mitigation in a PFAS-impacted-groundwater community. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1368-1388. [PMID: 40223753 DOI: 10.1039/d5em00005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Tapwater (TW) safety and sustainability are priorities in the United States. Per/polyfluoroalkyl substance(s) (PFAS) contamination is a growing public-health concern due to prolific use, widespread TW exposures, and mounting human-health concerns. Historically-rural, actively-urbanizing communities that rely on surficial-aquifer private wells incur elevated risks of unrecognized TW exposures, including PFAS, due to limited private-well monitoring and contaminant-source proliferation in urbanizing landscapes. Here, a broad-analytical-scope TW-assessment was conducted in a hydrologically-vulnerable, Mississippi River alluvial-island community, where PFAS contamination of the shallow-alluvial drinking-water aquifer has been documented, but more comprehensive contaminant characterization to inform decision-making is currently lacking. In 2021, we analyzed 510 organics, 34 inorganics, and 3 microbial groups in 11 residential and community locations to assess (1) TW risks beyond recognized PFAS issues, (2) day-to-day and year-to-year risk variability, and (3) suitability of the underlying sandstone aquifer as an alternative source to mitigate TW-PFAS exposures. Seventy-six organics and 25 inorganics were detected. Potential human-health risks of detected TW exposures were explored based on cumulative benchmark-based toxicity quotients (∑TQ). Elevated risks (∑TQ ≥ 1) from organic and inorganic contaminants were observed in all alluvial-aquifer-sourced synoptic samples but not in sandstone-aquifer-sourced samples. Repeated sampling at 3 sites over 52-55 h indicated limited variability in risk over the short-term. Comparable PFAS-specific ∑TQ for spatial-synoptic, short-term (3 days) temporal, and long-term (3 years quarterly) temporal samples indicated that synoptic results provided useful insight into the risks of TW-PFAS exposures at French Island over the long-term. No PFAS detections in sandstone-aquifer-sourced samples over a 3 year period indicated no PFAS-associated risk and supported the sandstone aquifer as an alternative drinking-water source to mitigate community TW-PFAS exposures. This study illustrated the importance of expanded contaminant monitoring of private-well TW, beyond known concerns (in this case, PFAS), to reduce the risks of a range of unrecognized contaminant exposures.
Collapse
|
2
|
Romeh AAA, Negm AM, ELhelbawy MA. Accumulation of heavy metals in soil, medicinal plants and agricultural crops irrigated with drain water. Case study of Bahr El-Baqar Drain, Egypt. MARINE POLLUTION BULLETIN 2025; 217:118105. [PMID: 40367881 DOI: 10.1016/j.marpolbul.2025.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/21/2025] [Accepted: 05/03/2025] [Indexed: 05/16/2025]
Abstract
Heavy metal pollution from industrial and sewage waste in Egypt's Bahr Al-Baqar drain threatens ecosystems and human health. This study analyzed metal accumulation (Mn, Cr, Ni, Co, Fe, Cu, Zn) in water, soil, and vegetation, assessing associated risks. Mn in drain water ranged 0.12-0.63 mg L-1, peaking at the endpoint. Hazard quotients (HQ) for Mn and Fe were < 1, indicating low immediate risk. Soil metal concentrations exceeded background levels: Co (1.18×), Cr (2.63×), Ni (1.15×), and Mn (1.03×), with contamination factors (CF >1) confirming moderate pollution. The soil hazard index (HI) for ingestion was 0.944, below risk thresholds. Medicinal plants exhibited high bioaccumulation: Arctostaphylos uva-ursi roots accumulated Cu (BF: 30.44) and Zn (20.59), while Rumex acetosa roots showed extreme Ni uptake (BF: 248.43). Transfer factors revealed Sonchus oleraceus translocated Cu efficiently, Triticum aestivum (wheat) transferred Fe, Ni, and Zn, and Urtica dioica (nettle) mobilized Mn. Consumption of crops/plants irrigated with drain water posed critical risks, with hazard indices (HI) reaching 7.5 (children) and 8.8 (adults), far exceeding safety limits. These results confirm the drain's water is unsafe for irrigation without treatment. Plants like Rumex acetosa and Triticum aestivum act as hazardous bioindicators due to excessive metal uptake, requiring strict monitoring. Immediate actions-including wastewater treatment, pollution control, and soil remediation-are vital to reduce health and environmental threats. The study highlights the need to regulate agricultural and medicinal use of plants from contaminated areas, as their metal accumulation poses direct exposure risks.
Collapse
Affiliation(s)
- Ahmed Ali Ali Romeh
- Department of Plant Production, Faculty of Technology and Development, Zagazig University, Egypt.
| | - Abdelazim M Negm
- Department of Water and Water structures engineering, Faculty of Engineering, Zagazig University, Egypt.
| | - Maha AbdeMegeed ELhelbawy
- Department of Soil and Water Sciences, Faculty of Technology and Development, Zagazig University, Egypt
| |
Collapse
|
3
|
Darr J, Hamama Z. Manganese exposure assessment in formula-fed infants in Israel. Isr J Health Policy Res 2025; 14:24. [PMID: 40234974 PMCID: PMC12001741 DOI: 10.1186/s13584-025-00688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Proper nutrition is fundamental to the regular mental and physical development of infants, toddlers, and children. Overexposure to manganese (Mn) in infants has been correlated to various behavioral and neurological symptoms such as lower IQ, attention deficit hyperactivity disorder, and impairment in fine motor skills. The following study aims to evaluate exposure to Mn in formula-fed infants in Israel from birth to nine months of age. METHODS Over 200 infant formulas of multiple brands were sampled by the Israeli National Food Service, as part of a routine monitoring of levels of various nutritional components, including Mn. Data on levels of Mn in water was drawn from routine monitoring programs carried out by the Ministry of Health (MOH). Total energy requirements were calculated based on current infant weight and growth data collected over the past decade in MOH-operated family care centers. Dietary exposure was assessed for infants from birth to six months as the sum of Mn intake from infant formula and potable water. For infants aged seven-nine months, Mn intake from complementary feeding was assessed based on national surveys of feeding behavior in infants aged nine-twelve months. RESULTS Milk-based infant formula brands consistently demonstrated lower levels of Mn compared to other formulations. Almost half of the sampled formula brands exceeded regulatory tolerance to deviation from labelling of nutritional components. Though some variation in Mn concentrations is evident in water sources across Israel, the overall contribution of water to Mn intake is negligible given the high levels of desalination in Israel. Excessive Mn intake in formula-fed infants is evident across multiple formula brands. CONCLUSIONS When breastfeeding is not optional, milk-based formulas are the most suitable in terms of their relative contribution to Mn intake. Equating maximal levels of Mn in potable waters to levels set in EU and USA regulations is advisable. A greater regulatory tolerance for deviation from labelling of mineral content is advisable so as not to hinder importation of infant formulas.
Collapse
Affiliation(s)
- Jonatan Darr
- Food Risk Management Department, The National Food Service, Ministry of Health, Jaffa St. 236, Jerusalem, Israel.
| | - Ziva Hamama
- Food Risk Management Department, The National Food Service, Ministry of Health, Jaffa St. 236, Jerusalem, Israel
| |
Collapse
|
4
|
Magro G, Laterza V, Tosto F, Torrente A. Manganese Neurotoxicity: A Comprehensive Review of Pathophysiology and Inherited and Acquired Disorders. J Xenobiot 2025; 15:54. [PMID: 40278159 PMCID: PMC12028444 DOI: 10.3390/jox15020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Manganese (Mn) is an essential trace element and a cofactor for several key enzymes, such as mitochondrial superoxide dismutase. Consequently, it plays an important defense role against reactive oxygen species. Despite this, Mn chronic overexposure can result in a neurological disorder referred to as manganism, which shares some similarities with Parkinson's disease. Mn levels seem regulated by many transporters responsible for its uptake and efflux. These transporters play an established role in many inherited disorders of Mn metabolism and neurotoxicity. Some inherited Mn metabolism disorders, caused by mutations of SLC30A10 and SLC39A14, assume crucial importance since earlier treatment results in a better prognosis. Physicians should be familiar with the clinical presentation of these disorders as the underlying cause of dystonia/parkinsonism and look for other accompanying features, such as liver disease and polycythemia, which are typically associated with SLC30A10 mutations. This review aims to highlight the currently known Mn transporters, Mn-related neurotoxicity, and its consequences, and it provides an overview of inherited and acquired disorders of Mn metabolism. Currently available treatments are also discussed, focusing on the most frequently encountered presentations.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Neuroscience, “Giovanni Paolo II” Hospital, Lamezia Terme, 88100 Catanzaro, Italy
| | - Vincenzo Laterza
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Federico Tosto
- Department of Neuroscience, “Giovanni Paolo II” Hospital, Lamezia Terme, 88100 Catanzaro, Italy
| | - Angelo Torrente
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, 90129 Palermo, Italy;
| |
Collapse
|
5
|
Zhang X, Liu J, Zhong S, Zhang Z, Zhou Q, Yang J, Chang X, Wang H. Exposure to Manganese Induces Autophagy-Lysosomal Pathway Dysfunction-Mediated Tauopathy by Activating the cGAS-STING Pathway in the Brain. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:199-212. [PMID: 40012869 PMCID: PMC11851216 DOI: 10.1021/envhealth.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 02/28/2025]
Abstract
Manganese (Mn) exposure leads to pathological accumulation of Tau-associated neurodegenerative disease and has become a major public health concern. However, the precise mechanism underlying this effect remains unclear. Here, the mechanism by which Mn induces dysfunction of autophagy-lysosomal pathway-mediated tauopathy by activating the cGAS-STING pathway was explored both in vitro and in vivo. Mn exposure induced tauopathy in microglia and in mice while activating the cGAS-STING pathway, inducing type I interferon production, and impairing the degradation function of the autophagy-lysosomal pathway. Importantly, inactivation of the cGAS-STING pathway rescued the degradation activity of the autophagy-lysosomal pathway, while tauopathy was markedly attenuated, as shown in both cGAS-knockout and STING-knockout BV2 microglia and in mice. Moreover, the autophagy inhibitor 3-methyladenine (3-MA) restored the impaired degradation activity of the autophagy-lysosomal pathway by inactivating the cGAS-STING pathway, thereby clearing Tau aggregation. Taken together, these results indicate that Mn exposure induces tauopathy by impairing the function of the autophagy-lysosomal pathway through the activation of the cGAS-STING pathway. Thus, this study identifies a novel mechanism by which Mn exposure induces Tau aggregation, which in turn triggers potential neurotoxicity, providing a foundation for future drug target research.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of
Public Health, Lanzhou University, Gansu 730000, China
| |
Collapse
|
6
|
Bradley PM, Romanok KM, Smalling KL, Gordon SE, Huffman BJ, Paul Friedman K, Villeneuve DL, Blackwell BR, Fitzpatrick SC, Focazio MJ, Medlock-Kakaley E, Meppelink SM, Navas-Acien A, Nigra AE, Schreiner ML. Private, public, and bottled drinking water: Shared contaminant-mixture exposures and effects challenge. ENVIRONMENT INTERNATIONAL 2025; 195:109220. [PMID: 39736175 DOI: 10.1016/j.envint.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Humans are primary drivers of environmental-contaminant exposures worldwide, including in drinking-water (DW). In the United States, point-of-use DW (POU-DW) is supplied via private tapwater (TW), public-supply TW, and bottled water (BW). Differences in management, monitoring, and messaging and lack of directly-intercomparable exposure data influence the actual and perceived quality and safety of different DW supplies and directly impact consumer decision-making. OBJECTIVES The purpose of this paper is to provide a meta-analysis (quantitative synthesis) of POU-DW contaminant-mixture exposures and corresponding potential human-health effects of private-TW, public-TW, and BW by aggregating exposure results and harmonizing apical-health-benchmark-weighted and bioactivity-weighted effects predictions across previous studies by this research group. DISCUSSION Simultaneous exposures to multiple inorganic and organic contaminants of known or suspected human-health concern are common across all three DW supplies, with substantial variability observed in each and no systematic difference in predicted cumulative risk between supplies. Differences in contaminant or contaminant-class exposures, with important implications for DW-quality improvements, were observed and attributed to corresponding differences in regulation and compliance monitoring. CONCLUSION The results indicate that human-health risks from contaminant exposures are common to and comparable in all three DW-supplies, including BW. Importantly, this study's target analytical coverage, which exceeds that currently feasible for water purveyors or homeowners, nevertheless is a substantial underestimation of the breadth of contaminant mixtures in the environment and potentially present in DW. Thus, the results emphasize the need for improved understanding of the adverse human-health implications of long-term exposures to low-level inorganic-/organic-contaminant mixtures across all three distribution pipelines and do not support commercial messaging of BW as a systematically safer alternative to public-TW. Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment is necessary to reduce risks associated with long-term DW-contaminant exposures, especially in vulnerable populations, and to reduce environmental waste and plastics contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
7
|
Karadeniz S, Ustaoğlu F, Aydın H, Yüksel B. Toxicological risk assessment using spring water quality indices in plateaus of Giresun Province/Türkiye: a holistic hydrogeochemical data analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:285. [PMID: 38967745 PMCID: PMC11226512 DOI: 10.1007/s10653-024-02054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/25/2024] [Indexed: 07/06/2024]
Abstract
Water scarcity is a growing concern due to rapid urbanization and population growth. This study assesses spring water quality at 20 stations in Giresun province, Türkiye, focusing on potentially toxic elements and physicochemical parameters. The Water Quality Index rated most samples as "excellent" during the rainy season and "good" during the dry season, except at stations 4 (40° 35' 12″ North/38° 26' 34″ East) and 19 (40° 44' 28″ North/38° 06' 53″ West), indicating "poor" quality. Mean macro-element concentrations (mg/L) were: Ca (34.27), Na (10.36), Mg (8.26), and K (1.48). Mean trace element values (μg/L) were: Al (1093), Zn (110.54), Fe (67.45), Mn (23.03), Cu (9.79), As (3.75), Ni (3.00), Cr (2.84), Pb (2.70), Co (1.93), and Cd (0.76). Health risk assessments showed minimal non-carcinogenic risks, while carcinogenic risk from arsenic slightly exceeded safe limits (CR = 1.75E-04). Higher arsenic concentrations during the rainy season were due to increased recharge, arsenic-laden surface runoff, and human activities. Statistical analyses (PCA, PCC, HCA) suggested that metals and physico-chemical parameters originated from lithogenic, anthropogenic, or mixed sources. Regular monitoring of spring water is recommended to mitigate potential public health risks from waterborne contaminants.
Collapse
Affiliation(s)
- Selin Karadeniz
- Department of Biology, Giresun University, Gure Campus, 28200, Giresun, Turkey
| | - Fikret Ustaoğlu
- Department of Biology, Giresun University, Gure Campus, 28200, Giresun, Turkey
| | - Handan Aydın
- Department of Biology, Giresun University, Gure Campus, 28200, Giresun, Turkey
| | - Bayram Yüksel
- Department of Property Protection and Security, Giresun Universitesi Espiye Meslek Yuksekokulu, Adabuk Mahallesi Maresal Fevzi Cakmak Cd No:2, Espiye, 28600, Giresun, Turkey.
| |
Collapse
|
8
|
Alamgir A, Ali Q, Fatima N, Khan MA, Nawaz MF, Tariq S, Rizwan M, Yong JWH. Geospatial quality assessment of locally available ice for heavy metals and metalloids and their potential risks for human health in Karachi, Pakistan. Heliyon 2024; 10:e28252. [PMID: 38689958 PMCID: PMC11059416 DOI: 10.1016/j.heliyon.2024.e28252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
Extreme hot conditions during summers, high poverty rate and continuous electricity load shedding affect commercial manufacturing and sale of ice in many countries. The vendors prepared ice using untreated piped water, tanker water and ground water. These waters may contain hazardous pollutants and ice made from them will pose a potential human health risk. Thus, it is important to regularly monitor the chemical composition of water sources and the quality of the manufactured ice. A contemporary examination was carried out to evaluate the physico-chemical properties and heavy metals and metalloids in the ice sold in all the districts of Karachi, Pakistan. This pioneering study was an innovative effort to assess the ice quality in relation to potential pollutant hazards to human health; with concomitant geospatial information. The geospatial distribution of ice quality and major constituents were among the measured parameters; carefully associated with further geospatial information, determined using GIS (Geographic Information Systems) and PCA (Principal Component Analysis) techniques. Interestingly, the physico-chemical analyses revealed that the ice quality was marginally adequate and the total mean metal-metalloid contents were in the sequence of Pb > Ni > Zn > Fe > Cr > As. The concentrations of these metals were above the upper allowable limits with reference to the recommended WHO guidelines. We observed that 57.1% and 35.7% ice samples had good physico-chemical properties assessed using the Ice Quality Index (IQI). Conversely, the IQI for metals showed that the ice was unsafe for human consumption. In terms of health risk assessment, the overall mean CDI (Chronic Daily Intake) and HQ (Hazard Quotient) values were in the order of Pb () > Ni (3.2) > Zn (2.3) > Fe (2.1) > Cr (1.6) > As (0.5) and Pb (7.4) > As (1.7) > Cr (0.5) > Ni (0.4 > Zn (0.008) > Fe (0.003), respectively. This study highlighted that routine monitoring of the water supplies available for making ice is required to protect public health.
Collapse
Affiliation(s)
- Aamir Alamgir
- Institute of Environmental Studies, University of Karachi, Karachi, Pakistan
| | - Qamar Ali
- Institute of Environmental Studies, University of Karachi, Karachi, Pakistan
| | - Noor Fatima
- Institute of Environmental Studies, University of Karachi, Karachi, Pakistan
| | - Moazzam Ali Khan
- Institute of Environmental Studies, University of Karachi, Karachi, Pakistan
| | | | - Somia Tariq
- Institute of Environmental Studies, University of Karachi, Karachi, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456 Alnarp, Sweden
| |
Collapse
|
9
|
Liao KW, Lee WJ, Lin SC, Tsao YN, Lin HY, Liu C, Chin WS. Probabilistic risk assessment for determining nonessential metals in commercial infant formula products in Taiwan. J Food Sci 2024; 89:1804-1813. [PMID: 38258895 DOI: 10.1111/1750-3841.16929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
During the early months of life, infant formula plays a crucial role as a primary source of both food and essential nutrients for infants, serving as a replacement for or supplement to breast milk. However, nonessential metals in infant formulas are a concern because infants are highly vulnerable to chemical exposure. The aim of this study was to investigate infant exposure to nonessential metals in infant formula products in Taiwan and assess the associated health risks. In this study, concentrations of arsenic (As), barium (Ba), cadmium (Cd), manganese (Mn), lead (Pb), and vanadium (V) in 45 formula products for 0-1-year-old infants were determined by inductively coupled plasma mass spectrometry. The mean As, Ba, Cd, Mn, Pb, and V concentrations were 6.42, 280, 3.72, 1425, 20.4, and 21.9 µg/kg, respectively. According to our probabilistic simulation of the estimated daily intake of metals, the proportion of hazard quotients exceeding one was 7.69% for As and 3.29% for Mn, and that of hazard index (HI) values exceeding 1 was >17% for metals. Arsenic had the largest HI contribution (46.9%), followed by Mn (22.3%) and Pb (12.7%). The nonessential metals content in infant formula raises potential noncarcinogenic health concerns for infants in Taiwan. Therefore, regulations for nonessential metals must be imposed on related food products in Taiwan, with a particular focus on As and Mn.
Collapse
Affiliation(s)
- Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ju Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Shao-Chi Lin
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ning Tsao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ying Lin
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chen Liu
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Friedman A, Boselli E, Ogneva-Himmelberger Y, Heiger-Bernays W, Brochu P, Burgess M, Schildroth S, Denehy A, Downs T, Papautsky I, Clauss Henn B. Manganese in residential drinking water from a community-initiated case study in Massachusetts. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:58-67. [PMID: 37301899 PMCID: PMC10727146 DOI: 10.1038/s41370-023-00563-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Manganese (Mn) is a metal commonly found in drinking water, but the level that is safe for consumption is unknown. In the United States (U.S.), Mn is not regulated in drinking water and data on water Mn concentrations are temporally and spatially sparse. OBJECTIVE Examine temporal and spatial variability of Mn concentrations in repeated tap water samples in a case study of Holliston, Massachusetts (MA), U.S., where drinking water is pumped from shallow aquifers that are vulnerable to Mn contamination. METHODS We collected 79 residential tap water samples from 21 households between September 2018 and December 2019. Mn concentrations were measured using inductively coupled plasma mass spectrometry. We calculated descriptive statistics and percent of samples exceeding aesthetic (secondary maximum containment level; SMCL) and lifetime health advisory (LHA) guidelines of 50 µg/L and 300 µg/L, respectively. We compared these concentrations to concurrent and historic water Mn concentrations from publicly available data across MA. RESULTS The median Mn concentration in Holliston residential tap water was 2.3 µg/L and levels were highly variable (range: 0.03-5,301.8 µg/L). Mn concentrations exceeded the SMCL and LHA in 14% and 12% of samples, respectively. Based on publicly available data across MA from 1994-2022, median Mn concentration was 17.0 µg/L (N = 37,210; range: 1-159,000 µg/L). On average 40% of samples each year exceeded the SMCL and 9% exceeded the LHA. Samples from publicly available data were not evenly distributed between MA towns or across sampling years. IMPACT STATEMENT This study is one of the first to examine Mn concentrations in drinking water both spatially and temporally in the U.S. Findings suggest that concentrations of Mn in drinking water frequently exceed current guidelines and occur at concentrations shown to be associated with adverse health outcomes, especially for vulnerable and susceptible subpopulations like children. Future studies that comprehensively examine exposure to Mn in drinking water and its associations with children's health are needed to protect public health.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Elena Boselli
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Yelena Ogneva-Himmelberger
- Department of International Development, Community, and Environment, Clark University, Worcester, MA, USA
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Paige Brochu
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Mayah Burgess
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Timothy Downs
- Department of International Development, Community, and Environment, Clark University, Worcester, MA, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Birgit Clauss Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
11
|
Friedman A, Schildroth S, Bauer JA, Coull BA, Smith DR, Placidi D, Cagna G, Krengel MH, Tripodis Y, White RF, Lucchini RG, Wright RO, Horton M, Austin C, Arora M, Claus Henn B. Early-life manganese exposure during multiple developmental periods and adolescent verbal learning and memory. Neurotoxicol Teratol 2023; 100:107307. [PMID: 37832858 PMCID: PMC10834060 DOI: 10.1016/j.ntt.2023.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Manganese (Mn) is both an essential and toxic metal, and associations with neurodevelopment depend on exposure timing. Prospective data examining early life Mn with adolescent cognition are sparse. METHODS We enrolled 140 Italian adolescents (10-14 years old) from the Public Health Impact of Metals Exposure study. Mn in deciduous teeth was measured using laser ablation-mass spectrometry to represent prenatal, postnatal and early childhood exposure. The California Verbal Learning Test for Children (CVLT-C) was administered to assess adolescent verbal learning and memory. Multivariable regression models estimated changes in CVLT-C scores and the odds of making an error per doubling in dentine Mn in each exposure period. Multiple informant models tested for differences in associations across exposure periods. RESULTS A doubling in prenatal dentine Mn levels was associated with lower odds of making an intrusion error (OR = 0.23 [95% CI: 0.09, 0.61]). This beneficial association was not observed in other exposure periods. A doubling in childhood Mn was beneficially associated with short delay free recall: (ß = 0.47 [95% CI: -0.02, 0.97]), which was stronger in males (ß = 0.94 [95% CI: 0.05, 1.82]). Associations were null in the postnatal period. CONCLUSION Exposure timing is critical for understanding Mn-associated changes in cognitive function.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, USA.
| | - Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, USA
| | - Julia A Bauer
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Darmouth, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H Chan School of Public Health, Boston, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Maxine H Krengel
- Department of Neurology, Boston University School of Medicine, Boston, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, USA; Department of Neurology, Boston University School of Medicine, Boston, USA
| | - Roberto G Lucchini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, USA
| |
Collapse
|
12
|
Incorporating Quartz Crystal Microbalance with Chronoamperometry to Enhance Manganese Detection Stability in Drinking Water. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Mohagheghpour E, Farzin L, Ghoorchian A, Sadjadi S, Abdouss M. Selective detection of manganese(II) ions based on the fluorescence turn-on response via histidine functionalized carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121409. [PMID: 35617832 DOI: 10.1016/j.saa.2022.121409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Herein, water-soluble emissive carbon quantum dots (His-CQDs) were synthesized from pyrolysis of sodium citrate in the presence of histidine under hydrothermal conditions. The as-synthesized His-CQDs were characterized using Fourier transform infrared (FT-IR), fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques. The obtained His-CQDs display a strong emission peak at 534 nm when excited at 476 nm with a high quantum yield (61.8 %). The as-synthesized His-CQDs were applied as a new platform for highly selective determination of Mn(II) based on the fluorescence "turn-on" response with a limit of detection of 1.85 µg L-1 (at 3σ) and a linear range of 3.50-35.5 µg L-1 in aqueous solution. The sensing mechanism of the His-CQDs probe for the detection of Mn(II) was studied via density functional theory (DFT), FT-IR, and EDTA complexation methodology. In addition, His-CQDs were successfully applied to determine the accurate amounts of Mn(II) in whole blood control material. More importantly, the integrating such an efficient sensor with point-of-care technology can enable portable, easy-to-use, and rapid sensing systems for better biological and clinical applications.
Collapse
Affiliation(s)
- Elham Mohagheghpour
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Arash Ghoorchian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sodeh Sadjadi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Bradley PM, Romanok KM, Smalling KL, Focazio MJ, Charboneau R, George CM, Navas-Acien A, O’Leary M, Red Cloud R, Zacher T, Breitmeyer SE, Cardon MC, Cuny CK, Ducheneaux G, Enright K, Evans N, Gray JL, Harvey DE, Hladik ML, Kanagy LK, Loftin KA, McCleskey RB, Medlock-Kakaley EK, Meppelink SM, Valder JF, Weis CP. Tapwater Exposures, Effects Potential, and Residential Risk Management in Northern Plains Nations. ACS ES&T WATER 2022; 2:1772-1788. [PMID: 36277121 PMCID: PMC9578051 DOI: 10.1021/acsestwater.2c00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 05/10/2023]
Abstract
In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures.
Collapse
Affiliation(s)
- Paul M. Bradley
- U.S.
Geological Survey, Columbia, South Carolina 29210, United States
| | | | - Kelly L. Smalling
- U.S.
Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | | - Robert Charboneau
- Spirit
Lake Tribe Office of Environmental Health, Fort Totten, North Dakota 58335, United States
| | - Christine Marie George
- Johns
Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Ana Navas-Acien
- Columbia
University Mailman School of Public Health, New York, New York 10032, United States
| | - Marcia O’Leary
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Reno Red Cloud
- Oglala
Sioux Tribe Natural Resources Regulatory Agency, Pine Ridge, South Dakota 57770, United States
| | - Tracy Zacher
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | | | - Mary C. Cardon
- U.S.
Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Christa K. Cuny
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Guthrie Ducheneaux
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Kendra Enright
- Missouri
Breaks Industries Research Inc., Eagle Butte, South Dakota 57625, United States
| | - Nicola Evans
- U.S.
Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - James L. Gray
- U.S.
Geological Survey, Lakewood, Colorado 80228-3742, United States
| | - David E. Harvey
- Indian Health Service/HHS, Rockville, Maryland 20857, United States
| | | | - Leslie K. Kanagy
- U.S.
Geological Survey, Lakewood, Colorado 80228-3742, United States
| | - Keith A. Loftin
- U.S.
Geological Survey, Lawrence, Kansas 66049, United States
| | | | | | | | - Joshua F. Valder
- U.S. Geological
Survey, Rapid City, South Dakota 57702, United States
| | - Christopher P. Weis
- National Institute of Environmental Health
Sciences/NIH, Bethesda, Maryland 20814, United
States
| |
Collapse
|
15
|
He Y, Dietrich AM, Jin Q, Lin T, Yu D, Huang H. Cellulose adsorbent produced from the processing waste of brewer’s spent grain for efficient removal of Mn and Pb from contaminated water. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Podgorski J, Araya D, Berg M. Geogenic manganese and iron in groundwater of Southeast Asia and Bangladesh - Machine learning spatial prediction modeling and comparison with arsenic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155131. [PMID: 35405246 DOI: 10.1016/j.scitotenv.2022.155131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Naturally occurring, geogenic manganese (Mn) and iron (Fe) are frequently found dissolved in groundwater at concentrations that make the water difficult to use (deposits, unpleasant taste) or, in the case of Mn, a potential health hazard. Over 6000 groundwater measurements of Mn and Fe in Southeast Asia and Bangladesh were assembled and statistically examined with other physicochemical parameters. The machine learning methods random forest and generalized boosted regression modeling were used with spatially continuous environmental parameters (climate, geology, soil, topography) to model and map the probability of groundwater Mn > 400 μg/L and Fe > 0.3 mg/L for Southeast Asia and Bangladesh. The modeling indicated that drier climatic conditions are associated with a tendency of elevated Mn concentrations, whereas high Fe concentrations tend to be found in a more humid climate with elevated levels of soil organic carbon. The spatial distribution of Mn > 400 μg/L and Fe > 0.3 mg/L was compared and contrasted with that of the critical geogenic contaminant arsenic (As), confirming that high Fe concentrations are often associated with high As concentrations, whereas areas of high concentrations of Mn and As are frequently found adjacent to each other. The probability maps draw attention to areas prone to elevated concentrations of geogenic Mn and Fe in groundwater and can help direct efforts to mitigate their negative effects. The greatest Mn hazard is found in densely populated northwest Bangladesh and the Mekong, Red and Ma River Deltas of Cambodia and Vietnam. Widespread elevated Fe concentrations and their associated negative effects on water infrastructure pose challenges to water supply. The Mn and Fe prediction maps demonstrate the value of machine learning for the geospatial prediction modeling and mapping of groundwater contaminants as well as the potential for further constituents to be targeted by this novel approach.
Collapse
Affiliation(s)
- Joel Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, 8600 Dübendorf, Switzerland.
| | - Dahyann Araya
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, 8600 Dübendorf, Switzerland
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Water Resources and Drinking Water, 8600 Dübendorf, Switzerland
| |
Collapse
|
17
|
Kim H, Harrison FE, Aschner M, Bowman AB. Exposing the role of metals in neurological disorders: a focus on manganese. Trends Mol Med 2022; 28:555-568. [PMID: 35610122 PMCID: PMC9233117 DOI: 10.1016/j.molmed.2022.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Metals are ubiquitous chemical entities involved in a myriad of biological processes. Despite their integral role in sustaining life, overexposure can lead to deleterious neurological outcomes posing a public health concern. Excess exposure to metals has been associated with aberrant neurodevelopmental and neurodegenerative diseases and prominently contributes to environmental risk for neurological disorders. Here, we use manganese (Mn) to exemplify the gap in our understanding of the mechanisms behind acute metal toxicity and their relationship to chronic toxicity and disease. This challenge frustrates understanding of how individual exposure histories translate into preventing and treating brain diseases from childhood through old age. We discuss ways to enhance the predictive value of preclinical models and define mechanisms of chronic, persistent, and latent neurotoxicity.
Collapse
Affiliation(s)
- Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
18
|
Yu M, Teitelbaum SL, Dolios G, Dang LHT, Tu P, Wolff MS, Petrick LM. Molecular Gatekeeper Discovery: Workflow for Linking Multiple Exposure Biomarkers to Metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6162-6171. [PMID: 35129943 PMCID: PMC9164279 DOI: 10.1021/acs.est.1c04039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The exposome reflects multiple exposures across the life-course that can affect health. Metabolomics can reveal the underlying molecular basis linking exposures to health conditions. Here, we explore the concept and general data analysis framework of "molecular gatekeepers"─key metabolites that link single or multiple exposure biomarkers with correlated clusters of endogenous metabolites─to inform health-relevant biological targets. We performed untargeted metabolomics on plasma from 152 adolescent girls participating in the Growing Up Healthy Study in New York City. We then performed network analysis to link metabolites to exposure biomarkers including five trace elements (Cd, Mn, Pb, Se, and Hg) and five perfluorinated chemicals (PFCs; n-PFOS, Sm-PFOS, n-PFOA, PFHxS, and PFNA). We found 144 molecular gatekeepers and annotated 22 of them. Lysophosphatidylcholine (16:0) and taurodeoxycholate were correlated with both n-PFOA and n-PFOS, suggesting a shared dysregulation from multiple xenobiotic exposures. Sphingomyelin (d18:2/14:0) was significantly associated with age at menarche; yet, no direct association was detected between any exposure biomarkers and age at menarche. Thus, molecular gatekeepers can also discover molecular linkages between exposure biomarkers and health outcomes that may otherwise be obscured by complex interactions in direct measurements.
Collapse
Affiliation(s)
- Miao Yu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Susan L Teitelbaum
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Georgia Dolios
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lam-Ha T Dang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peijun Tu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Mary S Wolff
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lauren M Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
19
|
Yang Y, Liu Y, Zhang AL, Tang SF, Ming Q, Ao CY, Liu Y, Li CZ, Yu C, Zhao H, Chen L, Li J. Curcumin protects against manganese-induced neurotoxicity in rat by regulating oxidative stress-related gene expression via H3K27 acetylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113469. [PMID: 35367881 DOI: 10.1016/j.ecoenv.2022.113469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Long-term manganese exposure causes a neurodegenerative disorder referred to as manganese poisoning, but the mechanism remains unclear and no specific treatment is available. Oxidative stress is widely recognised as one of the main causes of manganese-induced neurotoxicity. In recent years, the role of histone acetylation in neurodegenerative diseases has been widely concerned. curcumin is a natural polyphenol compound extracted from the rhizome of turmeric and exhibits both antioxidant and neuroprotective properties. Therefore, we aimed to investigate whether and how curcumin protects against manganese-induced neurotoxicity from the perspective of histone acetylation, based on the reversibility of histone acetylation modification. In this study, rats were treated with or without curcumin and subjected to long-term manganese exposure. Results that treatment of manganese decreased the protein expression of H3K18 acetylation and H3K27 acetylation at the promoters of oxidative stress-related genes and inhibited the expression of these genes. Nevertheless, curcumin increased the H3K27 acetylation level at the manganese superoxide dismutase (SOD2) gene promoter and promoted the expression of SOD2 gene. Oxidative damage in the rat striatum as well as learning and memory dysfunction were ameliorated after curcumin treatment. Taken together, our results suggest that the regulation of oxidative stress by histone acetylation may be a key mechanism of manganese-induced neurotoxicity. In addition, curcumin ameliorates Mn-induced neurotoxicity may be due to alleviation of oxidative damage mediated by increased activation of H3K27 acetylation at the SOD2 gene promoter.
Collapse
Affiliation(s)
- Yue Yang
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ying Liu
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - An-Liu Zhang
- Guiyang Center for Disease Control and Prevention, Guiyang, Guizhou 550003, China
| | - Shun-Fang Tang
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qian Ming
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Chun-Yan Ao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yan Liu
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Chang-Zhe Li
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Chun Yu
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hua Zhao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Li Chen
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jun Li
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
20
|
Friedman A, Bauer JA, Austin C, Downs TJ, Tripodis Y, Heiger-Bernays W, White RF, Arora M, Claus Henn B. Multiple metals in children's deciduous teeth: results from a community-initiated pilot study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:408-417. [PMID: 34750512 PMCID: PMC9079191 DOI: 10.1038/s41370-021-00400-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Characterizing retrospective exposure to toxicants during multiple early-life developmental periods is challenging, yet critical for understanding developmental effects. OBJECTIVE To characterize early-life metal exposure using deciduous teeth in a community concerned about past exposures. METHODS Naturally shed teeth were collected from 30 children ages 5-13 years who resided in Holliston, Massachusetts since conception. We estimated weekly prenatal and postnatal (up to 1 year of age) exposure to 12 metals by measuring dentine concentrations using laser ablation-inductively coupled plasma-mass spectrometry. Multivariable linear mixed models were used to explore sociodemographic, dietary, and behavioral correlates of dentine metal concentrations. RESULTS Temporal trends in dentine levels differed by metal. Source of milk during the first year of life was associated with dentine barium (Ba) levels, where being fed predominantly breastmilk was associated with 39% (95% CI: -57%, -13%) lower dentine Ba compared to predominantly formula use. Females had higher prenatal and postnatal dentine Mn and Pb, compared to males (e.g., % difference, postnatal Mn: 122% (17%, 321%); postnatal Pb: 60% (95% CI: -8%, 178%)). SIGNIFICANCE Deciduous teeth provide retrospective information on dose and timing of early-life metals exposure at high resolution. We demonstrate their utility in a community-based study with known past contamination of drinking water. IMPACT STATEMENT We conducted a community-initiated pilot study in a community concerned with historical exposure to multiple metals. Using deciduous teeth, a novel noninvasive biomarker, we characterized early-life exposure to 12 metals in approximately weekly increments during sensitive developmental periods, thus demonstrating the utility of this biomarker in communities concerned with past exposures.
Collapse
Affiliation(s)
- Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Julia Anglen Bauer
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy J Downs
- Department of International Development, Community, and Environment, Clark University, Worcester, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Gӧdeke SH, Jamil H, Schirmer M, Bretzler A, Shamsuddin N, Mansor NH. Iron and manganese mobilisation due to dam height increase for a tropical reservoir in South East Asia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:358. [PMID: 35412155 DOI: 10.1007/s10661-022-10014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The aim of this research was the analysis of the effect of a dam height raise on the water quality of a tropical reservoir used for drinking water purposes in South East Asia. Analyses of iron, manganese, pH and ammonia were performed over a 5-year period from daily water sampling at the reservoir. In addition, high-frequency monitoring data of nitrate, ammonium, pH and blue-green algae were obtained using a monitoring probe. The results showed that due to the raising of the reservoir water level, previously oxic sediments became submerged, triggering an increase in iron and manganese in particular due to the establishment of reducing conditions. Manganese concentrations with values up to 4 mg L-1 are now exceeding guideline values. The analysis strongly indicated that both iron and manganese have a seasonal component with higher iron and manganese concentrations during the wet season. Over a three-year period afterwards, concentrations did not go back to pre-raise levels. The change in water quality was accompanied by a change in pH from previous values of around 5 to pH values of around 6.5. Geochemical simulations confirmed the theory that the increasing concentrations of iron and manganese are due to the dissolution of MnO2 and ferric oxyhydroxides oxidising organic matter in the process. This study showed that changes in reservoir water levels with the establishment of reducing conditions can have long-term effects on the water quality of a reservoir.
Collapse
Affiliation(s)
- Stefan Herwig Gӧdeke
- Geosciences Programme, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam.
| | - Haziq Jamil
- Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Mario Schirmer
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Switzerland
- Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Neuchâtel, Switzerland
| | - Anja Bretzler
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Switzerland
- Sustainability Research Initiative, House of Academies, P.O. Box 3001, Bern, Switzerland
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan , Brunei Darussalam
| | - Nur Hakimah Mansor
- Ministry of Development, Public Works Department, Department of Water Services, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
22
|
Liu C, Huang L, Huang S, Wei L, Cao D, Zan G, Tan Y, Wang S, Yang M, Tian L, Tang W, He C, Shen C, Luo B, Zhu M, Liang T, Pang B, Li M, Mo Z, Yang X. Association of both prenatal and early childhood multiple metals exposure with neurodevelopment in infant: A prospective cohort study. ENVIRONMENTAL RESEARCH 2022; 205:112450. [PMID: 34861232 DOI: 10.1016/j.envres.2021.112450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Impaired neurodevelopment of children has become a growing public concern; however, the associations between metals exposure and neurocognitive function have remained largely unknown. OBJECTIVES We systematically evaluated the associations of multiple metals exposure during pregnancy and childhood on the neurodevelopment of children aged 2-3 years. METHODS We measured 22 metals in the serum and urine among703 mother-child pairs from the Guangxi Birth Cohort Study. The neurocognitive development of children was assessed by the Gesell Development Diagnosis Scale (GDDS; Chinese version). Multiple linear regression models were used to evaluate the relationship between the metals (selected by elastic net regression) and the outcomes. The Bayesian kernel machine regression (BKMR) was used to evaluate the possible joint effect between the multiple metal mixture and the outcomes. RESULTS Prenatal aluminum (Al) exposure was negatively associated with the fine motor developmental quotient (DQ) (β = -1.545, 95%CI: 2.231, -0.859), adaption DQ (β = -1.182, 95%CI: 1.632, -0.732), language DQ (β = -1.284, 95% CI: 1.758, -0.809), and social DQ (β = -1.729, 95% CI: 2.406, -1.052) in the multi-metal model. Prenatal cadmium (Cd) exposure was negatively associated with gross motor DQ (β = -2.524, 95% CI: 4.060, -0.988), while postpartum Cd exposure was negatively associated with language DQ (β = -1.678, 95% CI: 3.227, -0.129). In stratified analyses, infants of different sexes had different sensitivities to metal exposure, and neurobehavioral development was more significantly affected by metal exposure in the first and second trimester. BKMR analysis revealed a negative joint effect of the Al, Cd, and selenium (Se) on the language DQ score; postpartum Cd exposure played a major role in this relationship. CONCLUSION Prenatal exposure to Al, Ba, Cd, molybdenum (Mo), lead (Pb), antimony (Sb), and strontium (Sr), and postpartum exposure to cobalt (Co), Cd, stannum (Sn), iron (Fe), nickel (Ni), and Se are associated with neurological development of infants. The first and second trimester might be the most sensitive period when metal exposure affects neurodevelopment.
Collapse
Affiliation(s)
- Chaoqun Liu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Lulu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Luyun Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Dehao Cao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Gaohui Zan
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Yanli Tan
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Sida Wang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Minjing Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Long Tian
- Department of Science and Education, Maternal & Child Health Hospital of Qinzhou, Qinzhou, Guangxi, China
| | - Weijun Tang
- Center for Translational Medicine, Maternal & Child Health Hospital of Qinzhou, Qinzhou, Guangxi, China
| | - Caitong He
- Department of Science and Education, Maternal & Child Health Hospital of Yulin, Yulin, Guangxi, China
| | - Chunhua Shen
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou Institute of Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Bangzhu Luo
- Department of Medical Services Section, Maternal & Child Health Hospital of Guigang, Guigang, Guangxi, China
| | - Maoling Zhu
- Department of Obstetrics, Maternal & Child Health Hospital of Nanning, Nanning, Guangxi, China
| | - Tao Liang
- Department of Pediatrics, Maternal & Child Health Hospital of Wuzhou, Wuzhou, Guangxi, China
| | - Baohong Pang
- Department of Women Health Care, Maternal & Child Health Hospital of Yuzhou, Yulin, Guangxi, China
| | - Mujun Li
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China.
| |
Collapse
|
23
|
Fatima SU, Khan MA, Siddiqui F, Mahmood N, Salman N, Alamgir A, Shaukat SS. Geospatial assessment of water quality using principal components analysis (PCA) and water quality index (WQI) in Basho Valley, Gilgit Baltistan (Northern Areas of Pakistan). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:151. [PMID: 35129685 DOI: 10.1007/s10661-022-09845-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Public health quality in Gilgit Baltistan (GB) is at threat due to multiple water-borne diseases. Anthropogenic activities are accelerating the burden of pollution load on the glacio-fluvial streams and surface water resources of Basho Valley in Skardu district of GB. The present research has investigated the drinking water quality of the Basho Valley that is being used for domestic purposes. The study also comprehends public health status by addressing the basis drinking water quality parameters. A total of 23 water samples were collected and then analyzed to elucidate the current status of physico-chemical, metals, and microbial parameters. Principal component analysis (PCA) was applied and three principal components were obtained accounting 53.04% of the total variance, altogether. PCA identified that metallic and microbial parameters are the major factor to influence the water quality of the valley. Meanwhile, water quality index (WQI) was also computed and it was observed that WQI of the valley is characterized as excellent in terms of physico-chemical characteristics; however, metals and microbial WQI shows most of the samples are unfit for drinking purpose. Spatial distribution is also interpolated using the Inverse distance weight (IDW) to anticipate the results of mean values of parameters and WQI scores. The study concludes that water quality is satisfactory in terms of physico-chemical characteristics; however, analysis of metals shows that the concentrations of copper (Cu) (0.40 ± 0.16 mg/L), lead (Pb) (0.24 ± 0.10 mg/L), zinc (Zn) (6.77 ± 27.1 mg/L), manganese (Mn) (0.19 ± 0.05), and molybdenum (Mo) (0.07 ± 0.02 mg/L) are exceeding the maximum permissible limit as set in the WHO guidelines for drinking water. Similarly, the results of the microbial analysis indicate that the water samples are heavily contaminated with fecal pollution (TCC, TFC, and TFS > 3 MPN/100 mL). On the basis of PCA, WQI, and IDW, the main sources of pollution are most likely to be concluded as the anthropogenic activities including incoming pollution load from upstream channels. A few underlying sources by natural process of weathering and erosion may also cause release of metals in surface and groundwater. This study recommends ensuring public health with regular monitoring and assessment of water resources in the valley.
Collapse
Affiliation(s)
- Syeda Urooj Fatima
- Institute of Environmental Studies, University of Karachi, Karachi-75270, Pakistan.
| | - Moazzam Ali Khan
- Institute of Environmental Studies, University of Karachi, Karachi-75270, Pakistan
| | - Farhan Siddiqui
- Department of Computer Science, University of Karachi, Karachi-75270, Pakistan
| | - Nadeem Mahmood
- Department of Computer Science, University of Karachi, Karachi-75270, Pakistan
| | - Nasir Salman
- Department of Special Education, University of Karachi, Karachi-75270, Pakistan
| | - Aamir Alamgir
- Institute of Environmental Studies, University of Karachi, Karachi-75270, Pakistan
| | - Syed Shahid Shaukat
- Institute of Environmental Studies, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
24
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
25
|
Fatima SU, Khan MA, Shaukat SS, Alamgir A, Siddiqui F, Sulman N. Geo-Spatial Assessment of Water Quality in Shigar Valley, Gilgit Baltistan, Pakistan. Health (London) 2022. [DOI: 10.4236/health.2022.145040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Yao W, Gallagher DL, Dietrich AM. Risks to children from inhalation of aerosolized aqueous manganese emitted from ultrasonic humidifiers can be greater than for corresponding ingestion. WATER RESEARCH 2021; 207:117760. [PMID: 34800908 DOI: 10.1016/j.watres.2021.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The essential trace element manganese (Mn) can cause neurotoxicity with inhalation acknowledged as a more severe health and cognition threat than ingestion. METHODS Over a range of aqueous Mn concentrations present in tap water, this research characterizes exposures and risks for adults and 0.25, 1, 2.5, and 6 yr old children who ingest the water and inhale respirable particles produced by a room-sized ultrasonic humidifier filled with the same water. Aqueous Mn concentrations evaluated included 50 µg/L USEPA esthetic guideline, 80 µg/L WHO infant guideline, and 120 µg/L Canadian regulatory level. Airborne-particle-bound Mn concentrations were generated for water filling an ultrasonic humidifier under four realistic room conditions (33 m3 small or 72 m3 large) with varying ventilation rates from 0.2/h -1.5/h. Average daily doses (ADD) and reference intake doses were calculated for ingestion and 8-h inhalation of humidified air. Hazard quotients (HQ) compared the intake doses and reference doses. Multi-path particle dosimetry (MPPD) model quantified the particle deposition and deposited dose in children's and adults' respiratory tracts. RESULTS At only 11 µg/L Mn, the resulting humidified air Mn exceeds USEPA's reference concentration of 0.05 µg/m3 Mn in small room with low, energy-efficient ventilation. Inhalation ADD are 2 magnitudes lower than ingestion ADD for identical water Mn concentrations and daily exposure frequency. Even so, ingestion HQs are approximately 0.2 but inhalation risk is significant (HQ>1) for children and adults when breathing Mn-humidified air under most small room conditions at 50, 80 or 120 µg/L Mn. MPPD model indicates inhaled Mn deposits in head and pulmonary regions, with greater Mn dose deposits in children than adults. CONCLUSION Inhalation of Mn-particles produced from ultrasonic humidifiers can pose greater risks than ingestion at the same water concentration, especially for children. Aqueous Mn concentration and room size influence risks. Limiting manganese exposures and setting regulations requires consideration of both ingestion and inhalation of water.
Collapse
Affiliation(s)
- Wenchuo Yao
- Department of Civil and Environmental Engineering, Virginia Tech, 413 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Daniel L Gallagher
- Department of Civil and Environmental Engineering, Virginia Tech, 413 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering, Virginia Tech, 413 Durham Hall, Blacksburg, Virginia 24061, United States.
| |
Collapse
|
27
|
Budinger D, Barral S, Soo AKS, Kurian MA. The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol 2021; 20:956-968. [PMID: 34687639 DOI: 10.1016/s1474-4422(21)00238-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Manganese is an essential trace metal. The dysregulation of manganese seen in a broad spectrum of neurological disorders reflects its importance in brain development and key neurophysiological processes. Historically, the observation of acquired manganism in miners and people who misuse drugs provided early evidence of brain toxicity related to manganese exposure. The identification of inherited manganese transportopathies, which cause neurodevelopmental and neurodegenerative syndromes, further corroborates the neurotoxic potential of this element. Moreover, manganese dyshomoeostasis is also implicated in Parkinson's disease and other neurodegenerative conditions, such as Alzheimer's disease and Huntington's disease. Ongoing and future research will facilitate the development of better targeted therapeutical strategies than are currently available for manganese-associated neurological disorders.
Collapse
Affiliation(s)
- Dimitri Budinger
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Audrey K S Soo
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
28
|
Rahman MA, Hashem MA, Rana MS, Islam MR. Manganese in potable water of nine districts, Bangladesh: human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45663-45675. [PMID: 33876370 DOI: 10.1007/s11356-021-14016-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Safe drinking water is directly linked to good human health. An excessive amount of manganese (Mn) in drinking water supplies causes people show symptoms of neurotoxicity. In this study, the level of Mn in potable water sourced from tube wells located in 9 (nine) districts of Bangladesh was monitored. In total, 170 (one hundred and seventy) water samples were collected and Mn was quantified by atomic absorption spectroscopy (AAS). The levels of Mn found in the tube well water samples of Sirajganj, Meherpur, Chuadanga, Jhenaidah, Magura, Faridpur, Jashore, Satkhira, and Khulna were 0.37-1.86, 0.10-4.11, 0.30-0.76, 0.26-0.94, 0.01-0.18, 0.21-1.78, 0.08-1.23, 0.05-0.27, and 0.01-2.11 mg/L, respectively. Results revealed that Mn level was beyond the highest contaminated levels of 0.1 mg/L and 0.4 mg/L, which are recommended by Bangladesh Drinking Standard (BDS) and World Health Organization (WHO), respectively. The maximum Mn contaminated level reached up to 4.11 mg/L (mean, 0.53 mg/L). The Mn level in tube well water exceeded 51.1% and 75.9% set by the recommended value of WHO and BDS, respectively. Furthermore, the calculated hazard quotient (HQ) value for Mn was observed to be greater than unity, indicating both children and adults risked potential non-carcinogenic health issues. The water supply authorities should take steps to provide Mn-free drinking water for communities.
Collapse
Affiliation(s)
- Md Aminur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Public Health Engineering (DPHE), Zonal Laboratory, Khulna-9100, Bangladesh
| | - Md Abul Hashem
- Department of Leather Engineering, Khulna University of Engineering & Technology (KUET), Khulna-9203, Bangladesh.
| | - Md Sohel Rana
- Department of Public Health Engineering (DPHE), Zonal Laboratory, Bogura, Bangladesh
| | - Md Rashidul Islam
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
29
|
The Potential Roles of Blood-Brain Barrier and Blood-Cerebrospinal Fluid Barrier in Maintaining Brain Manganese Homeostasis. Nutrients 2021; 13:nu13061833. [PMID: 34072120 PMCID: PMC8227615 DOI: 10.3390/nu13061833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.
Collapse
|
30
|
Mitchell EJ, Frisbie SH, Roudeau S, Carmona A, Ortega R. How much manganese is safe for infants? A review of the scientific basis of intake guidelines and regulations relevant to the manganese content of infant formulas. J Trace Elem Med Biol 2021; 65:126710. [PMID: 33450552 DOI: 10.1016/j.jtemb.2020.126710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/25/2020] [Accepted: 12/20/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent research has uncovered the potential for excess manganese (Mn) intakes causing significant neurotoxic effects for early brain development. METHODS We identified the Mn tolerable intakes (TI) published by the U.S. Institute of Medicine (IOM), World Health Organization (WHO), Agence nationale de sécurité sanitaire (ANSES), and U.S. Environmental Protection Agency (US EPA) and examined the primary studies on which regulatory TIs are based. We converted the TIs to μg of Mn/kg/day using standard assumptions specific to each agency. We estimated μg of Mn/kg/day intakes due to formulas. Using our estimates for formula intakes, weights, and kcal content, we converted regulatory maxima and minima from μg of Mn/100 kcals to estimates of μg of Mn/kg/day. RESULTS Except for the proposed ANSES TI for drinking water, none of the primary studies on which Mn intake guidelines and regulations are based measured health outcomes. Some infant formulas may exceed the regulatory TIs, especially if prepared with water containing considerable concentrations of Mn (e.g. 250 μg/L), even while meeting national and international regulatory standards or guidelines. CONCLUSIONS Infant formula regulations must be revised to reduce the potential for excess manganese intakes and the practice of manganese supplementation of infant formulas should be ceased.
Collapse
Affiliation(s)
- Erika J Mitchell
- Better Life Laboratories, Inc., 293 George Road, East Calais, VT, USA.
| | - Seth H Frisbie
- Department of Chemistry and Biochemistry, Norwich University, Northfield, VT, USA.
| | - Stéphane Roudeau
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170, Gradignan, France.
| | - Asuncion Carmona
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170, Gradignan, France.
| | - Richard Ortega
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170, Gradignan, France.
| |
Collapse
|
31
|
Rahman MF, Mahmud MJ, Sadmani AHMA, Chowdhury AI, Anderson WB, Bodruzzaman ABM, Huq S. Previously unrecognized potential threat to children from manganese in groundwater in rohingya refugee camps in Cox's Bazar, Bangladesh. CHEMOSPHERE 2021; 266:129128. [PMID: 33301998 DOI: 10.1016/j.chemosphere.2020.129128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The forced displacement of over 700,000 Rohingyas from Myanmar to Bangladesh since the crackdown in August 2017 has resulted in a critical humanitarian and environmental crisis. Groundwater is the primary source of drinking water in the camps that were constructed to provide shelter for the refugee population. The current study explores occurrence of Mn in groundwater in the Rohingya camps and adjacent areas. A total of 52 groundwater samples were collected between August and October 2018 from different camps sites and the adjacent host area. It was found that 64% exceeded the Bangladesh standard (100 μg/L) suggesting the presence of elevated concentrations of Mn in some groundwater aquifers in the camp sites. Mn is a neurotoxicant and previous studies have reported intellectual impairment in children exposed to Mn levels similar to those detected in groundwater in the camp sites. Nearly 450,000 migrant and new-born children live in the camps in already stressed conditions. The occurrence of elevated Mn concentrations in groundwater in the camps and their adjacent areas is likely an additional stressor exposing these children to an increased risk of neurotoxicity. Based on the results of this small-scale study, we recommend undertaking an in-depth study on the occurrence of Mn in groundwater in the camps to come up with appropriate strategies to minimise exposure. In addition, we recommend conducting a systematic epidemiological study on potential impacts of manganese in drinking water on neurological development of the Rohingya children in the camps.
Collapse
Affiliation(s)
- M Feisal Rahman
- Dept. of Geography, Durham University, Durham, UK; International Centre for Climate Change and Development, Independent University, Dhaka, Bangladesh.
| | - Md Juel Mahmud
- International Centre for Climate Change and Development, Independent University, Dhaka, Bangladesh
| | - A H M Anwar Sadmani
- Dept. of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Ahmed I Chowdhury
- Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - William B Anderson
- Water Science, Technology & Policy Group, Dept. of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Abu B M Bodruzzaman
- Dept. of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Saleemul Huq
- International Centre for Climate Change and Development, Independent University, Dhaka, Bangladesh
| |
Collapse
|
32
|
Feng T, Feng Z, Liu Q, Jiang L, Yu Q, Liu K. Drinking habits and water sources with the incidence of cognitive impairment in Chinese elderly population: The Chinese Longitudinal Healthy Longevity Survey. J Affect Disord 2021; 281:406-412. [PMID: 33359931 DOI: 10.1016/j.jad.2020.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Little was known on whether drinking habits and water sources affected cognitive function. This study aimed to examine the associations of drinking habits and water sources with the incidence of cognitive impairment in the Chinese elderly population. METHODS Data were drawn from the Chinese Longitudinal Healthy Longevity Survey. All participants aged ≥ 60 years at baseline were potential eligible. Cognitive function was measured using the Chinese version of the Mini-Mental State Examination (CMMSE). Participants with the CMMSE score ≤ 24 were identified as cognitive impairment. Drinking habits included preferring to drink boiled water or un-boiled water. Water sources included well, surface water, spring, and tap water. RESULTS This study included 18034 participants. Participants drinking un- boiled water were more likely to develop cognitive impairment than those drinking boiled water (P< 0.001; HR: 1.269; and 95% CI: 1.128-1.427). Compared to drinking from a well, drinking from tap water at childhood, around aged 60 years, and present was associated with a lower incidence of cognitive impairment (all P< 0.001; HR: 0.672, 0.735, and 0.765; and 95% CI: 0.540-0.836, 0.686-0.788, and 0.723-0.810, respectively). LIMITATIONS The underline mechanisms behind the associations of drinking habits and water sources with the incidence of cognitive impairment were not fully explained. CONCLUSIONS Participants drinking un- boiled water were more likely to develop cognitive impairment. Meanwhile, compared to drinking from a well, drinking from tap water was associated with a lower incidence of cognitive impairment.
Collapse
Affiliation(s)
- Tianda Feng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Ziyi Feng
- Department of postgraduate, China Medical University, Shenyang, Liaoning, PR China
| | - Qifang Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Qi Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
33
|
Liu W, Xin Y, Li Q, Shang Y, Ping Z, Min J, Cahill CM, Rogers JT, Wang F. Biomarkers of environmental manganese exposure and associations with childhood neurodevelopment: a systematic review and meta-analysis. Environ Health 2020; 19:104. [PMID: 33008482 PMCID: PMC7531154 DOI: 10.1186/s12940-020-00659-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Although prior studies showed a correlation between environmental manganese (Mn) exposure and neurodevelopmental disorders in children, the results have been inconclusive. There has yet been no consistent biomarker of environmental Mn exposure. Here, we summarized studies that investigated associations between manganese in biomarkers and childhood neurodevelopment and suggest a reliable biomarker. METHODS We searched PubMed and Web of Science for potentially relevant articles published until December 31th 2019 in English. We also conducted a meta-analysis to quantify the effects of manganese exposure on Intelligence Quotient (IQ) and the correlations of manganese in different indicators. RESULTS Of 1754 citations identified, 55 studies with 13,388 subjects were included. Evidence from cohort studies found that higher manganese exposure had a negative effect on neurodevelopment, mostly influencing cognitive and motor skills in children under 6 years of age, as indicated by various metrics. Results from cross-sectional studies revealed that elevated Mn in hair (H-Mn) and drinking water (W-Mn), but not blood (B-Mn) or teeth (T-Mn), were associated with poorer cognitive and behavioral performance in children aged 6-18 years old. Of these cross-sectional studies, most papers reported that the mean of H-Mn was more than 0.55 μg/g. The meta-analysis concerning H-Mn suggested that a 10-fold increase in hair manganese was associated with a decrease of 2.51 points (95% confidence interval (CI), - 4.58, - 0.45) in Full Scale IQ, while the meta-analysis of B-Mn and W-Mn generated no such significant effects. The pooled correlation analysis revealed that H-Mn showed a more consistent correlation with W-Mn than B-Mn. Results regarding sex differences of manganese associations were inconsistent, although the preliminary meta-analysis found that higher W-Mn was associated with better Performance IQ only in boys, at a relatively low water manganese concentrations (most below 50 μg/L). CONCLUSIONS Higher manganese exposure is adversely associated with childhood neurodevelopment. Hair is the most reliable indicator of manganese exposure for children at 6-18 years of age. Analysis of the publications demonstrated sex differences in neurodevelopment upon manganese exposure, although a clear pattern has not yet been elucidated for this facet of our study.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjuan Xin
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qianwen Li
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yanna Shang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhiguang Ping
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Catherine M. Cahill
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Liu X, Song J, Zheng Z, Guan H, Nan X, Zhang N. Effects of Excess Manganese on the Oxidative Status, and the Expression of Inflammatory Factors and Heat Shock Proteins in Cock Kidneys. Biol Trace Elem Res 2020; 197:639-650. [PMID: 31858402 DOI: 10.1007/s12011-019-02003-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Manganese (Mn) can have adverse effects on organisms as a result of heavy or chronic exposure, including neurological damage. This study examined the effects of chronic exposure to manganese chloride (MnCl2) on various biochemical indices of inflammatory cytokines, antioxidant enzymes, and heat shock proteins (HSPs) in the kidneys of Hy-line cocks. The exposures were carried out using 600, 900, or 1800 mg/kg doses of MnCl2 administered for periods of 30, 60, and 90 days. The exposure experiments indicated that Mn concentration in the kidneys increased over time and that Mn exposure potentially caused ultrastructural changes to the cells. Treatment with Mn was seen to increase the levels of various biomarkers, including protein carbonyl group content; DNA-protein cross-links (DPCs) and the mRNA expression of inflammatory factors such as tumor necrosis factor-α (TNF-α), nuclear factor-κB p50 (NF-κB p50), cyclooxygenase-2 (COX-2), and prostaglandin E synthase (PGES). The levels of other biomarkers were found to decrease as a result of Mn exposure, including the mRNA expression of oxidation indexes such as copper-zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT). Accompanying the above changes, Mn exposure was seen to result in the relative mRNA and protein expression of HSPs 90, 70, 60, 40, and 27 increasing significantly. Thus, in cock kidneys, HSPs attenuated the biological changes caused by toxic exposure to Mn. This mechanism needs further exploration.
Collapse
Affiliation(s)
- Xiaofei Liu
- Key laboratory of food science and engineering, Harbin University of Commerce, Harbin, 150076, China.
| | - Jie Song
- Key laboratory of food science and engineering, Harbin University of Commerce, Harbin, 150076, China
| | - Zhihui Zheng
- Key laboratory of food science and engineering, Harbin University of Commerce, Harbin, 150076, China
| | - Huanan Guan
- Key laboratory of food science and engineering, Harbin University of Commerce, Harbin, 150076, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Na Zhang
- Key laboratory of food science and engineering, Harbin University of Commerce, Harbin, 150076, China
| |
Collapse
|
35
|
Li ZC, Wang F, Li SJ, Zhao L, Li JY, Deng Y, Zhu XJ, Zhang YW, Peng DJ, Jiang YM. Sodium Para-aminosalicylic Acid Reverses Changes of Glutamate Turnover in Manganese-Exposed Rats. Biol Trace Elem Res 2020; 197:544-554. [PMID: 31838737 DOI: 10.1007/s12011-019-02001-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2019] [Indexed: 01/26/2023]
Abstract
Sodium para-aminosalicylic acid (PAS-Na) has been used to treat patients with manganism, a neurological disease caused by manganese (Mn) toxicity, although the exact molecular mechanisms are yet unclear. The present study aims to investigate the effect of PAS-Na on glutamate (Glu) turnover of Mn-exposed rats. The results showed that Mn concentrations in the hippocampus, thalamus, striatum, and globus pallidus were increased in Mn-exposed rats. Moreover, the results also demonstrated that subacute Mn exposure (15 mg/kg for 4 weeks) interrupted the homeostasis of Glu by increasing Glu levels but decreasing glutamine (Gln) levels in the hippocampus, thalamus, striatum, and globus pallidus in male Sprague-Dawley rats. These effects lasted even after Mn exposure had been ceased for a period of 6 weeks. Meanwhile the main Glu turnover enzymes [Gln synthetase (GS) and phosphate-activated glutaminase (PAG)] and transporters [Glu/aspartate transporter (GLAST) and Glu transporter-1 (GLT-1)] were also affected by Mn treatment. Additionally, PAS-Na treatment recovered the aforementioned changes induced by Mn. Taken together, these results indicate that Glu turnover might be involved in Mn-induced neurotoxicity. PAS-Na treatment could promote Mn excretions and recover the changes in Glu turnover induced by Mn, and a prolonged PAS-Na treatment may be more effective.
Collapse
Affiliation(s)
- Zhao-Cong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Fang Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, 530028, China
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lin Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jun-Yan Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yue Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Xiao-Juan Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yu-Wen Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Dong-Jie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
36
|
Periconceptional and prenatal exposure to metal mixtures in relation to behavioral development at 3 years of age. Environ Epidemiol 2020; 4:e0106. [PMID: 33154986 PMCID: PMC7595192 DOI: 10.1097/ee9.0000000000000106] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Supplemental Digital Content is available in the text. Behavioral effects of prenatal exposure to mixtures of essential and toxic metals are incompletely understood.
Collapse
|
37
|
Gora SL, Trueman BF, Anaviapik-Soucie T, Gavin MK, Ontiveros CC, Campbell J, L'Hérault V, Stoddart AK, Gagnon GA. Source Water Characteristics and Building-specific Factors Influence Corrosion and Point of Use Water Quality in a Decentralized Arctic Drinking Water System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2192-2201. [PMID: 31961665 DOI: 10.1021/acs.est.9b04691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Access to clean and safe drinking water is a perpetual concern in Arctic communities because of challenging climatic conditions, limited options for the transportation of equipment and process chemicals, and the ongoing effects of colonialism. Water samples were gathered from multiple locations in a decentralized trucked drinking water system in Nunavut, Canada, over the course of one year. The results indicate that point of use drinking water quality was impacted by conditions in the source water and in individual buildings and strongly suggest that lead and copper measured at the tap were related to corrosion of onsite premise plumbing components. Humic-like substances were the dominant organic fraction in all samples, as determined by regional integration of fluorescence data. Iron and manganese levels in the source water and throughout the water system were higher in the winter and lower in the summer months. Elevated concentrations of copper (>2000 μg L-1) and lead (>5 μg L-1) were detected in tap water from some buildings. Field flow fractionation coupled with inductively coupled plasma mass spectrometry and ultraviolet-visible spectrometry was used to demonstrate the link between source water characteristics (high organics, iron and manganese) and lead and copper in point of use drinking water.
Collapse
Affiliation(s)
- Stephanie L Gora
- Department of Civil and Resource Engineering , Dalhousie University , Halifax , Nova Scotia B3H 4R2 , Canada
| | - Benjamin F Trueman
- Department of Civil and Resource Engineering , Dalhousie University , Halifax , Nova Scotia B3H 4R2 , Canada
| | | | - Megan K Gavin
- Nunavut Arctic College , Iqaluit , Nunavut X0A 0H0 , Canada
| | - C Carolina Ontiveros
- Department of Civil and Resource Engineering , Dalhousie University , Halifax , Nova Scotia B3H 4R2 , Canada
| | - Jessica Campbell
- Department of Civil and Resource Engineering , Dalhousie University , Halifax , Nova Scotia B3H 4R2 , Canada
- Halifax Water , 450 Cowie Hill Rd. , Halifax , Nova Scotia B3P 2V3 , Canada
| | | | - Amina K Stoddart
- Department of Civil and Resource Engineering , Dalhousie University , Halifax , Nova Scotia B3H 4R2 , Canada
| | - Graham A Gagnon
- Department of Civil and Resource Engineering , Dalhousie University , Halifax , Nova Scotia B3H 4R2 , Canada
| |
Collapse
|